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Abstract 

Kaluza-Klein theory is developed starting from the simplest example in which a single 
extra spatial dimension is compactified to a circle, and a single Abelian gauge field 
emerges in four dimensions from the higher-dimensional metric. This is generalised 
to greater dimensionality whence non-Abelian gauge groups may be obtained, and 
possible mechanisms for achieving the compactification of the extra spatial dimensions 
are discussed. The spectrum of particles appearing in four dimensions is discussed 
with particular emphasis on the spectrum of light fermions, and the constraints arising 
from cancellation of anomalies when explicit higher-dimensional gauge fields are 
present are studied. Cosmological aspects of these theories are described, including 
possible mechanisms for cosmological inflation, and relic heavy particles. Finally, an 
introductory account of Kaluza-Klein supergravity is given leading towards superstring 
theory. 
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1. Five-dimensional Kaluza-Klein theory 

1 . 1 .  Introduction 

A theory unifying gravitation and electromagnetism using five-dimensional Riemannian 
geometry (Kaluza 1921, Klein 1926) and its higher-dimensional generalisations to 
include weak and strong interactions (DeWitt 1964, Kerner 1968, Trautman 1970, Cho 
1975, Cho and Freund 1975) have become a focus of attention for many particle 
physicists in the past few years. This revival of interest in Kaluza-Klein theory stemmed 
in the first instance from work in string theories (Scherk and Schwarz 1975, Cremmer 
and Scherk 1977), and then from the usefulness of extra spatial dimensions in the 
construction of N = 8 supergravity theory (Cremmer et a1 1978, Cremmer and Julia 
1978). In these contexts, it would have been possible to regard the extra spatial 
dimensions as a mathematical device. However, the above authors took the potentially 
more fruitful approach of considering them to be genuine physical dimensions which 
we do not normally observe because they have compactified down to a very small scale 
(spontaneous compactification). Extra temporal dimensions are undesirable for several 
reasons. Firstly, there would be tachyons observed in four dimensions. (See the 
analysis given in § 1.5.) Secondly, there would be closed timelike loops leading to 
world lines which violate causality. Thirdly, the sign of the Maxwell action would be 
incorrect. (See the analysis in § 1.4.) 

Though the renaissance of Kaluza-Klein theory has received a considerable impetus 
from the possible relevance to supergravity, many theorists have taken the view that 
extra spatial dimensions may be an ingredient in the unification of all interactions 
even if supergravity should eventually have to be relinquished. In this review, we shall 
avoid, as far as possible, reliance on supergravity as a framework for Kaluza-Klein 
theory. Instead we shall try to emphasise those aspects of such theories which might 
be of importance for unification of interactions with or without supergravity. Our 
approach is pedagogical and directed primarily towards readers without an extensive 
background in supergravity theories. Accordingly, we have been selective in the 
material included, and consequently in that section of the literature to which we refer. 
The reader may restore the imbalance against work deeply rooted in supergravity 
theory by a reading of one of the recent excellent review papers which have approached 
the subject from that standpoint (Duff et a1 1986, Englert and Nicolai 1983). 

1.2. The Jive-dimensional theory 

Five-dimensional Kaluza-Klein theory (Kaluza 1921, Klein 1926) unifies electromag- 
netism with gravitation by starting from a theory of Einstein gravity in five dimensions. 
Thus, the initial theory has five-dimensional general coordinate invariance. However, 
it is assumed that one of the spatial dimensions compactifies so as to have the geometry 
of a circle S' of very small radius. Then, there is a residual four-dimensional general 
coordinate invariance, and, as we see in 8 1.3, an Abelian gauge invariance associated 
with transformations of the coordinate of the compact manifold, S ' .  Put another way, 
the original five-dimensional general coordinate invariance is spontaneously broken 
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in the ground state. In this way, we arrive at an ordinary theory of gravity in four 
dimensions, together with a theory of an Abelian gauge field, with connections between 
the parameters of the two theories because they both derive from the same initial 
five-dimensional Einstein gravity theory. 

We adopt coordinates A = 1,. . . , 5  with 

p = X f i  p=o,1,2,3 (1.1) 

2 5 = e  (1.2) 

being coordinates for ordinary four-dimensional spacetime, and 

being an angle to parametrise the compact dimension with the geometry of a circle. 
The ground-state metric after compactification is 

E% = diag{T,, - i 5 5 )  

77,u = (1, -1, -1, -1) 

iS5 = d2 (1.5) 

(1 .3 )  

(1.4) 

where 

is the metric of Minkowski space, M4, and 

is the metric of the compact manifold S' ,  where E is the radius of the circle. 

the ground state. Quite generally, we may parametrise the metric in the form 
The identification of the gauge field arises from an expansion of the metric about 

(1.6) 
>. 

g,Jx ,  6 )  - B,(x,  O)Bu(x, e ) @ ( &  e) B,(x, e w x ,  0 )  
w x ,  w x ,  e )  - W X ,  8 )  

gAB(x, e)  = ( 
To extract the graviton and the Abelian gauge field it proves sufficient to replace 
@(x ,  8 )  by its ground-state value i55, and to use the ansatz without 8 dependence: 

We write 

B, (x )  = 5A, (x )  (1.8) 

where 5 is a scale factor we shall choose later so that A , ( x )  is a conventionally 
normalised gauge field. 

1.3. Abelian gauge transformations 

Coordinate transformations associated with the coordinate 8 of the compact manifold 
may be interpreted as gauge transformations, as we now show. Consider the trans- 
formation 

e +  e '=  O + ( E ( X ) .  (1.9) 

For a general coordinate transformation 

(1.10) 
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For the particular transformation (1.9), the off-diagonal elements of the metric give 

A,+AL=A,+d,e .  (1.11) 

Thus the transformation (1.9) of the coordinates of the compact manifold induces an 
Abelian gauge transformation on A,. This means that the compact manifold is provid- 
ing the internal symmetry space for the (Abelian) gauge group, and internal symmetry 
has now to be interpreted as just another spacetime symmetry, but associated with the 
extra spatial dimension. 

1.4. Effective four-dimensional action 

An effective action for the four-dimensional theory may be derived from the action 
for five-dimensional Einstein gravity 

(1.12) 

where is the five-dimensional curvature scalar, and C? is the gravitational constant 
for five dimensions. Substituting the ansatz (1.7) for gAB,  and integrating over the 
extra spatial coordinate 8, gives an effective four-dimensional action 

I=-- 2Td / d4xldet gI”*R -- - zG [ d4x)det gl”2F,yFCLY 
1 6 ~ G  

(1.13) 

where d is the radius of the compact manifold as in (1.5), R is the four-dimensional 
curvature scalar, and 

FFY zz a,A, -&A,. (1.14) 

The four-dimensional gravitational constant G is thus identified as 

G = G / 2 ~ d .  (1.15) 

To obtain standard normalisation for the gauge field we must then choose 

(1.16) 

where 

K ~ =  1 6 ~ G .  (1.17) 

Then the effective four-dimensional action is 

(1.18) 

(Had the extra dimension been timelike, we would have obtained the opposite (wrong) 
sign for the Maxwell action in (1.13).) 

Whether retaining just the massless states in four dimensions in this way is an 
adequate approximation is discussed in § 2.3. 
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1.5. Mass eigenstates 

The natural scale of mass for these theories is the Planck mass and  massive fields in 
five dimensions will naturally lead in four dimensions to particles with masses on the 
Planck scale. Suppose instead we start with a massless field in five dimensions. For 
a five-dimensional scalar field 4 ( x ,  e )  we may make the Fourier expansion on the 
compact manifold 

m- 

The Klein-Gordon equation 

then gives the equations for the Fourier components: 

(0, + m2, )4"(x )  = 0 

m2, = n 2 / i 2 .  
where 

(1.19) 

( 1.20) 

(1.21) 

( 1.22) 

The fields +"(x) are thus the mass eigenstates in four dimensions, and  the field 4'(x) 
is the only massless one (or perhaps light, after allowing for radiative corrections). 
The other fields 4 " ( x )  have masses of order k', which we would expect to be 
comparable to the Planck mass. If the extra dimension had had a timelike signature 
(positive in our convention), we would have obtained a negative mass squared in 
(1.22), i.e. tachyons. 

1.6. Charge quantisation 

If we apply the coordinate transformation 

e+ e '= e + t E ( X )  

4 ( X I  + exp(in& ( x ) )  4 " (XI. 

to the field +(x, 6 )  of (1.19), we have 

Since the Abelian gauge field transforms (according to (1.11)) in the manner 

(1.23) 

(1.24) 

A,  + A: = A, + dP& (1.25) 

this means that 4 " ( x )  has charge 
qn = - n t =  - n K / E  (1.26) 

where we have used the normalisation condition (1.16). Thus, charge is quantised in 
units of tc/k. The radius of the compact manifold may now be estimated from 

I?'= K2/e2  = 4 G / ( e 2 / 4 r > .  (1.27) 

Thus, identifying e with the quantum of electric charge 
I? - l o m i ' .  (1.28) 

There is however a flaw in the five-dimensional Kaluza-Klein theory, even if we d o  
not wish to include weak and  strong interactions as well as electromagnetism. From 
(1.26), we see that all charged particles have n # 0. But, from (1.22), this means that 
they all have masses on the Planck scale mp, whereas the familiar charged particles 
have very small masses on that scale. 
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1.7. Scalar jield from metric 

Starting from the general parametrisation of the metric (1.6), it is possible to extract 
a massless scalar field (Freund 1982, Appelquist and Chodos 1983a, b). Deleting 8 
dependence, which is associated with massive degrees of freedom, the graviton-scalar 
sector may be obtained from 

( 1.29) 

Substituting in the action (1.12) for five-dimensional gravity leads to the effective 
four-dimensional action 

(1.30) 

The @ I / *  multiplying the four-dimensional curvature scalar may be removed by a Weyl 
scaling, 

Then, 

or, with the further change of variables 

K - I  

d3 x = - In(@/@,) 

we have 

I=------ d4xldet gI1I2 a”x 3,x. 
1 6 r G  ‘I 

(1.31) 

(1.32) 

(1.33) 

(1.34) 

This is a particular case of four-dimensional Brans-Dicke theory (Jordan 1959, Brans 
and Dicke 1961). 

2. (4 + D)-dimensional Kaluza-Klein theories 

2.1. Isometry group of a manifold 

In order to unify gravitation, not just with electromagnetism but also with weak and 
strong interactions, it is necessary to generalise the five-dimensional theory of 5 1 to 
a higher-dimensional theory (Klein 1926, DeWitt 1964, Kerner 1968, Trautman 1970, 
Cho 1975, Cho and Freund 1975, Scherk and Schwarz 1975, Cremmer and Scherk 
1977) so as to obtain a non-Abelian gauge group. In the five-dimensional case, an 
Abelian gauge group arose from the coordinate transformation 

e+  e ’ =  e + t E ( X )  (2.1) 
on the single coordinate 8 of the compact manifold. In the (4+ D)-dimensional case 
we must look for symmetries of the compact manifold which generalise (2.1). The 
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appropriate transformations to study are the isometries of the manifold (an introductory 
discussion of isometries is to be found in Weinberg 1972, ch 13). Let us denote the 
coordinates of ordinary four-dimensional space by x@, and the coordinates of the 
compact manifold K by y".  An isometry of K is a coordinate transformation y + y' 
which leaves the form of the metric gm,, for K invariant: 

y - ) y ' : g ~ n ( y ' ) = ~ m , ( y ' ) .  (2.2) 

Isometries form a group, with generators t, and structure constants C a b c ,  in the following 
way. The general infinitesimal isometry is 

I + iaata : y" -+ y "' = y" + s"t ,"(y)  (2.3) 

where the infinitesimal parameters are independent of y ,  and the Killing vectors 
t:, which are associated with the independent infinitesimal isometries, obey the algebra 

t Y a m t Z -  t Y a m t E = - C a b c t I .  (2.4) 

Correspondingly by considering the commutator of two infinitesimal isometries, we 
can show that 

[ la ,  t b l  = i C a b c f c *  (2.5) 

For instance, the N-dimensional sphere S N  has isometry group SO( N + l ) ,  and the 
2N(real)-dimensional complex projective plane CPN has isometry group SU( N + 1). 
The isometry group for the compact manifold S' of the five-dimensional theory is just 
the SO(2) (or U(1)) group of transformations of (2.1). As we shall discuss later, it is 
possible to choose the compact manifold to obtain the isometry group SU(3) x SU(2) x 
U(1), which is the (observed) gauge group of electroweak and strong interactions. 

2.2. Non-Abelian gauge transformations 

The ground-state metric for the compactified (4+ D)-dimensional theory may be written 
as 

EAB = diag"' { v f i y ,  -i,,(y)I (2.6) 

where vfiu is the metric of Minkowski space M4 as in (1.4), and g,,(y) is the metric 
of the compact manifold. We return in § 3 to discuss whether such a ground state 
does exist. The non-Abelian gauge fields of the theory may be displayed by the 
expansion about the ground state 

(2.7) 

with 

(A more general ansatz including x dependence for imn and y dependence for g,, and 
A, is necessary to display any massless scalars arising from the metric and massive 
states.) 

Non-Abelian gauge transformations arise by considering the effect on the com- 
ponents gpn of the metric of the infinitesimal isometry with x-dependent parameters: 
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We then find that 

A: + A ; =  A;+d,&"(X)+ CabcBb(X)AL (2.10) 

which is just the usual Yang-Mills gauge transformation if we display the gauge 
coupling constant g explicitly by writing 

C a b c  = d a b ?  (2.11) 

t a  = g Ta (2.12) 

and 

so that 

[ Ta, Tb] = ifabcTc. (2.13) 

Thus, non-Abelian gauge transformations are generated by x-dependent infinitesimal 
isometries of the compact manifold K. 

2.3. Effective four-dimensional action 

The action for Einstein gravity in 41- D dimensions is 

(2.14) 

where R is the (4+ D)-dimensional curvature scalar, and e is the gravitational constant 
for 4 +  D dimensions. Substituting the ansatz (2.7) for gAB,  and integrating over the 
compact degrees of freedom y gives an effective four-dimensional action 

x (16&)-' - d4xldet gl'/2FLlya(FI*Y)b (2.15) 
4 'I 

(2.16) 

and R denoting the four-dimensional curvature scalar. The four-dimensional gravita- 
tional constant G is thus identified by 

K - * =  (16.rrG)-'= (167rG)--' dDyldet g(y ) / ' "  (2.17) J 
and standard normalisation of the gauge fields requires the Killing vectors to be scaled 
so that 

(6:(y)6:(y)gmmn(y)) = K28ab (2.18) 

where we have introduced the notation (of Weinberg 1983) 

(2.19) 
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Then we have the standard action for Einstein gravity plus non-Abelian gauge fields 
in four dimensions: 

I = - ( 1 6 ~ G ) - '  d4xldet g1'%! -- d4xldet g11'2Fp/(FpY)a. (2.20) I 4 'I 
The discussion given above has to be modified if the higher-dimensional theory 

one starts from is supergravity rather than ordinary Einstein gravity. For instance, 
there is present in eleven-dimensional supergravity a third-rank antisymmetric tensor 
field. (See, for example, the review articles of Englert and Nicolai (1983) and Duff et 
a1 1986.) In an expansion of this field about its expectation value, terms proportional 
to the gauge fields appear (Duff et a1 1983c, 1984a) and in four dimensions there is 
an additional contribution for the Yang-Mills Lagrangian. Then, the normalisation 
of the Killing vectors in terms of the gravitational constant differs from (2.18). This 
amounts to a modification of the relationship between the gauge coupling constant 
and the gravitational constant, as can be seen from § 5 .  

A further subtlety, which has been emphasised by Duff et a1 (1984b) and Duff and 
Pope (1984), is that simply retaining the massless states in the four-dimensional theory 
after compactification may give field equations whose solutions are not exact solutions 
of the full (4 + D)-dimensional field equations. (This includes the five-dimensional 
case.) However, it has been argued by Witten and Weinberg (see Duff and Pope 1984) 
that the errors incurred are suppressed at energy scale E by powers of EIE , ,  where 
Eo is the compactification scale, provided the four-dimensional ground state is 
Minkowski space. 

2.4. Graviton-scalar sector 

The graviton-scalar action may be derived by making the ansatz 

(2.21) 

which is more general than (2.7), in that it allows x dependence for g",,. Substitution 
of this ansatz in the (4+ D)-dimensional gravitational action (2.14) yields (Cho and 
Freund 1975) 

I =  - ( 1 6 ~ G ) - '  d4x dDy)det gp,l''21det @m,/"2  i I  
x {[w + fi - amn D, DP a,, - 1 D'* amn D ,  am" 
- @"'"D' 4)mn@p4Dp(Pp4 + @"n(PPYD,~pmDpL(P4,} (2.22) 

where R and Lk are the curvature scalars for 4 and D dimensions, respectively. The 
integration over the compact manifold 5 d"y may be performed given the metric. 

2.5. Diferential geometry 

The modern formulation of differential geometry, in terms of differential forms, has 
great calculational and notational advantages for studying the compact manifold of 
Kaluza-Klein theory. Accordingly, we give here a brief resumt of the more important 
definitions and results. For a more extensive and thorough discussion see, for instance, 
Eguchi et a1 (1980) and Salam and Strathdee (1982). Differential forms are a convenient 
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formalism for manipulating totally antisymmetric tensors. An antisymmetric product 
of coordinate differentials (the exterior product A ) is defined so that 

(2.23) dy" A dy" = -(dyn A dy") 

and a p-form w is constructed from any pth-rank antisymmetric tensor w m I , .  mp : 

~ ~ ~ ~ , , , , , , , ~ d y " ~ ~ d y " ~ ~  . . . ~ d y " p .  (2.24) 

Then for a p-form ap and a q-form P, 
( Y p  A P, = (-1)"'PP, A C y p .  (2.25) 

A totally antisymmetric differentiation, the exterior derivative d, is defined by 

dw = a m p + l ~ m , .  . , mp dy"p+l A dyml A .  . . A dy".. (2.26) 

There follows immediately the important property 

ddw = O  (2.27) 

(2.28) 

An important theorem which generalises Gauss's Law and Stokes's theorem is that 
r r 

(2.29) 

where M is a p-dimensional manifold and dM is its boundary. 
It is often convenient to work with the vielbein e*,(y) for the compact manifold K 

rather than its metric i m n ( y ) .  If the tangent space to the manifold is a Euclidean space 
so that we may choose its metric to be ti,,, then the vielbein is defined by 

imn(Y) = aope",~)e!(~ I *  (2.30) 

(We shall refer to a, P, . . . as flat indices, or tangent space indices, and m, n, . . . as 
curved indices.) The vielbein has inverse e,"(y) given by 

e,"(v) = &3i""(Y)e!(Y) (2.31) 

(2.32) 

(2.33) 

Flat indices may be converted into curved indices, and vice versa, using the vielbein 
and its inverse. 

The vielbein 1-form 

e"(y) = eXY) dY" (2.34) 

may be used to construct the spin-connection 1-form U",, and the torsion and curvature 
2-forms T" and R",: 

(2.35) de" + w e p  A eo = T" 

and 

R", = dw", + w a y  A w y p  

-4 Reprs(eY A e')). (2.36) 
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(We shall normally deal with manifolds which admit a torsion-free metric, T" =O.) 
The usual curvature tensor Rmnp4 is obtained by using the vielbein to convert flat 
indices into curved indices. The relationship of the spin connection as defined by 
(2.35) to the usual definition (as, for example, in Weinberg 1972, § 12.5) may be read 
off from the covariant derivative Om$ of a field $ transforming as the representation 
M"' of the SO(D)  tangent space group of the compact manifold K :  

O m $  = ( a m  -iUm)$ (2.37) 

where 

w e P  = (wclp),dym (2.38) 

and 

w, =f (U,'),M"'. (2.39) 

As a 1-form, 

D$ = (d - iw)& (2.40) 

When the compact manifold K is a coset space G/H,  the vielbein may be constructed 
as follows. The points y" of K may be represented by chosen elements L ( y )  of G, 
one from each coset. Let the Hermitian generators of G be Qc; with commutation 
relations 

(2.41) 

may be written in the form 

(2.43) 

where the generators Qc; have been divided into those, Q6, which belong to H, and 
the others Qa which are associated with the tangent space. Then, e"(y) is the vielbein 
1-form for G / H  as in (2.34). 

The spin connection for a coset space is conveniently calculated from the structure 
constants of the group G using the Maurer-Cartan formula 

(2.44) M y )  + e(y) A e(y)  = 0 

which follows from (2.42) and 

ddL(Y 1. (2.45) 

In terms of the structure constants of G this is 

dec;((y) = 1 f&( e6((y) A e'(y)). (2.46) 

In particular 

d e " ( y ) = i f a Y p ( e Y ~  e ' ) + f & ( e ' ~  e'). (2.47) 

Comparing with (2.35) for zero torsion we identify the spin connection 
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In particular for the important case of a symmetric coset space where 

f a &  = 0 (2.49) 

we have the simple form 

w a p  = fOspes.  (2.50) 

It is important in applications to know that the generators Q) of H may be embedded 
in the tangent space group SO(D)  for K. The reasoning is as follows. A left translation 
y +  y' may be defined on K by 

& ( Y )  = U Y ' ) h  (2.51) 

where g is an arbitrary element of G, and h is a suitable element of H. When g is 
independent of position on the manifold, it may be deduced from (2.42) (Salam and 
Strathdee 1982) that under left translations 

e a ( y ' )  = e P ( y ) D p " ( h - ' )  (2.52) 

where Dop is a matrix of the adjoint representation of G, defined by 

g-'Q;g = D; p^(g)Qp.. (2.53) 

Equation (2.52) specifies an embedding of H in the tangent space group SO(D) .  In 
terms of the matrix elements of the adjoint representation of G, 

( Q p I a p  = -iCwp. (2.54) 

But the standard generators of S O ( D )  are 

= -i(6;6{ - 6;s;). 

Thus the embedding is 

(2.55) 

2.6. The manifolds Mpqr  

To obtain the known gauge group SU(3) x. SU(2) x U ( l )  of strong and electroweak 
interactions as (a subgroup of) the isometry group of the compact manifold K ,  it is 
necessary to have K at least seven dimensional. This is because (Witten 1981) the 
lowest-dimensional manifold with isometry group G is a coset space G / H  with H a 
maximal subgroup of G, but with none of the factors in H identical to any factor in 
G. Thus, for 

(2.57) G = SU(3) x SU(2) x U( 1) 

we must choose the maximal subgroup 

H = SU(2) x U'( 1) x U''( 1) (2.58) 

leading to the manifold 

K = G / H  (2.59) 

of dimensionality 12 - 5 = 7 .  
Almost the most general coset space of this type, denoted MP9' by Witten, may be 

constructed as follows. Denote the generators of SU(3), SU(2) and U ( l )  by $ A o ,  
a = 1, . . . ,8 ,  fa,, (Y = 1,2,3,  and Y. It is necessary (without loss of generality) to select 
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two U( l )  factors commuting with the SU(2) isospin subgroup of SU(3) to be in H. In 
other words, it is necessary to select one combination of $ i 8 ,  tu3 and Y which does 
not occur in H (and so, as in § 2.5, is associated with the tangent space). Let this 
combination be 

2 E $(&PA8 + qU3 + 2 r Y) (2.60) 

with p ,  q and r arbitrary integers to give a compact U( 1). Then, the two combinations 
which lie in H may be taken to be the orthogonal combinations 

Z ’ = $ [ 2 & p r A 8 + 2 q r u 3 - 2 ( 3 p 2 + q 2 )  Y ]  (2.61) 

and 

2’’ = f( -&qA 8 + 3pU3). (2.62) 

This completes the construction of K .  
Generally, the isometry group for MP4‘ is SU(3) x SU(2) x U(1). However, for the 

exceptional cases ( p  = 1, q = 0, r = 1) and ( p  = 0, q = 1, r = 1) the manifolds are S5 x S2 
and CP2 x S3 with the larger isometry groups SO(6) x SO(3) and SU(3) x S0(4) ,  respec- 
tively (see § 2.1). 

The manifolds Mpqr  are not quite the most general (orientable) seven-dimensional 
manifolds with isometry group at least SU(3) x SU(2) x U( l), because it is not necessary 
to chose 2,Z’ and 2” orthogonal. All that is required is that they should be independent 
(Randjbar-Daemi et a1 1984a). Thus, we may choose 2 as in (2.60), but take the two 
U(1) factors in H to be 

X’=f&A8+sY (2.63) 

and 

X”=i u,+tY (2.64) 

where s and t are free parameters, subject only to the constraint 

p s +  qt - r # 0. (2.65) 

This slightly more general class of manifolds with isometry group SU(3) x SU(2) x U( 1) 
is labelled Mpqrsr by Randjbar-Daemi et a1 (1984a). 

3. Compactification mechanisms 

3.1. General considerations 

For a Kaluza-Klein theory to be able to describe the observed four-dimensional world 
it is necessary for the extra spatial dimensions to be compactified (except possibly in 
the early universe) down to a size which we do not probe in particle physics experiments 
(e.g. the Planck length). As has been emphasised by Appelquist and Chodos (1983a, b),  
a basic difference between five-dimensional Kaluza-Klein theory and (4 + 
D)-dimensional theory (with D > 1) is that the five-dimensional gravitational field 
equations have a compactified classical solution of the form (1.3), but, in general, the 
(4+ D)-dimensional equations do not have a compactified classical solution of the 
form (2.6). Thus, in the (4+  D)-dimensional theory, compactification of the D extra 
spatial dimensions requires that either matter fields are introduced to provide an 
energy-momentum tensor, or that the (4+ D)-dimensional gravitational action differs 
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from the minimal Einstein action. We shall mostly discuss the former possibility, but 
return to the latter possibility in 8 3.8. 

When compactification is due to matter fields, an energy-momentum tensor .TAB 

must be introduced on the right-hand side of the (4+ D)-dimensional gravitational 
field equations: 

RAB -$(R + ~ ) E A B  = ~ T ~ T A B  (3.1) 

where for generality a (4 + D)-dimensional cosmological constant has been included. 
(The following argument follows closely Randjbar-Daemi et a1 (1983b).) If we demand 
compactification into M4 x K ,  where M4 is four-dimensional Minkowski space, and K 
is the D-dimensional compact manifold, then 

- 
R,, = 0 p , v = o , 1 , 2 , 3  (3.2) 

and because of Lorentz invariance the 4-space components of the energy-momentum 
tensor are of the form 

(3.3) 

where r lPu is the Minkowski metric of (1.4). If the compact manifold is an Einstein 
space we may also write 

- I 

Rmn = -2kEmn k">O (3.4) 

and the components of the energy-momentum tensor on the compact manifold are of 
the form 

It then follows from the field equations (3.1) that 

iw,, =(E-c )& ,  

iw = g m n R  mn = D ( E - c) 

x = -DE+ ( D  - 2)c. 

and 

Equation (3.7) shows that compactification occurs provided 

E - c < O .  

(3.8) 

(3.9) 

3.2. Freund-Rubin compactifcation 

A mechanism for compactification which arises naturally in eleven-dimensional super- 
gravity (see P 7.2) has been particularly explored by Freund and Rubin (1980). This 
mechanism depends on a third-rank antisymmetric tensor field A B C D  with field strength 

FABCD a A A s c D  - ~ ~ A A C D  + ~ C A A B D  - ~ D A A B C  (3.10) 

and action 
r 

r= d 4 + D ~ l d e t  El"*(-& FABCDFABCD) J (3.11) 
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(apart from couplings to fermions, and trilinear self-couplings which do not contribute 
for the type of solution considered here). Then, the field equation for F A B C D  is 

(3.12) Id et gl - -'/2aA(ldet g11/2FABCD) = 0 

and the energy-momentum tensor is 

(3.13) 

The field equation (3.12) has a solution of the type 

F+W"=ldet gl - l /2EPvP"F P, v, P, u=o, 1,293 (3.14) 

and all other entries zero, where det g refers to four-dimensional space, F is a constant 
and the Levi-Civita symbol is defined such that 

EO123 = 1, (3.15) 

For such a solution the energy-momentum tensor takes the form 

F2 d e t g  - 7 =--- 
P 2 /det gl gpb 

and 

- F 2  d e t g  - T =-- 
*' 2 ldetgl gmn 

(3.16) 

(3.17) 

where m, n run over the compact manifold. If we look for a compactification with 
Minkowski four-dimensional space, then in the notation of (3.3) and (3.5), 

(3.18) 

Thus (3.9) is satisfied and compactification occurs. From (3.8), consistency requires 
a (4 + D)-dimensional cosmological constant 

A = 8 d ( D  - 1)F2. (3.19) 

However, in the case of eleven-dimensional supergravity, an eleven-dimensional 
cosmological constant in the theory destroys the supersymmetry. In that case, one 
must set to zero, and one then finds 

iw = 8 v C F 2 4 ( D  - 1)/(D+ 2) (3.20) 

and 

d = -8vC?F23D/(D+2) (3.21) 

where R and k denote the four- and D-dimensional curvature scalars, respectively. 
Thus, for eleven-dimensional supergravity, there is the unwelcome feature of an anti- 
de Sitter four-dimensional space! 

3.3. Quantum fluctuations in massless higher-dimensional $fields 

An alternative compactification mechanism (Candelas and Weinberg 1984, Weinberg 
1983) is through quantum fluctuations of massless fields in the (4+ D)-dimensional 
theory. As these authors observe, for it to make sense to consider quantum fluctuations 
in light matter fields, while neglecting gravitational quantum connections, it is necessary 
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for the number of light matter fields to be large. By dimensional analysis, when the 
matter fields are massless in (4+ D)-dimensions, we may write the matter field action 
as 

I= - d4xlgl"* V( d )  (3.22) I 
where d is the radius of the compact manifold and 

v( d )  = CD2k4 (3.23) 

with CD a constant dependent on the number of matter fields. The energy-momentum 
tensor may be computed using 

(3.24) 

RD dDyldet g'l"' J 
Also, for an Einstein space, 

(3.27) 

(3.28) 

with k">O for a compact manifold. Demanding that four-dimensional space be 
Minkowski, the field equations (3.1) yield 

and with V ( d )  as in (3.23), 

(3.29) 

(3.30) 

(3.31) 

where 

G = (3.32) 

as in (2.17). 
It can be seen from (3.30) that for compactification to occur CD must be positive. 

(Alternatively, this follows from (3.25), (3.26) and (3.9).) For any given manifold, Cr, 
may be evaluated by calculating the eigenvalues of the Klein-Gordon or Dirac operator 
on the compact manifold (for massless scalar or spinor fields in 4 +  D dimensions, 
respectively) to obtain the masses of the 'tower' of four-dimensional fields (see $0 1.5 
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and 5.1), and then calculating the effective potential in the usual way (Coleman and 
Weinberg 1973). 

A similar discussion has been given earlier for five-dimensional Kaluza-Klein 
theory (Appelquist and Chodos 1983a, b). In this case k' is zero, because SI is flat, 
and no solution for d arises. The coefficient CD is found to be negative, and the 
energy V ( d )  decreases without limit as d approaches zero. Thus, it has to be assumed 
that as I?: approaches the Planck length, and the loop expansion of the effective potential 
fails, the dynamics stabilise d at that scale. This is in contrast to the situation in the 
absence of quantum corrections where any value of R satisfies the classical field 
equations (neutral stability). 

3.4. CompactiJcation due to explicit gauge jields 

It is contrary to the spirit of the original Kaluza-Klein theory to introduce gauge fields 
explicitly in 4 1 0  dimensions, since the hope was that all gauge fields might arise 
from the isometry group of the manifold, upon dimensional reduction. However, there 
are three advantages to be derived from doing so. Firstly, the explicit gauge fields 
provide a compactification mechanism. Secondly, the D 'extra' components of the 
(4+ D)-dimensional gauge fields provide scalar fields in four dimensions which may 
prove useful as Higgs scalars. The F+yFILY terms in the (4+D)-dimensional gauge 
field kinetic term provide in four dimensions the gauge field kinetic term, the FILmFpm 
terms give the Higgs scalar kinetic terms, and the F,,,,F"" terms provide the Higgs 
scalar potential, after integration over the compact manifold. (This possibility has 
been advocated by Manton (1979), Forgacs and Manton (1980) and Chapline and 
Manton (1981), though with a mathematical dimensional reduction rather than a 
physical compactification.) Thirdly, an explicit gauge field expectation value in a 
topologically non-trivial configuration can overcome the difficulty endemic to pure 
Kaluza-Klein theories of obtaining chiral fermions in four dimensions (see Q 5). 
Kaluza-Klein theories with explicit gauge fields (higher-dimensional Einstein-Yang- 
Mills theories or supergravity Yang-Mills theories) have been explored by Cremmer 
and Scherk (1976, 1977), Horvath et a1 (1977), Horvath and Palla (1978), Luciani 
(1978), Randjbar-Daemi and Percacci (1982), Randjbar-Daemi et a1 (1983a, b, c), 
Witten (1983), and many subsequent authors, the most recent theories of this type to 
excite interest being the ten-dimensional supergravity Yang-Mills theories derived 
from superstring theory (Green and Schwarz 1984, Gross et a1 1985). 

For explicit gauge fields with field strength F t B ,  where A and B run over all 4+  D 
dimensions, the action is 

(3.33) 

and the energy-momentum tensor is 

T A B  = - ( ( F a  ) AC ( F a  ) B C  - $ ( F a  )CDFaCDgAB 1. (3.34) 

Assuming that the field strength has a non-zero expectation value only on the compact 
manifold, i.e. for A, B, C, 0, . . . taking values m, n, p,  4 , .  . . , and that the compact 
manifold is an Einstein space, then in the notation of Q 3.1 we have 

(3.35) 
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(3.36) 

Thus, (3.9) is satisfied consistently with compactification occurring. 

3.5. Monopole solutions 

The simplest example of compactification using a topologically non-trivial explicit 
gauge field configuration (Randjbar-Daemi et a1 1983a) is obtained for D = 2 with 
compact manifold the surface of an ordinary sphere: 

S2=G/H=SU(2) /U(1) .  (3.37) 

Then an explicit U ( l )  gauge field may be introduced with a monopole expectation 
value on the compact manifold: 

(3.38) 

where a is a constant to be determined in terms of the charges of the matter fields, 
and the plus and minus signs refer to the upper and lower hemispheres, respec- 
tively. The monopole solution is SU(2) invariant (up to a U ( l )  gauge transformation) 
(Randjbar-Daemi et a1 1983a). 

The action for this theory is 

A , ( y )  dy" = a(  1 'F cos e )  d 4  

(3.39) 

and the requirement that (3.38) is a solution of the field equations, for Minkowski 
four-dimensional space, determines the radius of the compact manifold in terms of 
the six-dimensional gravitational constant and the field strength a: 

i'= 8.rrGa2. (3.40) 

When both the metric and the U ( l )  gauge field are expanded about the ground 
state the situation is more complicated than for pure Kaluza-Klein theory. In the pure 
Kaluza-Klein theory of 3 2, the SU(2) isometry group of S2 leads to SU(2) gauge fields 
in four dimensions arising from the off-diagonal components of the metric. In the 
present case, the gauge group of the effective four-dimensional action is SU(2) x U( l) ,  
with the SU(2) gauge fields being a superposition of the gauge fields from the metric 
and the original explicit U( 1) gauge field. Because the radius of the compact manifold 
is related to the gravitational constant and the Yang-Mills field strength by (3.40), the 
gauge coupling constant g for the four-dimensional SU(2) gauge group is related to 
the monopole strength 

g 2  = 3/2a2. (3.41) 

3.6. Instanton solutions 

If, instead, the compact manifold is 

S4= G / H  = SO(S)/S0(4) (3.42) 

then explicit SU(2) gauge fields may be introduced and an instanton solution on the 
compact manifold may be used (Randjbar-Daemi et a1 1983c) instead of a monopole 
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solution. (This solution is only formally an instanton. It is constructed using four 
spatial coordinates, rather than three spatial coordinates and a time coordinate. It is 
invariant, up to a gauge transformation under the action of SO(5) on the manifold.) 
Then, an expansion of the metric and the explicit gauge fields about the ground state 
leads to SO(5) Yang-Mills fields in four dimensions (rather than SO(5) x SU(2)), 
because the original SU(2) gauge symmetry is spontaneously broken by the instanton 
solution. 

3.7. Generalised monopole and instanton solutions 

If the compact manifold is the coset space 

K = G / H  (3.43) 

then, in the notation of 0 2.5, a G-invariant solution of the Einstein-Yang-Mills field 
equations may always be obtained (Randjbar-Daemi and Percacci 1982) by taking 

A" G A: dy" = e" H # U(1) (3.44) 

or 

A" = ae" H = U ( l )  (3.45) 

where a is a constant, and e" are the components ofthe covariant basis (2.43) associated 
with the generators of H. In (3.44) and (3.45), it is understood that an embedding of 
H in the explicit Yang-Mills group GYM has been specified (which of course requires 
that GYM is large enough to contain H). The gauge field configuration of (3.44) or 
(3.45) generalises the monopole and instanton solutions of the last two sections to an 
arbitrary coset space. If H is of the form 

H = H'OU( 1 )  (3.46) 

then a monopole solution may be constructed by applying the ansatz (3.45) to the 
U( 1 )  factor. For instance, monopole solutions have been employed by Watamura 
(1983, 1984) for the complex projective planes 

S U ( N + l )  CP = ? - S U ( N )  x U ( 1 ) .  
(3.47) 

If H is of the form 

H = H'OSU(2) 

then an instanton solution may be constructed by applying the ansatz (3.44) to the 
SU(2) factor displayed. (In § 3.6, H' was SU(2).) 

Such gauge field configurations are in general topologically non-trivial. For 
instance, if for a monopole solution we write 

F = Fm,dym A dy" (3.48) 

(with the gauge coupling absorbed in the definition of the gauge field) then the first 
Chern number (Eguchi et a1 1980) 

F = integer (3  -49) 

is the monopole number, e.g. 
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c, = -2a for S2 (3 .50)  

with a as in (3.38). 
For an instanton solution on S4, if we write 

Y" AdY") 
tu FGn F E  -- -(d 
2 2  

(3.51) 

where ( tu/2)  are the matrices representing the S U ( 2 )  factor of H in the fundamental 
representation of GYM, the second Chern number (Eguchi et a1 1980) 

1 
C2 = - Tr(F  A F )  = integer 

8 r 2  K 
(3.52) 

is the instanton number, and for an instanton solution 

Ic21 = 1. (3.53) 

(There is no contribution from the curvature to C, for S4.) 

Wilczek 1977, Witten 1983) is 
Another very natural choice of gauge field configuration (Charap and Duff 1977, 

A"P Amn' dy'" = "ma' dy" I ma' (3.54) 

where umaP is the spin connection for K of $ 2.5, and the SO(D)  tangent space group 
has been embedded in GYM. (A"' is a labelling of the gauge fields corresponding to 
the standard antisymmetric generators M a p  of SO(D).)  Then the topology of the 
gauge field configuration is directly related to the topology of the manifold (the Euler 
characteristic). 

3.8. Non-minimal gravitational actions 

A possible compactification mechanism which does not require the introduction of 
matter fields is through non-minimal terms added to the ( 4 +  D)-dimensional Einstein 
action. Wetterich (1982a) has considered an action of the form 

f =  -( 1 6 ~ & ) - '  5 d4iDZldet + aR2+ / 3 R A B R A B  + Y R A B C D R ~ ~ ~ ~ } .  (3.55) 

He finds that the field equations admit a compactified solution of the type M 4 x  S D ,  
where M4 is Minkowski space, though to obtain other compact manifolds (e.g. a 
product of spheres) requires higher curvature invariants to stabilise the effective action. 

3.9. Stability of compactijication of pure Kaluza-Klein theories 

The simplest perturbation under which to consider stability (Candelas and Weinberg 
1984) is a change in the overall scale k of the manifold. Suppose that the action can 
be written in the form 

f =  - ( 1 6 v G ) - '  1 d4+'D3"l'/2(Il%(y)+~) - 5 d4xX(gl'/'V(k) (3.56) 

where k(y)  is the curvature scalar for the compact manifold, and V ( k )  is a compactify- 
ing action. Using (3.28) for an Einstein space, 

fi = -2D&-'. (3.57) 
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Integrating over the coordinates y of the compact manifold, and using (3.27) and 
(3.32), we may write (for Minkowski four-dimensional space) 

I =  - d% v,,, (3.58) I 
with 

Veff= ( 1 6 ~ G ) - ' (  A - 2 b k 2 )  + V( I?). (3.59) 

When V(I?) has the simple form 

V ( d )  = c,d-4 with C D > o  (3.60) 

the effective potential always has a stable minimum, when k" # 0, provided 

q + D - 2 >  0. (3.61) 

This includes the case of compactification by quantum fluctuations in matter fields 
(Candelas and Weinberg 1984), when q = 4. It also includes (Bailin et a1 1984) the 
case of Freund-Rubin compactification because the field equation (3.12) implies that 
F of (3.14) has the property 

F - i - D  (3.62) 

so that (3.16) and (3.17) imply that V ( E )  is of the form (3.60) with 

q = D  Freund-Rubin compactification. (3.63) 

One subtlety which arises for compactification by matter field quantum fluctuations 
is that the (dk/dt)-dependent terms in the effective action may as a result of quantum 
effects (Gilbert et a1 1984) have a different sign from the tree approximation value 
deriving from l k (y ) .  This occurs (Gilbert and McClain 1984) when the ratio of the 
number of massless scalar fields to the number of massless spinor fields in the 
higher-dimensional theory is sufficiently small. Then, instability would arise at the 
apparently stable minimum of the effective potential ! 

More general perturbations may be considered than just an overall change of scale 
of the compact manifold. For instance, for a product compact manifold and Freund- 
Rubin compactification instability occurs under independent changes of scale of the 
two spaces in the product (Duff et a1 1984b, Bailin and Love 1985a) with the radius 
of one growing at the expense of the other. A similar phenomenon occurs as a result 
of one-loop quantum corrections for a toroidal compact manifold TD,  with one of the 
D dimensions contracting while the others expand (Appelquist et a1 1983, Inami and 
Yasuda 1983). Stability under more general perturbations including squashing has 
also been studied for spheres (Page 1984) and other manifolds. 

All the above considerations of stability are in terms of classical perturbations of 
an effective action. However, in the five-dimensional theory there is an instability of 
the Kaluza-Klein ground state (Witten 1982, Kogan et a1 1983) due to quantum 
tunnelling. Fortunately, there does not appear to be a (simple) generalisation of this 
phenomenon to higher dimensions (Young 1984). 

3.1 0. Stability of compactijication for  Einstein- Yang-Mills theories 

When the theory contains explicit gauge fields, there is a further danger of instability 
of the compactification, because of classical perturbations in the gauge fields. For the 
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case of an explicit U(1) gauge field in a monopole configuration on S' it has been 
shown by Randjbar-Daemi et a1 (1983a) that no instability arises in this way. However, 
for any non-Abelian gauge group GYM with an SU(2) invariant vacuum configuration 
on S 2  instability occurs (Randjbar-Daemi et a1 1983b) as can be seen by expanding 
to quadratic order in the classical perturbation, in the action, and looking for tachyons. 

In general (Randjbar-Daemi et a1 1983b, Schellekens 1985a, b), for a compact 
manifold G/H,  only the perturbations in the gauge bosons associated with H mix with 
the perturbations in the metric. This sector has been calculated (Schellekens 1984) for 
a general hypersphere SD, for a general explicit gauge group GYM. Except for the 
case D = 3 ,  there are never any tachyons in this sector, and the compactification is 
stable in this respect. 

However, even when the perturbations in the H gauge bosons do not lead to 
instability, the perturbations in the gauge bosons in G but not in H often do (Randjbar- 
Daemi 1983c, 1984c, Frampton et a1 1984a, Schellekens 1985a), as in the case discussed 
by Randjbar-Daemi et a1 (1983b). A general discussion of this type of instability has 
been given by Schellekens (1985b) for a general hypersphere S D  with the explicit 
gauge fields of gauge group GYM in a generalised monopole configuration (as in 0 3.7). 

4. Gauge coupling constants 

4.1. Geometric interpretation 

In the five-dimensional case of 0 1, where the gauge group was Abelian, charge was 
quantised and the quantum of charge was related to the radius of the compact manifold 
S' (and the four-dimensional gravitational constant) as in (1.26). In higher-dimensional 
theories in six or more dimensions where the gauge group is non-Abelian we would 
like to be able, in a similar fashion, to relate the gauge coupling constant (or coupling 
constants) to the geometry of the compact manifold. The connection can be made 
(Weinberg 1983) by considering isometric curves on the manifold (i.e. curves traced 
out when an infinitesimal isometry is exponentiated). Consider the infinitesimal 
isometry with parameter d a  associated with a particular generator t, of the isometry 
group. From (2.3) this is 

I + idat, : y" -+ y" '  = y" + da(:(y) (4.1) 

where 6:: is the corresponding Killing vector. The exponentiated curve traced out as 
a varies is 

where Y" is the solution of 

d Y " / d a  = ( z ( y )  Y " ( a = O ) = y , " .  (4.3) 

For any representation of the non-Abelian isometry group, the eigenvalues of a diagonal 
generator t, will be integral multiples of some lowest (positive) eigenvalue gmi, (with 
the gauge coupling constant g absorbed in the definition of the generators). As a 
increases from 0 to 2 r / g m j n ,  e'"'" returns to its starting value, and, if the representation 
t, is N valued, we go exactly N times round the manifold. The circumference S(yo )  
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of the manifold along the isometric curve with starting point yo is 

(4.4) 

where the metric g",,(y) is as in (2.6), and infinitesimal distance ds along the isometric 
curve is given by 

Averaging over the starting points yo ,  and using the notation (2.19), 

(s ' )  = (2.rr/Ng,i")2(immn(y)50m(y)5~(y)).  (4.6) 

(s') = ( ~ T / N ~ , ~ , , ) ~ K '  (4.7) 

For standard normalisation of the gauge fields (2.18), 

where K is the four-dimensional gravitation constant of (2.17). Thus, the gauge coupling 
gmin is related to the geometry of the compact manifold by 

gmin = 2.rr~/N(s')'" (4.8) 

where (s ' ) ' '~  is the root-mean-square circumference of the manifold along the isometric 
curve associated with the generator t ,  averaged over starting points. The result is 
general enough to handle situations where the isometry group is a product of non- 
Abelian factors, so that there might be different gauge coupling constants associated 
with different diagonal generators t , .  Clearly, the above reasoning is not directly 
applicable to cases where the gauge group has an Abelian factor, since Abelian gauge 
fields do not have any self-coupling. In that case, to interpret the result (Weinberg 
1983) it is necessary to introduce a matter field (e.g. a complex scalar field). 

For an Einstein space, where the Ricci tensor is proportional to the metric, a 'radius' 
a for the compact manifold may be introduced by writing 

d,, = a-'gmn. (4.9) 

For the hypersphere SD,  (4.8) yields (Weinberg 1983) 

K 2  (D+1) 
g2'2 2 ( D - 1 )  

(4.10) 

where the gauge coupling constant g for the SO(D + 1) isometry group has been 
normalised so that in the single-valued defining representation the eigenvalues of, say, 
MI2 are (g, -g, O , O , ,  . .), with the normalisation of generators 

[ M ij, M k /  1 = i( 6 i k n / r ' /  + 6j'M ik - 8 i/Mjk - 6 j k M  (4.11) 

and couplings M"At;,+, . . . For the four-dimensional manifold CP2,  the correspond- 
ing result (Weinberg 1983) is 

g"; K = / a =  (4.12) 

with a standard normalisation of generators for the isometry group SU(3), such that 
the eigenvalues of f3 in the 3 are (g/2, -g/2,0). 
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4.2. Absolute values of gauge coupling constants 

When compactification is by quantum fluctuations in massless higher-dimensional 
fields, it is possible, as discussed in § 3.3, to determine the constant CD,  in the effective 
potential of (3.23), by calculating with the tower of four-dimensional fields deriving 
from the harmonic expansion of the higher-dimensional fields. Then, the radius of 
the compact manifold is determined by (3.30) where, in the present notation, 

a-'= 2l3-2. (4.13) 
If for instance, the compact manifold is a sphere SD, then 

2 C = D - 1  for S D. (4.14) 

For this case, the absolute value of the gauge coupling constant (at the compactification 
scale) is then determined by (4.10). Unfortunately (Candelas and Weinberg 1984), 
very large numbers (> lo3) of massless higher-dimensional fields seem to be required 
to obtain g2/4.irs 1, as we might expect if g 2  varies under the renormalisation group 
by less than an order of magnitude between the electroweak scale and the compac- 
tification scale. 

4.3. Ratios of gauge coupling constants 

When the compactification is be some mechanism other than quantum fluctuations, it 
may not be possible to calculate absolute values of gauge coupling constants, e.g., for 
Freund-Rubin compactification (Freund and Rubin 1980) the expectation value (3.14) 
of the antisymmetric tensor field strength is unknown, and consequently the 'radius' 
of the compact manifold is unknown. However, it is still possible to calculate ratios 
of gauge coupling constants provided the geometry of the compact manifold is com- 
pletely determined apart from the overall scale. This is the case for Freund-Rubin 
compactification, because (3.17) (together with the Einstein field equation) implies 
that the compact manifold is an Einstein space, so that there is only a single overall 
scale, and the various circumferences of the manifold are all related. (A subtlety arises 
for the Kaluza-Klein supergravity case to which we return shortly.) 

For the manifolds Mpqr of § 2.6, with isometry group SU(3) x SU(2) x U(l )  (except 
in the exceptional cases mentioned in 8 2.6), the geometry is specified by three scales, 
a,  b and c (Castellani et al 1984a). However, when the condition is imposed that Mp4' 
should be an Einstein space for Freund-Rubin compactification, these scales are related 
(Castellani et a1 1984a). Thus, the coupling constants g , ,  g, and g ,  for the SU(3), 
SU(2) and U( l )  factors of the isometry group are related by using (4.8), even though 
the absolute values cannot be calculated. It is found (Bailin and Love 1984b, Ezawa 
and Koh 1984a) that for all non-zero values of p,  q and r 

1 < g : / g :  < i (4.15) 

and 

7 ( p 2 n 2 / r 2 ) < g : / g : < a  (4.16) 
where n is an integer. Equation (4.15) gives results which can be in reasonable 
agreement with extrapolations (Bailin and Love 1984a) of the known gauge coupling 
constants to the compactification scale. However, (4.16) gives values of g : / g :  that are 
far too large unless r is bigger than 1, corresponding to non-simply connected manifolds 
(Witten 1981). The situation is a little better for the exceptional case S5 x S2  (Bailin 
and Love 1984a), but this product manifold is probably unstable, as discussed in 9 3.9. 
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U p  to this point, we have been relating gauge coupling constants to the geometry 
by assuming that the gauge field terms in the effective four-dimensional theory arise 
entirely from the (4+ D)-dimensional curvature scalar, as in 0 2.3. However, as we 
have already mentioned in 5 2.3, some refinement is necessary in the supergravity 
context where there are other terms in the (4+ D)-dimensional action which may 
contribute to the gauge field action in four dimensions. For instance, in eleven- 
dimensional supergravity (see § 7.1) contributions to the Yang-Mills Lagrangian in 
four dimensions can come from the fourth-rank antisymmetric field strength (employed 
in the mechanism of Freund and  Rubin (1980)). These contributions (Duff et al 1983c) 
arise by taking an  expectation value for the tensor field strength of the form (3.14), 
and writing, in the expansion about the ground state, 

F,,,, cc EpupmDPA:Dm ( inp (Y 15: ( Y  1 ) p , v = 0 , 1 , 2 , 3 , m , n = 4  , . . . ,  10 (4.17) 

in the notation of § 2.2. When (4.17) is substituted in the action (7.11), extra contribu- 
tions to the gauge field kinetic term arise from DPA: in (4.17), resulting in this term 
being multiplied by a factor of four relative to the pure eleven-dimensional Einstein 
gravity case. The only effect is on the overall normalisation of the gauge field term in 
four dimensions compared with the four-dimensional Einstein gravity term, so that 
ratios of gauge coupling constants are unmodified. 

The situation can be different in other supergravity theories. For instance, in N = 2 
(two supersymmetry generators) supergravity in ten dimensions, the extra contributions 
to the Yang-Mills Lagrangian in four dimensions come from both a fourth-rank tensor 
field strength and a second-rank tensor field strength belonging to the supergravity 
multiplet, and these contributions have a diferent structure to the contribution due to 
the metric of 0 2. Then the ratios of gauge coupling constants differ from the ratios 
in pure (4+ D)-dimensional Einstein gravity. As we have seen in § 3.5, a similar 
phenomenon can occur in Einstein-Yang-Mills theories, with mixing between explicit 
higher-dimensional gauge fields and  gauge fields arising from the metric on dimensional 
reduction. 

In eleven-dimensional supergravity, the ratio of the gauge coupling constants g, 
and g, for the isometry group SO(5) x SO(3) of the squashed 7-sphere (see § 7.2) has 
been calculated by de  Alwis et a1 (1985) to be 

s:/s: = %. (4.18) 

5. Particle spectrum of Kaluza-Klein theories 

5.1. Boson spectrum 

We have seen in § 1.5 that fields which depend upon the coordinate(s) associated with 
the compactified dimension(s) have a mass whose scale is set by the size of the compact 
space; the fields 4 " ( x )  in (1.19), for example, have a mass 

* 
m, = n / R  (n =0,  1 ,2 , .  . .) (5.1) 

where is the 'radius' of the circle formed by the compact dimension. This scale is 
likely to be gigantic compared with the energies available to present or forseeable 
particle accelerators, since we saw in (1.28) that d-' is of order of the Planck mass: 

1019 GeV. (5.2) E-' - mp G-I/2- 
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Nevertheless these massive states may still affect the low-energy sector (Duff 1984) 
because of quantum effects. This low-energy dependence upon the high-mass states 
derives from the propagators of the massive states 

(5.3) 

Since m, +CO as n + 00 in (5.1), we might suppose that at most it would be necessary 
to retain only the lowest excitations, say n = 0, 1,2,3,  at least i n j n i t e  diagrams. (There 
is also the possibility of logarithmic dependence upon m, which arises on renormalisa- 
tion of divergence diagrams.) Quite apart from the question of the renormalisability 
of Kaluza-Klein theories, the above argument for retaining at most the lowest excita- 
tions is complicated by the fact that the charge q, of the particle of mass m, also 
increases with n, as is apparent from (1.26). Since 

q, = n K / E  

= O( 16.rrmi2) as n+co.  

Thus the contribution from each component of the whole ‘tower’ of massive states is 
equally important (or unimportant). Our chief preoccupation in the succeeding parts 
of this section will be the characterisation of the zero modes of Kaluza-Klein theories, 
since it is these modes, which develop non-zero masses at a scale well below the Planck 
scale, which are presumed to constitute the particles actually observed in the (low- 
energy) world which is accessible to experiment. Even so, for the reasons already 
given, it is of some interest to characterise the massive modes, and  in any case these 
modes are as important as the zero modes in determining the cosmological evolution 
of the very early universe, near the compactification scale. (We shall discuss this 
cosmological role of the massive modes in the following section.) 

We start by determining the four-dimensional classical mass spectrum of the original 
five-dimensional Kaluza-Klein theory. In  the absence of any matter fields, the 
equations of motion are 

R A ,  - $  g A B R  = o (5.5a) 

or  equivalently 
- 
i W A B = O  (5.5b) 

and the ground-state solution is 

( O l g A B J O ) =  v A ,  diag(1, -1, -1, -1, -E’) (5.6) 

as in (1.3). To find the mass spectrum we vary the field gAB around its ground-state 
value. Thus we write 

g A B ( x ,  6 )  = T A B +  h A B ( X ,  6 )  

and expand (5.5b) to lowest- (first-) order in h. This gives 

(5.7) 
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Note that the connection coefficients vanish in the ground state, so ordinary partial 
derivatives are sufficient. Equation (5.8) is invariant with respect to the gauge transfor- 
mation 

hAB+ ~ A B + ~ A S B + ~ ~ A  (5.9) 

so we may choose a convenient gauge in which to extract the physical content of the 
theory. The choice is (Dolan 1983) 

a”hW5 = 0 ( 5 . 1 0 ~ )  

a5hW5 = 0 (5.10b) 

a5h55 = 0. (5.1 Oc) 

Since the compactified manifold is a circle we may write 

(5.11) 

as in (1.19), so that h is well defined on SI. The gauge choice (5.10) then implies that 

d”h$(x )  = 0 ( 5 . 1 2 ~ )  

h F i ( x )  = 0 ( n  f 0) (5.12 b) 

h $ ; ’ ( x )  = 0 ( n  # 0 ) .  (5 .12~)  

In other words, by an appropriate choice of gauge the n # 0 vector potentials h f ? ( x )  
and the n # 0 scalar fields h $ ; ’ ( x )  may be transformed to zero (i.e. ‘gauged away’). 
This sounds reminiscent of the situation in electroweak theory, for example, where 
the local SU(2) x U( 1) gauge invariance is spontaneously broken. The would-be 
Goldstone boson modes (which can also be gauged away) associated with spontaneous 
breakdown of the global symmetry are ‘eaten’ by the hitherto massless gauge bosons. 
In the, process some of the gauge bosons become massive. We might wonder, therefore, 
whether the n # 0 vector potentials and scalar fields are ‘eaten’ by the n # 0 tensor 
modes h F ? ( x ) ,  which thereby become massive. (Note that, if the n # 0 vector potentials 
and scalar fields really are (massless) Goldstone modes, then there are a total of three 
modes for each n available for eating, since a massless vector field has two degrees 
of freedom, and a massless scalar only one. Thus there would be a total of five degrees 
of freedom available, just the number required by a massive spin-2 field.) In fact, the 
scenario envisaged above is what actually happens, although it is not apparent at this 
stage precisely what symmetry it is which will yield a (three-times) infinite number 
(all n # 0) o f  Goldstone modes. This is the subject of the following section. For the 
present we shall content ourselves with verifying that the n # 0 tensor fields h f J ( x )  
are indeed massive, as we have claimed, and that all the other modes are massless 
(Salam and Strathdee 1982). The derivation which we present follows that of Dolan 
(1983). 

First we substitute (5.11) into (5.8), and use the gauge choice (5.10), or equivalently 
(5.11). From the 55 component of (5.8) we find 

d”a,hio,’ = 0 ( 5 . 1 3 ~ )  

and 

hk‘“’ = 0 ( n  # O ) .  (5.13 b) 
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The p5 component gives 

aA,j A h(O)=O l.r5 ( 5 . 1 4 ~ )  

and, using (5.13b), 

aAht’ = 0 ( n  # 0). (5.146) 

Finally, from the pv component of (5 .8 ) ,  we find 

aAa,h‘,Ot+a,a.(h”,o)+h:(o))-d,a I I ”  hA(0)-a  A U P  a hA(O)=O ( 5 . 1 5 ~ )  

and using (5.13b) and (5.14b) 

(ahar  + n2/k2)  hl”y‘ = 0 ( n  # O ) .  (5.15 b) 

Thus, as claimed, the n # 0 tensor modes h t ;  are indeed massive, and turn out to have 
masses m, as in (5.1). Equations ( 5 . 1 3 ~ )  and ( 5 . 1 4 ~ )  show that the surviving scalar 
field h g )  and vector potential h:; are both massless. Also, by defining 

(5.16) (0) = h(0) +I 5 ( 0 )  i,”- ,U 2 7 7 e L Y h S  

(5.17) 

which is the equation of a massless spin-2 (graviton) field (Weinberg 1972). 
The masslessness of the n = 0 modes was anticipated in § §  1.4 and 1.7, where we 

made the ansatz of discarding the 6 dependence of all fields, as in equation (1.7) for 
example. In fact if we truncate the theory by retaining only the n = 0 modes, perform 
a Weyl rescaling (1.31), and carry out the 0 integration in (1.12), we obtain an effective 
four-dimensional action 

where K~ is defined in (1.16) and (1.17), 4“) is defined in (1.19), g:;, A:’ and hence 
F:: are defined analogously to as in (5.11)? and indices are raised and lowered 
with g:?. This (truncated) action is derived in Appelquist and Chodos (1983a, b), for 
example. The action (5.18) is consistent with the previous results (1.18) and (1.32). 
The masslessness of A, derives from the invariance of (5.18) under the gauge transfor- 
mation (1.11): 

A, + A: = A ,  +a,& (5.19) 

which in turn derives from the invariance of the original five-dimensional action under 
the (particular) coordinate transformation (1.9): 

e +  e’= e+(&(x)  ( 5 . 2 0 ~ )  

xfi + X I @  = xp. (5.20b) 

In the same way the masslessness of gf: derives from the invariance of the action 
under the generalised (four-dimensional) coordinate transformation 

x F  +D x”* = x, + 5” (x)  (5.21 a )  

e+ e t =  e. (5.21b) 
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However (5.18) is also invariant under a global scale transformation, in which 

( 5 . 2 2 ~ )  ( 0 )  ! ( O )  = ( 0 )  
g , v  + g , v  g P u  

A:) ~ A : O )  = A:) + AA:) (5.22b) 

4(0)+ + / ( O ) =  4 ( o ) - 2 A 4 ( 0 )  ( 5 . 2 2 ~ )  

with A infinitesimal and  constant. The ground state of the system has 

(gl"?) = 77PY (A:') = 0 (p) = E' (5.23) 

where r lWy is the Minkowski metric. Thus it has symmetry P 4 x  R ' ,  where P4 is the 
four-dimensional Poincark group and RI is the gauge symmetry, which is not a compact 
U(1) because the truncated theory has no memory of the periodicity in 0. Since (r,b(O)) 

is non-zero, the ground state is not invariant under the global scale transformation. 
Thus the masslessness of 4") is because it is the Goldstone boson associated with the 
spontaneous breakdown of the global scale invariance (Dolan and Duff 1984). 

It is important to remember that the results for the spectrum of the five-dimensional 
Kaluza-Klein theory derived so far determine only the classical mass values. Quantum 
effects can modify these values. In particular, we should expect that the massless 
modes will only be 'truly' massless if their masslessness is protected by some sort of 
symmetry. In the case of the graviton field g:: and of the gauge field A:' this is indeed 
the case, since the gauge symmetries from which they derive are symmetries of the f i r 1 1  
theory. However the (Brans-Dicke) scalar field 4") is not so protected. The global 
scale invariance, of which it is the Goldstone boson, is a symmetry only of the truncated 
theory, in which the n # 0 modes are discarded. We shall see in the following section 
that the full theory does not have this symmetry. So 4") is only a pseudo-Goldstone 
boson (Dolan and Duff 1984). Its classical mass is zero, but we would expect that 
radiative corrections will shift the mass to a non-zero value. Evidently, an  understand- 
ing of the symmetry of the full (untruncated) theory is necessary if we are to accurately 
determine the zero modes in a general Kaluza-Klein theory. However, before address- 
ing that task (in the next section) we shall describe briefly the work which has been 
carried out to determine the classical mass spectrum in more realistic, and therefore 
higher-dimensional, theories. 

The procedure is essentially a generalisation of that which we have described for 
the five-dimensional case. Firstly, one has to find a ground-state solution of the field 
equations, as in (5.6). Secondly, one considers arbitrary fluctuations of all fields about 
this solution, as in ( 5 . 7 ) ,  and expands these fluctuations, as in ( 5 . 1 1 ) ,  in a complete 
set of harmonics on the compact manifold. The coefficients of these harmonics are 
the physical (four-dimensional) fields, and  substitution into the full higher-dimensional 
field equations yields the four-dimensional field equations, and hence the spectrum. 
However, there are a number of technical complications, which stem from the higher 
dimensionality, which deserve comment. 

Firstly, the ground-state metric (2.6) 

(O/gABIO) = diag(V,,, -im,,(.v)) (5.24) 

where 77," is the metric of flat Minkowski space M4, given in (1,4),  and i,,(y) is the 
metric of the compact manifold, is in general not a solution of the (4+ D)-dimensional 
pure gravity field equations. This was discussed in 3. To achieve compactification 
it is necessary to introduce additional (matter) fields (or to allow a non-minimal 
gravitational action). The additional fields, of course, also have fluctuations about 
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their ground-state (background field) values, and these fluctuations too must be expan- 
ded in terms of a complete set of harmonics on the compact manifold. Thus there are 
additional contributions to the spectrum, besides those originating in the purely 
gravitational sector. In general the final spectrum depends in an essential way upon 
the precise compactification mechanism actually utilised. 

The second complication occurs because the ‘harmonic expansion’ is in general 
considerably more complicated than in the five-dimensional case (5.11), and the 
quantum numbers of the mass eigenstates are complicated by the general non-Abelian 
nature of the isometry group of the compact manifold. The harmonic expansion (5.11) 
expands the fields in terms of the harmonics e ine which form a complete set of 
representations of the isometry group U(1) on the compact manifold S ’ .  In general 
the fields of the theory transform as representations lR) of the tangent space group 
GT. For the case of a D-dimensional compact manifold K ,  the tangent space group is 

(5.25) 

The ‘harmonic expansion’ is then an expansion of the representations IR) in terms of 
the representations IG,) of the isometry group G I  of the compact manifold K :  

GT = SO( 1 , 3  + D ) .  

(5.26) 

We shall assume that K is a coset space 

K = G / H  (5.27) 

where G is a Lie group and H is a subgroup of G.  In the case that H is a maximal 
subgroup of G, the isometry group is G itself; but if H is a non-maximal subgroup, 
then the isometry group is (Castellani er al 1984c) 

(5.28) 

where N‘(H) is the normaliser of H in G, but with any U( l )  factors common with G 
deleted. Thus in any event H is always a subgroup of G I  so we may expand the 
representations IG,) of G, in terms of the representations Ih,) of H: 

G ,  = G x N’( H) 

(5.29) 

Also, we showed in (2.56) that H is a subgroup of the tangent space SO(D)  of the 
compact manifold K. Thus, since 

G T ~ S O ( ~ , ~ ) X S O ( D )  

2 SO( 1,3) x H (5.30) 

we may also expand the representations lR)  of G, in terms of the representations of H: 

(5.31) 

(5.32) 

This shows that the isometry group representations which actually occur in the harmonic 
expansion of lR) are those for which there is at least one overlap between the expansions 
(5.29) and (5.31) in representations of H (de Alwis and Koh 1984). The degeneracy 
of (G,) is given by the number of overlaps. 
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As an illustration consider the ( D  = 2) case in which 

K = S 2  = S0(3)/S0(2)  SU(2)/U( 1). (5.33) 

Since H = SO(2) is the maximal subgroup of G = S0(3),  the isometry group is the 
‘rotation’ group 

GI = SO(3). (5.34) 

Suppose also that we are concerned with the vector representation /vector,) of SO( 1,5).  
Under the decomposition (5.30) the expansion (5.3 1) becomes 

(5.35) ]vector,) = /vector,, 0) + IscaIar,, + 1) + /scalar,, - 1) 

using the notation ILorentz group representation, U( 1) charge). Consider first the 
scalar component with charge +l. Then the representations of the isometry group 
SO(3) which actually occur in the harmonic expansion are those which contain an 
element with U ( l )  charge t-1. Denoting the representations of SO(3) by their ‘angular 
momentum’ J, so that the dimensionality is 2 J + 1 ,  this means that the required 
representations are those with J integral and non-zero: 

J = n  ( n  = 1,2 ,3 , .  . .). (5.36) 

The inclusion of the vector component with charge 0 extends this to include also the 
J = 0 representations of GI.  

The ‘realistic’ cases studied have for the most part been in the context of eleven- 
dimensional supergravity, in which the compactification is achieved using a background 
‘three-index photon’ field A B C D  with field strength FABCD, defined in (3.10). As 
explained in 3 3.2, since supersymmetry forbids an eleven-dimensional cosmological 
constant, these supergravity theories typically have a classical ground state which is a 
four-dimensional anti-de Sitter space times a compact manifold K. The known solutions 
of the field equations fall into two classes: the Freund-Rubin (1978, 1980) solution 
and the Englert (1982) solution. In both classes the gravitino field vanishes; the 
four-dimensional Riemann tensor is maximally symmetric: 

R,,, = - k k , , ( x ) g , A x )  - g p A x ) g y p ( x ) l  (5.37) 

where g F Y ( x )  is the anti-de Sitter space metric, and the ‘photon’ field strength in the 
4-space is given by 

(5.38) 

as in (3.14). Also, in both classes the metric and the field strength with mixed indices 
vanish: 

(5.39) 

Fpypu = ldet gl-1’2epLypu F 

g p m  - - Ffivpm = Fwumn = FFmnp = 0. 

However, in the Freund-Rubin solution, 

Fmflpq(.Y) = 0 R m n  = f F2imn k = f F 2  (5.40) 

whereas the Englert solution has 

F m n p q ( y )  = *$ FriTmnpqT R,, = 2 F2&,,, k = L F 2  12 (5.41) 

where 17 is a Killing spinor and T, , ,~~  is the totally antisymmetric product of four 
seven-dimensional Dirac matrices. All fields are then fluctuations about these ground- 
state values and these fluctuations may be decomposed into irreducible representations 
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of the tangent space group SO(7) of the compact manifold K .  For example, the 
fluctuations hAB(x, y )  of the metric may be decomposed into 1-, 7- and 27-dimensional 
representations, the last one being the symmetric traceless representation, and the 
fluctuations aABc(x, y )  in the 'photon' field may be decomposed into 1-, 7-, 21- and 
35-dimensional representations. We may then perform the harmonic expansion (5.26) 
for each of these tangent space group representations. This expresses the various 
fluctuations in terms of a basis of these irreducible representations of G satisfying the 
criteria described after (5.32). We call these basis elements Y"i(y)  'spherical' har- 
monics, where N I ,  N 7 ,  N I 7 ,  etc, identify representations of the tangent space group 
from which the harmonic arose; the harmonics are eigenfunctions of the H-invariant 
d' Alembertian operator 

AyYNc(y )  = - p N ~ Y N ~ ( y )  (5.42) 

where Ay is the Hodge-de Rham operator. The various field equations are linearised 
in the fluctuations, as in (5.8), and after fixing the gauge the mass eigenstates are 
identified. The mass eigenvalues are specified in terms of the eigenvalues p*" of the 
invariant operators on the internal space. The general solution in the case of the 
Freund-Rubin solution has been derived by Castellani et a1 (1984b), but in the case 
of the Englert solution a calculation of the bosonic spectrum is still awaited. (It is not 
known whether these are the only solutions.) To fix the numerical values of the mass 
eigenstates it is necessary to specify precisely which coset space G / H  is being con- 
sidered. In the case of the round 7-sphere the general treatment reproduces the 
previously found results (Biran et a1 1983, 1984, Duff and Pope 1983). In addition to 
the zero modes expected in an N = 8  supergravity theory (namely, one massless 
graviton, 28 massless SO(7) gauge vector bosons, 35 scalars and 35 pseudoscalars) 
there are an additional 294 massless scalars. It is not known whether these scalars 
will remain massless when quantum effects are included, since their masslessness is 
not obviously protected by a gauge symmetry. The results for the squashed 7-sphere 
were derived by Awada et a1 (1983), Bais et a1 (1983) and by Nilsson and Pope (1984). 
The complete bosonic spectrum for the Mpqr  solutions (Witten 1981) of eleven- 
dimensional supergravity, with Freund-Rubin compactification, has been found by 
D'Auria and FrC (1984a, b). 

5.2. Kac- Moody symmetries 

We saw in the previous section that the Brans-Dicke scalar field 4'') of the five- 
dimensional Kaluza-Klein theory was massless (only) at the classical level because of 
the scale invariance of the truncated theory. This masslessness is not expected to 
survive beyond the classical approximation, since the scale invariance is not an 
invariance of the complete theory. We now wish to analyse the symmetry of the theory 
in four dimensions when the complete tower of massive states is retained. This derives 
from the general five-dimensional coordinate invariance. Under a general 
(infinitesimal) coordinate transformation 

xw -, xw + y ( x ,  e) ( 5 . 4 3 ~ )  

e +  e+15(x ,  e )  (5.43 b )  
where 

(5.43 c) 
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(5.43 d ) 

As in (1.19), and (5.11), we are restricted to periodic variation of the coordinates, 
because of the topology of the ground state. Then it is easy to see that the global scale 
transformation (5.22) is not a symmetry of the complete theory, since to effect the 
transformation it is required to rescale the metric 

E A R  + (112A/3)gAB (5.44) 

and combine this with the general coordinate transformation in which 

LA = 8$(-AdO) .  (5.45) 

Clearly this coordinate transformation does not satisfy the periodicity requirement 
(5.43c), which means that 4") is only a pseudo-Goldstone boson, as claimed in the 
previous section. 

In ordinary four-dimensional relativity the PoincarC invariance may be regarded 
as a special case of the general covariance in which the infinitesimal coordinate 
transformations l ' " (x )  are restricted to the linear form 

(5.46) 

where U'" and up{, = -wVp are constant. To find the analogue in our five-dimensional 
theory we restrict the quantities l ' " ' A ( ~ )  in an analogous manner 

['*(x) = a'" + w'",xy 

~ ( " J F ( ~ )  = a ( n ) ~ + w ( " ) ~  "X (5.47a ) 

p 5 ( X )  = C(" )  (5.47 b) 

where a'" ' ,  w""" and c(') are constants. We may determine the generators associated 
with these constants in the usual way. Consider, for example, a translation with all 
w ( ~ ' ,  c(" )  zero and a single non-zero a'"'", i.e. 

xcL + x P  + p w e l n B  ( 5 . 4 8 ~ )  

e +  e. (5.486) 

Then 

+(x, e ) +  +(x, e ) + e i " e ~ ~ n J c r a , ~  = (1 - i l ' n ) l * p ~ ' ) + .  (5.49) 

(5.50) 

(5.51) 

generates the Lorentz transformation parametrised by w Fy) and 

Q ( " )  = ie'"eaB (5.52) 

generates translations in SI. These generate a (non-compact) infinite parameter Lie 
algebra (Dolan and Duff 1984) containing the usual PoincarC algebra: 

[PI"', Plm'] = 0 (5.53a) 

[M'$, M $ ' ]  = i(77y,Ml",fm'+ 77 

[M," ( m )  7 p',")] = i(7) p ( m + n l -  P 77 A P  p\m+") ) (5.536) 

7 '"P M$:+")-  77,,M;;+"') 
(5.53c) 
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[Q'" ' ,  Q"'] = ( n  - m)Q("+m)  (5.53d) 

[Q'" ' ,  p;"'] = - m p ; + m ,  (5.53e) 

( 5 3 3 f )  [Q'" ' ,  M l ; ) ]  = -mM;v+m'. 

If we restrict our attention to the subalgebra with n = m = 0, we of course obtain the 
usual PoincarC @U( 1) algebra. In fact this finite-dimensional subalgebra may be 
enlarged to PoincarC @SO( 1,2) since the generators PF', MFJ,  Q'I'Q''', Q ( - ' )  also 
close. The last three give 

[Q"',  Q'"'] = 2Q'O' (5.54a) 

LQ(n), Q ( ~ ) ~  = - Q ( ~ )  (5.54b) 

[ Q ' O ' ,  Q'-l '] = + Q U I  (5.54c) 

which is the S0(1,2)  algebra (not SO(3)). This was noted by Salam and Strathdee 
(1982). 

The algebra (5.53) gives the symmetry of the full four-dimensional Lagrangian, 
when all of the n f 0 modes are retained. It is the natural extension of the ordinary 
PoincarC invariance with which we are familiar. However the ground state, the particle 
physics vacuum, described by (5.23), only has symmetry PoincarC @U( l ) ,  so the full 
(Kac-Moody) symmetry (Kac 1968, Moody 1968) is spontaneously broken. Since the 
restriction (5.47) makes the symmetry a global one, rather than a local one, we expect 
there to be Goldstone bosons generated by the symmetry breaking. To identify the 
Goldstone bosons we need to determine which fields are transformed inhomogeneously 
by the broken generators. For example in the case of the Abelian Higgs model with 
a complex scalar field $(x)  

44x1 = ( l / V m 4 1 ( x ) + i 4 * ( x ) )  

(41(x)) = 

(42(x)) = 0. 

suppose that 

Then we write 

4 ( x )  = ( l / f i ) [ v  + +i62(x)1 

where 

(6i(x)) = 0 ( i  = 1,2). 

Under an infinitesimal U( 1) gauge transformation 

4 ( x )  -f (1 + iA)d(x)  = (l /d!)[v+ + i 6 2 - A & + i A ( v  + &)I. 
Thus the Higgs field 

6, + $1 - A 6 2  

whereas the Goldstone boson field 

&-+ & + i A ( v + & )  

which is an inhomogeneous transformation. 

(5.55) 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

(5.62) 
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In the same way we may determine the properties of the fields h22 (defined in 
(5.11)) appearing in the metric, under the transformations (5.47), and hence find the 
Goldstone modes. 

To d o  this the metric is first written in the rescaled form 

and then the fields are shifted so that 

g,, = ( g / A  + 
A,  =(A,)+'& 

4=(4 )+4 .  

(5.63) 

( 5 . 6 4 ~ )  

(5.64b) 

( 5 . 6 4 ~ )  

Under a general infinitesimal coordinate transformation the metric transforms accord- 
ing to 

(5.65) 

and from this we may determine how the fields E?,,,, Aw and 6 transform under the 
(global) transformations (5.47). In this way we can find how the component fields 
g^pJ(x), A F ) ( x ) ,  $(")(x) transform, and hence identify the Goldstone modes. The 
conclusion (Dolan 1984a, b) is that the fields A:) and 4'") with n # 0 are Goldstone 
modes, as anticipated in the previous section. This is why the full theory, which is 
invariant under local five-dimensional coordinate transformations, has an  infinite tower 
of massive tensor and vector modes, as found in the last section. 

There will, of course, be generalisations of the infinite parameter symmetry (5.53) 
which occur in the various higher-dimensional ( N  > 5) Kaluza-Klein theories which 
we have considered. For example in the case (5.33) that the compactified manifold 
K is a sphere Sz, the expansion (5.43) will be replaced by an  expansion in spherical 
harmonics. Evidently the derivation of the analogue of (5.53) will involve products 
of these harmonics, and  the structure constants of the infinite parameter Lie algebra 
will be Clebsch-Gordan coefficients. It is expected that a full understanding of these 
Kac-Moody symmetries will be important in determining the ultraviolet properties of 
the non-Abelian Kaluza-Klein theories (Dolan and Duff 1984). 

Four-dimensional Kac-Moody algebras have been studied in a different context 
by Dolan (1984~).  In this case they have been used to find exact non-perturbative 
solutions for the (special) theories in which they are manifest. 

EAB + g A B  -I- g c s a A F  -I- g A c d e l C  + S ~ ~ C ~ A B  

5.3. Fermions (Witten 1983) 

We have seen in 0 3 that in order to achieve compactification of the extra dimensions 
to a manifold K having isometry group 

G ,  = S U ( 3 )  x S U ( 2 )  x U( 1) 

it is likely that matter fields, not arising from the metric, have to be input from the 
start (unless we are prepared to believe that the compactification derives entirely from 
quantum effects). We shall see in this section that there are additional reasons why 
fundamental gauge fields, as opposed to those emerging from G , ,  are necessary if we 
are to understand how light (on the Planck scale) fermions can arise in a Kaluza-Klein 
scenario. 
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Consider, for example, a massless spinor particle (I/ in 4 +  D dimensions. The Dirac 

(5.66) 

equation can be written as 

i@+ = (i yPa, +iT"e,"V,)+ = 0 

where y+ are (22cD'2 x 22+D'2 ) gamma matrices satisfying 

{ yP, y " }  = 2?y" (P,  v = 091,293) (5.67) 

with q p y  as in (1.4) and the gamma matrices of the compact space satisfying 

{r, rP} = 2sap 

{re, y * ~  = 0. 

((U, p = 4 , .  . * ,  3 + D )  

and (5.68) 

V, is the covariant derivative defined in (2.37), so 

Vm+ = (a, -$iwzpMM,P)+ (5.69) 

with 

M+ = t i [Y,  r P ] (5.70) 

being the spinor representation of the tangent space group SO(D)  of the compact 
manifold K .  Clearly 

M = -iT"e,"V, (5.71) 

plays the role of the mass operator, since its eigenvalues give the particle masses in 
four dimensions. However, it can be shown that M has no zero eigenvalues (Lich- 
nerowitz 1963, Schrodinger 1932). We outline the derivation given by Zee (1981). 
First we write 

M 2: -iT"V, (5.72) 

where 

r m  = F e , "  

{rm, r"} = 2smPe,"e; = 2i"'. 

so that 

Squaring M gives 

- M ~ +  = rmvmrnv,,+ 
=rmr~v,v,++rm[v,,  rn]v,+ 
= (;{rm, rn}+;[rm, rn])vmvn+ 
= gmnv,,,vn++ grm, rn][v,, on]+  
= vmv,+ -;M~"M"~R,,,,,+ 

= vmvm* -: ii*. 
In deriving this we have used the identities 

[ V m ,  r " I V n +  = O  

[ V m ,  V n I +  = -fiMCLPRclPmn+ 

(5.73) 

(5.74) 

(5.75) 

(5.76) 
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as well as the well known cyclic properties of the Riemann tensor. 6 is the curvature 
scalar of K. The first term of (5.75) is not positive, since V,Z"' = O  so 

[ dDy & (LtgmnVmVn(L = -[ dDy & ( V m $ T ) i m n ( V n $ ) .  (5.77) 

Also 6 is positive for a (closed) compact space, so it follows that M 2  has only positive 
eigenvalues. Furthermore, we expect these non-zero eigenvalues to be of order k2, 
with I?: the characteristic size of the compact manifold, and from (5.2) this means that 
only fermions with masses of order mp are allowed. Of course we could instead have 
considered a massive spinor in 4 + 0  dimensions, and  then adjusted its mass to give 
any desired mass in four dimensions. This requires a fine tuning to at least one part 
in to account for the masses of the fermions which we observe in nature, and this 
is generally regarded as a most unattractive explanation. A much preferred scenario 
is that the observed fermions are in fact zero modes of the Dirac operator, and that 
their small non-zero masses arise from physics at  a much lower (possibly electroweak) 
energy scale. (There may still be a measure of fine tuning, but nothing like so much 
as is needed at the Planck scale.) 

If the observed fermions really are zero modes, it follows that we must change 
some of the (tacit) assumptions made in deriving Lichnerowitz's theorem. One possibil- 
ity, which has been explored by Destri et a1 (1983) and by Wu and Zee (1984), is to 
introduce torsion on the internal manifold K. This modifies (5.75) so that 

(5.78) - M 2 $  = {VmVm -4 Mm"M"PR,Pm, +iM"'Tk,,Vk}$ 

where 
~k,,=rk,,,-r:~ (5.79) 

is non-zero when the Christoffel connection is not symmetric in its lower indices; in 
the form language of § 2.5 the torsion 2-form is defined by 

(2.35) 

The first term of (5.78) is still not positive, but the remaining terms can have either 
sign, so zero modes are possible. Incidentally, the cyclic properties of the Riemann 
tensor are not valid in the presence of torsion so we cannot reduce the second term 
to the scalar curvature. Unfortunately the explorations of Wu and Zee have shown 
that this possible escape route is also unattractive. First there is the arbitrariness of 
precisely how the torsion should be introduced. These authors study only the case 
when K is a group manifold, so the torsion is parallelisable, as proposed by Cartan 
and Schouten (1926). (Parallelisable means that the curvature tensor, constructed from 
g,,, and rk,,, vanishes.) They find that there are large numbers of zero modes (1024 
in the case of the SU(5) manifold, for example) but these d o  not appear in the 
representations which appear to be inhabited by the known fermions. This high 
dimensionality is related to the high dimensionality of the manifold, so a better bet 
might be to look at homogeneous coset spaces G/H, instead of G. In any case there 
is no compelling reason to insist upon a parallelisable torsion. It is therefore possible 
that the unsatisfactory results so far obtained could be improved upon given sufficient 
ingenuity. However even if this could be achieved, the massless fermions so obtained 
would most likely not have the quantum numbers of the fermions actually observed 
in nature. 

Suppose, for example, we take the manifold K to be a homogeneous coset space 
K = G / H  (5.80) 

T" = de" + m a p  A e p .  
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as in (5.27), with G and H chosen so that K is one of the Mpyr" spaces discussed in 
§ 2.6. Then 

( 5 . 8 1 ~ )  G = G, = SU(3)c x SU(2),- x U(  l ) y  

and 

H = S U ( 2 ) c  xU( l ) ,y -x  U(l), ,  (5.81 b) 

with X '  and X "  as in (2.63) and (2.64). Then we may decompose the various 
representations of G which are observed in nature in terms of representations of H, 
as (5.29). Thus 

e R =  (I, -s, - t )  ( 5 . 8 2 ~ )  

E L -  - (  I , - L s  2 7 2  '-")+(I 2 , -1 2 %  2 - 1 - L t )  2 (5.826) 

dR=(2,t-;S,  - f t ) + ( I ,  -1-1s 3 ,  - L f )  3 ( 5 . 8 2 ~ )  

with similar expansions for uR and the quark doublet QL. The embedding of H in the 
tangent space group SO(7) of K is given by (2.56). So, in an obvious notation, the 
diagonal generators of H are 

(?(;A3) = f( MI2 - M34) ( 5 . 8 3 ~ )  

Q ( X ' ) = i ( M 1 2 + M 3 4 )  (5.83b) 

Q ( X " ) =  M 5 6  ( 5 . 8 3 ~ )  

where M e P  ( a ,  p = 1 , .  . . , 7 )  are the generators of SO(7). The representations of the 
full tangent space group SO(1, 10) may be expanded in terms of the decomposition 
(5.30). In particular it is clear that the spinor representation decomposes into a product 
of spinors of S0(1 ,3)  and of SO(7). Similarly a vector-spinor of SO(1, 10) (which 
transforms as a product of vector and spinor representations) decomposes into products 
of an S0(1 ,3)  vector-spinor with an SO(7) spinor, and an S0(1 ,3)  spinor with an 
SO(7) vector-spinor. If we restrict ourselves to particles having spin less than 2, this 
means that (the observed) SO( 1,3)  spinors must be associated with spinors or vector- 
spinors of SO(7) (de Alwis and Koh (1984). Now, the spinor representation of SO(7) 
is generated by the 8 x 8 gamma matrices (see, for example, Rajpoot 1980) 

r' = cl x 1 x 1 

r5 = U3 x u3 x U1 

r2 = U2 x 1 x 1 

r6 = U 3  x U 3  x U 2  

r3 = U3 x U ,  x 1 r4= U3 x u2 x 1 (5.84) 

r7 = U3 x u3 x U3.  

Then 

Mao 3 ai[re, rD] (5.85) 
and it is easy to see, using (5.83), that this spinor representation may be expanded in 
terms of representations of H as 

18 - spinor) = 12,0,f) + IZ,O, - ;) + (1, i, 4) + 11, 3 ,  - f) + 11, -:, 4) + 11, - $, - 3). (5.86) 
As explained in (5.321, in order for a particular (fermion) representation (5.82) of G 
to occur in the harmonic expansion of the spinor representation of S0(7) ,  there must 
be at least one overlap between the expansion (5.82) and (5.86). Thus if we demand 
that e R  arises in the harmonic expansion then 

i t / = ;  ( 5 . 8 7 ~ )  

i s i= ; .  (5.876) 
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But then EL does not occur in the harmonic expansion, and neither does d R ,  or indeed 
any of the other fermion representations. Including the vector-spinor representation 
of SO(7) does not alleviate the problem (Randjbar-Daemi et a1 1984b). It is  possible 
to meet this objection by enlarging the manifold K .  For example, taking (Bailin and  
Love 1985a) 

(5.88) 

with 2 as in (2.60), does allow the observed fermion quantum numbers to arise in the 
expansion of the SO(8) spinor, provided 

-3p = +q = r (5.89) 

H = SU(2) x U( 1)= 

or  in the vector-spinor if 

3 p = i q = r  or 3p = +3q = +r. (5.90) 

However the choice (5.88) gives an isometry group GI larger than G, as in (5.28); in fact 

(5.91) 

in this case, so there is an  additional (hitherto) unobserved neutral gauge boson 
associated with the extra U( 1). 

However, there are further objections to the programme we have pursued, quite 
apart from the difficulty of arranging for masslessness and the observed fermion 
quantum numbers. Even when we are able to satisfy these criteria there remains the 
objection that the resulting fermions are not chival fermions. By this we mean that 
the left-chiral components of the (observed) fermion fields transform differently, with 
respect to SU(3) x SU(2) x U( l), from the right-chiral components. In other words the 
quantum numbers d o  not appear to be vector-like; for example the left-handed quark 
fields transform as 

QL = (L2, 9 (5.92) 

G, = SU(3) x SU(2) x U( 1) x U( 1) 

whereas the right-handed quarks transform as 

( 5 . 9 3 ~ )  

(5.93b) 

Equivalently the left components of the antiquarks transform as 

U :  = (5,1, -3) (5.94a) 

d z  = (j ,I ,f) .  (5.94b) 

Thus the fermions of a given helicity transform as a complex representation of SU(3) x 
SU(2) x U( 1); the right-chiral components transform according to the complex conju- 
gate of the left-chiral representation, and the two representations are inequivalent. Of 
course, it is always possible t i a t  future high-energy experiments will discover new 
'mirror' fermion states U" and d transforming as 

O L  = 0 , 2 ,  - t )  (5.95a) 

and 

(5.95b) 

(5.95c) 
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and that the quantum numbers of the complete fermion generation are vector-like after 
all. This seems unlikely for several reasons (Witten 1983). First, it is remarkable that 
none of the (fourteen multiplets of) observed fermions are the mirror partners of others. 
Second, the well known cancellation of the Adler-Bardeen ys anomalies within each 
of the three known fermion generations would then be pure coincidence, since vector- 
like theories are guaranteed to be anomaly free; the mirror states would automatically 
have cancelled any non-zero anomaly generated by the known fermions. 

We shall see that the requirement that the left-chiral zero modes form a complex 
representation of the symmetry group is extremely restrictive. For instance, the 
dimensionality of spacetime cannot be odd. This is because in odd dimensionality 
there is a unique spinor representation. (This is illustrated for SO(7) in (5.84). The 
product of all of the r matrices iT1 . . . r7 = I s ,  whereas in four dimensions the product 
iyoy’y2y3= y 5  # 14, and permits the decomposition of the spinor into left- and right- 
chiral pieces.) This means that SO( 1 , 3  + D )  has a unique spinor representation if D 
is odd, which transforms under S0(1 ,3 )  x SO(D)  as the product of a (four-component) 
spinor of S0(1 ,3 )  with the unique spinor of SO(D) .  Thus when we perform the 
harmonic expansion (5.26) fermions which are left- or right-handed in four dimensions 
transform in the same way with respect to the isometry group, and so furnish a real 
representation. 

Next, suppose that D is even and 

D = 2 N .  (5.96) 

Then defining matrices as in (5.84), we find that 

r=r’rz . .  . rD =iNcr3xu3x. .  . x ( T ~  (5.97) 

anticommutes with all of the matrices TI, r2,. . . , T D .  The gamma matrices for the full 
tangent space group SO( 1 , 3  + D )  are given by 

FA = yp x I ( A = p = O ,  1 ,2 ,3 )  ( 5 . 9 8 ~ )  

( A = 4 ,  . . . ,  0 + 3 ) .  (5.98b) 

(The reason for the y 5  is so that the gamma matrices associated with M4 anticommute 
with those of K . )  In the full (4+ D)-dimensional space the ‘chirality’ x is defined by 

= i y 5 x r  A-3 

= rOrIj3. , . F D + 3  

= - i ( -1)Ny5xr  (5.99) 

and x anticommutes with all of the matrices To, . . . , TD+3,  since y 5  and r do in SO( 1 ,3 )  
and SO(D)  respectively. Thus, x commutes with all of the generators M A E  of SO( 1 , 3  + 
D) ,  and can be used to label inequivalent spinor representations. Since 

( x ) 2 =  - ( y 5 ) 2 ~  (r)* 
= -1 ( N  = even) 

= + l  ( N  = odd) (5.100) 

the eigenvalues of ,y are 

,y = *i ( N  = even) 

= *1 ( N  =odd).  

( 5 . 1 0 1 ~ )  

(5.101b) 
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Either way, the important thing is that for fixed x the four-dimensional chirality ys is 
correlated with the internal chirality r; so for N odd, for example, and x = + l ,  we 
have spinor representations with 

ys = +1 r =  -i ( 5 . 1 0 2 ~ )  

or 

ys = -1 r = +i (5.1026) 

using (5.99). Thus fermions having left-handed physical chirality have ‘internal’ chiral- 
ity +i, and  satisfy a different Dirac equation from the right-handed fermions. Thus 
the zero modes might have different quantum numbers. Actually the only possibility 
of this happening is if N is odd. This is because for N even the complex conjugate 
of the spinor representation with x = +i is equivalent to the spinor representation with 
x = -1. 

The situation is as follows. (5.99) shows that for N even 

x = + i  =+ y s = l  r = - 1  (5.103 a )  

or 

ys = -1 r=+i  (5.103 b) 

while 

x = - i  =+ y s = l  r = i  (5.103~) 

or  

ys = -1 r = - 1 .  (5.103 d ) 

The complex conjugate of a ys = 1 spinor is a ys = -1 spinor, as is usual in SO( 1,3). 
However the complex conjugate of the r = -1 spinor of SO(2N) is equivalent to itself, 
for N even. (The difference arises because of the signature of S0(1,3) .  For a very 
clear discussion of this and  other details see Chadha and Daniel (1985a, b)  or Gourdin 
(1982).) Thus the complex conjugate of ( 5 . 1 0 3 ~ )  is equivalent to (5.103d), and similarly 
for (5.103b, c). Evidently there is no net correlation between the physical chirality and 
the internal chirality, since the x = +i field is equivalent to the complex conjugate of 
the ,y = -i field, and there will be equal numbers of left- and right-chiral fields having 
given internal helicity. 

In the case when N is odd the situation is quite different. Equation (5.99) shows 
that for N odd 

x = + l *  y s = l  r = -i ( 5 . 1 0 4 ~ )  

or  

ys = -1 r=+i  (5.104 b) 

while 

x = - l *  y s = 1  T = i  (5 .104~) 

or  

y s = - l  = -i. (5.104d ) 
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The complex conjugate of the r = -i spinor is equivalent to the r = +i spinor when N 
is odd. So the complex conjugate of ( 5 . 1 0 4 ~ )  is equivalent to (5.104b). This is just 
what we need; a zero mode of the internal Dirac operator with = +i corresponds to 
a left-handed massless fermion in four dimensions, and its complex conjugate, having 
r = -i, corresponds to a right-handed massless fermion, provided we restrict ourselves 
to a theory in which only x = + l  representations appear. In any case, the x =  -1 
representations are unrelated to the x = +1 representations. The special importance 
for fermions of theories with 4n + 2  dimensions has been emphasised by Brink et a1 
(1977), Wetterich (1981, 1982a, b, c, d, 1983) and by Randjbar-Daemi er a1 (1983a, b). 

This is all very well, but we still have to arrange that the zero modes of the Dirac 
operator having r=+i form a complex representation of the symmetry group. 
Equivalently, we must arrange that the r = +i zero modes transform differently from 
the r = -i zero modes. Unfortunately, the possibility of achieving this, even in 4n + 2 
dimensions, is severely constrained by a theorem of Atiyah and Hirzebruch (1970). 
One consequence of this theorem is that, in the absence of elementary gauge fields, 
the zero modes of the Dirac operator form a real representation (in any even number 
of dimensions). Thus we are forced to introduce gauge fields if there is to be any 
chance of arranging for the zero modes to form a complex representation. 

Following Witten (1983) we define 
A 

r = i r  (5.105) 

so that f has eigenvalues *1 when N is odd. Then using the definition of M in (5.71), 
it follows that r anticommutes with M and 

[P, M 2 ]  = 0. (5.106) 

Thus eigenstates of M 2  can be chosen to be eigenstates of f ‘ .  Now suppose $ is an 
eigenstate of M 2  with eigenvalue E :  

M 2 $  = E$. (5.107) 

Then 

M 3 4  = M 2 ( M $ )  
= M ( E $ )  = E ( M $ )  (5.108) 

which shows that the states $ and M$ are degenerate, unless M$ = 0. Fyrthermore, 
since f anticommutes with M, $ and M$ have opposite eigenvalues of r. Thus the 
eigenfunctionsA with non-zero eigenvalues ( E  # ,O) are paired: for every $ with an 
eigenvalue of r = $1 there is another state with r = -1. The zero modes, satisfying 

M$=O (5.109) 

are not necessarily paired in this way, and this leads to the notion of an ‘index’. The 
index of M i: defined as the number of zero modes of M with f = $1 minus the 
number with r = -1. Evidently the index of M is a topological invariant; since it is 
integer valued, no smooth deformation of the manifold can alter it. In the case of 
4 n + 2  dimensions (i.e. D = 2 N  with N = 2 n + l )  the index of M is zero, since the 
r=-i ( f = + l )  and then r=+i ( f = - 1 )  zero modes are just complex conjugate 
representations, as we have just observed. What we require to be non-zero is the 
‘character-valued’ index of M. This is defined when the compact manifold K has an 
isometry group G I ,  so that the eigenvectors of M’ belong to representations of G I .  If 
R is a representation of G , ,  then 

(5.110) index,(M) = n+(R) - n _ ( R )  
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where n , (R)  is the number of ? = +1 zero modes, belonging to the representation R. 
For a complex representation the index of M in the complex conjugate representation 
R is 

indexE(M) = n + ( R )  - n - ( R )  

= n - ( R ) - n + ( R )  

= -index, ( M )  (5.111) 

in 4n  + 2 dimensions. (This is consistent with the fact that the number of left-handed 
quarks (for example) in the representation R is equal to the number of right-handed 
antiquarks in R.)  

The Atiyah-Hirzebruch theorem states that in the absence of gauge fields index,( M )  
is zero, for any manifold with a continuous isometry group (in any even number of 
dimensions). We shall not prove the theorem, but we can verify its validity in a 
particularly simple example (Witten 1983). We consider the D = 2 case that K is a 
2-sphere. So, as in (5.33) 

(5.112) K = S 2  = S0(3)/S0(2)  -SU(2)/U(l)  

and 

GI = SO(3). (5.113) 

Suppose we have a spinor representation of the tangent space of K :  

GT= SO(2). (5.114) 

The representations of GI are labelled by the eigenvalues of the operator J 2 ,  where J 
is the angular momentum operator. We want to calculate the number of zero modes 
of M having I? = *l ,  and belonging to a particular representation lJ1) of GI  where 

(5.115) 

We have already derived the technology needed to answer this question in (5.26) and 
the following equations, since K is indeed a (homogeneous) coset space. It amounts 
to calculating how many times the representation IJ,) occurs in the harmonic expansion 
of the SO(2) 2-spinor. We need to expand both the 2-spinor and 15,) in terms of the 
representations of the SO(2) = U( 1) group. Clearly 

12-spinor) = I+;)+ I-;) (5.116) 

and 

IJ1) = IJ1) + / J ,  - 1) + , . . + 1-J,). (5.117) 

The condition for overlap between these two expansions is simply that J ,  is half-odd 
integral and, if so, 

(5.118) n+(J1)  = 1 = n _ ( J 1 )  
since I+$) has ? = iT = -u3 = 7 1 .  Thus 

index,,( M )  = 0 (5.119) 

for all J,, since for integral J ,  n,(J,) = 0 in any case. Although this is consistent with 
the theorem o,f Atiyah and Hirzebruch, it was of course a foregone conclusion, since 
for a sphere R is positive and M Z  has only positive eigenvalues by the Lichnerowitz 
theorem, as we have already demonstrated. 
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We can see how the existence of background gauge fields might permit us to evade 
the Lichnerowitz theorem. Suppose that the massless spinor particle $ discussed in 
(5.66) onwards belongs to some non-trivial representation of a local gauge symmetry 
group G Y M .  Then the Dirac equation (5.11) becomes 

( 5 . 1 2 0 ~ )  [y’*(id, - gtaAi)  +iT*e,”D,]$ = 0 

where 

D,$ = (a, - f  iwZ’MMap -igtaA$)$ (5.120 b )  

is the gauge and gravitational covariant derivative. The matrices t a  represent G Y M  in 
the representation to which $ belongs, and A: are the gauge fields. (In the case of a 
U ( l )  gauge symmetry t n  is just the ‘charge’ of $ in units of g.) If we choose 

AE=O (5.121) 

then we are guaranteed to preserve the (four-dimensional) PoincarC invariance of the 
vacuum, but we must choose some of the A: to be non-zero so as to arrange some 
sort of cancellation between the spin connection and the gauge connection contributions 
to D,, thereby (it is to be hoped) evading Lichnerowitz’s theorem. However the choice 
of the non-zero components of A$ is severely constrained by the requirement that the 
gauge field configuration preserves the symmetry group GI associated with the 
isometries of the compact space K. In other words, we require the background gauge 
fields to be solutions of the (Yang-Mills) field equations which are invariant under 
G I .  Further, since we wish to have chiral zero modes, the background gauge fields 
must be in a topologically non-trivial configuration, so as to evade the Atiyah- 
Hirzebruch theorem; we have already observed that the (character-valued) index, ( M )  
is a topological quantity, so if it is to be non-zero because of the existence of A$,  it 
is clear that these gauge fields must not be continuously deformable to zero. 

We have already discussed gauge fields with such non-trivial topology in $ 5  3.5, 
3.6 and 3.7. The best known example is provided by the Dirac monopole and its use 
in the previous simple example (5.112): 

K = S2 = S0(3) /S0(2)  = SU(2)/U(1) 

was discussed first by Randjbar-Daemi et a1 (1983a, d). The gauge field 1-form is given 
in (3.38) or (3.45). In this case it follows from (5.70) that 

M12=-1 2 (+3 (5.122) 

and from (2.50) that 

“2 = -e3 (5.123) 

so the gauge and gravitational covariant derivative of a spinor $ with charge q is 

D,$ = (d,,, -+ia,eL -iqaei)$. (5.124) 

Evidently the effect of the coupling to the U(1) gauge field is to change the effective 
H = U ( l )  content of the 2-spinor. Instead of (5.116), the presence of the monopole 
now means that we have 

(5.125)  spinor or) = I f  + qa) + 1 -  4 + sa>. 

The well known charge quantisation condition for the monopole gives 

qa = f n  (5.126) 
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for some integer n, and this can be proved by parallel transporting the spinor around 
the 2-sphere. Thus we again have overlap with (5.117) for suitable values of J1. 
Assuming qa>O we have 

n+(J i )  = 1 for J , = q a - + , q a + + , q a + t  , . . .  (5 .127~)  

n-(J , )  -1 1 for J1 = qa++, qa+;, . . . . (5.127 b )  

In other words there is a state with J ,  = qa - 4  for the positive chirality spinor, but not 
for the negative chirality spinor, and the character-valued index is non-zero for 

n+(qa -+)-n ._(qa  -+ )=  1 (5.128) 

n+(J,)  - n- (J , )  = 0 Jl # qa -;. (5.129) 

Thus in the harmonic expansion of a spinor field on the 2-sphere there appears a 
? = $1 zero m o t e  I) with ‘isospin’ qa -$.  This state is a zero mode because if i@I) is 
non-zero it has r = -1 and J1 = qa -$, and no such state exists. 

In summary, then, the general technique is to choose a topologically non-trivial 
configuration of the background gauge fields, such as those discussed in § 3, which is 
invariant (up to a gauge transformation) under the action of the isometry group G I .  
In the case of a coset space 

K = G / H  (5.130) 

such G,-invariant solutions exist if either H c GYM, or if H z GYM but both H and 
GYM have a common non-trivial normal subgroup (Randjbar-Daemi 1983). This 
changes the effective H content of the SO(2N) spinor (more generally of the representa- 
tions R of the tangent space group GT) in its expansion (5.31), and allows for non-zero 
values of the character-valued index. By a judicious choice of the parameters (e.g. 
monopole strengths and instanton numbers) it is then possible to arrange for chiral 
zero modes in the desired representations of the isometry group G I .  

The most comprehensive study of the complete fermion spectrum, not just the zero 
modes, has been carried out by Schellekens (1985a, b). He has expressed the eigen- 
values of the fermion mass-squared operator M 2 ,  in the presence of a general instanton 
background gauge field configuration on a symmetric coset space G/H,  in terms of 
the Casimir invariants of G and H. For massless fermions the problem is that given 
a fermion transforming according to some representation of H = GYM (this determines 
the coupling to the generalised instanton background field) to determine in which 
representation of G the zero modes occur. This has been done in general for the 
hyperspheres ( S D )  and the complex projective planes ( CPN). In the former case when 
D is even, and the fermion is in an irreducible representation of H = SO( D ) ,  then the 
zero modes form a (known) irreducible representation of G = SO( D + 1). This gen- 
eralises a previously known result (Randjbar-Daemi et al 1983c) for the case D = 4. 

Watamura (1983, 1984) has also provided a general treatment of compactification 
in the case K = C P N  in the presence of a monopole U(1) gauge field, and has shown 
how for a particular choice of the monopole charge, namely ec = ( N + 3 ) / 4 ,  the 
fermionic zero modes belong to the fundamental representation of G = SU( N + 1). We 
have already observed that SO( 1,3)  spinors must be associated with spinors or vector- 
spinors of the tangent space S O ( D )  of K ,  so it is worth studying the zero modes 
associated with vector-spinors on CP”, as well as spinors. This has been done by 
Bailin and Love (1985d) (in the presence of a background monopole field). In particular 

J ,  = qa -;: 
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we have addressed the problem of obtaining the observed fermion quantum numbers. 
We find that the twelve-dimensional ( D  = 8) theories envisaged in (5.88) do nor admit 
chiral fermions, so these models will require the existence of mirror fermions, if they 
are to have any chance of being realistic. For the case K = CP4 which has G = SU(5), 
we can obtain the ‘observed’ 5 as a zero mode from either a left-handed spinor or a 
left-handed vector-spinor, while the is a zero mode only of a left-handed vector- 
spinor. 

The use of the third possible configuration of gauge fields (3.45), in which the 
gauge connection and spin connection contribute to the covariant derivative (5.120) 
of the spinor field, evidently requires the embedding 

SO( D )  c G Y M .  (5.131) 

We shall discuss the use of this mechanism in connection with anomaly cancellation 
in the next section. It has been used recently in the context of superstring theories, 
in which the compact manifold has no isometry group. The Euler characteristic of K 
determines the number of fermion generations (Candelas et a1 1985). Also Schellekens 
(1985a, b) has studied the boson spectrum in the case K = CPN and GYM = 
SU( N )  x U( 1). 

5.4. Anomalies 

We have discussed at length in the previous section the difficulty of arranging that the 
fermions in our Kaluza-Klein theory are chiral fermions, as seems to be required by 
the fermions observed in nature. The essence of the chiral property is that the gauge 
bosons couple differently to left- and right-helicity fermions, since the fermions of a 
given helicity transform as a complex representation of the gauge group. It is well 
known that in general this chiral feature generates ‘anomalies’, at least in four- 
dimensional gauge theories (Adler 1969, Bell and Jackiw 1969, Bardeen 1969). The 
effect of anomalies is that quantum effects lead to a breakdown in the local gauge 
invariance which is imposed on the classical (tree-level) theory. This is most easily 
appreciated in the functional approach to quantum field theory (Fujikawa 1979, 
1980a, b). In this, the generating function for Green functions is obtained by a path 
integral over all classical field configurations, and for fermions these fields are Grass- 
mann variables $. Now consider, for example, an infinitesimal local U ( l )  gauge 
transformation in which the left- and right-chiral components of 4 transform differently: 

( 5 . 1 3 2 ~ )  

where 

eR-  eL + 0. (5.1326) 

Then evidently 

and 
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It follows that the fermionic functional integration measure transforms as 

(5.134) 

(The inverse of the determinant appears because + is a Grassmann variable.) Hence 

9*9$+{1 -Tr[i(O,- O L ) Y , ] } 9 + 9 I j  (5.135) 

which means that the measure is not gauge invariant since &f O L .  In consequence 
the quantum field theory of what was a perfectly well defined classical theory is 
meaningless; S-matrix elements will depend on  the gauge-fixing parameters through 
the appearance of unphysical poles in physical amplitudes, and unitarity will be 
violated. Thus theories with anomalies are not even quantisable, and cannot be 
entertained as candidates to describe reality. It is therefore of paramount importance 
to construct theories in which the anomalies cancel. Since the appearance of anomalies 
is due specifically to fermions it may be possible to arrange that anomalies arising 
from different fermions cancel against each other. This is what happens in the standard 
electroweak theory, for example. The anomaly arises only in the fermion triangle 
diagram, with an  odd number (one or  three) of axial vertices. Then the total anomaly 
is multiplied by a factor 

A"'' = Tr( t " {  t b t c  + t ' t ' } )  (5.136) 

where the t a  are the appropriate fermionic representations of electroweak theory, and  
the trace adds together the contribution from different fermions in the representation. 
For the standard assignments of weak isospin and hypercharge the above trace is 
always zero, but other choices of representations would yield a non-zero anomaly, and 
thereby a n  unphysical theory. Evidently the requirement that the theory be anomaly 
free imposes important constraints on the choice of fermion representations. 

The anomalies discussed so far are the 'pure' gauge anomalies; that is why the 
vertices of the anomalous fermion triangle diagram were all interactions of the fermion 
with the gauge bosons. However it is easy to see that the triangle diagram remains 
anomalous when there is one axial current, and two energy-momentum tensor vertices 
(Delbourgo and  Salam 1972, Eguchi and Freund 1976) representing the gravitational 
interaction of the fermions. Thus there are mixed gauge and  gravitational anomalies. 
(The vanishing of this anomaly in standard electroweak theory is ensured by 

Tr( Y )  = 0 (5.137) 

where Y is the weak hypercharge.) In fact in 4n + 2 dimensions there are in general 
purely gravitational anomalies (Brink et a1 1977, Manton 1981, Chapline and Manton 
1981, Chapline and Slansky 1982). The reason for this is essentially that already given 
in § 5.3. Only in 4n + 2  dimensions does the tangent space S0(1,4n + 1) admit complex 
representations. This is why we were able to construct a theory with only a x = i-1 
state (see (5.104)) for example. In such a chirally asymmetric theory the (Euclidean 
space) effective action is complex and there are anomalies (Alvarez-Gaumt5 and Witten 
1984). Just as the gauge anomalies imply a violation of gauge invariance generated 
by quantum effects, so gravitational anomalies indicate a violation of the general 
coordinate invariance by fermion-loop quantum effects. Thus we are constrained to 
construct a theory which is free of all anomalies generated by fermions: gauge, 
gravitational and mixed. 
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It has been shown by Alvarez-GaumC and Witten (1984) that, in an even number 
of dimensions (4+ D = 4 +  2 N ) ,  fermion loops with N + 3 external gauge bosons are 
anomalous, as are those with N + 1 gauge bosons and two gravitons, etc; the general 
anomalous diagram has r = N + 3  -2k  external gauge bosons and 2k external graviton 
lines with 0 -s k f( N + 3) .  Note that when N is odd, there is a purely gravitational 
anomaly, as already observed. We denote by f: the (possibly reducible) representation 
of the gauge group GYM formed by the ,y = *l (spin-;) fermions in the case that N is 
odd; for N even we use the same notation to distinguish the ,y = *i (spin-4) fermions. 
Evidently there is a group theory factor associated with the anomaly arising from the 
(spin-;) fermion loop with r external gauge bosons: 

A"! "$=Str(t ; l lf? . . .  t$)-Str(tUlt? . . .  t 4 )  (5.138) 

where the 'S' denotes the (Bose) symmetrisation with respect to all indices a ,  . . . a,. 
To make the theory anomaly free it is sufficient to require that A"] " r  is zero for all 
allowed values of r. The simplest way to do this is, of course, to choose t? = t ? ,  but 
this will not give a chiral theory as we have already observed; such vector-like theories 
are trivially anomaly free. For the case that N is odd, the allowed values of r are all 
even. In particular, in the case that r is zero, corresponding to the purely gravitational 
anomaly, we require that the number of (spin-;) fermions with ,y = $1 is equal to the 
number with ,y = -1. The only known method of satisfying (5.138) is to choose the 
gauge group 

GYM = 0 ( 2 N +  10) ( 5 . 1 3 9 ~ )  

or 

GYM = o( 2 N + 4k + 10) (5.139 b )  

and (for odd N)  to choose the ,y = *1 spinors of S0(1,3 +2N) to transform as r = *1 
spinors of the gauge group G Y M  (Witten 1983). Thus 

f 2  = MmPal  (5.1404 

where 

M " ~  = ai[r', r P ] ( a , p = l ,  . . . ,  2Ni-10)  (5.140b) 

analogously to (5.85) and 

a , = t ( i i r )  (5.140~) 

with 

r rIr* . . . r 2 N + 1 0  (5.140d) 

as in (5.97). Then 

Tr(t",l?. . . t>)-Tr(t"r?. . . t Y )  =Tr(MalPlMe2p2.. . M"rPrT) 

= O  for r 6  N + 4 .  (5.141) 
(This is the higher-dimensional version of the familiar four-dimensional trace theorems 
Try, = Try,y,y, = 0.) It follows that the group theory factor A"] " r  defined in (5.138) 
vanishes for all of the anomalous diagrams. Another possibility might be to use some 
of the complex anomaly-free representations of GYM = SU(n) .  However it is not known 
if (5.138) can be satisfied for all r, and in any case the dimensionality of these 
representations is colossal; the smallest is the 374 556-dimensional representation of 
SU(6), and even this can accommodate only one generation of quarks and leptons, 
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leaving a (very) large number of unwanted (unobserved) exotic particles (Eichten et 
a1 1982). (See also Frampton (1983), Frampton and Kephart (1983a, b, c) who have 
studied the problem using the antisymmetric tensor representations.) The groups 
(5.139) also give anomaly-free theories in the case that N is even with an analogous 
choice of representations. 

The price of achieving an anomaly-free theory is that we are forced to choose the 
group GYM of the background gauge fields much larger than is required just to ensure 
the existence of chiral fermions with the observed quantum numbers. This in turn 
generates high-dimensional spinor representations containing fermions most of which 
are (so far) unobserved. We may illustrate this by considering the case (Bailin and 
Love 1985d) K = CP4, discussed at the end of 3 5.3. Since N = 4 in this case, (5 .139~)  
shows that to obtain an anomaly-free theory we can take 

GYM = O( 18). (5.142) 

Since the observed gauge bosons are assumed to come from the isometry group 
G = SU(5) of K,  this means that we have 153 additional gauge bosons for which we 
must presumably arrange large masses. The monopole U ( l )  gauge group must be 
embedded in GYM, and one possibility is to identify it with the U ( l )  factor of the 
maximal subgroup 

(5.143) 

Then the effective gauge group is SU(5) x SU(9). We have already noted that to arrange 
for a fermionic zero mode belonging to the 2 (or 5)  representation of the isometry 
group, it is necessary to have a U( l )  background monopole field satisfying ec = $ 
(Watamura 1983, 1984). That is to say, the U ( l )  charge of the 5 is seven times the 
smallest possible unit. The r = i i  spinors of SO(18) are each 28-dimensional, and we 
have to arrange that the U ( l )  charge of the 5 is associated with one of possible U ( l )  
values arising in the expansion of the 28-spinors in terms of their U( 1) x SU(9) content. 
It is easy to see that this requires us to associate the 5 of SU(5) with the 9 of SU(9). 
This means that there are nine identical (zero-mode) fermion families with the standard 
- 5 quantum numbers, together with a large number of other fermions having non- 
standard quantum numbers. Spontaneous breaking of SU(9) might generate large 
masses for these unwanted states. To generate zero modes in the fl of SU(5) requires 
the use of vector-spinors, as we showed in § 5.3, and these cause even more complexity 
when we attempt to remove the anomalies which they generate. 

A rather more attractive scenario emerges if we take a non-Abelian subgroup of 
GYM to have an expectation value, rather than the (monopole) U(1) gauge field 
considered so far. Equating thegauge field to the spin connection, as in (3.54), evidently 
gives a background SO(2N) gauge field. This can be embedded in GYM = O ( 2 N  + 10) 
in the obvious way, and this breaks GYM to O(10). The effective gauge group is then 
G , x 0 ( 1 0 ) .  However the fermion zero modes are singlets of G I ,  so their quantum 
numbers derive entirely from the O(10) which came from removing the anomalies 
(Witten 1983). Consider first the r = + 1  spinor of 0 ( 2 N +  10). For N odd, it decom- 
poses into products of spinors of O ( 2 N )  and O(10) as 

12N+4-spinor, r = 1) = 12N-'-spinor, r2N = i)(24-spinor, rl0 = -i) 

U( 1) x SU(9) c SO( 18). 

- 

+ J2N-'-spinor, r2N = -i)/24-spinor, rlo = +i) (5.144) 

where rZN,lO,  are the products of the r matrices in the 2 N -  and ten-dimensional spaces 
respectively. The Tl0 = -i spinor is (equivalent to) the complex conjugate of the Tl0  = +i 



Kaluza- Klein theories 1139 

spinor, as we have previously observed. Evidently the fermion zero modes transform 
as 16 (or 16) representations of O( lo), which is well known to be an attractive way of 
accommodating all of the observed fermions in one generation (plus a vR state). The 
number of fermion generations is therefore 

N g  = j n L ( 1 6 )  - n R ( 6 ) (  (5.145) 

where n L , R ( B )  is the number of left- or right-zero modes belonging to the 16 of O( 10). 
These zero modes emerge from the tangent space S 0 ( 1 , 2 N + 3 )  spinor, and the r = +1 
spinor of (5.144) gives the G,, behaviour of the x = + l  spinor of S 0 ( 1 , 2 N + 3 ) ,  
according to the anomaly cancellation prescription. The x = +1 spinor can also be 
decomposed into spinors on M4 and spinors on K :  

(2N+'-spinor, ,y = 1) 

= 12-spinor, y5 = -1)(2~-'-spinor, rK = i) 

+ 12-spinor, y5 = -1)12~-'-spinor, rK = -i) (5.146) 

and we see that left ( y5 = -1) or right ( y s  = +1) chirality is correlated with the r K  = i 
or r K  = -i chirality on K. Further, from (5.144) fermions transforming as the 16 of 
O(10) transform as the 2N-'-spinor of O(2N).  Thus 

N, = ln+(2N-1)- n-(2N-')l 

= lindex,-I(M)/ (5.147) 

where r1,(2~- ')  is the number of zero modes transforming as the 2N-' spinor of O ( 2 N )  
with f ,  = X, = *l, and we have used the definition (5.110) of the character-valued 
index. For odd N we may use (5.111) and obtain 

N, = flindex,.-i(M) - index2G(M)l  

= t(Eu1er characteristic of K ) .  (5.148) 

The contribution from the r = -1, x = -1 spinor is the same, so finally we have (Witten 
1983) 

N, = (Euler characteristic of K ) .  (5.149) 

For spheres ( S " ) ,  the Euler characteristic is 2 if n is even, and zero otherwise, while 
for CPN the Euler characteristic is N + 1. The strange thing about this scenario is 
that it is a complete negation of the Kaluza-Klein philosophy, since the isometry of 
K is irrelevant to the fermions actually observed. 

It can be argued that the requirement that the anomaly A " I " ' " ~ ,  defined in (5.138), 
vanishes for all allowed r is too restrictive. Kephart (1984) and Frampton and 
Yamamoto (1984) have proposed a weaker condition which can be applied in a theory 
containing only spin-; fermions coupled to gravity. The constraint is that only the 
leading (fully connected) gauge and gravitational anomalies are required to cancel. 
(In such a theory it is always possible to remove the purely gravitational anomaly by 
simply adding to the theory the required number of gauge singlet spin-; fields of the 
appropriate chirality.) The non-leading terms can be removed by introducing new 
massless fields which are totally antisymmetric and which transform under gauge 
transformations in a (peculiar) way designed to cancel the gauge non-invariance 
generated hy the anomalies. (Precisely this mechanism is used in superstring theory 
(Green and Schwarz 1984) in which only the leading hexagon loop gauge anomaly in 
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ten dimensions is cancelled. The non-leading anomalies are cancelled by gauge- 
dependent pieces of the action.) Whether this simplification leads to more attractive 
and realistic Kaluza-Klein models remains to be seen. 

Another proposal along these lines was made by Alvarez-GaumC and Witten (1984), 
who attempted to arrange that the purely gravitational anomalies cancel between fields 
of different spin. We have primarily had in mind the anomalies generated by spin-f 
fermions, but there are also anomalies generated by spin-; fermions, and we should 
certainly expect such fields if we are forced to deal with vector-spinors to solve the 
chiral fermion problem. However, Alvarez-GaumC and Witten have demonstrated that 
antisymmetric tensor fields also generate gravitational anomalies, although they are 
covariant Bose fields, whenever they do not have a covariant Lagrangian (Frampton 
and Kephart 1983a, b, c, Townsend and Sierra 1983, Zumino et a1 1983, Matsuki 1983, 
Matsuki and Hill 1983). This happens in 4 + 2 N  dimensions, when N is odd, and 
when the field A is antisymmetric with N + 1 indices; its field strength F has N + 2 
indices and can be constrained to be self-dual ( * F =  F ) .  This together with the 
associated Bianchi identity serves as a covariant equation of motion. (The same effect 
is known to arise in two dimensions because of the bosonisation of fermions (Coleman 
1975, Mandelstam 1975). The total cancellation of gravitational anomalies is possible 
only if there are all three types of field present (spin f, spin 2 and antisymmetric tensor). 
In six dimensions this theory is (gravitational) anomaly free with 21 (positive chirality) 
spin-; fields, one (negative chirality) spin-2 (gravitino) field and eight tensor fields. In 
ten dimensions the cancellation is achieved only by one (negative chirality) spin-; field, 
a (positive chirality) spin-; field and one real self-dual antisymmetric tensor field. 

6. Kaluza-Klein cosmology 

6.1. Introduction 

The existence of extra (compactified) spatial dimensions has only indirect consequences 
for the (relatively) low energy particle physics which is open to experimental investiga- 
tion either now or in the foreseeable future. However in the very early universe, i.e. 
at times t satisfying 

t m , a  1 (6.1) 

presumably all spatial dimensions were of the same scale and participating in the 
dynamical evolution of the universe. Thus we need to understand how the universe 
reached the present form F 4 x  K ,  with F4 the observed (flat) four-dimensional Fried- 
mann solution, and K the (constant) compact manifold. 

To address this problem it is natural to assume a form of the metric with two 
time-dependent scale factors a( t )  and b( t ) :  

ds2 = dt2 - a'( r)g,,(x) dx '  dxJ - b2( r)gmn(y) dy" dy" (6.2) 

with i, j = 1,2, 3 and m, n = 4, . . . , D + 3. g, is the metric of the 3-space, usually taken 
to be maximally symmetric, and ĝ ,,,n is the metric of the D-dimensional space, which 
is assumed to be an Einstein space. Thus we take 

Ity =2&,(x) ( 6 . 3 ~ )  

z m n  = 21;ĝ mn (Y) (6.3b) 
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with L= $1, -1,0 depending upon whether the 3-space is taken to be closed, open or 
flat and k* = $1, since K is closed. Aothough (6.2) is a natural ansatz with which to 
study the cosmological implications of having additional dimensions, it must be 
admitted from the outset that the implicit assumption of isotropy in the three spatial 
dimensions is unlikely to be correct, especially at early times. Analysis of the vacuum 
Einstein equations (Barrow and Stein-Schabes 1985) indicates that the generic 
behaviour is anisotropic, although without the chaotic unpredictability characteristic 
of having only three spatial dimensions. Similar conclusions have also been reached 
by Furusawa and Hosoya (1985). Insofar as (6.2) does allow the three spatial 
dimensions to evolve monotonically, we may at least hope that (6.2) will give a 
reasonable qualitative representation of the early-time behaviour. 

The gravitational field equations are 

(6.4) [WAB 1 -  A B =  -=jlwg 8rGTAB 
where TAB is the energy-momentum tensor in the full (4+ D)-dimensional space. 
Depending upon the era, TAB receives contributions from incoherent radiation (mass- 
less particles) in 4 or 4 +  D dimensions and from any background fields necessary to 
ensure the compactification; this background may derive from classical fields, as in 
the case of the Freund-Rubin compactification, and/or from quantum fluctuations of 
the particle fields. Also, in order to arrange that there is no cosmological constant in 
the 4-space it is usually necessary to add a suitably tuned overall cosmological constant, 
A, although its origin is often not specified. Such a cosmological constant breaks the 
supersymmetry, so cosmological studies of supergravity theories usually require only 
that the 4-space is anti-de Sitter. 

- 

The general form of TAB, consistent with the metric is 
- - 

Too = P Ti = -& T m n  = -p^Emn * (6.5) 
Including the contribution from the overall cosmological constant A, we may rewrite 
(6.4) in the form 

( 6 . 6 ~ )  

(6.6b) 

is the trace of the energy-momentum tensor. With the metric given in (6.2) this gives 
(Freund 1982) 

3a  b 8rG 
- + D - = - - -  [ ( D + 1 ) p + 3; + Dj?] 
a b D + 2  0 1 2  

-+2 - + T +  D-=-+--[p+(D-l)p-Dp^] (6.76) 
a a (t)’ ab 87rG 

ab D+2 D+2 

’ 2k* 3ab .? 8rG (i) b ab D + 2  D+2 
+- [ p  -3p+2p^]. 

b 
- + ( D - l )  - +T+-=---- 
b 

( 6 . 7 ~ )  

( 6 . 7 ~ )  

The second derivative may be eliminated from ( 6 . 7 ~ )  using (6.7b, c) to yield the 
Friedmann equation 

A ( g i)2-3($)1 (i)’ 6L k -  
- D  - +,+2D,=R+16~Gp. 

b 
3 --+ D -  

a 
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Of course, p, p’ and p^ are constrained by energy-momentum conservation, as follows 
from (6.4), 

DBTAB = 0 (6.9) 

(and this remains true even when we include the cosmological constant &). Then 

a b 
a b 

p + 3  - (p+p”)+  D-(p+p^) = O .  (6.10) 

In the special case that T A B  is traceless, which is characteristic of massless particles, 
(6.6b) implies 

p=3p’ if p * = O  

or  

p = ( D + 3 ) P  if p‘=pA=p. 

Then (6.10) is easily solved to give 

( 6 . 1 1 ~ )  

(6.1 1 b) 

6.2. Late-time solutions (Bailin et a1 1984) 

At later stages of the evolution, i.e. when 

a > > l / T > > b  (6.13) 

we expect the dominant contributions to the energy-momentum tensor to be from the 
usual four-dimensional radiation, which fuels the observed Friedmann expansion of 
the 3-space, plus the contribution from the background fields necessary to achieve the 
(observed) compactification. Since the role of the background fields is to separate the 
two spaces their contribution to the energy-momentum tensor is typically of the form 

T$ = g( b)& (P,  y = O , I ,  293) ( 6 . 1 4 ~ )  

F2H = fi( b)&, (6.14b) ( m ,  n = 4 , .  . , , D + 3 ) .  

This is because TAB derives from an  action of the form 

fbg  = - d4+D~. \ /g  W (  b) I (6.15) 

so that the background energy density 

pbg = W (  b) (6.16) 

depends only on the scale factor associated with the compact manifold K. In the case 
of Freund-Rubin compactification, for example, which was considered in § 3.2, (3.12) 
and  (3.14) show that 

b D F  = constant (6.17) 
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from which it follows that rag given in (3.11) has the form (6.15). A similar result 
holds also when the compactification is via quantum fluctuations, as is apparent from 
(3.22). The energy-momentum tensor following from (6.15) may be computed as in 
(3.25) and  (3.26) with a result of the form (6.14) and  

f i ( b ) =  W(b) ( 6 . 1 8 ~ )  

A ( b )  = W(b)+(b /D)W’(b ) .  (6.186) 

Thus the background field contribution is given by 

pbg = - F b g  = W( b) ( 6 . 1 9 ~ )  

and 

-Fbg= W ( b ) + ( b / D )  W‘(b). (6.19b) 

At late times, characterised by (6.13), excitations in the compact space K are 
non-thermal, so the dominant thermal contribution is in the 4-space and  given by (6.5) 
with 

= 3Fth a T~ ( 6 . 2 0 ~ )  

and 

6 t h  = 0. (6.20b) 

The thermal energy density pth is related to the four-dimensional density pih by 

p ‘ h  = pih/ V” (6.21) 

where VD is the volume of K .  Also from (2.17) we find 

vD= GIG (6.22) 

so 

(6.23) 

where a4 is determined by the number of massless helicity states. 
We require that K is not evolving at late times. As seen in 0 4 the observed gauge 

coupling constants are inversely proportional to the scale of K,  so any time dependence 
in b would lead to time dependence of the gauge coupling constants. In any case, it 
is clear from (2.17) that if K were time dependent then the effective four-dimensional 
gravitational ‘constant’ would also be time dependent. There is by now a considerable 
body of evidence that none of these constants has any observable time dependence 
(Irvine and  Humphreys 1984). We therefore require that the field equations admit a 
solution with 

b = bo = constant. (6.24) 

Substituting (6.19) and  (6.20) into (6.7c), (6.21) then requires 

(D+2)(2$/bi)  = A+ 1 6 d [  W( bo) - (b , /D)  W’( bo)]. (6.25) 
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Using this and (6.23) the remaining equations can be cast in the standard cosmological 
form (Randjbar-Daemi el a1 1984b, c, d): 

where 

( 6 . 2 6 ~ )  

(6 .26b)  

( 6 . 2 6 ~ )  

is the effective four-dimensional cosmological constant. The contribution from p i h  is 
non-negligible only in the case that A4 = 0 which is the case of especial physical interest. 
In this special case we may eliminate A from (6.25) and (6.26). Then bo is a stationary 
point of an ‘effective potential’: 

Wkrdbo) = 0 ( 6 . 2 7 ~ )  

where 

DkA 
W,,(b) W ( b )  -- 

8 d b 2  
(6.27b)  

is obtained by modifying W ( b )  with a ‘curvature potential’ (Maeda 1986). Although 
We,(b) is a useful construction with which to discuss the theory, it is important to 
bear in mind that it only plays the role of an effective potential for values of b ( t )  near 
the stationary point(s) bo at which A4=0.  At other possible constant values of b ( t ) ,  
We, is not in general stationary, as can be seen from (6.61) for example. In general 
arranging that (6.27) is satisfied requires that be non-zero. This is why in Kaluza- 
Klein supergravity theories which require A = 0, it is not usually possible to insist that 
R 4 = 0  (see, for example, Okada 1985 and Gleiser et a1 1984). 

Although (6.25) is sufficient to ensure a solution of the field equations of the 
required F4 x K form, this solution is unlikely to be reached unless it is stable against 
perturbations. To test for stability we write 

4 t )  = U O ( l ) [ l +  a ( t ) l  ( 6 . 2 8 ~ )  

b ( l )  = bo[l + P ( t ) l  (6 .286)  

where uo(r) is the (Friedmann) solution of (6.26). Substituting these into ( 6 . 7 ~ )  and 
linearising we find 

( 6 . 2 9 ~ )  @ = -3 (do /U , ) f i  + &P 
where 

4kA 16.rrG 
=%+ D( D + 2 )  [ (D- l )boW’(bo)-  b i W ” ( b o ) ] .  

In the special case that A4 = 0, (6.26u, b )  are solved by 

ao( t )  a t ’ /2  

when = 0, since p i h a  a-4. Then 

(6 .29b)  

(6.30) 
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is positive, which means that the second term of ( 6 . 2 9 ~ )  acts as a damping force. The 
third term acts as a restoring force if K O  < 0, and then ( 6 . 2 9 ~ )  shows that the perturbation 
p executes damped simple harmonic motion. Thus a necessary condition of stability 
is that KO is negative. Using (6.27) we may express KO in terms of the effective potential: 

(6.32) 

So the necessary condition for stability is that 

which shows that bo is a minimum of the effective potential Weff, defined in (6.27b). 
This conclusion applies more generally than the circumstances described above. 

For example, when R4 = 0 but E = - 1 

a,/ a, = 1/ t > 0 (6.34) 

and the qualitative behaviour of p is unaffected, although the precise solution of 
( 6 . 2 9 ~ )  is different. In fact, in both of the above cases we may solve for p in terms 
of Bessel functions (Barrow and Stein-Schabes 1985, Maeda 1986): 

p = t - P [ A J p ( ~ t ) + B N p ( ~ t ) ]  ( 6 . 3 5 ~ )  

where 

p = $  for E = o  (6.35 b )  

p = l  for k=-1 .  ( 6 . 3 5 ~ )  
,. 

For Ko<O the Bessel functions are oscillatory and for large t 

p - t - P - ' / 2  (6.36) 

showing that the oscillations are damped out and that the solution is stable against 
this perturbation. Similar conclusions apply also when h4 is non-zero. For example, 
when A4>> pih> 0 and R =  -1, ao/ao is positive and approaches a constant 

do/  a, -> 4 T J Z  as t+w.  (6.37) 

So asymptotically p again executes damped simple harmonic motion provided K O  < 0. 
It is also necessary to investigate the time development of the perturbation cy, and 

this is most easily done using (6.8). Substituting (6.28) and linearising gives 

(6.38) 

where we have used ( 6 . 1 2 ~ )  to perturb p, and (6.27) to simplify the right-hand side. 
For large t it follows from (6.36) that the right-hand side of (6.38) decays as t -p -5 /2  
when R4=0, from which we deduce that cy also decays as t -p- ' /2 .  Thus K,<O also 
ensures that the perturbation a decays to zero. This conclusion extends to the case 
that A4>>pth>0 ,  L =  -1 since (6.37) shows that the asymptotic behaviour of cy is the 
same as that of p. 
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Thus the conclusion is that provided the constant value bo of b is a local minimum 
of the effective potential Weff(b), defined in (6.27b), the F 4 x  K solutions of the field 
equations are stable against infinitesimal perturbations of the scale factors a( t ) ,  b( t ) .  
In particular if 

W ( 6 )  = w / b "  (w > 0) (6.39) 

then the stationary point 6, = (47&/nD)('-')-' zs ' a minimum provided 

n > 2. (6.40) 

Thus the Friedmann-like solutions are stable irrespective of whether compactification 
is achieved by the Freund-Rubin mechanism ( n  = 2 0  > 2), or by quantum fluctuations 
( n  = D + 4 )  (Bailin et a1 1984). 

It is important to bear in mind that the above conclusions only apply to infinitesimal 
perturbations of the overall scale factors; the solutions may be unstable against finite 
perturbations of the scale factors, or against different infinitesimal perturbations. 
Maeda (1986) has investigated the former problem. He has observed that the term 
( D b / b + 3 u / a ) b / b  in ( 6 . 7 ~ )  is dissipative when the proper volume V of the universe 
is increasing, and antidissipative when the proper volume is decreasing. Further, there 
is a region T in the (b ,  b) plane, including the point (bo ,  0), in which the sign of V 
does not change. By studying the classical turning points of the non-dissipative problem 
he then shows that if b, is a minimum of Weff, and if the universe enters the region 
T with V increasing, then the F4x  K solution is an attractor; on the other hand if V 
is decreasing F 4 x  K is a repulsor. The stability with respect to different infinitesimal 
perturbations has also been studied (Bailin et a1 1985a). In the case when the compact 
manifold K is a product of two compact manifolds K ,  and K 2  

K = K ,  x K2 (6.41) 

one can study perturbations with respect to the scale factors b, and b, separately. 
Then the F 4 x  K ,  x K 2  solutions are always unstable. 

6.3. Early-time solutions 

Even if we understand how the observed F 4 x  K solution can emerge from the field 
equations at late time, there remains the question of how, at an earlier stage, the 
separation of the two spaces arose. It is central to the Kaluza-Klein philosophy that 
(in some era) all of the dimensions were on the same footing. This is the motivation 
of the action (2.14), for example, which derives from the requirement of invariance 
under general (4 + D)-dimensional coordinate transformations. We should therefore 
like to understand how the vastly different scales associated with F4 and K arose and, 
more ambitiously, how the topological separation between the spaces emerged. 

The latter problem is beset by various no-go theorems which have been derived by 
Tipler (1989, generalising earlier work in four dimensions by Geroch (1967a, b, 1970) 
and Tipler (1977). The effect of these theorems is that in the context of a (causal) 
classical field theory the topology is invariant. Thus if we believe that the universe is 
well described at late times by the F 4 x  K solutions, then their topology must also 
characterise the earlier-time solutions of the classical field equations from which they 
evolved. It follows that the topological separation must have occurred in the quantum 
era, in which not only is the classical field theory no longer an adequate description 
but also it is unclear as to how the question to be answered should be posed. We 
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therefore concentrate in this section on the separation of the scale factors, assuming 
that the topological separation has already occurred. In particular, we shall see whether 
the Kaluza-Klein scenario affords novel opportunities for inflation, thereby solving 
the well known problems of the homogeneity and flatness of the observed universe 
(Guth 1981, Linde 1982). What is required is that there be an era in which the scale 
factor a(  t )  associated with the observed 3-space grows very rapidly (exponentially), 
as if (or indeed because) there were a positive cosmological constant A4. At the same 
time we shall require that the scale factor b( t ) ,  associated with K ,  remains or becomes 
small, so as not to conflict with our observation of only three spatial dimensions. 

One possibility is that initially both a(  t )  and b( t )  expand, creating a large entropy 
per causal volume of the (4SD)-dimensional space, and that this entropy is then 
squeezed into the observed three dimensions as the manifold K is compactified. This 
scenario has been studied by Sahdev (1984), Abbott et a1 (1984, 1985) and by Kolb 
et a1 (1984). The assumption is that this era is dominated by (4+D)-dimensional 
radiation, so that the energy-momentum tensor is given by (6.5) with (6.11b) and 
(6.12b). To understand the general solution it is helpful (Yoshimura 1985) to consider 
two simple power-law solutions of the field equations. Thus we substitute 

a ( t ) c c t ?  (6.42a) 

b( t )  x t4. (6.426) 

The (kinetic) terms involving time derivatives on the left of (6.7) are then all of order 
tC2. Also the ideal-gas terms on the right of (6.7) are of order 

= ( ~ + 3 ) ~ C c  t-(3?+D.i . ) (D+4)(D+3)'  (6.43) 

using (6.42) in (6.12b). If these ideal-gas terms are required to balance the kinetic 
terms then there is a generalised Friedmann solution with 

T= ? = 2 ( 0 + 4 ) - '  (6.44) 

in which the curvature terms on the left, proportional to C2, K 2 ,  are negligible since 
y < 1. The other simple solution is the vacuum solution, in which the kinetic terms 
dominate both the curvature terms and the ideal-gas terms. Then there are (Kasner) 
solutions (i.e. 

3 j + D ? = 1  (6.45 a )  

37*+ D?2 = 1 (6.45b) 

it ?) in which 

so 

3(3 + D)?  = 3 

D(3 + D)?  = D * ( 3 D ( D  +2))"*, 

( 3 D ( D  +2))1'2 (6.46a) 

(6.46b) 

Evidently 7 and 9 have opposite signs (for D 3 2 )  suggesting that we may find solutions, 
dominated by the Kasner singularity, in which a( t )  grows (T < 0) and b( t )  decreases 
(7  > 0). In fact this is precisely what the detailed numerical integration of the field 
equations show. This is illustrated in figure 1. The behaviour near t = 0 shows both 
scale factors controlled by the Friedmann behaviour (6.44), whereas near t = to b( t )  
is collapsing to zero while a ( ? )  is diverging according to the Kasner solution (6.46); 
for D large 

T K A S  - - I /& ( 6 . 4 7 ~ )  

+KAS - ( 1  + J5)lD. (6.47b) 
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t 

Figure 1. Time dependence of the scale factors. a(?) scales the 3-space, b ( t )  scales the 
compact space K .  

The behaviour exhibited in figure 1 may also be understood qualitatively by studying 
the subleading terms in (6.44) and (6.46). Thus, writing the Friedmann solution as 

~ ( t )  = ~ , t ~ ( i + ~ t * )  ( 6 . 4 8 ~ )  
b ( t ) =  R, tY(l- tBts)  (6.486) 

with y as in (6.44), and matching the next-to-leading-order terms one finds that 
(Yoshimura 1985) 

(6.49) 
and that the curvature terms k^/ b2 tend to turn b( t )  over ( B  < 0). When the 3-space 
is flat or open ( L S O )  a ( ? )  increases monotonically (Abbott et al  1984) and A > 0 .  
Even when R >  0, A > B provided D > 3, and for D >> 3 

A -  D/12Ri ( 6 . 5 0 ~ )  
B - - D/  12Ri.  (6.50b) 

Thus we are able to understand qualitatively why the 3-space starts to expand more 
rapidly than the D-dimensional space K. To see whether this leads quantitatively to 
sufficient inflation we need to consider the thermodynamic evolution of the system. 
Following Abbott, et al (1989, Sahdev (1984) and Yoshimura (1984), we assume that 
the universe evolves slowly and adiabatically, so that the entropy per causal volume 
is conserved. In the early (expansion) stage the energy density p = (D + 3)p is that of 
( D  + 4)-dimensional thermal radiation. So 

p = gTDC4 (6.51) 

S = 2( D + 3) ( D  + 4)-' 
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and the energy density in the non-compact four dimensions is obtained, as in (6.21), 
by integrating over K :  

p(4) = 0TDt4 VD 

a u ~ ~ T ~ + ~ .  (6.52) 

The assumption (6.51) is justified so long as the wavelength of the thermal excitations 
T-' is small compared with the scale factor b ( t )  of K .  However when b T -  1 the 
excitations in K ,  of mass b-I, become massive and the D extra dimensions are 
de-excited. At this point the (classical) equations we have used break down, and what 
happens next is slightly controversial. 

The assumption of Kolb et a1 (1984) is that this 'freeze-out' of the extra dimensions 
coincides with the stabilisation of b ( t )  which we know must occur, sooner or later. 
They assume that at freeze out 

b,T, = 1 (6.53) 

and the energy density is instantly thermalised, so the four-dimensional entropy density 

4 4 ) E  PXPE bG3 (6.54) 

using (6.53). The quantity of physical interest is the entropy S h  contained in a horizon 
volume after freeze out. The horizon length 

I h ( l )  a a ( [ )  (6.55) 

so the required entropy is given by 

Sha  a3,bG3. (6.56) 

For t close enough to to the behaviour of a ( t )  and b ( t )  is dominated by the Kasner 
singularity, so 

(6.57) 

Thus provided t ,  is close enough to to we might suppose that we can easily arrange that 

s h  > 10" (6.58) 

which is the inflation required (Guth 1981) to solve the horizon problem. However 
we should certainly not believe (6.58) if it required the freeze-out value b, to be less 
than the Planck scale. In other words we cannot believe the values shown in figure 1 
for t > t , ,  which is when b falls below m i ' .  It is clear from figure 1 that the largest 
value of S h  is when t = t ,  but then (6.58) is not satisfied. Since the only length scale 
in the problem is provided by 

= GVD - mi2b:  (6.59) 

it is not surprising that 6 ,  - mi'  leads to an entropy S h  of order unity, as found by 
Kolb et a1 (1984). Typically, to ensure (6.58) we need b,ccc m i '  which is just when 
we cannot have any faith in classical field equations. A (slightly) more positive result 
is possible if one is prepared to believe that bT is of order 10-100, before compac- 
tification, say when b - a at t - t,,, in figure 1 (Abbott et a1 1984). However even then 
D -  10-100 is also required to satisfy (6.58). 
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The deficiency of the foregoing scenario, which would have been its strength had 
it worked, is that there are no adjustable parameters and therefore no reason to suppose 
that large numbers, such as (6.58), will emerge. In any case, it seems unlikely that the 
compactification mechanism, which we know must participate eventually, merely plays 
the role of preventing the recollapse of b ( t ) .  It is at least conceivable that the 
background fields responsible for W ( b )  in (6.15) drive the inflation which we are 
seeking. One especially attractive scenario for inflation is that the universe underwent 
a ‘slow roll-over’ phase transition (for a review see Steinhardt 1983). If the order 
parameter of the phase transition is denoted by 4, we require that at very early times 
4 was trapped near 4,  in a region of metastability. (Here, and elsewhere, we ignore 
the (possible) objection that the effective potential is known to be convex (Symanzik 
1964, 1970, Iliopoulos et a1 1975; see also Rivers 1984), and so can have at most one 
extremum; the ‘potential’ We, is in any case only an effective potential in the vicinity 
of b = bo, as is apparent from (6.61), for example.) As the temperature decreased a 
more favoured value &, developed, which was separated by an energy barrier from 
4 , .  The energy barrier prevented the phase transition occurring until there had been 
considerable supercooling. When eventually the barrier disappeared there was a 
first-order phase transition and the accompanying latent heat reheated the universe to 
a high temperature. During the metastable era the energy density was non-zero and 
almost constant (because of the ‘slow-roll-over’), so the universe underwent the 
exponential expansion called inflation. The high temperature achieved by reheating 
after the stable value & was attained ensures that the subsequent history was just as 
in the hot big bang theory. 

In the present context the scale factor b( t) is a natural vehicle for accomplishing 
such a transition. We have already seen that the ‘observed’ constant value bo of b( t )  
minimises W e f f ( b ) ,  as shown in (6.27) and (6.33). (This required tuning the overall 
cosmological constant A so that the effective cosmological constant R,(bo) in ( 6 . 2 6 ~ )  
is zero.) Suppose that there is another constant value b, of b ( t )  satisfying ( 6 . 7 ~ ) .  Then 

(6.60) 

(6.61) 

since from (6.25) 

0 = A + 16n-G Weff (  bo). (6.62) 

When b( t) - b, , the scale factor a (  t )  inflates according to (6.8) with a Hubble constant 
HI given by 

3 ~ : = 8 n e [ w e f , ( b I ) -  weff(bo)I. (6.63) 

We can also calculate the rate at which b( t )  moves away from the stationary value b, . 
As in (6.29) we linearise the departure from b,  and then 

p (  t) a e*,‘ (6.64a) 

where 

A , /  HI =$ [ -1 + (1 +A)”*]  (6.64 b ) 
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and 

8 7TG 
[ ( D - l ) b I  W’(bl)-b;W’’(b,)] 

8 
(6.65) 

To get sufficient inflation we require that A , /  HI, and hence A, is small so that b( t )  
stays near b, long enough for a ( t )  to inflate by many Hubble factors. In fact (6.58) 
requires 

Al/Hl - $  A c & .  (6.66) 

This too can be re-expressed in terms of We, to give 

(6.67) 

and this imposes a severe constraint on possible compactifying forces. For example 
it cannot be satisfied if W ( b )  is a single power, as in (6.39); this is because with only 
a single parameter w we cannot simultaneously satisfy the three conditions (6.27), 
(6.61) and (6.67). With two parameters, as in 

W ( b )  = ~ , b - ~ - ~ +  w2b-2” (6.68) 

it is possible, although not for D = 7, provided w,  and w2 are tuned to critical values 
with an accuracy of 3% (Bailin et a1 1985a). 

It is also necessary to arrange that after the slow roll-over the universe is reheated 
to a temperature fairly close to its initial temperature. This reheating is caused by the 
emission of light particles as b ( t )  oscillates about its stable value bo. It can be seen 
that, provided bo is not (too) large compared with mi’ ,  then there is sufficient reheating 
to generate the observed entropy of the universe. However if this is the case it is likely 
that the model generates density fluctuations which are far too large to account for 
galaxy formation, unless there are a very large number of extra spatial dimensions 
(Bailin et a1 1985a). 

An alternative mechanism which realises an identical scenario has been proposed 
by Shafi and Wetterich (1983). They observe that in addition to the quantum effects 
considered by Candelas and Weinberg (1984) there are likely to be additional, non- 
minimal, gravitational terms in the effective action which are important at early times 
when a (  t )  - b( t ) .  Thus Shafi and Wetterich assume a background action of the form 

instead of (6.15), which yields the most general form of the action involving up to 
four derivatives of g A B .  (It is known that such terms arise naturally in the superstring 
theories which are currently the subject of intensive research.) It is easy to show that 
for rather general values of a, p, y the field equations admit a solution of the form 
M 4 x  SD,  by fine tuning the cosmological constant A, as in (6.26), and this is the 
presumed solution at late times. At early times there are (two) other solutions and, 
as in (6.63), these provide a non-zero effective cosmological constant with which to 
inflate a ( t ) .  Thus with appropriate fine tuning it is again possible to arrange for 
sufficient inflation. 
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In principle a more sophisticated model than either of those so far advanced 
deserves analysis. We have already observed that it is unreasonable to suppose that 
the sole role of the compactifying fields at early times is to prevent the recollapse of 
b. Yoshimura (1985) has observed that the quantum Casimir effect, computed by 
Candelas and Weinberg (1984), for example, is relevant as it stands only at late times 
when a (  t )  >> b( t ) .  The recalculation of these when a(  t )  - b( t )  has been performed 
(Yoshimura 1984, Koikawa and Yoshimura 1985) in the case when the 3-space and 
K are spherical, and has been generalised to finite temperature (see also Rubin and 
Roth 1983). The result is a free energy which interpolates between the pure Casimir 
and the thermal energy. One effect of this may be to generate a cosmological bounce 
in the space K. Then the present universe may be the outcome of a large number of 
such bounces in each of which a relatively moderate amount of entropy is gradually 
accumulated which in turn affects the size and duration of the succeeding bounce. 

A similar calculation, using a free energy which interpolates between the pure 
Casimir and the pure thermal energy, has been carried out by Okada (1985). It has 
the particular feature that, like (6.68), it has two vacuum solutions. Therefore, by 
choosing the initial conditions carefully, i.e. by fine tuning, it can again be arranged 
that a (  t )  inflates sufficiently while b( t )  remains near the (unstable) b, . 

6.4. Survival of massive modes (Kolb and Slansky 1984) 

We have seen in $0 1.5 and 5.1 that Kaluza-Klein theories typically require the existence 
of modes (particles) having masses of order kl, where r? is the radius of the 
compactified manifold K. If r? is of order cm, then these particles have 
masses of the order of the Planck mass m p -  1019 GeV. (The particles observed in 
nature must then be zero modes which acquire their non-zero mass from some other 
(low-energy) mechanism, for example spontaneous symmetry breaking.) If the tem- 
perature T in the early universe was ever comparable with E-’, these heavy modes, 
called ‘pyrgons’ by Kolb and Slansky (1984), would have been excited, and we are 
concerned with their fate in the subsequent cosmological evolution. 

In the original five-dimensional theory of Kaluza and Klein the pyrgons are the 
n # 0 tensor modes discussed in § 5.1, and these modes have non-zero charge 
q,, = n(m,E) - ’ ,  as shown in (1.26). Evidently it is not possible for a pyrgon to decay 
solely into zero modes, because the zero modes all have n = 0 and therefore have zero 
charge. So the lightest pyrgons (i.e. the In1 = 1 modes in the five-dimensional theory) 
will be stable, and some of them might have survived to the present era. Whether or 
not they do so in observable numbers depends upon their annihilation rate r A ,  since 
an n = +1 pyrgon can annihilate with an n = -1 pyrgon to form zero modes. The 
annihilation rate is given by 

r A =  n*,(rAIvI (6.70) 

where n, is the pyrgon number density, uA is the cross section for the annihilation 
process and v is the relative velocity of the annihilating pyrgons. On dimensional 
grounds 

uAIvI - a’/m; (6.71) 

where a is the fine structure constant, and m, is the mass of the In1 = 1 pyrgon. The 
pyrgon number density is 

n,  - T3 (6.72) 
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and the expansion rate of the universe is 

re - T 2 /  m p .  

Thus 

rA/IIE- a 2 m p T / m $  

- a 2 m p / m 4  at T - m+. 
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(6.73) 

(6.74) 

Now, because of the formula (1.26) for the charge of the pyrgons, which is characteristic 
of Kaluza-Klein theories, 

a - ( d m p ) - 2 - m $ / m ;  (6.75) 

and 

IIa/TE - m i /  m i .  (6.76) 

Thus if m+ < mp annihilation is ineffective at removing the pyrgons. But m+ < m p  is 
just the condition 

r?>m,' (6.77) 

which we have assumed throughout to justify our use of the classical field equations. 
It is reasonable to assume that at the time of compactification (t,) the abundances 

of pyrgons and of photons were comparable, since for T 3 d-' we should expect the 
n # 0 modes to be excited. Then it follows from (6.76) that the present pyrgon number 
density is of the order of the present photon number density n,: 

n* - n Y  (6.78) 

and this is supported by more careful numerical calculations (Kolb and Slansky 1984). 
(In fact the predicted pyrgon density is consistent with data on the present energy 
density only if m+ is less than about 100eV, which is not consistent with regarding 
them as pyrgons.) Thus l O I 9  GeV pyrgons should be as abundant as photons are! 

Such a prediction is likely to be characteristic of more realistic theories, as well as 
the five-dimensional model we have concentrated upon. One way to escape this 
disastrous prediction is if a large amount of entropy is created after compactification, 
for example by inflation as discussed in 9 6.3. To avoid diluting the baryon asymmetry 
by an equally large amount it is necessary for the entropy to be generated prior to the 
generation of a non-zero baryon number. 

6.5. Kaluza- Klein monopoles 

A possible problem for Kaluza-Klein cosmology (as for the cosmology of grand unified 
theories (Preskill 1979, Zel' dovich and Khlopov 1978, Kibble 1979)) is the existence 
of magnetic monopoles which may be produced in the early universe and contribute 
excessively to the present energy density. (These monopoles, which appear in ordinary 
three-dimensional space are, of course, not to be confused with the monopole solutions 
on the compact manifold of 9 3.5.) In the case of a grand unified theory, magnetic 
monopoles arise when the gauge group GYM is spontaneously broken by a scalar field 
expectation value leaving a residual symmetry H. Then, for a single connected G Y M ,  
magnetic monopoles are associated with non-trivial topological quantum numbers of 
the homotopy group v,(H).  For the Kaluza-Klein case (Gross and Perry 1983, Sorkin 
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1983, Pollard 1983, Perry 1984) the group of (4+  D)-dimensional coordinate transfor- 
mations is spontaneously broken upon compactification to the product of four- 
dimensional coordinate transformations and the isometry group G,  monopole solutions 
being classified (Perry 1984) by n-,(G), e.g. for G = U(1), n-,(G) = 2, for G = S O ( n ) ,  
n 3 3, n-,(G) = Z2, and for G = SU(n),  n a 3, n-,(G) = 0, where Z are the integers and 
Z2 are the integers modulo 2. 

In particular, for the five-dimensional case of 9 1, where G = U( l) ,  the explicit 
(static) monopole solution is given (Gross and Perry 1983) by 

gas dZAdZB=dt2-(P[I?  dZ5-a( l -cos8)  d4]2-@- ' (dr2+r2d82+r2s in2  8 d 4 2 ]  
(6.79) 

where r, 8, 4 are three-dimensional polar coordinates and Z5 is the angular coordinate 
for S' (which we avoid denoting by 8 here to prevent confusion). There is no coordinate 
singularity at r = 0 provided we choose (Gross and Perry 1983, Sorkin 1983, Misner 
1963) 

4n-a = 2n-I?. (6.80) 

Comparing with (1.6) and (1.8) it is seen that the corresponding four-dimensional 
gauge field solution is given by 

A,  = ( a /@)(1  -case) (6.81) 

so that from a four-dimensional standpoint this solution is a Dirac monopole of 
magnetic charge 

qM= a / t I? .  (6.82) 

Using (6.86) and (1.26), which shows that the unit of electric charge is 

e = K/I? (6.83) 

it follows that 

qM = 1/2e. (6.84) 

Thus the monopole has unit magnetic charge. The (inertial) mass mM of this five- 
dimensional soliton may be calculated from the energy-momentum tensor and is found 
(Gross and Perry 1983, Sorkin 1983) to be given by 

m; = mt/l6cu (6.85) 

in line with the usual expectation that the mass of a monopole is e-' times the natural 
mass scale. Similar solutions have been studied by Perry (1984) in more than five 
dimensions. 

Detailed monopole cosmology depends on the very early history of the universe, 
e.g. with (4 + D)-dimensional isotropic behaviour until Gynamical compactification the 
monopole number to entropy density ratio is of order ( R - ' / m J 3  after compactification 
(Harvey et a1 1984), assuming that one monopole is produced per causal volume, 
where I? is the 'radius' of the compact manifold and mp is the Planck mass. If the 
'radius' of the compact manifold is not too many orders of magnitude greater than 
the Planck length, this is a number not too much less than 1, e.g. with the estimate of 
(1.28) it is Such a large monopole density would contribute an unacceptable 
amount to the energy density of the universe unless it can be subsequently diluted, 
e.g. by cosmological inflation. An encouraging feature is that inflation may be more 
effective in diluting monopole density in Kaluza-Klein theories than in grand unified 
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theories, because (Gross and Perry 1983) monopole-antimonopole pairs can have 
non-trivial topological quantum numbers so that they are not thermally produced after 
compactification (Harvey et a1 1984). 

7. Kaluza-Klein supergravity 

7.1. Eleven-dimensional supergravity 

Eleven dimensions has a special significance for supergravity theories (for more 
extensive reviews from a somewhat different perspective see Englert and Nicolai (1983) 
and Duff et a1 (1986)). It is the highest dimensionality for which a consistent theory 
exists because spins greater than 2 are inevitable for higher dimensions (Nahm 1978). 
Moreover, consistency is only possible for a single supersymmetry generator ( N  = 1). 
The generalised Dirac matrices for eleven dimensions may be taken to be 

re = ymi 

re = y , ~ f a  

a = 0, 1 ,2 ,3  

a = 4 ,  . . . ,  10 
(7.1) 

where y o  are the Dirac matrices for four dimensions, and f e  are the Dirac matrices 
for seven dimensions. 

Then, 

{ra,  rP} = 2 p 1  (7.2) 
where a,  p =0,  1,. . . , 10 and 

~ , ~ = d i a g { l , - l ,  . . . ,  -1). (7.3) 
The supersymmetry generator op, p = 1,. . . ,32, is an eleven-dimensional Majorana 
spinor with the anticommutation relations 

where P, is the eleven-dimensional momentum operator. 
The supergravity multiplet for N = 1 supergravity in eleven dimensions contains 

the following fields (Cremmer et a1 1978). The vielbein E:,  where a = 0, 1 , .  . . , 10 is 
a flat index associated with the tangent space, and A = 0,1 , .  . , 10 is a curved index, 
a Majorana vector spinor I / JA  and an antisymmetric tensor field ABcD, with correspond- 
ing field strength 

FABCD E a A A B c - D - a B A A c D + a C A A B D - a D A A B C  (7.5) 

~ A A B C = ~ A ~ B C - ~ B ~ A C  + ~ C A A B  (7.6) 

A A B  = - A E A .  (7.7) 

as in (3.10), invariant under the Abelian gauge transformation, 

where 

Under an infinitesimal local supersymmetry transformation, 
S P :  = -tiEr"+A 

~ A A B C  = $ a E r [ A B I / J C ]  

(7.8) 

(7.9) 

(7.10) 

where E is an infinitesimal 32-component Majorana spinor parameter, rAIAz " .  
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denotes the completely antisymmetrised product of n generalised Dirac matrices, 
divided by the number of permutations, r [ A B $ c ]  is the antisymmetrised sum over all 
permutations divided by their number of rABi,bC and D A  is the covariant derivative. 
The locally supersymmetric action is 

-$R -&FABCDF ABCD - $ i I j A r A B C D B $ C  

+ (quartic terms in fermion fields) (7.11) 

where units with 
8.irG=l (7.12) 

have been used, and " ' A l ~  is the eleven-dimensional Levi-Civita symbol, such that 

E o l . . . l l  = 1. (7.13) 

7.2. Compactijcation of eleven-dimensional supergravity 

The field equations arising from the above Lagrangian (assuming vanishing expectation 
values for the spinor fields) are 

(7.14) C D E F  - 
R A B - $ R g A B  = T A B  = - ~ ( F ~ D ~ ~ F ~ ~ ~ ~  - ~ F ~ ~ ~ ~ F  g,&3) 

and 

D A FABCD = ldet Pl-'ZA(ldet ,-IFABCD) 
-Jz E E F G H I J K L B C D  

FEFGHFIJKL -- - 
2(4!)2 /det PI 

(7.15) 

These field equations have a solution of the type 

FI*WU = 1 det e I-' E "pu F I* . ,v ,p ,a=0,1 ,2 ,3  (7.16) 

and all other entries zero, where det e refers to four-dimensional space, as in (3.14). 
The term on the right-hand side of (7.15), which was not present in (3.12), does not 
contribute for a solution of this type, or indeed whenever FABCD has no components 
connecting four and seven dimensions. (It is also possible (Englert 1982) to find 
solutions where Fmnpq, m, n, p, q = 4, . . . , 10, are also non-zero. However, these sol- 
utions have the arguably undesirable property of having all supersymmetries broken 
in the four-dimensional theory resulting from compactification (Biran et a1 1983, 
D'Auria et al 1983, Englert et a1 1983) and we shall not consider them further here.) 
Now, as in 0 3.2, with equal to zero as required by supersymmetry, one finds 

(7.17) 

(7.18) 

(7.19) 
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and 
- 

gmn = - f  F2gmn. 
3 F2 =-- 

mn ( D f 2 )  
(7.20) 

The compact manifold and four-dimensional space are thus inevitably Einstein spaces, 
and the separating off of exactly four non-compact dimensions is a consequence of 
the four indices on the tensor field strength FABCD which arises from the supergravity 
multiplet (Freund and Rubin 1980). 

Whenever F is non-zero, four-dimensional space has to be anti-de Sitter rather 
than Minkowski, and compactifications of this type with compact manifold the 7- 
sphere (Duff 1982, Duff and Pope 1983), the squashed 7-spheres (Awada et a1 1983, 
Duff et a1 1983a,b), or Mpqr (Castellani et a1 1984a) have been studied. (The 
squashed 7-spheres are topologically spheres, but as coset spaces are G/ H = 
(SO(5) x S0(3)) / (S0(3)  x SO(3)) for a particular embedding of H in G (Bais et a1 
1983).) When F is zero, four-dimensional space is allowed to be Minkowski, and the 
compact manifold is Ricci flat. Possible Ricci flat compact manifolds to have been 
considered are the 7-torus T7 (Cremmer and Julia 1978, 1979) and T3x K 3  (Duff et 
a1 1983a, b). These last two possibilities have been less favoured than the others since 
the isometry group for these manifolds has only Abelian gauge symmetries. 

At first sight, the manifolds Mpqr of § 2.6 are most promising, because they have 
isometry group SU(3) x SU(2) x U( 1) as required for the known strong and electroweak 
interactions. However, they become less compelling once it is realised that the quark 
and lepton representations of SU(3)xSU(2)xU(l )  do not arise in the harmonic 
expansion on Mpqr of elementary eleven-dimensional spinors (Randjbar-Daemi et a1 
1984a, D’auria and Fre 1984a), and that (see § 7.3) they never lead to N = 1 supersym- 
metry in four dimensions. 

Most attention (see the reviews of Englert and Nicolai 1983 and Duff et a1 1986) 
has been given to the 7-sphere and squashed 7-spheres, for which the isometry groups 
are SO(8) and SO(5) x SU(2), respectively. In neither case is the isometry group large 
enough to contain SU(3) x SU(2) x U(1), so that the pure Kaluza-Klein philosophy 
that all gauge fields come from the metric in the fashion of § 2 has to be abandoned. 
It is nonetheless possible to obtain an SU(3) x SU(2) x U ( l )  gauge group in a fairly 
natural way as follows. The spin connection on the compact manifold, ( w o p ) ,  of 
(2.39), provides a naturally arising composite gauge field (Cremmer and Julia 1979) 
with gauge group S0(7),  because the spin connection is the ‘gauge field’ of the tangent 
space group. (Because w, can be calculated from the vielbein, for zero torsion, as in 
(2.35), it should not be regarded as elementary.) Then SU(2) x U(1) of electroweak 
theory may be obtained from the isometry group SO(8) or SO(5) x SU(2) of the 7-sphere 
or squashed 7-spheres, respectively, and the SU(3) of quantum chromodynamics from 
the SO(7) tangent space group associated with the spin connection on the compact 
manifold. 

Now that the gauge group contains composite gauge fields, it is natural that the 
quarks and leptons should also be composite, arising from supergravity preons (Crem- 
mer and Julia 1979, Ellis et a1 1980, de Wit and Nicolai 1982, Duff et a1 1984b, c). 
That the quarks and leptons should be composite, rather than arising from the harmonic 
expansion of elementary spinors in eleven dimensions, is in any case suggested by the 
results on the non-existence of chiral fermions in odd-dimensional Kaluza-Klein 
theories (see 9 4). One advantage of this odd-dimensional supergravity theory over 
generic even-dimensional theories is that chiral gauge field-graviton anomalies do not 
arise (see § 4). 
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The gauge symmetry of the four-dimensional Lagrangian for 7-sphere compac- 
tification may be greater than SO(8) x SO(7). Indeed it has been suggested (Cremmer 
and Julia 1979, de Wit and Nicolai 1982) that the four-dimensional gauge symmetry 
may be enlarged to SO(8) x SU(8), and that the SO(8) gauge fields may provide a 
confining force for the formation of composite SU(8) gauge fields and fermions from 
supergravity preons. A recent development of this idea is the model of Duff et a1 
(1984a) where the SO(5) x SO(3) gauge fields of the (right) squashed 7-sphere produce 
SU(5) x SU(3) x U ( l )  bound states, with the SU(5) identified with the standard SU(5) 
of grand unified theory, though there is the possible drawback that there is then no 
residual supersymmetry in four dimensions. 

7.3. Unbroken supersymmetries in four dimensions 

We may use the properties of the fields of the theory under a local eleven-dimensional 
supersymmetry transformation (7.8)-(7.10) to investigate how many unbroken super- 
symmetries appear in four dimensions. For four-dimensional Lorentz covariance the 
expectation value of all components of the (vector) spinor must vanish. Then, from 
(7.8) and (7.9) it is automatic that 

sc; = 0 (7.21) 

and 

8AABC = 0. (7.22) 

Thus, the necessary and sufficient condition for an unbroken supersymmetry in four 
dimensions is that 

s $ A  = 0. (7.23) 

In general, this is the condition 

(7.24) 

In certain circumstances this simplifies considerably. First, for an eleven- 
dimensional space which is the direct product of a four-dimensional space and a 
seven-dimensional compact manifold we may assume that the infinitesimal supersym- 
metry transformation parameter E ( X ,  y )  factorises as the product of a four-component 
four-dimensional Majorana spinor ((x), and an eight-component seven-dimensional 
Majorana spinor ~ ( y ) .  Second, let us consider a solution for FABCD as in (7.16). 
Then, using the decomposition (7.1) of the eleven-dimensional Dirac matrices, (7.24) 
yields the two conditions 

Qk= q A x ) - ( ~ / J l s ) Y s Y F 5 ( x )  = o  p = 0, 1 ,2 ,3  (7.25) 

and 

D,T = Dm77(y ) - (F /2J18)~ ,77 (y )=0  m = 4 , .  . . , 10. (7.26) 

A necessary condition for the existence of a solution 7 of (7.26) is 

[ D m ,  D ~ I T ( Y ) = o .  (7.27) 

For the spinorial representation of S0(7),  (2.37)-(2.39) give the covariant derivative 

DmT = ( a m  + i ( w n p ) m F n p ) ~ .  (7.28) 
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Evaluating the commutator in (7.27) with the aid of (2.36) puts (7.27) in the form 

( RmnpqfP4 +$ F2fm,)v = 0. (7.29) 

The number N of unbroken supersymmetries appearing in four dimensions is the 
number of independent solutions (Killing spinors) of (7.29). This may be interpreted 
geometrically (Duff et a1 1983b) as the number of spinors left invariant by the holonomy 
group "de of the generalised spin connection specified by Dm. 

The corresponding consistency condition deriving from (7.25) 

[D,, D") t (X)  = 0 (7.30) 

yields 

( Rpup,,rPV - $  F 2 r p , ) t ( x )  = O  (7.31) 

which is always satisfied when four-dimensional space is maximally symmetric with 
'radius' consistent with (7.19) 

(7.32) 

The maximum number of unbroken supersymmetries is N = 8 which occurs when 
every (eight-component) spinor 7 satisfies (7.29). (Then the holonomy group 2%' is I . )  
This happens when the compact manifold is maximally symmetric with 'radius' con- 
sistent with (7.20): 

R,"PV = ; F*(g,&<, - g,pg,,) 

R m n p q  = - i% F 2 ( g m p g n q  - g m q g n p )  

RmnpqFPq +$ F 2 f m ,  = 0. 

(7.33) 

(7.34) 

so that 

When F f 0, the compact manifold is S7 and the 4-space is anti-de Sitter (Duff and 
Pope 1983, Duff 1982), and when F = 0 the compact manifold is the 7-torus T7 and 
the 4-space is Minkowski (Cremmer and Julia 1978, 1979). 

Other cases (without torsion) leading to some unbroken supersymmetries in four 
dimensions are the (left) squashed 7-sphere (Awada et a1 1983) with N = 1 supersym- 
metry ( X =  G2) and anti-de Sitter 4-space, MP4' for p = q (Castellani et a1 1984a) with 
N = 2 supersymmetry (2%' = SU(3)) and anti-de Sitter 4-space, and T3 x K 3 (Duff et a1 
1983a, b) with N = 4 supersymmetry ( X  = SU(2)) and Minkowski 4-space. 

Throughout the above derivation it has been assumed that FABCD is as in (7.16), 
with the components Fmnpq on the compact manifold all zero. If a non-zero Fmnpq is 
introduced (Englert 1982) then consistency with the Einstein field equations (7.14) 
implies that there are no unbroken supersymmetries in four dimensions (Biran et a1 
1983, D'Auria et a1 1983). 

A slightly different perspective is obtained by assuming from the outset that 4-space 
is Minkowski. Then (Candelas and Raine 1984) the existence of an unbroken supersym- 
metry in four dimensions implies that the components Fmnpq are zero, and that the 
compact manifold is Ricci flat, without using the field equations. This conclusion is 
thus applicable to situations where quantum corrections to the classical field equations 
are important. 

7.4. Minimal ten-dimensional supergravity 

For it to be possible for chiral fermions to arise from the harmonic expansion of 
elementary spinor fields (in the presence of explicit gauge fields) it is necessary to use 
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an even dimensionality (see Q 4). Ten dimensions is especially important because 
ten-dimensional supergravity theories may be derived from superstring theories for 
energies very much less than the Planck mass. Although the ten-dimensional super- 
gravity theory is non-renormalisable, the superstring theory, of which it is a limit, is 
probably renormalisable, the relationship between the two theories being analogous 
to that between renormalisable electroweak theory and non-renormalisable four- 
fermion theory. (For reviews of superstring theory see Schwarz 1982, 1984, Green 
1983, Brink 1984.) 

Two different N = 2 (two supersymmetry generators) ten-dimensional supergravity 
theories arise from type IIA and IIB superstrings, respectively (Green et a1 1982, Green 
and Schwarz 1982, 1983, Marcus and Schwarz 1982, Schwarz and West 1983). The 
first of these can be obtained by dimensional reduction of eleven-dimensional super- 
gravity (Cremmer and Julia 1979, Scherk and Schwarz 1979), and is thus non-chiral. 
The second is a chiral theory but, because it does not allow explicit ten-dimensional 
gauge fields, there may be no way of transmitting this property to four dimensions, 
upon compactification (see 0 4). We shall therefore not discuss these theories further 
here, but shall concentrate instead on N = 1 ten-dimensional supergravity, which can 
be derived from type-I superstrings. In this section the minimal N = 1 ten-dimensional 
supergravity theory will be described, and in the next section we shall describe the 
modified anomaly-free theory which can be derived from the type-I superstring. 

In its minimal form, N = 1 ten-dimensional supergravity has been constructed by 
Gliozzi et a1 (1977), Scherk (1978), Chamseddine (1981a), Bergshoeff et a1 (1982) and 
Chapline and Manton (1983). The supergravity multiplet {F:, $ A ,  BAB, A, 4}  contains 
the vielbein .?:, where (Y = 0, 1 , .  . . , 9  is a flat index, and A = 0,1, .  . . , 9  is a curved 
index, a Rarita-Schwinger Majorana-Weyl spinor $ A ,  an antisymmetric tensor field 
BAB, a right-handed Majorana-Weyl spinor field A and a scalar field 4. (An alternative 
version of ten-dimensional supergravity, which we do not discuss here, contains instead 
a sixth-rank antisymmetric tensor field (Chamseddine 1981b, FrC and Zizzi 1984).) 
The theory is coupled to explicit Yang-Mills gauge fields AA, where a runs over the 
adjoint representation of the gauge group G Y M ,  and the corresponding left-handed 
Majorana-Weyl gauginos ,ya. The field strength corresponding to AA is given (as usual) 
by 

FzBi, & B = ~ A A B - ~ B A A + ~ [ A A ,  AB] (7.35) 

where g is the gauge coupling constant and 

AA A:?, (7.36) 

and i, is the defining representation of GYM by anti-Hermitian matrices with 

[T , ,  i,) =fahc?c.  (7.37) 

The field strength H A B C  corresponding to B A B  is given by 

HABC = ~ [ A B B C I  - ( c / f i ) E ( A [ A F B C ]  - +  g A , A B A c , )  (7.38) 

where d[ABBCl is the antisymmetrised sum over all permutations divided by the number 
of permutations, etc, E is the trace in the defining representation and 

I? = 8rG. (7.39) 

(To agree with Chapline and Manton (1983) we have adopted here a notation different 
from (1.17).) This field strength is invariant under the generalised infinitesimal gauge 
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transformation 

SAA = DAA ~ B A B  = f i t ?  ?r(Ad[AABj). (7.40) 

Under an infinitesimal local supersymmetry transformation with infinitesimal spinor 
parameter E ,  

(7.41) 

(7.42) 

8 B A B  =i d&3/4((2Er[~$~]- ( ~ / J Z ) E ~ A B ~ ) + ( K / ~ ) ~ ~ " ~ ~ [ A  Tr(,yABI) (7.43) 

SA = - ; & ( 0 4 / 4 ) ~ + i  4 - 3 / 4 r A B C ~ F  ABC + (fermion bilinears) (7.44) 

SAA = ;43/xrrAX (7.45) 

sx = - 4-3/srABF ABE + (fermion bilinears). (7.46) 

(The complete transformations are given in Chapline and Manton (1983).) In these 
equations rAIA2 ' '  ' denotes the completely antisymmetrised product of n ten- 
dimensional Dirac matrices T A  divided by the number of permutations and DA is the 
covariant derivative. 

The locally supersymmetric action is 

7 = dI0i?(TB + TF+ =YFB)( -t four-Fermi interactions) (7.47) I 
with the bosonic term 

the fermionic kinetic term 

(7.48) 

(7.49) 

and fermion-boson interaction 
ldet P I - ' ~ F B = - ~  t?4-3/8E(2r A r BC F B C ) ( $ A + & f i r A h )  

f i K 4 ~ 3 ' 4 H A B C ( T ' ; ( ~ r A B C x )  + $DrDABcE $E +6$ATB$C 

- r A Bc r D~ ) . (7.50) 

It has been observed by Freedman et a1 (1983) and Randjbar-Daemi et al (1983d) 
that there is a basic difficulty with the theory as it stands, resulting from the field 
equation for the field 4 (in the absence of fermion condensates) which may be written 
as 

DADAa = - ( 3 / 2 f i ) K  eXP(-fi?(T)HABCHABC' 

- ( 1 / 4 f i ) K  exp(-( 1 f i ) K a )  %( FABFAB)  (7.51) 

where U is defined by 

4 = exp(i &KC).  (7.52) 
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For maximal symmetry of four-dimensional space, H p v p ,  Fwy and dv4 must vanish for 
p, v, p = 0, 1,2,3.  It may then be deduced, by integrating (7.51) over the compact 
manifold, that 

H A B C  = o  FAB = 0 A,  B , C = O , l ,  . . . ,  9. (7.53) 

By multiplying (7.51) by U and integrating over the compact manifold, it may also be 
shown that 

U = constant. (7.54) 

The Einstein field equation then shows that 
- 

R A B  = O  A, B = 0 , 1 , .  . . ,9 .  (7.55) 

Thus, 4-space is Minkowski and the compact manifold is Ricci flat, so that it is 
impossible to obtain any non-Abelian symmetries from the isometry group of the 
compact manifold. Moreover, because FAB is zero in (7.53), chiral fermions cannot 
be obtained. 

If we wish to obtain compactification with chiral fermions it is necessary to evade 
the above result, e.g. by adding an ad hoc supersymmetry breaking term - V ( 4 )  to the 
Lagrangian, perhaps arising dynamically. Proceeding in this way Randjbar-Daemi et 
a1 (1983d) have looked for G-invariant compactifications on coset spaces G/H,  with 
the gauge field expectation value forming a generalised monopole solution (Randjbar- 
Daemi and Percacci 1982) as discussed in § 3.7. Compactification is possible in this 
way when the compact manifold is the coset space S 6 =  S0(7)S0(6) or GJSU(3) but 
not if it is CP3 or CP2 x S2. A key element in this discussion is the observation that 
the expressions (7.35) and (7.38) for the field strengths require HAEC to satisfy the 
Bianchi identity 

[ d m ~ n p q l a n f i s y m m e f r i s e d  = -(~/2JZ)[T;(~,,~,,)I..,isymmetrised. (7.56) 

This is a strong constraint on possible compactifications. 
The cosmology of these theories has been considered by Chapline and Gibbons 

(1984). A stable generalised Friedmann-Robertson-Walker solution may be found for 
which the radius of the compact manifold tends to a constant at late times, as required 
for the constancy of the gauge coupling constant associated with the isometry group 
of the compact manifold (see § 6.2). However, the introduction of the ad hoc term 
- V (  4) in the Lagrangian, discussed above, is required. Specifically, Chapline and 
Gibbons (1984) take V ( 4 )  to be a mass term for the field U of (7.52). 

7.5. Anomaly-free ten-dimensional supergravity 

Two N = 1 ten-dimensional supergravities free of all gauge, graviton and mixed 
gauge-graviton anomalies, have been derived from superstring theory, one (Green and 
Schwarz 1984) with explicit Yang-Mills group GYM = S0(32), and the other (Gross et 
a1 1985) with GYM = E8 x E8. In the minimal theory described in § 7.4, not all anomalies 
cancel even when the gauge group is SO(32) or Ea x Ea. However, the supergravity 
theory derived as a low-energy limit of the superstring contains non-minimal higher 
derivative interactions, some of which are non-invariant under Yang-Mills and local 
Lorentz gauge transformations in just such a way as to cancel the anomalous non- 
invariant contributions of fermion loops, for GYM = SO(32) or Ex x E8. (Such terms 
have earlier been introduced by Wess and Zumino (1971) in another context.) 
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It has been observed by Frampton et a1 (1984a) and Frampton and Yamamoto 
(1984) that earlier attempts to construct anomaly-free Einstein-Yang-Mills theories 
(see 9 5) should be re-examined in the light of the anomaly cancellation mechanism 
in ten-dimensional supergravity. The lesson is that it may not be necessary for all 
fermion anomalies to cancel directly if some can be cancelled by adding gauge- 
dependent contact terms arising from the exchange of superheavy fields. 

The non-minimal theory has the same supersymmetry transformation laws as the 
minimal theory (equations (7.42)-(7.46).) However, the Lorentz transformation 
property of BAB is modified so that HaBC defined by (7.38) is no longer Lorentz 
invariant. To obtain a Lorentz-invariant field strength, it is necessary to modify the 
definition to 

H = d B -  ~ 3 y  + w3L (7.57) 

where we are using differential form notation (see 9 2.5) and 

w3 = & Tr( ( A  A F )  -4 (A A A A A)) (7.58) 

and 

o ~ ~ ~ = T r ( ( w ~  R ) - i ( w ~ w ~ w ) )  (7.59) 

where Tr denotes a trace in the adjoint representation of GYM, and tr denotes a trace 
in the defining representation of the tangent space group SO( 1,9)  (the local Lorentz 
group). In (7.58), the gauge field 1-form is 

A E AA dZA (7.60) 

with AA as in (7.36) but with the matrices now in the adjoint representation, and the 
Yang-Mills field strength 2-form is 

4 FAB(dZA A dZB) = F = d A + A  A A (7.61) 

with F A B  as in (7.35). The gauge coupling constant g has been absorbed in the definition 
of A. In (7.59), the 2-form for the second-rank tensor field is 

B = BAB(dZA A dZB) 

the 3-form for the field strength is 

(7.62) 

H = HABC(dzA A dZB A dZC) (7.63) 

and the spin connection 1-form is 

(7.64) 

with w A  defined analogously to (2.39), but with MmP being the generators of SO(1,9), 
and indices being lowered by vap,  the ten-dimensional Minkowski metric, rather than 
8mP.  Also, R is the curvature 2-form defined by 

R = R a p M a p = d w + w A w  (7.65) 

(analogously to (2.36)). Units are being used where 8n-d is 1. The term w3L in (7.57) 
does not occur in the minimal theory, and constitutes a basic difference between the 
two theories. 

A W=WAd.f 

It is not difficult to deduce from (7.57) that 

d H = t r ( R A R ) - & T r ( F r \ F )  (7.66) 
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which is (7.56) with an extra tr(R A R )  term added. This is again a strong constraint 
on possible compactifications. Adding a term - V( 4) to the Lagrangian, as in the last 
section, it is possible using Randjbar-Daemi-Percacci (1982) gauge field configurations 
(see $ 3.7) on symmetric coset spaces K to obtain compactifications consistent with 
(7.66) which give a satisfactory spectrum of fermion zero modes (Witten 1984, Frampton 
et a1 1984b). However, at least for K = S6,  S4 x S2, S2 x S 2  x S 2  or CP3,  it does not 
seem possible to obtain simultaneously consistency with (7.66), stability under classical 
perturbations in the gauge fields (see $ 3.10), and a realistic fermion spectrum (Bailin 
and Love 1985b). 

If, in order to solve the hierarchy problem of grand unified theory, it is demanded 
that N = 1 supersymmetry is unbroken at the compactification scale (Candelas et a1 
1985), and additionally that four-dimensional space is maximally symmetric, then at 
least for 

H A R C  = 0 A, B, C=O, 1 , . . . ,  9 (7.67) 

four-dimensional space is Minkowski, and six-dimensional space is a Ricci flat Kahler 
manifold (see Eguchi et a1 (1980) for a discussion of Kahler manifolds) 

R,, = 0 (7.68) 

with the SU(3) holonomy group, and there is the additional constraint on the Yang- 
Mills field strength 

F;,rmnrl = o (7.69) 

where 7 is a covariently constant spinor on the compact manifold. (It is not clear 
whether solutions with Hmnp # 0, and unbroken N = 1 supersymmetry, are possible.) 
Six-(real)-dimensional Ricci flat Kahler manifolds of SU(3) holonomy are known to 
exist (Calabi 1957, Yau 1977). These manifolds have no continuous isometries. Thus 
there are no gauge fields in four dimensions from the metric, and these theories are at 
the opposite extreme to pure Kaluza-Klein theories. For H = 0, the Bianchi identity 
(7.66) may be satisfied (Candelas et a1 1985) for the Yang-Mills group SO(32) or 
E8 x E8 by identifying the expectation value of the gauge field with the spin connection 
for the Calabi-Yau manifold 

AmDLP = wmaP (7.70) 

where o, is as defined by (2.38), and a, /? are flat indices for the tangent space of the 
compact manifold. Because the Calabi-Yau manifold has holonomy group SU( 3), 
(7.70) requires an embedding of an SU(3) gauge field in G Y M  to be defined. The 
SO(32) case leads (Candelas et a1 1985) to unrealistic models, with only real vector-like 
representations of SO(32). The case G Y M  = E8 x E8 leads to a realistic supergravity 
GUT. With the above SU(3) embedded in the maximal SU(3) x E6 subgroup of a single 
E8, the expectation value (7.70) breaks the E8 X E8 gauge group to E6 X E8. If known 
particles are singlets under the E8 factor, the E6 is a promising GUT. The adjoint 
representation 248 of E8 (to which the fermions belong in the superstring theory) has 
the decomposition under SU(3) x E6, 

(7.71) 

Thus, since chiral fermions must be non-singlet under both E6 and SU(3) (since 
coupling to a gauge field expectation value is needed to produce zero modes, as in 
5 5), the quarks and leptons must belong to 27 or fl of E6. With the gauge field 

- 

248 = (3,27) + ( 3 , f l )  + ( 8 , l )  + (1,78). 
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expectation value given by (7.70), the number N g  of generations of fermions may be 
related using (5.148) to the Euler characteristic x ( K )  of the compact manifold K ,  by 
(Candelas et a1 1985) 

N g  =; X ( K ) .  (7 .72)  

To obtain a reasonably small number of generations it turns out to be necessary to 
use a non-simply connected Calabi-Yau manifold. This has the desirable spin-off of 
providing a mechanism for the first-stage breaking of the GUT symmetry at the compac- 
tification scale. Non-trivial Wilson loops exp(j  A ,  dy") of gauge fields on the compact 
manifold then act as effective Higgs scalars in the adjoint representation 78 of E6, by 
a mechanism discussed previously by Hosotani (1983a, b). Intense effort is being 
devoted at the time of writing to working out patterns of symmetry breaking for the 
E6 GUT (Cecotti et a1 1985, Breit et a1 1985, Dine et a1 1985a, Witten 1985a), to 
exploring mechanisms for breaking the N = 1 supersymmetry (Derendinger et a1 1985, 
Dine et a1 1985b), to investigating possible compactification mechanisms (Nepomechie 
et a1 1985), and to deriving the details ofthe softly broken four-dimensional supergravity 
theory (Witten 1985b, Cohen et a1 1985). 

The difficulty of obtaining a consistent solution for F A B  # 0 of the field equation 
for the scalar field 4, which arose in the minimal ten-dimensional supergravity (Freed- 
man et a1 1983, Randjbar-Daemi et a1 1983d) may be resolved in the present non- 
minimal theory. There arises (Candelas et a1 1985) from the E8 x E8 superstring theory 
(Gross et a /  1985) a non-minimal curvature term which results in & T ~ ( F , , F ~ ~ )  in 
the Lagrangian being replaced by & Tr( FABFAB) +[WABcDIWABCD. With the gauge field 
expectation value given by (7.70) this causes the troublesome Tr( FABFAB)  term in 
(7.51) to cancel, so that a consistent solution may be obtained with 4 constant and 
FAB f 0. (We have already assumed H A E C  = 0.) The complete set of field equations 
is then satisfied with 4-space Minkowski, and 6-space Ricci flat. It has been suggested 
(Zwiebach 1985) that the correct truncation of the superstring theory is obtained by 
using &j Tr(FABFAB) +IWABCDIWABCD - 4 [ W A B R A B  +E2 instead. For a Ricci flat compact 
manifold, this achieves the same effect so far as the 4 field equation is concerned, but 
it also removes ghosts from the supergravity theory (Zwiebach 1985, Zumino 1985), 
and moreover removes a catastrophic instability of Friedmann-Robertson-Walker 
cosmology due to higher-order derivatives (Bailin and Love 1985c, Bailin et a1 1985b). 

8. Conclusions 

In the purest form of Kaluza-Klein theory all gauge fields in four dimensions would 
arise from components of the metric in higher dimensions and there would be no 
explicit gauge fields present in the higher dimensionality. However, because observed 
light fermions are chiral (i.e. have left-handed components transforming differently 
from right-handed components under the observed SU(3) x SU(2) x U( 1) gauge group) 
it seems difficult to sustain this extreme position. Instead one probably has to assume 
that some gauge fields are already present in the higher-dimensional theory. Once 
such 'elementary' gauge fields are present, consistent theories are very tightly con- 
strained by the requirement that all gauge, gravitational and mixed gauge-gravitational 
anomalies should cancel, and theories in which this cancellation is able to occur tend 
to have rather large higher-dimensional gauge groups. Particularly promising examples 
(with gauge group E , x E 8  or SO(32)) are provided by the supergravity limit of 
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superstring theory, and, at  the time of writing, these models have progressed some 
distance towards a phenomenologically satisfactory theory. 

One of the most direct ways of ‘observing’ the extra spatial dimensions may be in 
the cosmological context. Here, Kaluza-Klein theory can give a satisfactory late-time 
cosmology (without rapid variation of the gauge coupling constants or gravitational 
constant), and  also suggests various mechanisms for achieving the desired cosmological 
inflation at early times, though none of these has so far proved entirely compelling 
when detailed calculations have been performed. 

In summary, it seems quite likely that even if the original pure Kaluza-Klein theory 
cannot be sustained, extra spatial dimensions will play an important role in the eventual 
unified theory of interactions, and in understanding early cosmology. 
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