
LOAD BALANCING FOR RELIABLE MULTICAST

Chao Gong, Ovidiu Daescu, Raja Jothi, Balaji Raghavachari, Kamil Sarac
Department of Computer Science

University of Texas at Dallas
Richardson, TX, USA

{cxg010700, daescu, raja, rbk, ksarac}@utdallas.edu

ABSTRACT
New applications emerge along with the rapid growth of
the Internet. Many functionalities other than packet for-
warding are being proposed to be added into routers for
supporting those new applications. Those functionalities
significantly improve the performances of the applications,
but they incur overheads on routers at the same time. It
is a thorny problem to reach a balance between the appli-
cation performance and the functionality overhead. In this
paper, we study that problem in the context of reliable mul-
ticast. We term it load-balanced agent activation problem
(LBAAP). We regard the message implosion at multicast
session source as the performance and the NAK message
suppression agent at router as the functionality. We de-
velop a polynomial running time algorithm for the LBAAP
problem in single multicast tree case. We conjecture the
LBAAP problem in multiple multicast tree case is NP-Hard
and propose a heuristic for it.

KEY WORDS
Load balancing, Reliable multicast, NAK suppression.

1 Introduction
Reliable multicast provides reliable data transport from a
single source to multiple receivers in the Internet. The chief
challenge in reliable multicast is scalability. One main
difficulty in making reliable multicast scalable is feedback
message implosion at the multicast session source. As
the number of receivers increases, their feedback messages
back to the source will eventually overwhelm the comput-
ing resources and even the link bandwidth at the source.

The usual approach to ensure reliable delivery in re-
liable multicast protocols is Negative Acknowledgement
(NAK). That is, receivers send out NAK messages to in-
form the source about packet loss. When a packet loss oc-
curs close to the source, most of the receivers will detect
the loss and send out NAK messages. A large amount of
these NAKs can result in implosion at the source.

One common approach to avoid feedback message
implosion is feedback message suppression. In this
scheme, a special functionality, called NAK suppression
agent, is set up on internal nodes in a multicast tree. NAK
messages are only unicasted from a node to its nearest an-
cestor in the multicast tree on which the NAK suppression
agent is activated. The ancestor node just forwards one
NAK up the tree and suppresses all duplicate NAKs. NAK

suppression agents are software modules located at routers.
The NAK suppression agent can be turned on (activated) or
turned off (deactivated) on a router for a given reliable mul-
ticast session passing through that router.

The NAK suppression agent is helpful for implosion
prevention, which is a key issue in reliable multicast per-
formance. But at the same time it incurs memory and pro-
cessing overheads on routers and increases the transmis-
sion delay of NAK from receiver to source. The NAK
suppression agent must store sequence number informa-
tion for each outstanding NAK message in order to be able
to suppress future duplicate NAKs. NAKs are extracted
from IP fast forwarding path for more detailed process at
the router where the NAK suppression agent is activated.
The NAK suppression agent examines every received NAK
to decide whether to forward it upstream or suppress it.
Moreover, in order to eliminate the security vulnerability
of false NAK [1], the NAK suppression agent needs to de-
ploy some authentication mechanism which is time con-
suming. Those NAK processing procedures consume the
computing resources on routers and result in longer trans-
mission delay for NAKs being transferred from receivers to
the source. Excessively long delay causes problems such as
the possibility that a source will not receive any NAK un-
til the corresponding data packet is deleted from the send
buffer.

Given a multicast tree, the approach to activate NAK
suppression agent is a difficult issue. On one hand, a trivial
approach which activates NAK suppression agent on each
internal node in a multicast tree precludes implosion at the
source. But this approach leads to high total memory and
processing overheads on those nodes, as well as long NAK
transmission delay. On the other hand, activating NAK
suppression agent on just a few nodes in a multicast tree
reduces the total overheads and transmission delay. But
this approach may fail to prevent implosion at the source,
or even worse, may overload some nodes with excessive
NAK messages and degrade the performance of all traffic
through those nodes. If activating NAK suppression agent
on a few nodes far away from the root, the source may still
suffer implosion; if activating NAK suppression agent on a
few nodes near the root, these nodes may be overwhelmed
by a large volume of NAKs. Consequently the performance
of the multicast session through these nodes may deterio-
rate.



In the context of multiple multicast trees, the situa-
tion becomes more complicated. If many multicast ses-
sions pass through a router, the trivial approach mentioned
above will activate NAK suppression functionality for all
sessions, and the resultant memory requirement will over-
load the router. A naive solution to avoid the memory over-
load on routers is to deactivate NAK suppression function-
ality for one randomly chosen session on the overloaded
router. However, such a solution has a deficiency that the
casual selection of the session being “dropped” may trig-
ger implosion at the source or overload other routers in that
session with excessive NAKs.

Reaching a compromise between the performance of
reliable multicast and the overheads of the functionality
supporting reliable multicast is a complex problem. In this
paper we explore that problem. Specifically, we study the
Load-Balanced Agent Activation Problem (LBAAP):

How to determine the number and placement of
NAK suppression agents in order to prevent im-
plosion at multicast session sources by incurring
the minimal total memory and processing over-
heads on routers and without overloading any
router?

As far as we know, this problem has not been ad-
dressed before. In this paper, we examine the LBAAP
problem in different contexts and propose corresponding
algorithms.

When considering to establish a new service, it is in
the concern of Internet Service Providers (ISPs) to reduce
their own costs such as keeping routers below certain loads
or cutting down traffic. While reliable multicast has not
been widely deployed yet, we believe that studying the re-
lationship between the performance and overheads of reli-
able multicast will foster its deployment.

Along with the rapid growth of the Internet, more and
more functionalities other than packet forwarding are be-
ing proposed to be added into routers for supporting new
emerging applications. These applications include web
caches [2], content delivery networks [3], multicast com-
munication services [4], etc. In addition, the increasing
rate of cyber-attacks in the Internet necessitates the devel-
opment of effective defense mechanisms, most of which
require additional supports from routers [5, 6]. Those func-
tionalities incur non-trivial overheads on the routers host-
ing them. Our work is an instance of studying the bal-
ance between the application performance supported and
the overheads introduced by the additional functionalities
at routers.

The rest of this paper is organized as follows. In Sec-
tion 2, we define and analyze the LBAAP problem. We
survey related work in Section 3. In Section 4, we study
the LBAAP problem in single tree case and in multiple tree
case. In Section 5, we discuss the limitations of our pro-
posed algorithms in deployment and possible extensions.
Finally, we summarize our work in Section 6.

2 Problem Formulation
In this section, we introduce the multicast tree model,
definitions, and assumptions used in this paper and de-
scribe the LBAAP problem in detail.

In NAK suppression scheme, a tree structure is con-
structed for each reliable multicast session. In that tree,
the leaves represent the receivers, and the rest nodes, called
internal nodes, represent the routers which are NAK sup-
pression capable and on the multicast forwarding path. The
root of the tree denotes the edge router connecting with the
multicast session source. If we assume all of the routers
in the network are NAK suppression capable, then the tree
mentioned above overlaps the raw multicast tree, otherwise
it overlays the raw multicast tree. Since the discussion in
this paper is based on the tree structure defined above, we
refer to it as multicast tree in the following sections.

The number of the children of a particular node in a
multicast tree is the degree of that node. Assuming in the
worst case, one single packet loss near the source makes
every receiver emit a NAK message, and every NAK ar-
rives at its destination. If a NAK suppression agent is acti-
vated on an internal node in a multicast tree, then the degree
of that node means the minimal number of NAKs received
by that agent in the worst case. For example, consider an
internal node v hosting an agent a, the more agents ac-
tivated on v’s children which are internal nodes, the less
NAKs received by agent a. If an agent is activated on each
of the children of v that are internal nodes, then in the worst
case, each child that is an internal node just forwards one
NAK upstream and suppresses others, and each child that
is a leaf sends out one NAK, the number of NAKs received
by agent a is the same as the degree of node v. The weight
of a node in a multicast tree is defined as follows: if the
node is a leaf, its weight is 1; if the node is an internal node
hosting an agent, its weight is 1; otherwise its weight is the
sum of the weights of all of its children. We can regard
the weight of a node as the number of NAKs sent up the
tree from/via that node in the worst case, though it is not
always true in an asymmetric network. If an agent is acti-
vated on an internal node v which does not host an agent,
then the number of NAKs received by the agent on node v

in the worst case is the old value of the weight of node v,
and the new value of the weight becomes 1. The definition
of weight is illustrated in Figure 1, where the number be-
side each node is the weight of the node. In Figure 1-a, no
agent is activated in the tree, so weight(v2) = 1 + 1 = 2
and weight(v1) = 2+1 = 3. In Figure 1-b, an agent is ac-
tivated on node v2, so weight(v2) = 1 and weight(v1) =
1 + 1 = 2.

We assume that the multicast session source expects
to receive just one NAK for a single packet loss. Hence a
NAK suppression agent is always activated on the root of
multicast tree in order to guarantee the source to receive no
more than one NAK for a single packet loss. We also as-
sume a NAK suppression agent supports just one multicast
session, then multiple agents need activating on a router in
order to handle multiple multicast sessions. The majority



v2

v

v

1

3 v2

v

v

1

3

(a) (b)

1 1 1 1 1

2 1 1 1

3 2

1

Figure 1. (a) No agent is activated on any internal node. (b)
An agent is activated on internal node v2.

of the memory overhead introduced by a NAK suppression
agent is the amount of the memory recording the state infor-
mation of NAKs, the amount of the memory storing agent’s
code itself is negligible. And the processing overhead on a
router is not proportional to the number of agents on that
router, but the number of arriving NAKs. Hence, assum-
ing an agent to support single session or multiple sessions
makes little difference to the LBAAP problem.

We define the processing overhead introduced by an
agent to be the number of the NAKs received by the agent
due to a single packet loss in the worst case defined above.
The processing overhead on a router is the sum of the
processing overheads of all of the agents activated on the
router. We assume the memory overhead introduced by an
agent is constant, and with value of 1. Hence the memory
overhead on a router is the number of the agents activated
on the router.

In a multicast tree, the sum of the memory overheads
introduced by all NAK suppression agents is the number
of agents, and the sum of the processing overheads intro-
duced by all agents is the total number of the NAK mes-
sages received by those agents in the worst case. In the
worst case, each receiver sends one NAK message to its
nearest NAK suppression agent, and each agent except the
one on the root forwards one NAK up to its nearest ances-
tor. Therefore the total processing overhead equals the sum
of the number of receivers and the number of agents mi-
nus 1. So minimizing the number of agents is equivalent
to minimizing the total memory and processing overheads
on routers. The transmission delay of NAKs from a re-
ceiver to the source is proportional to the number of agents
on the multicast forwarding path from the source to the re-
ceiver. Hence, in most cases, minimizing the number of
agents means reducing the NAK transmission delay.

The Load-Balanced Agent Activation Problem
(LBAAP) can be formulated as below: Given a memory
load bound and a processing load bound on routers, the
objective is to determine the minimal number of NAK
suppression agents and locate the routers to activate those
agents such that the memory and processing overheads on
each router are not higher than the memory and processing
load bounds, respectively.

The memory load bound on routers specifies the
amount of the memory devoted for the NAK suppression
functionality. In other words, how many NAK suppres-

sion agents can be activated on a router. The processing
load bound on routers indicates the upper limit of the pro-
cessing overhead on a router. The processing load bound
reflects not only the amount of computing resources avail-
able for NAK processing on a router, but also the amount
of bandwidth available for receiving NAKs.

Given certain memory and processing load bounds on
the routers through which a multicast tree pass, minimiz-
ing the number of NAK suppression agents means mini-
mizing the total memory and processing overheads and re-
ducing the NAK transmission delay. In addition, locating
routers to activate NAK suppression agent without exceed-
ing the specified bounds of memory and processing capa-
bility prevents overloading routers and achieves load bal-
ancing among routers.

In this work, we assume that the multicast tree topol-
ogy is already known and relatively stable. Typically ISPs
have access to multicast tree information within their do-
mains. Our work concerns NAK suppression agent acti-
vation within a domain. If a multicast tree spans several
domains, our algorithms can be used to find an activation
of agents in each domain, for the portion of the multicast
tree that spans that domain. In addition, our tracetree pro-
posal [7] can be used to collect multicast tree topologies
efficiently. Finally, in most applications that use reliable
multicast, such as one-to-many file transfer, the set of re-
ceivers is mostly static and is known to the source in ad-
vance. As a result, the collected tree topology is relatively
stable during the application lifetime.

3 Related Work
In theoretic aspect, the LBAAP problem resembles two
well-known graph theoretic problems: the k-median prob-
lem and the facility location problem. Given a graph with n

nodes, the k-median problem is to select k out of n nodes as
service centers so as to minimize the sum of the cost of each
node accessing its nearest service center among those k se-
lected nodes. Tamir [8] studies the k-median problem in a
tree topology and gives an optimal algorithm. Li et al. [9]
use a similar approach to optimally place web proxies in a
tree topology with a web server at the root. Qiu et al. [10]
study the same problem in a graph topology and propose
various heuristics. Krishnan et al. [2] study the problem
of optimal placement of web caches. Shah et al. [11] deal
with the k-median problem in the context of content-based
multicast.

In the facility location problem, besides the cost of
accessing the nearest service center (facility), there is also
a cost of building facility onto a node to make it become a
service center, the objective is to find a solution (both the
number and locations of the facilities) of the minimal total
cost [12]. Guha et al. [13] introduce the Load Balanced
Facility Location Problem wherein the constraint of having
a minimum load on facility nodes is added to the origi-
nal problem. They prove that problem is NP-Complete and
present a constant factor approximation algorithm for it.

In practical aspect, Papadopoulos and Laliotis [14] in-



vestigate the performance of reliable multicast under vari-
ous deployment strategies of the supporting functionality.
In addition, lots of study has been done on the placement
of other kinds of functionality agents in the context of re-
liable multicast [15, 16]. The objective of these works is
to reduce the number of retransmissions, latency, and re-
source utilization.

4 Load-Balanced Agent Activation Problem
We examine the LBAAP problem in both single tree case
and multiple tree case, and propose corresponding solu-
tions.

4.1 LBAAP in Single Tree Case
In the context of a single multicast tree, at most one NAK
suppression agent needs to be activated on a router. As long
as the memory load bound is not set to be 0, the memory
overhead introduced by an agent will not overload routers.
So we don’t consider the memory overload issue in single
tree case. Because the degree of an internal node is the
lower limit of the processing overhead introduced by an
agent on the node, we assume the processing load bound is
never set to be smaller than the degree of any internal node
in the tree.

The LBAAP problem in single tree case can be
defined as follows: Given a multicast tree T rooted at r,
with leaves denoting receivers, and internal nodes denot-
ing routers. The memory load bound on internal nodes is
MB and MB ≥ 1. The processing load bound on internal
nodes is PB. The processing overhead on an internal node
v is pd(v). The goal is to select a set of internal nodes, R,
to activate a NAK suppression agent on each node in R,
satisfying the following conditions:

1. r ∈ R,

2. ∀v ∈ R, pd(v) ≤ PB, and

3. the size of R is minimal.

We first show a canonical activation of agents, then
present an algorithm to find such solution in linear time.
Given an optimal activation of NAK suppression agent in a
multicast tree with a processing load bound PB, we can
transform this activation into another optimal activation
which satisfies the following two conditions:

1. For any internal node v which hosts an agent but
whose parent p does not, if we deactivate the agent
on node v, and activate an agent on v’s parent p, then
the processing overhead introduced by the agent on p

will exceed the processing load bound PB.

2. For any internal node v which hosts an agent and has
siblings, the processing overhead on node v is not
smaller than the weight of any of its siblings.

Given an optimal activation of agent in a multicast
tree with a processing load bound PB, we can transform
this activation as follows. First we move each agent as high
in the multicast tree as possible without violating the load
constraint. In other words, if an agent is activated on a
node v but no agent is activated on v’s parent p, then it
must be the case that if we do not activate the agent on v

/* T is multicast tree rooted at r */
LBAAP (T, PB) { /* PB is processing load bound */

nagents := 0
pd(r) := ActivateAgent(r)
activate NAK suppression agent on r

nagents := nagents + 1
return nagents

}

/* activate NAK suppression agent in the subtree rooted at v */
ActivateAgent(v) {

if v is a leaf node then return weight(v)
else {

weight(v) := 0
for each child u of v do

weight(v) := weight(v) + ActivateAgent(u)
while weight(v) > PB do {

select an internal node child u of v with largest weight
activate NAK suppression agent on u

nagents := nagents + 1
pd(u) := weight(u)
weight(v) := weight(v) - weight(u) + 1
weight(u) := 1

}
return weight(v)

}
}

Figure 2. Algorithm. The global variable nagents counts
the number of agents activated by the algorithm.

but activate an agent on its parent p instead, the processing
overhead on p, which is the same as the weight of p when
no agent is activated on p, will exceed PB. Otherwise, we
can do such transformation to obtain a new solution with
the same number of agents. Second, we move each agent
from the node where it is located to the sibling node whose
weight is larger than the processing overhead introduced
by the agent on current node, if possible. In other words,
if we activate an agent on a child u of a node p, but not on
another child v of p, then it must be the case that pd(u) ≥
weight(v). Otherwise, we do such transformation, then
the processing overheads on all ancestor nodes of u remain
same or decrease and we can obtain a new solution with the
same number of agents.

Figure 2 describes our proposed algorithm. Given a
multicast tree T and a processing load bound PB, process
multicast tree T from bottom to top, for every internal node
v, if weight(v) > PB, select a child node, u, which is
an internal node with the largest weight among all such
nodes that are children of v, then activate NAK suppres-
sion agent on u. After that activation, weight(v) reduces
to weight(v) − weight(u) + 1, and weight(u) becomes
1. Repeat above operation until weight(v) ≤ PB, then go
to the next node. At last, activate NAK suppression agent
on the root of the multicast tree. The correctness of the al-
gorithm follows from the argument above on the canonical
activation of agents. The running time of the algorithm is
O(n · d), n is the number of the internal nodes in the mul-
ticast tree, and d is the average degree of all internal nodes.

4.2 LBAAP in Multiple Tree Case
In this section we consider the LBAAP problem in the con-
text of multiple multicast trees. Suppose multiple multicast



sessions pass through a router, if the memory load bound
is smaller than the number of sessions, the router can’t ac-
tivate NAK suppression agent for every session, it has to
choose some of the sessions and does not offer NAK sup-
pression support to them. A random selection of the session
being “dropped” from a router may make excessive NAK
messages flow to the source or some upstream router in
that session. That may trigger implosion at the source or
overload the upstream router with excessive NAKs. So an
intelligent selection of the sessions being served is a must.
Since a NAK suppression agent is always activated on the
root of multicast tree, we assume no router to be the root
of more than MB trees, wherein MB is the memory load
bound. In other words, there is not any edge routers con-
necting with more than MB multicast session sources.

The LBAAP problem in multiple tree case can be
defined as follows: Given a graph G = (V, E), with V

denoting the set of nodes and E denoting the set of edges
connecting the nodes. Vh ⊂ V is the set of hosts and
Vr = V −Vl is the set of routers. T = {T1, T2, . . . Tm} is a
set of m multicast trees in G. Each tree Ti ∈ T is rooted at
ri ∈ Vr. The leaves (receivers) and internal nodes (routers)
in each tree belong to Vh and Vr , respectively. The mem-
ory load bound on routers is MB, and the processing load
bound on routers is PB. The memory overhead on a router
v is md(v), and the processing overhead on v is pd(v).
The goal is to select a set of nodes R ⊆ Vr, for ∀v ∈ R,
activate nv(nv ≥ 1) agents on it, satisfying the following
conditions:

1. ri ∈ R, for 1 ≤ i ≤ m,

2. ∀v ∈ R, md(v) ≤ MB,

3. ∀v ∈ R, pd(v) ≤ PB, and

4.
∑

v∈R
nv is minimal.

As we will see in Section 4.3, even in a simplified
model, the LBAAP problem in multiple tree case turns out
to be much harder than the single tree case. We conjecture
it is NP-Hard based on the fact that a minor variation of
the multi-tree LBAAP problem is NP-hard. Therefore, we
focus on computing a feasible solution rather than comput-
ing an optimal solution. We propose a heuristic to solve the
LBAAP problem in multiple tree case.

First at all, we define an operation on tree topology,
removing node. Removing a node v from a tree T means to
remove node v from tree T , and turn all of the children of
v to be the children of v’s parent. The root of tree can not
be removed.

The heuristic proceeds in two steps:

1. Tree Selection: Suppose the number of the multicast
trees passing through a router v is Nv. For each node
v ∈ Vr, if Nv ≤ MB, then all Nv trees are selected as
candidates which are supported by node v with NAK
suppression agent. Otherwise we need to select MB

out of Nv trees in the following way.

(a) For each tree Ti passing through v, if v is the
root of Ti, select tree Ti as a candidate.

(b) After step (a), if the number of candidates is
smaller than MB, then for each of the rest trees,
remove node v from the tree. Arrange these trees
into a list in decreasing order according to the
degree of the parent of node v in each tree. Se-
lect trees from the beginning of the list as a can-
didate until the number of candidates increases
to MB. For these trees selected as candidate,
undo the operation of removing node v and re-
store them to their previous topologies.

2. Processing Load Bound Assignment: After making
tree selection for each node v ∈ Vr, each tree remains
the same topology or changes to a smaller topology
by removing some internal nodes. We assign the pro-
cessing load bound L = PB

MB
to each tree. Then apply

the LBAAP algorithm for single tree case individually
on each tree.

Step 1 makes sure each router supports no more than
MB multicast trees, then the memory load bound is sat-
isfied. Step 2 makes sure the processing overhead on each
router is not larger than PB, then the processing load
bound is satisfied.

When the processing load bound L is smaller than the
degree of any internal node in a multicast tree, the LBAAP
algorithm for single tree case can not produce a solution
for agent activation in that tree. When the processing load
bound on routers, PB, is set to be smaller, the process-
ing load bound L assigned to each tree becomes smaller.
When the memory load bound on routers, MB, is set to
be smaller, more nodes are removed from each tree, the
degrees of some nodes or all nodes in each tree become
larger. So the LBAAP heuristic for multiple tree case can
not produce a solution when the memory and processing
load bounds on routers are set to be too small.

4.3 Hardness of Multi-tree LBAAP Problem
Currently, we do not know whether the LBAAP problem in
multiple tree case is NP-Hard or not. However, we conjec-
ture it is because a minor variation of the multi-tree LBAAP
problem is NP-Hard.

Given a graph G = (V, E), with V denoting the set
of nodes and E denoting the set of edges. Vh ⊂ V is
the set of hosts and Vr = V − Vl is the set of routers.
T = {T1, T2, . . . Tm} is a set of m multicast trees in G.
The leaves (receivers) and internal nodes (routers) in each
tree belong to Vh and Vr, respectively. Each edge in E ap-
pears in some tree Ti and no edges are shared by any two
different trees, but multiple trees may share the same node
in V . Multiple NAK suppression agents are allowed on a
node v ∈ Vr and one agent can support multiple trees, but
one tree passing through node v can be associated with at
most one agent on v. There is not the memory load bound
or processing load bound on nodes. Instead, we set the pro-
cessing load bound L on agents. The objective is to activate
as few number of agents as possible such that no agent has a
processing overhead more than L. Clearly, this is a simpler
variant of the multi-tree LBAAP problem.



Since the trees in T do not share edges, we can treat
each tree Ti ∈ T independently and compute an optimal
agent activation for Ti using the LBAAP algorithm for sin-
gle tree case. Assume this has been done for each tree
in T . Then, on each node v, the number of agents is
kv(0 ≤ kv ≤ m) such that each agent supports just one
tree. Since an agent may support multiple trees as long
as its processing overhead does not exceed L, we would
like to minimize the number of agents on each node by
making single agent support multiple trees without violat-
ing the load constraint, hence minimize the total number
of agents. This is an instance of the integer bin packing
problem which is known to be NP-Hard [17].

5 Discussion
The NAK suppression agent activation algorithms pro-
posed in this paper need multicast tree topologies as input.
The deployment of these algorithms in practice is in cen-
tralized manner. That is, the algorithms are implemented
at a central server. The server collects the multicast tree
topologies, invokes the algorithms, then commands the rel-
evant routers to activate NAK suppression agent. If a mul-
ticast group is dynamic, the multicast tree topology varies
frequently, then the overheads of the algorithms on com-
puting resources and network bandwidth will increase no-
ticeably.

On one hand, as we mentioned previously, due to the
semantics of the applications using reliable multicast, the
tree topology of a reliable multicast session is relatively
stable during the lifetime of the session. On the other hand,
if the structure of a multicast tree changes partially, i.e., in
a subtree, the agent activation algorithms can be applied
on the subtree to compute a new activation of agents in
the subtree. Combined with the old activation of agents in
the rest of the tree, the new agent activation works for the
whole tree. When applying the agent activation algorithms
on a subtree instead of the whole tree, the overheads on
both computation and bandwidth are reduced. For instance,
a router v hosts an agent for a multicast session, when the
agent receives more NAKs than its upper limit, router v

sends a request to the server to ask for recomputing the ac-
tivation of agents in the subtree rooted at v. The server will
discover current topology of the subtree, invoke agent acti-
vation algorithms, and activate agents in the subtree.

Several areas remain to be addressed in future work.
One is to generalize the LBAAP problem by allowing dif-
ferent nodes to have different load bounds, and develop
corresponding algorithms. Another is to develop a NAK
suppression agent activation approach which works in dis-
tributed manner.

6 Conclusion
In this paper, we have explored the relationship between
the performance of reliable multicast and the overheads of
the functionality supporting reliable multicast. In particu-
lar, We presented and studied the load-balanced agent acti-
vation problem (LBAAP). We regard the implosion as the
performance and the NAK suppression agent as the func-

tionality. We developed a polynomial running time algo-
rithm for the LBAAP problem in single tree case, and pro-
posed a heuristic for the LBAAP problem in multiple tree
case since we conjecture it is NP-Hard.

Reliable multicast is one of many Internet applica-
tions that require the aid of various functionality agents
on routers. Those functionality agents introduce non-trivial
overheads on the routers hosting them. Reaching a compro-
mise between the performance of those applications and the
overheads incurred by the functionalities supporting those
applications is worth delving.

References
[1] J. Gemmell, T. Montgomery, T. Speakman, N. Bhaskar, and

J. Crowcroft, The PGM reliable multicast protocol, IEEE Network,
17(1), 2003, 16-22.

[2] P. Krishnan, D. Raz, and Y. Shavitt, The cache location problem,
IEEE/ACM Transactions on Networking, 8(5), 2000, 568-582.

[3] B. Krishnamurthy, C. Wills, and Y. Zhang, On the use and perfor-
mance of content distribution networks, Proc. of SIGCOMM Work-
shop on Internet Measurement, San Francisco, USA, 2001, 169-182.

[4] K. Almeroth, The evolution of multicast: From the MBone to inter-
domain multicast to Internet2 deployment, IEEE Network, 14(1),
2000, 10-20.

[5] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio,
B. Schwartz, S. Kent, and W. Strayer, Single-packet IP traceback,
IEEE/ACM Transactions on Networking, 10(6), 2002, 721-734.

[6] A. Yaar, A. Perrig, and D. Song, SIFF: A stateless Internet flow filter
to mitigate DDoS flooding attacks, Proc. of IEEE Symposium on
Security and Privacy, Oakland, USA, 2004, 130-146.

[7] K. Sarac and K. Almeroth, Tracetree: A scalable mechanism to dis-
cover multicast tree topologies in the Internet, IEEE/ACM Transac-
tions on Networking, 12(5), 2004.

[8] A. Tamir, An O(pn2) algorithm for the p-median and related prob-
lems on tree graphs, Operations Research Letters, 19(2), 1996, 59-
64.

[9] B. Li, M. Golin, G. Italiano, X. Deng, and K. Sohraby, On the opti-
mal placement of Web proxies in the Internet, Proc. of IEEE INFO-
COM, New York, USA, 1999, 1282-1290.

[10] L. Qiu, V. Padmanabhan, and G. Voelker, On the placement of Web
server replicas, Proc. of IEEE INFOCOM, Anchorage, USA, 2001,
1587-1596.

[11] R. Shah, R. Jain, and F. Anjun, Efficient dissemination of personal-
ized information using content-based multicast, Proc. of IEEE IN-
FOCOM, New York, USA, 2002, 930-939.

[12] K. Jain and V. Vazirani, Approximation algorithms for metric facil-
ity location and k-median problems using the primal-dual scheme
and lagrangian relaxation, Journal of the ACM, 48(2), 2001, 274-
296.

[13] S. Guha, A. Meyerson, and K. Munagala, Hierarchical placement
and network design problems, Proc. of IEEE Symposium on Foun-
dations of Computer Science, Redondo Beach, USA, 2000, 603-612.

[14] C. Papadopoulos and E. Laliotis, Incremental deployment of a
router-assisted reliable multicast scheme, Proc. of International
Workshop on Networked Group Communications, Palo Alto, USA,
2000, 37-46.

[15] S. Guha, A. Markopoulou, and F. Tobagi, Hierarchical reliable mul-
ticast: Performance analysis and placement of proxies, Computer
Communications, 26(10), 2003, 2070-2081.

[16] P. Ji, J. Kurose, and D. Towsley, Activating and deactivating repair
servers in active multicast trees, Proc. of Tyrrhenian International
Workshop on Digital Communications, Toarmina, Italy, 2001, 507-
523.

[17] S. Skiena, The Algorithm Design Manual (New York, Springer-
Verlag, 1998).


