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Abstract
Programmers face much complexity from the co-existence
of “native” (Unix-like) and virtual machine (VM) “man-
aged” run-time environments. Rather than having VMs re-
place Unix processes, we investigate whether it makes sense
for the latter to “become VMs”, by evolving Unix’s user-
level services to subsume those of VMs. We survey the (little-
understood) VM-like features in modern Unix, noting com-
mon shortcomings: a lack of semantic metadata (“type in-
formation”) and the inability to bind from objects “back”
to their metadata. We describe the design and implementa-
tion of a system, liballocs, which adds these capabilities in
a highly compatible way, and explore its consequences.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors; D.4.7 [Operating Systems]: Orga-
nization and Design; D.2.12 [Software Engineering]: Inter-
operability

Keywords Unix, virtual machines, reflection, debugging

1. Introduction
Software today suffers from fragmentation: it comes tied
to specific programming languages, libraries and infrastruc-
tures, creating a proliferation of isolated silos. One diver-
gence spawning particularly many silos is that between Unix-
like1 “native” and virtual machine “managed” runtimes. By
“virtual machine” we are referring to language virtual ma-
chines, not machines running on a hypervisor.

1 For our purposes, Windows and Mac OS are essentially Unix-like; we
discuss this further in §7.
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Historically, the earliest Lisp and Smalltalk virtual ma-
chines (VMs) were conceived to eventually supplant Unix-
like operating systems. For good or ill, this hasn’t happened:
their descendents today (including Java VMs) nearly al-
ways occur within a Unix-like process. Although VMs’ in-
ternal uniformity can simplify many tasks, interoperating
with the wider world (including other VMs) remains an in-
evitable necessity—yet is a second-class concern to VM
implementers. The apparent abstraction gap between VMs
and the Unix “common denominator” leaves a wealth of
programming tasks addressable only by manual or ad-hoc
means: sharing code via brittle foreign function interfacing,
sharing data (whether in memory or persistently) by manual
translation between formats, and making do with a hodge-
podge of per-silo tools for debugging, profiling and the like.

Instead of having VMs supplant Unix processes, is it prac-
tical to make Unix processes become VMs? This means
evolving the basic interfaces offered by a Unix process so
that they subsume those of a VM, while remaining backward-
compatible. At first glance, this seems implausible: VMs of-
fer a dynamically compiled, hardware-agnostic abstraction
with late binding, whereas Unix processes seem stuck in the
early 1970s: a minimally-augmented host machine, predis-
posed to early compilation and early binding. To turn them
into VMs would amount to “adding dynamism”, preserv-
ing compatibility, allowing existing VMs to be somehow
retrofitted, and embracing the plurality of implementation al-
ternatives that these VMs embody.

This paper argues that this is no longer too much to ask.
It describes a system, liballocs, designed to achieve exactly
this. Firstly, to set liballocs in context, we survey various
evolutions Unix has undergone since the 1970s, including
support for dynamic loading and source-level debugging.
These features are not described in any textbook, and are
little understood even by expert programmers (such as VM
implementers), but we find they are of surprisingly powerful
design—albeit fragmented, and lacking a cornerstone which
we might call an object model. Secondly, we describe such
a model and its embodiment in liballocs. This means cre-
ating an efficient whole-process implementation of reflec-
tion, which must also adhere to requirements of compatibil-
ity and retrofittability. We achieve this by modelling in a pure



sense—not unilaterally defining how objects must be, but ac-
commodating pre-existing reality: the patterns by which real
programs’ state is organised and transformed, whether “na-
tive” or “managed”.

Concretely, our contributions are the following.

Rudiments We survey modern Unix interfaces for dynamic
loading, introspection and debugging, relating them to
the analogous abstract concerns of VMs, and identifying
how they currently fall short.

A model of allocations Having identified the concern of
whole-program metadata as a recurring lack, we intro-
duce liballocs as a system designed to remedy this lack,
by extending the Unix process to dynamically maintain
this metadata by observing the allocation activity of run-
ning code.

Applications and retrofitting We show how liballocs en-
ables a selection of VM-like services, including run-time
type checking, object serialization, late-bound scripting
and precise debugging, applying both to native code writ-
ten in multiple languages and (we anticipate) to VM-
hosted code, after modest retrofitting of existing VMs.

2. Rudiments
In this section we survey various VM-like rudiments in the
Unix world which, we argue, may be extended to support
familiar VM services. We will be asking the following ques-
tion.

What do we need to add to Unix-like program-
ming interfaces in order to implement VM-like ser-
vices which benefit both existing native code and ex-
isting managed code (after retrofitting existing VMs)?

Our focus is not on how to precisely emulate the se-
mantics of any one existing virtual machine, but instead on
the essential abstract services which distinguish VMs from
“unmanaged” native environments. For our purposes, these
are: dynamic loading of code in abstract representations; dy-
namic compilation to the host machine; reflection facilities
that recover a high-level view of a program as it executes;
debugging interfaces that extend reflection with control in-
terfaces; and garbage collectors that work by enumerating
all objects and stored references in the system. We consider
each of these in turn.

2.1 Dynamic Loading and Linking
VMs in both the Lisp and Smalltalk traditions are designed
to be programmed from within. They accept code at run
time, and load it, i.e. make it available for binding (“link-
ing” in Unix-speak). Unix processes were conceived as be-
ing programmed from the outside, by linking a fixed se-
lection of compiled units. But they later acquired dynamic
loading. This arose from the desire to distribute software
in smaller components (libraries) shareable on disk and in

// dynamically load some code
void *handle = dlopen("/path/to/lib.so", RTLD_NOW);
// bind to some definitions it contains
float (*f)(int) = dlsym(handle, "myfunc");
float *v = dlsym(Handle, "myvar");
// use the bindings

*v = f(42); // call myfunc, store result in myvar

// "backwards lookup" on the same definitions
Dl_info info; dladdr(f, &info);
printf("Object called %s, in module %s\n",

info.dli_sname, info.dli_fname);
// "Object called myfunc, in module /path/to/lib.so"

Figure 1. Illustrative use of the Unix dynamic loading API

memory, entailing that programs be linked together on start-
up rather than ahead of time. This loading service was de-
signed so that it remains available throughout execution, in
the form of the API illustrated in Fig. 1. This was devel-
oped in SunOS [Gingell et al. 1987] before becoming quasi-
standardised in the late 1980s along with the ELF object file
format [AT&T 1990].

Dynamic loading necessarily requires dynamic binding.
Two kinds of dynamic binding are evident within the libdl
API. One, which we call “forwards”, accepts a meta-level
query such as a file or module name and returns a base-
level object satisfying that query—as with dlopen() (load-
ing modules by name) and dlsym() (retrieving code or data
by name). Another form of late binding works in the “back-
wards” direction, interrogating a base-level object to recover
meta-information. We see this in the dladdr() call, which
maps from objects’ memory addresses to their metadata. It is
rudimentary because only “static” objects such as functions
or global variables are queryable, and only limited metadata
is available. (Of course, “static” is a misnomer, since we just
established that these objects can be loaded and unloaded
dynamically.) To become more VM-like, we would like all
units of program state to be queryable, and to have more se-
mantic metadata—perhaps some “type”-like notion.

2.2 Dynamic Compilation
VMs typically load code in a fairly abstract representa-
tion, such as a bytecode which lightly concretises some
source language. By contrast, Unix binaries contain native
instructions. These instructions are, nevertheless, themselves
lightly abstracted: memory is abstracted from the machine’s
fixed address space to a collection of smaller spaces ad-
dressed symbolically (sections or segments); code and data
representations are abstracted by relocation records, invok-
ing a repertoire of patch-like recipes for forming address
bindings at load time; and metadata about definitions and
uses is included in the form of defined and undefined sym-
bols. On modern Unices this metadata includes not only
name information (required by the dynamic binding we saw
in Fig. 1), but also namespacing and visibility information,
dependencies, versioning, constructor and destructor logic,
and so on. These have evolved in a bottom-up fashion char-



acteristic of Unix: classic Unix binaries included symbol
metadata only, but the arrival of shared libraries necessitated
other metadata, such as version information. To make Unix
processes subsume VMs, we must ask how to push these ca-
pabilities a level higher, without disrupting backwards com-
patibility (either binary or source).

What about accepting code in alternative and/or higher-
level forms? There is no obligation on a Unix loader to sup-
port only binaries targeting the host machine. Dynamic trans-
lation between instruction sets is already done by at least
one binary loader (qemu-user2, pluggable into Linux or
FreeBSD), while Nethercote and Seward [2007] noted that
Valgrind’s techniques are capable of the same. Although
both of these work at whole-process granularity, applying
similar translation at per-library or finer granularity is no
less feasible. When done on a portable bytecode rather than
a machine language, we call this a JIT compiler. We will de-
scribe a working system for integrating VM-style JIT com-
pilers with a dynamic ELF loader in §6.1.

One gap stands out: Unix has not yet evolved anything
strongly resembling “type information”, either attaching
to code (such as method signatures) or to data (such as
object classes). This makes it unclear how to implement
VM-style load-time checks such as Java bytecode verifi-
cation [Lindholm and Yellin 1999], or many dynamic op-
timisations which consume type information, like inline
caching [Chambers et al. 1989]. Moreover, many run-time
services (e.g. garbage collection, serialization) rely on “back-
wards lookup” from objects to metadata, for which Unix has
no general mechanism. As we noted, dladdr() does not han-
dle stack or heap allocations; it is also typically too slow for
critical-path use. As we will continue to see, this is a recur-
ring gap, and one which we will later fill (§3).

2.3 Reflection
It’s clearly possible to do some reflection on stack and heap
data in Unix, because programs can be debugged. We split
our consideration of debugging into firstly general reflection
primitives, and secondly the remaining aspects concerning
control (such as starting, stopping or modifying execution).
We define reflection as metaprogramming against a running
program, and “introspection” as self-reflection.3

As we’d expect, reflection in Unix evolved bottom-up.
Machine-level debugging has been supported since the ear-
liest versions of Unix. Source-level reflection was also an
early addition and is now extensively supported, using a di-
vision of responsibilities which departs considerably from
most VMs’ reflection or debugging systems. Nevertheless,
Unix-style reflection adheres remarkably tightly to the “mir-
rors” design principles of Bracha and Ungar [2004]—even
though these were conceived with VMs in mind. In keeping

2 http://wiki.qemu.org/Main_Page, as retrieved on 2015/8/14
3 This is standard, but has the confusing consequence that “reflection” in-
cludes the non-reflexive case.

$ cc -g -o hello hello.c && readelf -wi hello | column
<b>:TAG_compile_unit <be>:TAG_pointer_type

AT_language : 1 (ANSI C) AT_byte_size: 8
AT_name : hello.c AT_type : <0x2af>
AT_low_pc : 0x4004f4 <dc>:TAG_subprogram
AT_high_pc : 0x400514 AT_name : main

<85>:TAG_base_type AT_type : <0xc5>
AT_byte_size: 4 AT_low_pc : 0x4004f4
AT_encoding : 5 (signed) AT_high_pc : 0x400514
AT_name : int <f0>: TAG_formal_parameter

<9f>:TAG_pointer_type AT_name : argc
AT_byte_size: 8 AT_type : <0xc5>
AT_type : <0x2b5> AT_location: fbreg - 20

<a5>:TAG_base_type <fe>: TAG_formal_parameter
AT_byte_size: 1 AT_name : argv
AT_encoding : 6 (char) AT_type : <0x7ae>
AT_name : char AT_location: fbreg - 32

Figure 2. DWARF information (.debug_info section) for a
“Hello, world!” C program

with the latter, we will talk about “reflection” generically,
even though the mechanisms we describe are associated pri-
marily with debugging.

The principles of Unix reflection are summarised as:

• require no cooperation from the reflectee, which might
equally be a “live” process or a “dead” coredump;

• support multiple reflected views: at least source-level and
assembly-level, and perhaps others;

• keep the compiler and reflecting client (≈ debugger) sep-
arate, communicating via well-defined interfaces.

“No cooperation” means the client is given direct ac-
cess to the reflectee’s memory and registers. Metadata gen-
erated by the assembler affords a somewhat symbolic view
of these. Metadata generated by the compiler affords a
source-level view. Fig. 2 shows metadata in the DWARF for-
mat [Free Standards Group 2010], standardised beginning in
1992, describing the main compilation unit in a simple “hello
world” C program.

This contrasts with VM approaches to reflection, in which
the reflecting client consumes the services of an in-VM re-
flection API and/or debug server. This is expedient: the re-
flection system and debug server share code in the runtime,
and need not describe the compiler’s implementation deci-
sions explicitly. A VM debug server need never disclose the
kind of addressing, layout and location information shown
in Fig. 2. But it cannot easily support the post-mortem case,
and tightly couples run-time support with compiler: we can-
not use one vendor’s debugger to debug code from another
vendor’s (in-VM) compiler. It becomes hard to implement
reflection features not anticipated in the design of the reflec-
tion API or debug server command language. By contrast,
metadata is open-ended and naturally decoupling. We are
not the first to note this: Cargill [1986], describing his Pi de-
bugger, remarked that “Smalltalk’s tools cooperate through
shared data structures. . . [whereas] Pi is an isolated tool in
a ‘toolkit environment’. . . interacting through explicit inter-
faces.” In other words, the Unix approach entails inter-tool



encapsulation, hence stronger public interfaces than a single
integrated virtual machine. One such interface was the /proc
filesystem [Killian 1984], co-developed with Pi; another is
the exchange of standard debugging metadata.

Almost twenty years after Cargill’s Pi, Bracha and Ungar
[2004] outlined their “mirrors” design principles for
metaprogramming facilities, embracing reflection, debug-
ging and so on, summarised as follows:

• encapsulation: “the ability to write metaprogram-
ming applications that are independent of a specific
metaprogramming implementation”—meaning metapro-
gramming interfaces should not impose undue restric-
tions on clients, such as reflecting only on the host pro-
gram (a weakness of Java core reflection);

• stratification: “making it easy to eliminate reflection
when it is not needed”, such as on embedded platforms
or in applications which happen not to use it;

• ontological correspondence: that metaprogramming in-
terfaces should retain user-meaningful concepts, both
structural (e.g. preserving source code features in the
meta-model) and temporal (e.g. the distinction between
inactive “code” and active “computation”).

The Unix approach to debug-time reflection satisfies all
of these principles either fully or very nearly; we discuss
each in turn.

Encapsulation The encapsulation of mirrors is motivated
via a hypothetical class browser tool, noting that the Java
core reflection APIs bring an unwanted restriction: reflecting
only the host VM, not a remote instance. This is a failure of
encapsulation, not because it doesn’t hide the VM’s internals
(it does!), but on criteria of plurality: clients may reflect only
on one specific machine’s state (the host machine’s), are pro-
vided with only a single, fixed view, and only one implemen-
tation of the interface may be present in any one program.
Different mirrors offering distinct meta-level views are often
desirable, as alluded to by Bracha’s and Ungar’s mention of
“a functional decomposition rather than. . . leaving that deci-
sion to the implementation of the objects themselves”. Coex-
istence of different implementations of the same abstraction
is a key property of object-oriented encapsulation, as noted
by Cook [2009] and Aldrich [2013].

Unix reflection is very strongly encapsulated. The same
client can reflect on programs generated by diverse compil-
ers; it is easily extended to remote processes and can reflect
on coredumps similarly to “live” processes. The use of meta-
data as the “explicit interface” means there is no need to fix
on a command language, and the client is free to consume
the metadata in any way it sees fit. Unix debugging informa-
tion has a history of being put to diverse and unanticipated
uses, such as bounds checking [Avijit et al. 2004], link-time
code generation [Kell 2010] or type checking [Banavar et al.
1994].

Stratification Unix reflection is strongly stratified. This
follows from the decision to avoid run-time cooperation
from the reflectee (which, indeed, might be dead), and from
the decoupling of compiler and runtime. Programs that are
not reflected on do not suffer any time or space overhead, yet
debuggers can be attached “from the outside” at any point,
loading metadata from external sources as necessary.4 In-
process reflection can also be added late, via dynamic load-
ing if necessary. In-process stack walkers are found in back-
trace routines or C++ runtimes; the latter’s “zero cost” ex-
ception handling design [de Dinechin 2000] is stratified in
that code throwing no exceptions pays no time or space over-
heads. It is no coincidence that this is usually implemented
with metadata also used by debuggers. This ability to “add
reflection” extends even to source languages such as C which
don’t specify any kind of introspection interface. We will see
a richer example of reflection on C code later (§3.1).

Temporal correspondence This is illustrated by the hypo-
thetical desire to “retarget the [class browser] application
to browse classes described in a source database”. It refers
to a distinction between “mirroring code and mirroring
computation”—where “code” means code not yet activated
(such as method definitions in source code) while “compu-
tation” means code in execution (such as method activations
in a running program). The authors remark that having at-
tempted to do away with this distinction, they found them-
selves recreating it, in the Self project’s “transporter” tool.
(This tool could be described as Self’s linker and loader.)
Unix exhibits temporal correspondence in the sense that the
metamodel of Unix loader and debugger inputs (shared ob-
jects, executables, and the functions and data types they de-
fine) is separate from run-time details (function activations,
data type instances, etc.). In DWARF, we find the latter are
described distinctly, in terms of an embedded stack machine
language (encoding mappings from machine state, such as
a register, to units of source program state, such as a local
variable). Consumers of DWARF which care only for static
structure can ignore these attributes, and DWARF data which
omits them remains well-formed.

Structural correspondence This requires that all features
of source code are representable at the meta-level. DWARF
models a wealth of information from source code, includ-
ing lexical block structure, namespacing features, data types,
module imports, various attributes, and so on. However, it
does not undertake to model every feature, so arguably falls
short of structural correspondence. In fact DWARF actively
abstracts away from source, in that its metamodel dedu-
plicates certain language features. For example, a Pascal
record and a C struct are both modelled as a DWARF struc-
ture_type. Although Bracha and Ungar envisaged that dis-
tinct source languages would offer “distinct APIs”, this im-

4 Helpfully, in recent years it has become increasingly common for open-
source Unix distributors to package not only binaries and source code, but
also debugging information relating the two.



plies a strong dependency between reflection system and
source language which is not always desirable. The concep-
tual distinction between record and struct is negligible, so
it is more often valuable to unify them than to distinguish
them. DWARF’s choice, of (conservatively) unifying where
this is conceptually lossless, hints at two intriguing possibil-
ities: firstly of “translating” or reinterpreting the state of a
Pascal program as if it were a C program, and secondly of
reflecting semantic intent that was not expressible in the orig-
inal source language. For example, in C, a Pascal-like variant
is often realised as a union within a struct whose first field
acts as a discriminant. C does not let us describe the field as
a discriminant, but since Pascal does, DWARF metadata has
features for expressing the C object’s layout more precisely
than C itself can. In general, Unix’s pluralist approach to re-
flection actively enables multiple source-level views of the
same objects; we revisit this in §5.

What’s missing We have established that Unix’s introspec-
tion support has a remarkably strong design. However, it’s
not clear that this debugging infrastructure, designed to run
at “human speed”, affords the efficiency expected of a more
general reflection mechanism. For example, debugging meta-
data is structured so that computing the location of a named
local variable is fairly cheap, but to map a stack address
“back” to the variable it holds requires expensive search-
ing and/or stack-walking operations. Later, we describe our
work addressing these problems (from §3.1).

2.4 Debugging
Building a working debugger on Unix requires not only
reflection, but also control of the target. This is provided
by the ptrace() call, which allows one “tracer” process to
attach to any other process, suspend and resume it, inspect
its memory, and intercept system calls or signals. All this
occurs without the knowledge or cooperation of the tracee.
(This is an innovation over classic Unix designs, as noted by
Killian [1984].) As before, ptrace() offers only a machine-
level view, but higher-level views may be recovered using
debugging metadata.

2.5 Garbage Collection
A central part of most virtual machines is a tracing garbage
collector, building on several of the VM facilities we have
discussed. Enumerating roots means collecting knowledge
of all the loaded code’s global variables, then using pointer
metadata to explore the stack and heap. The most well-
known approach to collection in Unix is conservative col-
lection [Boehm and Weiser 1988], which works around the
absence of precise metadata. Unfortunately, its performance
is uncompetitive with more precise collectors which demand
precise metadata. Unix’s lack of type metadata and “back-
wards lookup” (from object to metadata) stymie such de-
signs. Conversely, the availability of these would allow us
to rethink this. We return to this in §6.2.

struct uniqtype; /* type descriptor */
struct allocator ; /* heap, stack, static , etc */
uniqtype * alloc_get_type (void *obj ); /* what type? */
allocator * alloc_get_allocator (void *obj ); /* heap/stack? etc */
void * alloc_get_site (void *obj ); /* where allocated? */
void * alloc_get_base (void *obj ); /* base address? */
void * alloc_get_limit (void *obj ); /* end address? */
Dl_info alloc_dladdr (void *obj ); /* dladdr−like */

Figure 3. A simplified liballocs process-wide metadata API

3. A Model of Allocations
We have seen that Unix has evolved considerable support for
VM-like services, but with two significant gaps: the lack of
type-like metadata, and lack of a mechanism for dynamic
binding “backwards” from objects to metadata. In this sec-
tion we introduce liballocs, a system which addresses these
shortfalls by implementing something akin to an “object
model’ for Unix processes. Unlike a VM’s object model, we
conceive liballocs with compatibility and plurality in mind:
it must model what a large variety of existing code does,
not simply provide a structure for future code to be written
against.

3.1 Overview
Fig. 3 shows a simplified version of liballocs’s API, in C.
It maps from a relatively basic, general, machine-level view
up to various kinds of metadata, and subsumes the dynamic
loader’s dladdr() call (which we noted offered a basic ob-
ject metadata lookup function). Type metadata is modelled
by reified data types, instances of struct uniqtype. We can
think of this API as a protocol which different allocators
implement differently, but is collectively implemented some-
how for every allocation in the process.

Can it be implemented usefully against existing Unix
code, much of which is written in permissive languages like
C and C++? Can it be implemented efficiently? Can there
be an adequately general model underlying struct uniqtype,
liballocs’s notion of “type”? Can we accommodate a full
complement of VM services within this model, such that it
is possible to retrofit existing VMs onto it?

In the remainder of this paper we present arguments and
evidence answering these four questions in the affirmative.
This section covers the design of liballocs; it pays careful at-
tention to compatibility with C and C++ (§3.7), has a working
prototype (§4) and we have implemented several services on
top of it (§5). This answers the first pair of questions reason-
ably strongly. The latter pair are somewhat more speculative,
but we will present various arguments and evidence already
amassed in their favour (§6).

3.2 What Are Allocations?
Allocations are coherent subdivisions of the state of a run-
ning program. They are contiguous in memory and in life-
time, so constitute units of data meaningful (at some level)
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Figure 4. Allocator tree in a large C/C++/JavaScript pro-
gram

in the program. Allocations have metadata, including a no-
tion of “type”, a base address and end address in memory,
and the site (instruction address) where allocation occurred.
This embraces and extends the dladdr() API we saw earlier:
each symbol definition in a loaded object file, including func-
tions and global variables, is a distinct allocation, but so are
heap objects and stack frames. Allocations are a “common
denominator” across all languages, runtimes and virtual ma-
chines. They can be identified at the machine level, as mem-
ory regions, yet we can ascribe abstract meanings or roles to
them, in terms relating to the source program.

Allocations are slightly lower-level than most senses of
“object”, since allocations deliberately lack a notion of be-
haviour, such as a system of messaging or method dispatch.5

A great variety of dispatch behaviours can be implemented
on top of our liballocs interfaces, but it is left to each client
of an allocation, i.e. each caller, to implement the dispatch
semantics that they locally require; none is enforced. This
separation of mechanism from policy keeps many language-
specific details out of allocations; it is essential to our goals
of compatibility and plurality. (That is not to say that libal-
locs is not useful for dynamic binding—far from it. In §5
we see how liballocs enables late binding in places where it
wasn’t previously available. We consider options for clients
performing dynamic dispatch in §6.2.)

3.3 The Allocator Hierarchy
In a modern Unix, the state of a process consists of a mem-
ory space structured as a flat collection of mappings. (It
also includes a register file per thread, and some kernel-side
state such as the file handle table.) These top-level mappings
are parcelled out to user code via some arrangement of in-
termediate allocations: memory pools, slabs, stacks, and so
on. These are often nested, such as allocators that are them-
selves clients of malloc(). The leaves of this tree are the
units of state specified by the end programmer: local vari-
ables (“stack”), global variables (“static”) and heap objects.
To maintain per-allocation metadata detailed enough to im-
plement VM-like services, we require a general model of
these nested allocations.

5 . . . except for the “call” or “jump” primitive of the underlying ma-
chine/ABI. Code necessarily resides in allocations, just like data.

We can model this structure as a tree of allocators. Allo-
cator B is a child of A if B calls A to obtain the memory that
it parcels out to clients. All allocated memory in a process—
whether heap, static or stack—can be attributed to some such
allocator. Fig. 4 shows the tree of heap allocators that might
be present in a large C/C++/Java program. At the top of the
tree are the operating system mechanisms—on Unix these
are mmap(), sbrk(), and the kernel-supplied stack alloca-
tor.6 Client code can request allocations at various levels in
the tree: from malloc(), or from an allocator layered under
malloc(), or direct from mmap(), and so on.

3.4 Allocator Diversity
The role of liballocs is twofold: firstly, to define a standard
meta-protocol for allocators; secondly, to separately main-
tain additional metadata in the cases of existing allocators
which do not keep adequate metadata by themselves, such
as malloc() implementations or the kernel’s stack allocator.
We deliberately avoid constraining allocators: they may ex-
pose whatever base-level interfaces they choose, backed by
whatever implementation.

Since liballocs accepts meta-level queries about arbitrary
memory addresses, it must dynamically keep track of how
the address space is parcelled out to allocators, including
nesting relationships, so it can delegate queries appropriately.
Allocators must therefore announce themselves to liballocs,
and must either communicate allocation events as they occur
or implement calls by which existing allocations can be iden-
tified post-hoc, at the point of a metadata query. This com-
munication can be achieved either by explicit code changes
or by instrumentation. Helpfully, the latter is particularly fea-
sible for allocators used by native code.

We can divide allocators into three categories: system,
user-explicit and user-implicit; these correspond roughly, but
not exactly, to static, heap and stack respectively. As we saw
earlier, “static” allocations, such as of global variables, ac-
tually occur at load events during execution, within the dy-
namic loader provided by the operating system. This makes
them easy to observe, by instrumenting load and unload func-
tions. User-explicit allocations include those created by pro-
cedurally abstracted allocators in user code, such as mal-
loc() in C or new in C++.7 It is similarly possible to hook
these allocations at run time, using link-time interposition,
breakpoint-like trap instructions or lightweight binary instru-
mentation [Kessler 1990; Miller et al. 1995]. The remaining
user-implicit allocations are not procedurally abstracted; ex-
amples include stack allocations (made simply by adjusting
the stack pointer) or “new space” allocations in generational
garbage collectors. We cannot efficiently trap every update
to the stack pointer or bump pointer, so we require that these

6 The latter is instantiated by the MAP_GROWSDOWN flag to mmap(),
and invoked by subsequent page faults.
7 Note that malloc() is user code, since a program may supply its own
implementation.



struct ellipse {

double maj;

double min;

struct point {

double x, y;

} ctr;

}

1.5

1.0

my_ellipse

maj

min

ctr -1

8

x

y

2d: DW_TAG_structure_type

DW_AT_name        : point    

39: DW_TAG_member

DW_AT_name        : x        

DW_AT_type        : <0x52>   

DW_AT_location: (DW_OP_plus_uconst: 0)

45: DW_TAG_member

DW_AT_name        : y        

DW_AT_type        : <0x52>   

DW_AT_location: (DW_OP_plus_uconst: 8)

52: DW_TAG_base_type

DW_AT_byte_size   : 8        

DW_AT_encoding    : 4 (float)

DW_AT_name        : double   

59: DW_TAG_structure_type

DW_AT_name        : ellipse  

DW_AT_byte_size   : 32       

61: DW_TAG_member

DW_AT_name        : maj      

DW_AT_type        : <0x52>   

DW_AT_location: (DW_OP_plus_uconst: 0)

6f: DW_TAG_member

DW_AT_name        : min      

DW_AT_type        : <0x52>   

DW_AT_location: (DW_OP_plus_uconst: 8)

7d: DW_TAG_member

DW_AT_name        : ctr      

DW_AT_type        : <0x2d>   

DW_AT_location: (DW_OP_plus_uconst: 16)

Figure 5. A simple ellipse data type in C, DWARF and
diagrammatically

allocators allow post-hoc identification of individual allo-
cated regions. We describe an efficient implementation of
this for stack regions in §4.3, and consider GCs in §6.2.

3.5 Type Metadata for Allocations
Most allocation metadata, such as start and end address, is se-
mantically straightforward. Type metadata is trickier. What
are types? In Unix’s familiar bottom-up fashion, liballocs
borrows an existing notion of “type” found in DWARF de-
bugging information [Free Standards Group 2010], which
is more than an adequate starting point.8 Fig. 5 shows a
simple ellipse data type in C, graphically, and in dumped
DWARF. Note how it spans from machine level up to source
level: it describes the size and encoding of all primitive data
(here float means the machine-native floating-point encod-
ing), while a stack machine language encodes the offset of
fields from their object base. Although not shown, DWARF
also records source-level structure, such as (in C++ or Java
code, say) which functions are members of a class.

When an allocation occurs, how do we know what data
type is being instantiated? We view this logically as part of
the allocating code’s debugging information. For stack and
static allocations, DWARF already includes adequate infor-
mation. For heap allocations, most languages offer typed al-
location operations, such as new, so the compiler could out-
put records describing what DWARF type is being allocated
and at which instruction address. We call these addresses al-
location sites. Even in “dynamically typed” languages, each
source-level allocation site creates allocations of dynami-
cally known types. (This does not exclude polymorphism,

8 It is important—as this author has argued previously [Kell 2014]—to
distinguish models of data abstraction from the logics that underlie type
checkers. Both are often called “type systems”, but only the former concern
us here. We return to the issue of safety in §7.

where the type is not statically known.) To work around the
current lack of allocation site information in DWARF, we
maintain our metadata separately (as described in §4.3). To
deal with languages offering untyped allocation primitives,
such as malloc() in C, we require source-level analysis (see
§4.2). Some allocations within allocators, at the branches
of our tree in Fig. 4, are genuinely untyped—these allocate
memory held in a pool for later. Therefore, alloc_get_type()
is permitted to return null.

3.6 Dynamism in Type Metadata
The role of types in liballocs is to capture semantic prop-
erties of allocations, including their substructure, what they
model, and so on. Types in liballocs are not “static”: they
are reified at run time as uniqtype objects, much like class
objects in a Smalltalk VM, and exhibit several kinds of dy-
namism. Most obviously, as allocations come and go, ob-
served by liballocs, the memory at a given location changes
type. Most allocators allow explicitly changing the type as-
sociated with a given allocation.

Sometimes details within an allocation change dynami-
cally, such as gaining or losing fields. To this end, a sin-
gle uniqtype can encode a bounded degree of internal per-
allocation variability, perhaps in length (an array of varying
size, say) or substructure (a mutable variant record, a union
in C, or a hash-table layout in JavaScript). To encode this, a
uniqtype may refer to a make_concrete() function which
takes the object base address (and, optionally, some addi-
tional program context) and returns a dynamically precise
snapshot of itself. This allows details to be decided at run
time yet still be queried precisely, without spawning a dis-
tinct uniqtype for every possible case.

Over an allocation’s lifetime, its type may change; this
might spawn a fresh uniqtype in the case of variation not
anticipated by the original.9 Mutating a uniqtype in-place
might make sense, but raises semantic questions (whether
or how existing instances should be updated) and implemen-
tation questions (how to reallocate both the uniqtype and
its instances). Currently it is not supported. A process-wide
garbage collector would allow us to rethink this; we revisit
this possibility later (§6.2).

3.7 Accommodating C and C++

C and C++ are archetypal languages of the Unix world, and
supporting them seamlessly and compatibly is of great im-
portance to liballocs. Does it even make sense to attach type
metadata to allocations in languages such as C? Semanti-
cally, the C standard holds that only local and global vari-
ables have a fixed (“declared”) type, and heap storage ac-
quires its “effective” type from writes. However, the over-
whelmingly common case is for the type to be fixed at allo-
cation time. Therefore, for efficiency, we assign types on al-

9 This occurs most commonly in dynamic languages, but can even happen
in C, in the case of memcpy()ing only part of a structured object.



export LIBALLOCS_ALLOC_FNS="__ckd_malloc__(Zpi)p \
__ckd_calloc__(zZpi)p __ckd_realloc__(pZpi)p __mymalloc__(Ipi)p"

export LIBALLOCS_ALLOCSZ_FNS="__ckd_calloc_2d__(iiIpi)p \
__ckd_calloc_3d__( iiiIpi )p fe_create_2d( iiI )p"

export LIBALLOCS_FREE_FNS="__myfree__(P) ckd_free_2d(P) \
ckd_free_3d(P)"

Figure 6. Describing custom allocators in a large C code-
base (sphinx3 from SPEC CPU2006)

location, and avoid trapping writes. We can, however, model
subsequent changes of a heap block’s uniqtype. This in-
cludes the case of receiving data via memcpy(); since this is
procedurally abstracted it is easy to trap. The C standard also
allows an effective type to be propagated either by raw char-
acterwise copying or by memcpy(). Since real code tends to
use the latter, and some compilers even turn the former into
the latter, we choose not to support this.

4. Implementation
We have a prototype implementation of liballocs, currently
only for x86-64 GNU/Linux machines but without particular
obstacle to ports to other platforms. Work has so far focused
on the core system and on accommodating native code com-
piled ahead of time from C and C++. The implementation con-
sists of several parts: generic compile- and link-time tools
to support allocation and data-type metadata; supplementary
tools specific to C and C++; and the back-end liballocs run-
time. We cover each in turn.

4.1 Tools and Compiler Wrapper
Our implementation includes various tools necessary to gen-
erate liballocs’s run-time metadata. Most tools consume
DWARF, but some consume program source, program bi-
naries and/or a small amount of programmer-supplied guid-
ance.

User allocators User-explicit allocators (§3.4) have their
signatures declared to liballocs, currently using environment
variables and an ad-hoc signature language. Fig. 6 shows
a relatively complex example. Allocator nesting is inferred
dynamically by liballocs, but users must declare allocator
wrappers because they affect the logical allocation site. A
common example is xmalloc(), defined to delegate to mal-
loc() but terminating the program if it fails. The allocation
site is at the caller of the wrapper, not the delegating call
within the wrapper.

Type metadata DWARF is unsuitable as an in-process
metadata representation. It is tightly packed on disk, but also
highly redundant: each compilation unit includes its own
copy of any recurring data types. We postprocess it into uniq-
types, so named because they are deduplicated. Those gen-
erated for our ellipse are shown in Fig. 7. Each uniqtype is
reified at the linker level as a symbol definition, named us-
ing a simple human-readable convention. Their simple, fast

0__uniqtype__int 4

__uniqtype__double 8

2__uniqtype__point 16

0

3__uniqtype__ellipse 32

0 8

80 16

...

Figure 7. Our uniqtype representation (slightly simplified)
of the ellipse and types it uses: pointer arcs represent con-
tainment, and the fields preceding pointers are the offsets of
the contained subobject; other variants (not shown) encode
arrays, functions, pointers, etc.

in-memory representation encodes their size, substructure,
and links to other related types, such as the types of fields,
function arguments, and so on. Note how ellipse refers to
point, and both refer to double. Types which are nominally
and structurally identical are merged. Primitives are canon-
icalised according to their size and encoding (e.g. merg-
ing int with signed int). Synonyms (e.g. via typedef in C)
are rendered as alias symbols. Each symbol name includes
a “digest code” computed from the type definition, disam-
biguating distinct like-named types without requiring per-
codebase namespaces. Standard Unix linker features (ELF
section groups [SCO 2012] and global symbols) are used to
ensure a unique definition of each data type is used at run
time, even those shared between libraries and executable.
This ensures that simple semantic operations, such as tests
for type identity, are implemented efficiently as pointer com-
parisons.

Allocation site metadata Since DWARF does not yet in-
clude allocation site information, we gather this separately.
A binary-level analysis searches for calls to the named allo-
cator functions (and all indirect calls); per-language source-
level analyses (we outline one for C shortly) output alloca-
tion sites’ source coordinates and type information. The two
are combined with the help of debugging information. This
allocation site metadata, along with all generated uniqtype
instances, is “compiled” via C to binary metadata (per library
or executable) loadable directly by liballocs.

Computing reliable stack layouts Stack frames each have
a uniqtype too: although DWARF models these separately
from data types, we unify them in postprocessing, yielding
at least one uniqtype per function. We found that the way
some on-stack allocations are recorded in DWARF informa-
tion was problematic when computing stack frame layouts.
Frame layouts encode the address of each on-stack argu-
ment or local variable as an offset from a logical frame base
address. DWARF describes these offsets as generic stack-
machine expressions, whose inputs may be the frame base
address or register values. We found that the compiler oc-
casionally describes the location of an on-stack argument
or local not in terms of the frame base, but in terms of



some other register which happened to be holding a stack
address (say “rbp + 8”). This is fine for a debugger dur-
ing execution (which can read the actual register values),
but not for our ahead-of-time preprocessing. We fixed this
by combining the stack machine expressions with additional
stack-walking information from the .debug_frame section.
The latter describes how one register’s value can be recon-
structed in terms of other registers’ values. We use this to
build a graph whose vertices are registers holding stack ad-
dresses and whose edges are fixed-offset relationships be-
tween these addresses. Deducing transitive fixed-offset rela-
tionships then becomes a graph reachability problem. This
allows us to reliably identify every local and actual stored at
a fixed offset from the frame base.

4.2 Supporting C and C++

To assign types to heap allocations made using malloc() and
other untyped interfaces, our insight is that for allocations oc-
curring at leaf level (§3.3), the type is invariably deducible
from how the allocation is sized: the programmer chooses
how much to allocate based on the size of the intended data
type. We must therefore parse C source code and analyse
its use of sizeof around calls to the all known allocation
functions. For example xmalloc(n *sizeof(long)) tells us
an array of long is being allocated. Indirect calls are anal-
ysed as if they might be calling any signature-compatible
allocation function. A somewhat non-trivial analysis is nec-
essary to handle cases where a size is computed in stages,
perhaps some distance away from the malloc() call. Details
of this analysis are left to a future publication, but overall it
evolves the approach taken by Magpie [Rafkind et al. 2009].
We have found this approach to be remarkably robust in prac-
tice. Another useful property is that it can be implemented
without recompilation of the source code.

We aspire to compatibility, meaning requiring no source-
level changes, and no recompilation in the common case.
Some awkward cases stymie the latter; one is memcpy(),
mentioned earlier (§4.2); another is dynamically-sized stack
allocation using alloca(), where we must intervene to ex-
plicitly notify liballocs of the allocation. This turns alloca()
into a “user-explicit” on-stack allocator. C99 variable-length
local arrays are also handled this way. Our C source-level
passes are written using CIL [Necula et al. 2002], although
an experimental Clang/LLVM front-end has also been devel-
oped.

Although our techniques do not strictly require recompi-
lation in the common case, our allocscc compiler wrapper is
a convenient way to package the various tools. Recompiling
with the wrapper is often easier than going through the sep-
arate steps of acquiring source code and debugging informa-
tion, picking through the source to check for absence of awk-
ward features, and invoking the tools separately. (This would
ideally be remedied by integrating liballocs more closely
into package build systems, like that of Debian.) The wrap-
per also allows us to tweak compiler options to improve libal-

locs’s performance, notably turning on frame pointers, and
allows us to interpose on allocation calls purely at link time
rather than via binary instrumentation.

Some allocators make link-time interposition difficult,
even though they are procedurally abstracted. In one C code-
base (bzip2) we found an allocator that is declared static
and used only within the defining file, meaning there is no
undefined symbol to hook. To handle awkward cases like
these, we patched GNU objcopy to allow splitting a de-
fined symbol into separate entries for the definition and use,
hence allowing interposition even on these local symbols,
and also made our compiler wrapper add a command-line
option (-ffunction-sections) to ensure local symbols are
never omitted. This could otherwise sometimes happen, if
an allocator definition and sole reference were to occur in
the same text section. Dynamic binary instrumentation tech-
niques consuming DWARF would avoid these difficulties en-
tirely, since they arise only because linker-level ELF sym-
bols are omitted; the relevant definitions are still described
in DWARF.

4.3 The liballocs Runtime
Recall (Fig. 3) that the run-time interface to liballocs
concerns answering queries. Given a query such as al-
loc_get_type(p), some quick tests on p check it against the
bounds of the current stack, the executable’s mapped seg-
ments and the sbrk()-bounded heap. These are often suf-
ficient to identify the originating allocator (static, stack or
malloc()-heap). For pointers falling in none of these regions,
we must resort to a more general traversal of the alloca-
tor tree, rooted at a specially crafted structure called the
level-0 index. This tracks the virtual address space (VAS)
at page granularity, associating page numbers (i.e. virtual ad-
dresses appropriately right-shifted) with an allocator identity
and some general information. It roughly mirrors Linux’s
/proc/<pid>/maps file, with the addition of allocator in-
formation. We maintain it by interposing on memory map-
ping and dynamic loading calls (creating the first-level chil-
dren in the tree) and also on “sub-allocations” made by user-
identified allocator functions (creating deeper branch nodes
in the tree, e.g. a heap backed by a malloc()-supplied chunk).
All memory mappings and other non-leaf allocations are
recorded in a mapping table, containing information about
the allocator owning that area of memory. Their “mapping
number” is their offset into this table.

The level-0 index’s job is to make lookups into the map-
ping table efficient. In general, “indexes” in liballocs are
sparse, address-keyed maps, and their implementations ex-
ploit virtual memory—virtual address space is a plentiful
resource, over which Unix gives us considerable control.
The level-0 index consists of a huge array, having one in-
teger for every page in the user-accessible address space (or
235 pages on current x86-64 platforms), such that if map-
ping number i includes page number p, l0index[p] stores
i . We allocate the array with a request to the operating



system to commit its memory lazily at page granularity.10

In this way, the level-0 index provides a fast lookup from
addresses to allocator-specific information, where the first
stage of this associative lookup (down to a page-sized divi-
sion of metadata) is encoded into the CPU’s page tables, act-
ing as a “hardware assist”. Some existing tools make similar
use of unreserved virtual memory [Serebryany et al. 2012;
Akritidis et al. 2009; Nagarakatte et al. 2009], and the idea
is closely related to “linear” page tables (first appearing in
VAX/VMS [Levy and Lipman 1982] and later incorporated
into more sophisticated designs [Talluri et al. 1995]).

For allocators which do not maintain adequate metadata
by themselves, such as malloc() or similar untyped alloca-
tors, liballocs provides some ready-made index implemen-
tations. As a general-purpose index for untyped heap allo-
cators, we can use a simple variation on the level-0 index.
Again, we use a large linear array of metadata records, again
allocated in unreserved virtual memory, but this time large
enough to hold one metadata record for every byte in the
suballocated region (the densest possible use). To preserve
sparseness, the array is striped by the expected object size
p (estimated e.g. from the first allocation). The first stripe
includes enough records for one allocation per p bytes; the
rare cases of denser allocation spill over into the next stripe’s
worth, later in memory, and so on. To support lookups on in-
terior pointers, we remember the biggest allocation so far,
and perform a linear backward search bounded by this size.
This scheme supports even very tightly packed allocations.

A more specialised index is useful for malloc(), often crit-
ical for performance. We exploit its variable-size API and
word-aligned chunks by storing metadata within the heap
chunk, after incrementing the size requested, then keeping a
large linear index of short pointers to the in-chunk metadata.
For huge objects, a malloc() usually delegates to mmap();
we detect this and push the metadata into the mapping table.
Other indexes are kept for the static allocator (a straightfor-
ward map from address to uniqtype) and for the stack (we
walk the stack using libunwind11, then use an index mapping
program counter to frame uniqtype).

Many heaps already maintain adequate metadata, perhaps
as type words in object headers. For these, the mapping
table points to the relevant allocator-specific metadata re-
trieval routines. Sometimes, hybrid schemes are desirable.
For example, headers alone cannot support queries on inte-
rior pointers. For this, liballocs can maintain an object starts
bitmap mapping interior pointers to base pointers. Maintain-
ing this bitmap is an issue of retrofitting, which we return to
in §6.2.

4.4 Status and Performance Results
For an early indication of performance, we ran those SPEC
CPU2006 benchmarks written entirely in C and not us-

10 On Linux, this is done using mmap()’s MAP_NORESERVE flag.
11 http://www.nongnu.org/libunwind/

bench normal/s liballocs/s liballocs % no-load
bzip2 4.91 5.05 +2.9% +1.6%
gcc 0.985 1.85 +88 % – %
gobmk 14.2 14.6 +2.8% +0.7%
h264ref 10.1 10.6 +5.0% +5.0%
hmmer 2.09 2.27 +8.6% +6.7%
lbm 2.10 2.12 +0.9% (−0.5%)
mcf 2.36 2.35 (−0.4%) (−1.7%)
milc 8.54 8.29 (−3.0%) +0.4%
perlbench 3.57 4.39 +23 % +1.6%
sjeng 3.22 3.24 +0.6% (−0.7%)
sphinx3 1.54 1.66 +7.7% (−1.3%)

Table 1. Basic performance results: “normal” execution
time in seconds, the same under liballocs, and as a percent-
age. no-load is the slowdown of an allocscc-built binary
when liballocs is not loaded. There is no data for gcc in the
no-load case, owing to a bug in the GNU C library’s han-
dling of weak thread-local symbols on the x86-64 platform.

ing complex numbers (currently unsupported by CIL), col-
lecting basic data using SPEC’s smaller test workloads.
All eleven of these compiled under our wrapper, and ran
and passed output validation with liballocs running. Ta-
ble 1 shows execution times as the median of three runs
on a developer-class machine (Lenovo Thinkpad T420s, In-
tel i7-2640M quad-core, 4GB memory) running an Ubuntu
GNU/Linux 12.10 operating system. The heapmeta slow-
down is observed when liballocs is loaded; it is possi-
ble to run without loading liballocs (no-load). Run-to-run
variance was under 2% of the median in all cases except
milc, which is very sensitive to memory placement. Small
speedups were seen in some cases, in the range 0–2%;
we suspect these are explained by the combined effects of
varying memory placement and of the small changes our
compiler wrapper makes to the compilation environment
(§4.2). We anticipated the slower cases, gcc and perlbench,
since they make heavy use of the “general-purpose” (non-
malloc()) index (§4.3). A much simpler and faster “homo-
geneous” index implementation for gcc would be feasible,
since its most heavily used nested allocator only allocates
objects of a single type.

Source code to liballocs is available online.12 The run-
time is thread-safe and fairly well tested.

5. Applications
We have already implemented several interesting VM-like
services on top of liballocs. Unlike conventional VMs’ ser-
vices, they range across the whole of a Unix process. We
outline them here.

5.1 Run-time Type Checking
C and C++ are “unsafe”, meaning buggy code can cor-
rupt the program rather than raising a clean error. De-
bugging aids which cleanly report memory bugs have

12 http://github.com/stephenrkell



emerged [Seward and Nethercote 2005; Nagarakatte et al.
2009; Serebryany et al. 2012]. However, an in-bounds, tem-
porally valid access might still use the wrong type, largely
because of unchecked pointer casts. We have implemented a
run-time checker which instruments C code to check these
using liballocs. It generates errors analogous to ClassCas-
tException in Java (currently as warning messages, rather
than exceptions). The implementation is simple: we use
the liballocs API to define some check predicates, such as
__is_a() which implements a containment-based subtyping
check. We then extend our compiler wrapper to instrument
casts with these checks.

A future publication will cover this system in depth, but
as evidence of liballocs’s value, we report some preliminary
experiences here. As with liballocs, we require no source-
level changes, only allocator identification (§4.1) and sign-
posting of loose C idioms like structure prefixing (this re-
quires a distinct check, __like_a()). These idioms present a
tension between false positives and negatives. Currently, one
of the benchmarks, perlbench, still shows unusably many
false positives, since it relies on subtle structural polymor-
phism relations between its core data types. This kind of
code is not even standards-compliant C, and is rare, but we
are working on slightly refined checks which can accommo-
date it anyway.

Overhead is already low in most cases, as measured on
the same eleven benchmarks seen in §4.4: the median over-
head is currently 10%. As before, gcc provides the toughest
test, since it has not only a very high allocation rate but also
an abnormally high cast rate. Currently it suffers 160% over-
head, although the same “homogeneous index” optimisation
(§4.4) mooted for liballocs stands to improve this. Reporting
of false positives currently dominates perlbench’s execu-
tion time. Of the remaining benchmarks, the worst overhead
is 40% and others are much lower still. Meanwhile, metadata
coverage is proving extremely good in practice: only a hand-
ful of allocation sites (out of thousands) were not automat-
ically typeable. Unlike C-focused systems, we can dispatch
checks on allocations originating outside C code—perhaps
from Fortran, or perhaps even (potentially) from a VM that
can generate uniqtype instances (as we consider in §6).

5.2 Scripting without FFI
Access to native libraries from dynamic languages is typi-
cally achieved by extending or embedding a VM using “for-
eign function interface” (FFI) APIs at the implementation
level. These are onerous to use, often change-prone and/or
implementation-specific. Some tools abstract from them by
generating code, either at run time13 or beforehand [Beazley
1996], when supplied with a description of the library’s in-
terface using some ad-hoc interface model or C header files.

13 Examples include Java Native Access (https://github.com/twall/jna),
node-ffi (https://github.com/node-ffi/node-ffi), ocaml-ctypes (https://
github.com/ocamllabs/ocaml-ctypes), and others.

require( ’−lXt’ ); // calls dlopen...
var toplvl = process.lm. XtInitialize ( // all global syms

process.argv[0], "simple", null , 0, // appear in process.lm.*
[process.argv.length], process.argv);

var cmd = process.lm.XtCreateManagedWidget( // create a button
" exit " , commandWidgetClass, toplvl, null, 0);

process.lm.XtAddCallback( // add exit () as callback
cmd, XtNcallback, process.lm.exit, null );

process.lm.XtRealizeWidget(toplvl); // set it going ...
process.lm.XtMainLoop();

Figure 8. Scripting liballocs-visible code in JavaScript us-
ing a lightly modified V8

Using liballocs, we avoid any need for the user to describe
the native interface to the VM: native libraries are already
described by their uniqtype instances, generated automati-
cally from pre-existing DWARF metadata. We can therefore
use them with the same immediacy as, say, a JRuby user
picking up Java libraries.

We prototype this as a partial retrofitting of V8 onto libal-
locs, implementing V8’s object protocol (get/set and enu-
meration) in terms of the uniqtype metamodel. Native ob-
jects are proxied in the V8 heap; objects passed from V8
to native code are externalised, i.e. moved out of V8’s heap
into malloc()’d storage. This generalises mainline V8’s sup-
port for externalising strings and arrays. Fig. 8 shows an ex-
ample session. The process’s symbol bindings are exposed
through the process.lm (“link map”) object. When exter-
nalising [process.argv.length], the recipient XtInitialize’s
uniqtype is used to select the int element representation re-
quired.

Some limitations remain. Externalised objects are col-
lected once unreachable from the V8 heap, rather than un-
reachable process-wide. Code cannot yet be externalised
(e.g. to pass a JavaScript function to XtAddCallback). A de-
bugger observing our process cannot yet read V8 frames or
call V8 code. Proxy objects add unwanted indirection; we
would rather V8 directly understood that some objects live
outside its own heap. This could avoid large object graphs be-
ing externalised into the slower malloc() heap. All these lim-
itations arise because we have not yet done the complemen-
tary retrofitting: implementing liballocs’s meta-level proto-
col over V8’s allocator and metadata, and pushing knowl-
edge of this protocol into V8’s compiler. We consider this
tighter retrofitting in §6. As it stands, the system already im-
proves on FFI-based approaches by avoiding their interface
description step, hence providing much greater immediacy
and lower maintenance effort.

5.3 Dynamically Precise Debugging
Debuggers like gdb have a major weakness: given a pointer,
they cannot tell precisely what kind of object it points to.
A void*, for example, cannot be followed, even though it
dynamically points to some object. With liballocs, this lim-
itation is removed. Simply calling alloc_get_type() from



the debugger has already proved robust and useful. Tighter
debugger integration would provide this as a debugger com-
mand, and allow out-of-process operation.

The same idea would allow precise monitoring and trac-
ing, in tools such as strace or ltrace14 which currently do
not introspect on user-defined data. For example, although
strace includes hand-rolled printing code for kernel data
structures, it cannot provide user-side context, such as what
kind of object is the target of a read() or the source for a
write()—whereas liballocs can readily do so.

5.4 In-progress Applications: Serialization
Generic serialization routines for in-memory data become
feasible with liballocs, since a uniqtype tells us where to
find pointers in each allocation. By transitively closing over
pointers, we can “deep-copy” and serialize to a file. This
could even be an ELF file, since serialization is the converse
of the relocation performed by linkers, in which pointers
are marked by relocation records and fixed up to reflect the
address bound on loading. The process’s dynamic loader
is therefore a candidate deserializer, using the load-time
“static” allocator. One a drawback is that the resulting objects
cannot be individually freed or resized later.

On-disk data is also in scope. Unix’s bytewise file I/O,
mimicked by all languages’ standard libraries, forces even
high-level programmers to write low-level code. Unix’s
memory-mapped files suggest an obvious extension subsum-
ing the foregoing “deserialize in the loader” approach: a
memory-mapped file can be treated like a live “allocated” re-
gion consisting of typed allocations. We are working on just
such a system, focusing initially on simple binary file for-
mats describable in terms of the uniqtype metamodel. The
ELF format itself is one example: we can dynamically ex-
plore an ELF memory mapping almost exactly as if it were
in-memory data, except that we must recognise additional
pointer-like “relational” fields such as file offsets. By record-
ing these relations in metadata structures much like our ex-
isting indexes (§4.3), we can subsequently reallocate or re-
size elements of the file, moving them out of the mmap()’d
region into fresh memory, while remembering their logical
containment and adjacency relations. This will, we hope, al-
low re-serializing them back into the file mapping, achiev-
ing file I/O without programming against bytes and buffers
at any stage.

6. Retrofitting
How can we retrofit our existing, isolated VMs onto libal-
locs, so that they can cooperatively exploit our process-wide
VM-like environment? This involves two principal steps:
adding meta-level visibility by implementing the liballocs
API over the VM’s existing allocator, and adding whole-
process binding by generalising the VMs’ mechanisms for
binding code and data together.

14 http://ltrace.alioth.debian.org/

6.1 Meta-level Visibility
Basic plumbing Most VMs’ heap allocators can largely
implement the liballocs API using their existing object head-
ers. At allocator initialization, an allocator can supply call-
backs to the level-0 index (§4.3) associating it with the heap
region it is to use, typically obtained from mmap(). Since
headers cannot support querying interior pointers, we may
additionally maintain an object starts bitmap (§4.3), and ex-
tend the allocation fast path to set this bit. For stack storage,
VMs could generate each frame uniqtype directly, or (bet-
ter) could generate DWARF, rendering them usable by un-
modified debuggers.

JITting as loading Current VMs’ JIT-compiled code is
opaque to the wider system: it cannot be queried by dladdr(),
by liballocs clients, by Unix debuggers like gdb or by exist-
ing backtrace library routines like libunwind. To fix this, we
simply recognise that JIT-compiled code is an allocation like
any other. Since we already view the dynamic loader as an
allocator, an easy fix is to inform the dynamic loader about
JITted code. To do this we must extend its interface slightly.
In our prototype extension, libdlbind, we have added calls
dlcreate(name) (create a new, temporary ELF file freshly
loaded in memory), dlalloc(size) (reserve a chunk of space
within the file) and dlbind(name, addr ) (define a symbol
in an existing ELF file). Collectively, these constitute an al-
locator for JIT compilers: they allow dynamically allocating
memory backed by a temporary in-memory ELF file and set-
ting up appropriate ELF metadata (symbol names). Type in-
formation may be attached using the liballocs API. The tem-
porary ELF file is laid out with a large (but fixed) amount
of space, allocated lazily (as in §4.3). As new code is bound
into the file, the file is re-loaded, notifying any debugger at-
tached via the existing r_debug protocol [AT&T 1990] and
so allowing it to refresh its symbols.15

6.2 Cross-Process Binding
Generalising from our V8 prototype (§5.2), we want any
allocation in our process to be able to bind to any other.
We consider this in two parts: binding from code (accessing
fields, or calling from one method to another) and binding
from data (storing pointers between objects). Along the way,
we will visit some issues saved from earlier: process-wide
garbage collection (§2.5), and dispatch structures (§3.2).

Code–data binding, naïvely A simple interpreter might
use liballocs’s API directly to query target objects, obtain
each’s uniqtype, dynamically enumerate its fields and re-
solve them to memory addresses. This works even if their
layout is not statically fixed (§3.6). Even though liballocs is
reasonably fast, full-scale queries on each access would be
slower than ideal.
15 This “reload” is very nearly expressible using current GNU/Linux and
FreeBSD dynamic linkers. Supporting it completely compatibly would re-
quire adding a “reloadable” flag to the dlopen() interface, with semantics
almost (but not quite) identical to the existing RTLD_NODELETE.



Optimising code–data binding High-performance VMs
use inline caching, i.e. caching within the instruction stream.
The following snippet, adapted from the V8 developer doc-
umentation16 shows a simple inline cache in x86 pseudo-
assembly accessing a field x on some arbitrary object whose
address is in register ebx. The cache speculates that the ob-
ject will actually be an instance of the cached class.
cmp [ebx,<class offset>],<cached class>; test
jne <inline cache miss> ; miss? bail
mov eax,[ebx, <cached x offset>] ; hit; load field x

A similar inline cache retrofitted onto liballocs would
speculate not only on the class of the allocation, but also
on the allocator. Doing this adds a few instructions, but no
additional memory references.
xor ebx,<allocator mask> ; get allocator
cmp ebx,<cached allocator prefix> ; test
jne <allocator miss> ; miss? bail
cmp [ebx,<class offset>],<cached class>; test class
jne <cached cache miss> ; miss? bail
mov eax,[ebx, <cached x offset>] ; hit; load field x

By speculating on an allocator for which the dynamic
compiler has affinity, the fast path short-circuits away the
liballocs query in favour of something allocator-specific
(here class pointers). In this way, existing VMs like V8
can ship their own allocators, and generate code which spe-
cialises for them, without excluding the rest of the process:
out-of-heap objects can still be accessed via a slower path.

Code–code: dispatch structures Our uniqtype deliber-
ately omits any vtable or other dispatch structures (§3.2) be-
cause dispatch semantics are a property of the client’s lan-
guage, not the target allocation. Fortunately, in our evolved
Unix, clients are in a position to dynamically construct
their dispatch structures by querying the system for rele-
vant code. For example, given a uniqtype such as that of
Ellipse, a language implementation could query the loader
for loaded functions to be considered as late-bound methods
of Ellipse. This query might vary per-language: in Java, we
might say “all functions declared lexically within Ellipse,
left-merged with like-signature methods in inherited classes,
transitively, excluding any marked final”. In C++, by contrast,
only methods decorated with virtual would be considered.
These queries may be answered by the dynamic loader, if
it retains appropriate metadata. Currently, source-level rela-
tions like “declared lexically within” are not modelled in
liballocs; we are considering how to fix this by relating each
uniqtype more strongly to relevant ELF symbol definitions.
Once generated, dispatch structures can be attached to allo-
cations either via on-demand reallocation (dynamically mak-
ing space for the dispatch structure), via associative map-
pings like our index structures (§4.3), and/or via another
kind of affinity: a compiler (say for Java) is permitted to re-
serve space for dispatch structures in the layouts it selects.
Although allocations need not embed dispatch structures,
they may speculatively do so, biasing them towards one im-

16 https://developers.google.com/v8/design as retrieved on 2015/3/30

plementation, but remaining bindable (albeit more slowly)
from elsewhere.

Data–data binding Typically, garbage-collected heaps
(GCs) are implemented in an aggressively self-contained
fashion. A single heap is the unique domain of tracing, recla-
mation and object motion, and fixes strong invariants on ad-
dressing (typically that no interior pointer is ever stored to
memory) and liveness (typically that any live object is reach-
able by a chain of stored pointers). They are usually also cou-
pled to a compiler, to ensure metadata completeness (well-
defined “safe points” where the compiler attests that pointers
may be precisely identified) and software barriers for inter-
nal bookkeeping (most often write barriers, to remember the
set of intergenerational pointers).

By contrast, liballocs is founded on embracing plurality,
with a process containing many heaps and many allocators.
Fortunately, the same techniques that GCs use internally can
be harnessed to enable this coexistence. We have already
seen a basic approach, in the externalisation of our modi-
fied V8 (§5.2). Logically this combines an escape barrier, to
catching pointers flowing outside a given heap, with a com-
mon heap into which shared objects can be moved. Currently
our escape barrier is the out-of-line path in V8 code for han-
dling native accesses. Feasibly, a variation of the in-compiler
write barrier could catch escaping references in-line, just as
we caught incoming references in our earlier inline cache ex-
ample. Since high-performance GCs are invariably capable
of moving objects, moving “out” (one-way) to a common
heap is an easy addition.

The problem of collection within the common heap re-
mains. Per-heap reference bits in allocation metadata are one
approach; once all are cleared, the object is free process-
wide. This works when the inter-heap reference relation is
acyclic—a consequence of the transitive externalisation ap-
proach we currently take with V8. A complementary ap-
proach is a barely conservative collector. enabled by libal-
locs’s pervasive metadata. Although literature often talks
about conservative or precise collectors, in reality any collec-
tor is only precise up to some assumptions, such as “reach-
ability implies liveness”—itself a conservative approxima-
tion [Hirzel et al. 2002; Khedker et al. 2012]. Unlike in ear-
lier work [Boehm and Weiser 1988], liballocs makes pointer
metadata generally available, allowing precision to become
the default rather than the exception. We can require users
to explicitly identify the C or C++ code (say) known to ex-
hibit “loose” behaviour with pointers (such as storing them
in integer-typed storage), using instrumentation to observe
writes of pointer-derived integers, much like our run-time
type checker already instruments casts (§5.1). In this way,
conservatism is enabled selectively at run time, rather than
globally. Recent work has already found precise collection
feasible for much C code [Rafkind et al. 2009] and classified
real C codebases according to the loose pointer behaviours
they exhibit [Chisnall et al. 2015].



7. Other Issues
Safety Most VMs aim to be “type-safe” in the sense of
Ungar et al. [2005]: “the behavior of any program, correct
or not, can be easily understood in terms of the source-level
language”. This implies an absence of corrupting failures.
In reality, safety properties are inevitably modulo trust in
some artifact (such as the VM implementation, a proof, a
proof checker, etc.). Reducing the volume of blindly trusted
code is actively being addressed by current work on veri-
fied compilation [Leroy 2009; Kumar et al. 2014] and on the
large body of work which instruments or sandboxes code to
provide clean failures and/or secure compartmentalisation.
By extending the dynamic loader and managing metadata,
liballocs is a good place to enforce policies on how loaded
code must be vetted or sandboxed. Techniques typically im-
plemented in compilers, such as control flow integrity, may
be more appropriately implemented in a loader [Niu and Tan
2014]. Currently liballocs abstains from defining or enforc-
ing such policies, but we hope to explore this in later work.

Insufficiency of “type” A uniqtype does not capture all
useful semantic properties of the allocation it describes.
Two obvious gaps are initializedness and immutability: re-
spectively, whether reads or writes to a field (say) are
valid. These properties are important to many reflective
clients. Although we could follow the approach of C-like
languages by adding read-only const and (the hypothetical)
write-only invalid into the uniqtype metamodel, it seems
preferable instead to extend memory-level metadata already
capturing these concepts, namely read and write permis-
sions. Proposed future machine architectures include mem-
ory protection at word granularity instead of page granular-
ity [lowRISC Foundation 2014; Dhawan et al. 2015] which
could be reflected as an extension of liballocs’s metamodel.

What is “Unix”? We have been talking about Unix, but ev-
erything we have covered applies equally well to non-Unix
native code environments. The other major 1970s-era design
persisting into modern systems is VMS, via its successors
in the Windows NT family. Like Unix, its interfaces and ab-
stractions are light on metadata and heavy on early binding.

Functional runtimes as VMs Implementations of func-
tional languages, such as OCaml or Haskell, exhibit only
a subset of VM-like characteristics: they typically involve
garbage collection but not dynamic compilation. We ex-
pect liballocs to apply usefully to such runtimes. Indeed,
both OCaml and GHC runtimes are gradually improving
their observability to debuggers like gdb. Haskell’s lazi-
ness makes its runtime substantially quirkier, and therefore
more challenging. It is worth remarking that one key ap-
plication of liballocs, language interoperability, raises spe-
cific challenges here which are not revealed by the “native-
to-dynamic” V8/JavaScript case we considered in §5. Con-
sider, for example, a C library expecting to mutate a caller-
supplied buffer. A Haskell client simply cannot supply a

mutable object. This means that a Haskell view of the C
code’s interface lies some computational distance away: it
must appear to return a fresh value, allocated by the callee,
instead of doing mutation. This is a problem of interface
adaptation, and bears a similarity to some adaptations ex-
pressible in the Cake language [Kell 2010]. After incorpo-
rating mutability into our metamodel, we hope to develop
techniques by which the relevant adaptation can be automat-
ically inserted—here, pre-allocating a fresh buffer which is
passed to the C code for initialization.

8. Related Work
The Portable Common Runtime [Weiser et al. 1989] devel-
oped at Xerox PARC unified various languages, including C,
Common Lisp and Modula-3, at the implementation level.
Its most enduring artifact has been the Boehm collector. Al-
though its goals are similar to ours, it explicitly avoids mod-
elling data representations—liballocs’s central feature.

Microsoft’s Common Language Runtime (CLR) and, to
a lesser extent, the repurposing of the JVM platform as a
multi-language infrastructure [Rose 2009], seek to host ever
larger fractions of a process’s code on a common VM imple-
mentation. This theme continues with systems such as Truf-
fleC [Grimmer et al. 2014]. A recurring weakness of these
approaches is an inability to eliminate “awkward” yet valu-
able code which targets the baseline Unix interfaces and is
not easily retargetable to the VM interfaces. This includes
binary-only code, source code in unsupported languages
such as C++ or Fortran, relatively unportable C or C++ code,
and so on. This leaves the process still bifurcated into “man-
aged” and “unmanaged” sectors, with all its familiar prob-
lems. We avoid this by several means: doggedly maintaining
compatibility with Unix ways; eliciting extra semantic infor-
mation only via minimally invasive techniques (such as link-
time interposition or binary instrumentation); avoiding any
requirement for commonality among language implementa-
tions beyond a very small shared core (the shared dynamic
loader, and liballocs itself); proactively accommodating plu-
rality of implementation by accepting per-allocator bindings
onto a simple allocation meta-protocol. This binding is usu-
ally implemented using instrumentation (as in §3.4), and
generally impinges little on the allocator implementation.

Specific implementations of individual pairs of languages
have succeeded at rendering the two languages mutually in-
teroperable [Rose and Muller 1992; Bothner 2003]. We lift
this to the meta-level: rather than fixing specific implemen-
tation details, we fix only a meta-level protocol allowing di-
verse implementations to achieve this feat.

Object-like abstractions can be built in any language,
even C, as witnessed by systems like GObject [Krause 2007].
Like conventional VMs, these are retrofittable onto liballocs.
Introspection systems such as GIR and SMOKE17 achieve

17 https://techbase.kde.org/Development/Languages/Smoke and
http://wiki.gnome.org/GObjectIntrospection/, retrieved on 2015/8/21



a subset of liballocs’s benefits, but only for code that has
already targeted these specific systems. Similarly, CORBA
and other systems based on interface definition languages re-
quire the up-front commitment of writing user code against
tool-generated stubs. By contrast, there is no need for user
code to “target” liballocs; it accommodates virtually any ex-
isting code targeting the host platform.

At least one credible proposal for a “standard” memory
management interfaces has appeared [Barnes et al. 1997],
although without the process-wide approach of liballocs.

The author articulated a few ideas common to liballocs
in earlier work [Kell and Irwin 2011], but with the emphasis
on implementing VMs differently, rather than retrofittability.

9. Conclusions
We have surveyed the various rudiments of virtual machine
services in Unix processes, and described liballocs, a sys-
tem which expands on these by adding pervasive type meta-
data and a query-based metadata interface. We also identi-
fied many applications, some of them already implemented.
These initial experiences have been positive, and we hope
retrofitting existing VMs onto liballocs will soon enable
a large reduction in complexity of common programming
tasks which would otherwise involve onerous bridging of
“native” and “managed” worlds.
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