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Introduction to Stochastic Calculus

These notes provide an introduction to stochastic calculus, the branch of mathematics that is most identified
with financial engineering and mathematical finance. We will ignore most of the “technical” details and take an
“engineering” approach to the subject. We will cover more material than is strictly necessary for this course.
Any material that is not required, however, should be of value for other courses such as Term Structure Models.

We make the following assumptions throughout.

• There is a probability triple (Ω,F , P ) where

– P is the “true” or physical probability measure

– Ω is the universe of possible outcomes. We use ω ∈ Ω to represent a generic outcome, typically a
sample path(s) of a stochastic process(es).

– the set1 F represents the set of possible events where an event is a subset of Ω.

• There is also a filtration, {Ft}t≥0, that models the evolution of information through time. So for example,
if it is known by time t whether or not an event, E, has occurred, then we have E ∈ Ft. If we are working
with a finite horizon, [0, T ], then we can take F = FT .

• We also say that a stochastic process, Xt, is Ft-adapted if the value of Xt is known at time t when the
information represented by Ft is known. All the processes we consider will be Ft-adapted so we will not
bother to state this in the sequel.

• In the continuous-time models that we will study, it will be understood that the filtration {Ft}t≥0 will be
the filtration generated by the stochastic processes (usually a Brownian motion, Wt) that are specified in
the model description.

• Since these notes regularly refer to numeraires and equivalent martingale measures (EMMs), readers
should be familiar with these concepts in advance. My Martingale Pricing Theory lecture note, for
example, covers these topics in a discrete-time, discrete-space framework. In Section 12 of these notes we
will discuss martingale pricing theory in the continuous-time setting and state without proof2 the two
Fundamental Theorems of Asset pricing.

1 Martingales and Brownian Motion

Definition 1 A stochastic process, {Wt : 0 ≤ t ≤ ∞}, is a standard Brownian motion if

1. W0 = 0

2. It has continuous sample paths

3. It has independent, normally-distributed increments.

1Technically, F is a σ-algebra.
2These Theorems, however, are stated and proven in the discrete-time, discrete-space setting of the Martingale Pricing

Theory lecture notes.
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Definition 2 An n-dimensional process, Wt = (W (1)
t , . . . ,W

(n)
t ), is a standard n-dimensional Brownian

motion if each W
(i)
t is a standard Brownian motion and the W

(i)
t ’s are independent of each other.

Definition 3 A stochastic process, {Xt : 0 ≤ t ≤ ∞}, is a martingale with respect to the filtration, Ft, and
probability measure, P , if

1. EP [|Xt|] < ∞ for all t ≥ 0

2. EP [Xt+s|Ft] = Xt for all t, s ≥ 0.

Example 1 (Brownian martingales)

Let Wt be a Brownian motion. Then Wt , W 2
t − t and exp

(
θWt − θ2t/2

)
are all martingales.

The latter martingale is an example of an exponential martingale. Exponential martingales are of particular
significance since they are positive and may be used to define new probability measures.

Exercise 1 (Conditional expectations as martingales) Let Z be a random variable and set
Xt := E[Z|Ft]. Show that Xt is a martingale.

2 Quadratic Variation

Consider a partition of the time interval, [0, T ] given by

0 = t0 < t1 < t2 < . . . < tn = T.

Let Xt be a Brownian motion and consider the sum of squared changes

Qn(T ) :=
n∑

i=1

[∆Xti ]
2 (1)

where ∆Xti := Xti −Xti−1 .

Definition 4 (Quadratic Variation) The quadratic variation of a stochastic process, Xt, is equal to the
limit of Qn(T ) as ∆t := maxi(ti − ti−1) → 0.

Theorem 1 The quadratic variation of a Brownian motion is equal to T with probability 1.

The functions with which you are normally familiar, e.g. continuous differentiable functions, have quadratic
variation equal to zero. Note that any continuous stochastic process or function3 that has non-zero quadratic
variation must have infinite total variation where the total variation of a process, Xt, on [0, T ] is defined as

Total Variation := lim
∆t→0

n∑

i=1

|Xtk
−Xtk−1 |.

This follows by observing that

n∑

i=1

(Xtk
−Xtk−1)

2 ≤
(

n∑

i=1

|Xtk
−Xtk−1 |

)
max

1≤k≤n
|Xtk

−Xtk−1 |. (2)

If we now let n →∞ in (2) then the continuity of Xt implies the impossibility of the process having finite total
variation and non-zero quadratic variation. Theorem 1 therefore implies that the total variation of a Brownian
motion is infinite. We have the following important result which will prove very useful when we price options
when there are multiple underlying Brownian motions, as is the case with quanto options for example.

3A sample path of a stochastic process can be viewed as a function.
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Theorem 2 (Levy’s Theorem) A continuous martingale is a Brownian motion if and only if its quadratic
variation over each interval [0, t] is equal to t.

Another interesting result is the following:

Theorem 3 Any non-constant continuous martingale must have infinite total variation.

We know from our discrete-time models that any arbitrage-free model must have an equivalent martingale
measure. The same is true in continuous-time models. Theorem 3 then implies that if we work in
continuous-time with continuous (deflated) price processes, then these processes must have infinite total
variation.

3 Stochastic Integrals

We now discuss the concept of a stochastic integral, ignoring the various technical conditions that are required
to make our definitions rigorous. In this section, we write Xt(ω) instead of the usual Xt to emphasize that the
quantities in question are stochastic.

Definition 5 A stopping time of the filtration Ft is a random time, τ , such that the event {τ ≤ t} ∈ Ft for all
t > 0.

In non-mathematical terms, we see that a stopping time is a random time whose value is part of the information
accumulated by that time.

Definition 6 We say a process, ht(ω), is elementary if it is piece-wise constant so that there exists a sequence
of stopping times 0 = t0 < t1 < . . . < tn = T and a set of Fti -measurable4 functions, ei(ω), such that

ht(ω) =
∑

i

ei(ω)I[ti,ti+1)(t)

where I[ti,ti+1)(t) = 1 if t ∈ [ti, ti+1) and 0 otherwise.

Definition 7 The stochastic integral of an elementary function, ht(ω), with respect to a Brownian motion,
Wt, is defined as ∫ T

0

ht(ω) dWt(ω) :=
n−1∑

i=0

ei(ω)
(
Wti+1(ω)−Wti(ω)

)
. (3)

Note that our definition of an elementary function assumes that the function, ht(ω), is evaluated at the
left-hand point of the interval in which t falls. This is a key component in the definition of the stochastic
integral: without it the results below would no longer hold. Moreover, defining the stochastic integral in this
way makes the resulting theory suitable for financial applications. In particular, if we interpret ht(ω) as a trading
strategy and the stochastic integral as the gains or losses from this trading strategy, then evaluating ht(ω) at
the left-hand point is equivalent to imposing the non-anticipativity of the trading strategy, a property that we
always wish to impose.

For a more general process, Xt(ω), we have

∫ T

0

Xt(ω) dWt(ω) := lim
n→∞

∫ T

0

X
(n)
t (ω) dWt(ω)

where X
(n)
t is a sequence of elementary processes that converges (in an appropriate manner) to Xt.

4A function f(ω) is Ft measurable if its value is known by time t.
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Example 2 We want to compute
∫ T

0
Wt dWt. Towards this end, let 0 = tn0 < tn1 < tn2 < . . . < tnn = T be a

partition of [0, T ] and define

Xn
t :=

n−1∑

i=0

Wtn
i
I[tn

i
,tn

i+1)
(t)

where I[tn
i

,tn
i+1)

(t) = 1 if t ∈ [tni , tni+1) and is 0 otherwise. Then Xn
t is an adapted elementary process and, by

continuity of Brownian motion, satisfies limn→∞Xn
t = Wt almost surely as maxi |tni+1 − tni | → 0. The Itô

integral of Xn
t is given by

∫ T

0

Xn
t dWt =

n−1∑

i=0

Wtn
i
(Wtn

i+1
−Wtn

i
)

=
1
2

n−1∑

i=0

(
W 2

tn
i+1

−W 2
tn
i
− (Wtn

i+1
−Wtn

i
)2

)

=
1
2
W 2

T −
1
2
W 2

0 − 1
2

n−1∑

i=0

(Wtn
i+1

−Wtn
i
)2. (4)

By the definition of quadratic variation the sum on the right-hand-side of (4) converges in probability to T . And
since W0 = 0 we obtain ∫ T

0

Wt dWt = lim
n→∞

∫ T

0

Xn
t dWt =

1
2
W 2

T − 1
2
T.

Note that we will generally evaluate stochastic integrals using Itô’s Lemma (to be discussed later) without
having to take limits of elementary processes as we did in Example 2.

Definition 8 We define the space L2[0, T ] to be the space of processes, Xt(ω), such that

E

[∫ T

0

Xt(ω)2 dt

]
< ∞.

Theorem 4 (Itô’s Isometry) For any Xt(ω) ∈ L2[0, T ] we have

E




(∫ T

0

Xt(ω) dWt(ω)

)2

 = E

[∫ T

0

Xt(ω)2 dt

]
.

Proof: (For the case where Xt is an elementary process)
Let Xt =

∑
i ei(ω)I[ti,ti+1)(t) be an elementary process where the ei(ω)’s and ti’s are as defined in Definition 6.

We therefore have
∫ T

0
Xt(ω) dWt(ω) :=

∑n−1
i=0 ei(ω)

(
Wti+1(ω)−Wti(ω)

)
We then have

E




(∫ T

0

Xt(ω) dWt(ω)

)2

 = E




(
n−1∑

i=0

ei(ω)
(
Wti+1(ω)−Wti(ω)

)
)2




=
n−1∑

i=0

E
[
e2
i (ω)

(
Wti+1(ω)−Wti(ω)

)2
]

+ 2
n−1∑

0≤i<j≤n−1

E
[
ei ej(ω)

(
Wti+1(ω)−Wti(ω)

) (
Wtj+1(ω)−Wtj (ω)

)]
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=
n−1∑

i=0

E


e2

i (ω) Eti

[(
Wti+1(ω)−Wti(ω)

)2
]

︸ ︷︷ ︸
= ti+1−ti




+ 2
n−1∑

0≤i<j≤n−1

E


ei ej(ω)

(
Wti+1(ω)−Wti

(ω)
)

Etj

[(
Wtj+1(ω)−Wtj (ω)

)]
︸ ︷︷ ︸

=0




= E

[
n−1∑

i=0

e2
i (ω)(ti+1 − ti)

]

= E

[∫ T

0

Xt(ω)2 dt

]

which is what we had to show.

Theorem 5 (Martingale Property of Stochastic Integrals) The stochastic integral,

Yt :=
∫ t

0
Xs(ω) dWs(ω), is a martingale for any Xt(ω) ∈ L2[0, T ].

Exercise 2 Check that
∫ t

0
Xs(ω) dWt(ω) is indeed a martingale when Xt is an elementary process. (Hint:

Follow the steps we took in our proof of Theorem 4.)

4 Stochastic Differential Equations

Definition 9 An n-dimensional Itô process, Xt, is a process that can be represented as

Xt = X0 +
∫ t

0

as ds +
∫ t

0

bs dWs (5)

where W is an m-dimensional standard Brownian motion, and a and b are n-dimensional and n×m-dimensional
Ft-adapted5 processes, respectively6.

We often use the notation
dXt = at dt + btdWt

as shorthand for (5). An n-dimensional stochastic differential equation (SDE) has the form

dXt = a(Xt, t) dt + b(Xt, t) dWt; X0 = x (6)

where as before, Wt is an m-dimensional standard Brownian motion, and a and b are n-dimensional and
n×m-dimensional adapted processes, respectively. Once again, (6) is shorthand for

Xt = x +
∫ t

0

a(Xs, s) dt +
∫ t

0

b(Xs, t) dWs. (7)

While we do not discuss the issue here, various conditions exist to guarantee existence and uniqueness of
solutions to (7). A useful tool for solving SDE’s is Itô’s Lemma which we now discuss.

5at and bt are Ft-‘adapted’ if at and bt are Ft-measurable for all t. We always assume that our processes are Ft-adapted.
6Additional technical conditions on at and bt are also necessary.
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5 Itô’s Lemma

Itô’s Lemma is the most important result in stochastic calculus, the “sine qua non” of the field. We first state
and give an outline proof of a basic form of the result.

Theorem 6 (Itô’s Lemma for 1-dimensional Brownian Motion)
Let Wt be a Brownian motion on [0, T ] and suppose f(x) is a twice continuously differentiable function on R.
Then for any t ≤ T we have

f(Wt) = f(0) +
1
2

∫ t

0

f ′′(Ws) ds +
∫ t

0

f ′(Ws) dWs. (8)

Proof: (Sketch) Let 0 = t0 < t1 < t2 < . . . < tn = t be a partition of [0, t]. Clearly

f(Wt) = f(0) +
n−1∑

i=0

(
f(Wti+1)− f(Wti)

)
. (9)

Taylor’s Theorem implies

f(Wti+1)− f(Wti
) = f ′(Wti

)(Wti+1 −Wti
) +

1
2
f ′′(θi)(Wti+1 −Wti

)2 (10)

for some θi ∈ (Wti ,Wti+1). Substituting (10) into (9) we obtain

f(Wt) = f(0) +
n−1∑

i=0

f ′(Wti)(Wti+1 −Wti) +
1
2

n−1∑

i=0

f ′′(θi)(Wti+1 −Wti)
2. (11)

If we let δ := maxi |ti+1 − ti| → 0 then it can be shown that the terms on the right-hand-side of (11) converge
to the corresponding terms on the right-hand-side of (8) as desired. (This should not be surprising as we know
the quadratic variation of Brownian motion on [0, t] is equal to t.)

A more general version of Itô’s Lemma can be stated for Itô processes.

Theorem 7 (Itô’s Lemma for 1-dimensional Itô process)
Let Xt be a 1-dimensional Itô process satisfying the SDE

dXt = µt dt + σt dWt.

If f(t, x) : [0,∞)×R → R is a C1,2 function and Zt := f(t,Xt) then

dZt =
∂f

∂t
(t, Xt) dt +

∂f

∂x
(t, Xt) dXt +

1
2

∂2f

∂x2
(t,Xt) (dXt)2

=
(

∂f

∂t
(t,Xt) +

∂f

∂x
(t,Xt) µt +

1
2

∂2f

∂x2
(t,Xt) σ2

t

)
dt +

∂f

∂x
(t,Xt) σt dWt

The “Box” Calculus

In the statement of Itô’s Lemma, we implicitly assumed that (dXt)2 = σs
t dt. The “box calculus” is a series of

simple rules for calculating such quantities. In particular, we use the rules

dt× dt = dt× dWt = 0 and

dWt × dWt = dt
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when determining quantities such as (dXt)2 in the statement of Itô’s Lemma above. Note that these rules are

consistent with Theorem 1. When we have two correlated Brownian motions, W
(1)
t and W

(2)
t , with correlation

coefficient, ρt, then we easily obtain that dW
(1)
t × dW

(2)
t = ρt dt. We use the box calculus for computing the

quadratic variation of Itô processes.

Exercise 3 Let W
(1)
t and W

(2)
t be two independent Brownian motions. Use Levy’s Theorem to show that

Wt := ρ W
(1)
t +

√
1− ρ2 W

(2)
t

is also a Brownian motion for a given constant, ρ.

Example 3

Suppose a stock price, St, satisfies the SDE

dSt = µtSt dt + σtSt dWt.

Then we can use the substitution, Yt = log(St) and Itô’s Lemma applied to the function7 f(x) := log(x) to
obtain

St = S0 exp
(∫ t

0

(µs − σ2
s/2) ds +

∫ t

0

σs dWs

)
. (12)

Note that St does not appear on the right-hand-side of (12) so that we have indeed solved the SDE. When
µs = µ and σsσ are constants we obtain

St = S0 exp
(
(µ− σ2/2) t + σ dWt

)
(13)

so that log(St) ∼ N
(
(µ− σ2/2)t, σ2t

)
.

Example 4 (Ornstein-Uhlenbeck Process)

Let St be a security price and suppose Xt = log(St) satisfies the SDE

dXt = [−γ(Xt − µt) + µ] dt + σdWt.

Then we can apply Itô’s Lemma to Yt := exp(γt)Xt to obtain

dYt = exp(γt) dXt + Xt d (exp(γt))
= exp(γt) ([−γ(Xt − µt) + µ] dt + σdWt) + Xtγ exp(γt) dt

= exp(γt) ([γµt + µ] dt + σdWt)

so that

Yt = Y0 + µ

∫ t

0

eγs (γs + 1) ds + σ

∫ t

0

eγs dWs (14)

or alternatively (after simplifying the Riemann integral in (14))

Xt = X0e
−γt + µt + σe−γt

∫ t

0

eγs dWs. (15)

Once again, note that Xt does not appear on the right-hand-side of (15) so that we have indeed solved the
SDE. We also obtain E[Xt] = X0e

−γt + µt and

Var(Xt) = Var
(

σe−γt

∫ t

0

eγs dWs

)
= σ2e−2γt E

[(∫ t

0

eγs dWs

)2
]

= σ2e−2γt

∫ t

0

e2γs ds (by Itô’s Isometry) (16)

=
σ2

2γ

(
1− e−2γt

)
. (17)

7Note that f(·) is not a function of t.
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These moments should be compared with the corresponding moments for log(St) in the previous example.

Theorem 8 (Itô’s Lemma for n-dimensional Itô process) Let Xt be an n-dimensional Itô process
satisfying the SDE

dXt = µt dt + σt dWt.

where Xt ∈ Rn, µt ∈ Rn, σt ∈ Rn×m and Wt is a standard m-dimensional Brownian motion. If
f(t, x) : [0,∞)×Rn → R is a C1,2 function and Zt := f(t,Xt) then

dZt =
∂f

∂t
(t,Xt) dt +

∑

i

∂f

∂xi
(t,Xt) dX

(i)
t +

1
2

∑

i,j

∂2f

∂xi∂xj
(t,Xt) dX

(i)
t dX

(j)
t

where dW
(i)
t dW

(j)
t = dt dW

(i)
t = 0 for i 6= j and dW

(i)
t dW

(i)
t = dt.

Exercise 4 Let Xt and Yt satisfy

dXt = µ
(1)
t dt + σ

(1,1)
t dW

(1)
t

dYt = µ
(2)
t dt + σ

(2,1)
t dW

(1)
t + σ

(2,2)
t dW

(2)
t

and define Zt := XtYt. Apply the multi-dimensional version of Itô’s Lemma to find the SDE satisfied by Zt.

6 The Martingale Representation Theorem

The martingale representation theorem is an important result that is particularly useful for constructing
replicating portfolios in complete financial models.

Theorem 9 Suppose Mt is an Ft-martingale where {Ft}t≥0 is the filtration generated by the n-dimensional

standard Brownian motion, Wt = (W (1)
t , . . . , W

(n)
t ). If E[M2

t ] < ∞ for all t then there exists a unique8

n-dimensional adapted stochastic process, φt, such that

Mt = M0 +
∫ t

0

φT
s dWt for all t ≥ 0

where φT
s denotes the transpose of the vector, φs.

Example 5 Let F = W 3
T and define Mt = Et[F ]. We will show that

Mt = 3
∫ t

0

(T − s + W 2
s ) dWs (18)

which is consistent with the Martingale Representation theorem. First we must calculate Mt. We do this using
the independent increments property of Brownian motion and obtain

Mt = Et[W 3
T ] = Et[(WT −Wt + Wt)3]

= Et[(WT −Wt)3]︸ ︷︷ ︸
= 0

+ Et[W 3
t ] + 3Et[Wt(WT −Wt)2] + 3Et[W 2

t (WT −Wt)]︸ ︷︷ ︸
= 0

= W 3
t + 3Wt(T − t). (19)

8To be precise, additional integrability conditions are required of φs in order to claim that it is unique.
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We can now apply Itô’s Lemma to (19) to obtain

dMt = 3W 2
t dWt +

1
2

6Wt dt + 3(T − t) dWt − 3Wt dt

= 3(W 2
t + T − t) dWt

which, noting M0 = 0, is (18).

7 Gaussian Processes

Definition 10 A process Xt, t ≥ 0, is a Gaussian process if (Xt1 , . . . , Xtn
) is jointly normally distributed for

every n and every set of times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn.

If Xt is a Gaussian process, then it is determined by its mean function, m(t), and its covariance function,
ρ(s, t), where

m(t) = E [Xt]
ρ(s, t) = E [(Xs −m(s))(Xt −m(t))] .

In particular, the joint moment generating function (MGF) of (Xt1 , . . . , Xtn) is given by

Mt1,...,tn(θ1, . . . , θn) = exp
(

θT m(t) +
1
2

θT Σθ

)
(20)

where m(t) = (m(t1) . . . m(tn))T and Σi,j = ρ(ti, tj).

Example 6 (Brownian motion)

Brownian motion is a Gaussian process with m(t) = 0 and ρ(s, t) = min(s, t) for all s, t ≥ 0.

Theorem 10 (Integration of a deterministic function w.r.t. a Brownian motion) Let Wt be a
Brownian motion and suppose

Xt =
∫ t

0

δs dWs

where δs is a deterministic function. Then Xt is a Gaussian process with m(t) = 0 and ρ(s, t) =
∫ min(s,t)

0
δ2
s ds.

Proof: (Sketch)

(i) First use Itô’s Lemma to show that

E
[
euXt

]
= 1 +

1
2
u2

∫ t

0

δ2
s E

[
euXs

]
ds. (21)

If we set yt := E
[
euXt

]
then we can differentiate across (21) to obtain the ODE

dy

dt
=

1
2
u2δ2

t y.

This is easily solved to obtain the MGF for Xt,

E
[
euXt

]
= exp

(
1
2
u2

∫ t

0

δ2
s ds

)
(22)
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which, as expected, is the MGF of a normal random variable with mean 0 and variance
∫ t

0
δ2
s ds.

(ii) We now use (22) and similar computations to show that the joint MGF of (Xt1 , . . . , Xtn
) has the form

given in (20) with m(t) = 0 and ρ(s, t) =
∫ min(s,t)

0
δ2
s ds. (See Shreve’s Stochastic Calculus for Finance II for

further details.)

The next theorem again concerns Gaussian processes and is often of interest9 when studying short-rate term
structure models.

Theorem 11 Let Wt be a Brownian motion and suppose δt and φt are deterministic functions. If

Xt :=
∫ t

0

δu dWu and Yt :=
∫ t

0

φuXu du

then Yt is a Gaussian process with m(t) = 0 and

ρ(s, t) =
∫ min(s,t)

0

δ2
v

(∫ s

v

φy dy

)(∫ t

v

φy dy

)
dv.

Proof: The proof is tedious but straightforward. (Again, see Shreve’s Stochastic Calculus for Finance II for
further details.)

Note for example that Brownian motion with drift and the Ornstein-Uhlenbeck process are both Gaussian
processes. Nonetheless, we saw in Example 4 that these two processes behave very differently: the
Ornstein-Uhlenbeck process mean-reverts and its variance tends to a finite limit as T →∞. This is not true of
Brownain motion with or without drift.

8 The Feynman-Kac Formula

Suppose Xt is a stochastic process satisfying the SDE dXt = µ(t,Xt) dt + σ(t,Xt) dWt. Now consider the
function, f(x, t), given by

f(t, x) = Ex
t

[∫ T

t

φ(t)
s h(Xs, s) ds + φ

(t)
T g(XT )

]

where

φ(t)
s = exp

(
−

∫ s

t

r(Xu, u) du

)

and the notation Ex
t [·] implies that the expectation should be taken conditional on time t information with

Xt = x. Note that f(x, t) may be interpreted as the time t price of a security that pays dividends at a
continuous rate, h(Xs, s) for s ≥ t, and with a terminal payoff g(XT ) at time T . Of course E[·] should then be
interpreted as an expectation under an equivalent martingale measure with the cash account as the
corresponding numeraire and r(·, ·) as the instantaneous risk-free rate.

The Feynman-Kac Theorem10 states that f(·, ·) satisfies the following PDE

∂f

∂t
(t,Xt) +

∂f

∂x
(t, Xt) µt(t,Xt) +

1
2

∂2f

∂x2
(t,Xt) σ2

t (t, Xt)− r(x, t)f(x, t) + h(x, t) = 0, (x, t) ∈ R× [0, T )

f(x, T ) = g(x), x ∈ R

9See, for example, Hull and White’s one-factor model.
10Additional technical conditions on µ, σ, r, h, g and f are required.
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Proof: (Sketch proof)
We will use the martingale property of conditional expectations which states that if Mt := Et[F ] where F is a
given fixed random variable then Mt is a martingale. First let

f(t,Xt) := Et

[∫ T

t

φ(t)
s h(Xs, s) ds + φ

(t)
T g(XT )

]
(23)

and note that the random variable inside the expectation on the right-hand-side of (23) is a function of t. This
means we cannot yet apply the martingale property of conditional expectations. However by adding∫ t

0
φ

(t)
s h(Xs, s) ds to both sides of (23) and then multiplying both sides by φ

(0)
t we obtain

φ
(0)
t

(
f(t, Xt) +

∫ t

0

φ(t)
s h(Xs, s) ds

)
= Et

[∫ T

0

φ(0)
s h(Xs, s) ds + φ

(0)
T g(XT )

]
(24)

= Et [Z] , say.

Note that Z does not depend on t and so we can now apply the martingale property of conditional expectations
to conclude that the left-hand-side of (24) is a martingale. We therefore apply Itô’s Lemma to the left-hand-side
and set the coefficient of dt to zero. This results in the Feynman-Kac PDE given above.

Remark 1 The Feynman-Kac result generalizes easily to the case where Xt is an n-dimensional Itô process
driven by an m-dimensional standard Brownian motion.

The Feynman-Kac Theorem plays an important role in financial engineering as it enables us to compute the
prices of derivative securities (which can be expressed as expectations according to martingale pricing theory) by
solving a PDE instead. It is worth mentioning, however, that in the development of derivatives pricing theory,
the PDE approach preceded the martingale approach. Indeed by constructing a replicating11 strategy for a given
derivative security, it can be shown directly that the price of the derivative security satisfies the Feynman-Kac
PDE.

9 Change of Probability Measure

The majority of financial engineering models price securities using the EMM, Q, that corresponds to taking the
cash account, Bt, as numeraire. Sometimes, however, it is particularly useful to work with another numeraire,
Nt, and its corresponding EMM, PN say. We now describe how to create new probability measures and how to
switch back and forth between these measures.

Let Q be a given probability measure and Mt a strictly positive Q-martingale such that EQ
0 [Mt] = 1 for all

t ∈ [0, T ]. We may then define a new equivalent probability measure, PM , by defining

PM (A) = EQ [MT 1A] .

Note that

(i) PM (Ω) = 1

(ii) PM (A) ≥ 0 for every event A and

(iii) It can easily be shown that

PM

(⋃

i

Ai

)
=

∑

i

PM (Ai)

whenever the Ai’s form a sequence of disjoint sets.

11We are implicitly assuming that the security can be replicated.
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Points (i), (ii) and (iii) above imply that PM is indeed a probability measure. Because the null-sets of Q and
PM coincide we can conclude that PM is indeed an equivalent probability measure (to Q). Expectations with
respect to PM then satisfy

EPM
0 [X] = EQ

0 [MT X] . (25)

Exercise 5 Verify (25) in the case where X(ω) =
∑n

i=1 ciI{ω∈Ai}, MT is constant on each Ai, and where
A1, . . . , An form a partition12 of Ω.

When we define a measure change this way, we use the notation dPM/dQ to refer to MT so that we often write

EPM
0 [X] = EQ

0

[
dPM

dQ
X

]
.

The following result explains how to switch between Q and PM when we are taking conditional expectations. In
particular, we have

EPM
t [X] =

EQ
t

[
dPM

dQ X
]

EQ
t

[
dPM

dQ

] (26)

=
EQ

t

[
dPM

dQ X
]

Mt
. (27)

Since Mt is a Q-martingale (27) follows easily from (26). We shall not prove (26), however, as it is more

difficult and requires the measure-theoretic definition of a conditional expectation.

Exercise 6 Show that if X is Ft-measurable, i.e. X is known by time t, then EPM
0 [X] = EQ

0 [MtX].

Remark 2 Since MT is strictly positive we can set X = IA/MT in (25) where IA is the indicator function of

the event A. We then obtain EPM
0 [IA/MT ] = EQ

0 [IA] = Q(A). In particular, we see that dQ/dPM is given by
1/MT .

Remark 3 In the context of security pricing, we can take Mt to be the deflated time t price of a security with
strictly positive payoff, normalized so that its expectation under Q is equal to 1. For example, let ZT

t be the
time t price of a zero-coupon bond maturing at time T , and let13 Bt denote the time t value of the cash
account. We could then set14 MT := 1/(BT ZT

0 ) so that

Mt = EQ
t

[
1

BT ZT
0

]

is indeed a Q-martingale. The resulting measure, denoted by PT , is sometimes called the T -forward measure.
Note that we have implicitly assumed (why?!) that in this context, Q refers to the EMM when we take the cash
account as numeraire. We discuss PT in further detail in Section 11.

12The Ai’s form a partition of Ω if Ai ∩Aj = ∅ whenever i 6= j and
⋃

i
Ai = Ω.

13We assume the zero-coupon bond has face value $1 and B0 = $1.
14Note that it is not the case that Mt = 1/(BtZt

0) which is not a Q-martingale.
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10 Girsanov’s Theorem

Girsanov’s Theorem is one of the most important results for financial engineering applications. When working
with models driven by Brownian motions15 it enables us to (i) identify the equivalent martingale measure(s)
corresponding to a given numeraire and (ii) to move back and forth between different EMM-numeraire pairs.
Consider then the process

Lt := exp
(
−

∫ t

0

ηs dWs − 1
2

∫ t

0

η2
s ds

)
(28)

where ηs is an adapted process and Ws is a P -Brownian motion. Using Itô’s Lemma we can check that
dLt = −Ltηt dWt so Lt is a positive martingale16 with EP

0 [Lt] = 1 for all t.

Theorem 12 (Girsanov’s Theorem) Define an equivalent probability measure, Qη, by setting

Qη(A) := EP
0 [LT 1A]. (29)

Then Ŵt := Wt +
∫ t

0
ηsds is a standard Qη-Brownian motion. Moreover, Ŵt has the martingale representation

property under Qη.

Remark 4 Suppose ηs = η, a constant. Then since Ŵt := Wt + ηt is a standard Qη-Brownian motion, it
implies that Wt = Ŵt − ηt is a Q-Brownian motion with drift −η.

Example 7 Let dXt = µt dt + σt dWt and suppose we wish to find a process, ηs, such that Xt is a
Qη-martingale. This is easily achieved as follows:

dXt = µt dt + σt dWt

= µt dt + σt (dŴt − ηt) dt

= σt dŴt

if we set ηt = µt/σt in which case Xt is a Qη-martingale. We can obtain some intuition for this result: suppose
for example that µt and σt are both positive so that ηt is also positive. Then we can see from the definition of
Lt in (28) that Lt places less weight on paths where Wt drifts upwards than it does on paths where it drifts
downwards. This relative weighting adjusts Xt for the positive drift induced by µt with the result that under
Qη, Xt is a martingale.

Remark 5 Note that Girsanov’s Theorem enables us to compute Qη-expectations directly without having to
switch back to the original measure, P .

We can get some additional intuition for the Girsanov Theorem by considering a random walk,
X = {X0 = 0, X1, . . . , Xn} with the interpretation that Xi is the value of the walk at time iT/n. In particular,
Xn corresponds to the value of the random walk at time T . We assume that ∆Xi := Xi −Xi−1 ∼ N(0, T/n)
under P and is independent of X0, . . . , Xi−1 for i = 1, . . . n.

Suppose now that we want to compute θ := EQ
0 [h(X)] where Q denotes the probability measure under which

∆Xi ∼ N(µ, T/n), again independently of X0, . . . , Xi−1. In particular, if we set µ := −Tη/n then Xt

approximates standard Brownian motion under P and Xt approximates Brownian motion with drift −η under Q.

15Versions of Girsanov’s Theorem are also available for jump-diffusion and other processes.
16In fact we need ηs to have some additional properties before we can claim Lt is a martingale. A sufficient condition is

Novikov’s Condition which requires EP
0

[
exp

(
1
2

∫ T

0
η2

s ds

)]
< ∞.
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If we let f(·) and g(·) denote the PDF’s of N(µ, T/n) and N(0, T/n) random variables, respectively, then we
obtain

θ = EQ
0 [h(X)] =

∫

Rn

h(x1, . . . , xn)

(
n∏

i=1

f(∆xi)

)
d∆x1 . . . d∆xn

=
∫

Rn

h(x1, . . . , xn)
∏

i

(
f(∆xi)
g(∆xi)

g(∆xi)
)

d∆x1 . . . d∆xn

=
∫

Rn

h(x1, . . . , xn)
∏

i

(
f(∆xi)
g(∆xi)

) (∏

i

g(∆xi)

)
d∆x1 . . . d∆xn

= EP
0

[
h(X1, . . . , Xn)

∏

i

(
f(∆Xi)
g(∆Xi)

)]

= EP
0

[
h(X1, . . . , Xn) exp

(
−η

∑

i

∆Xi − η2T

2

)]

= EP
0

[
h(X1, . . . , Xn) exp

(
−ηXn − η2T

2

)]

which is consistent with our statement of Girsanov’s Theorem in (28) and (29) above. (See Remark 4.)

Remark 6 (i) As in the statement of the Girsanov Theorem itself, we could have chosen µ (and therefore η)
to be adapted, i.e. to depend on prior events, in the random walk.

(ii) Note that Girsanov’s Theorem allows the drift, but not the volatility of the Brownian motion, to change
under the new measure, Qη. It is interesting to see that we are not so constrained in the case of the random
walk. Have you any intuition for why this is so?

Multidimensional Girsanov’s Theorem

The multidimensional version of Girsanov’s Theorem is a straightforward generalization of the one-dimensional
version. In particular let Wt be an n-dimensional standard P -Brownian motion and define

Lt := exp
(
−

∫ t

0

ηT
s dWs − 1

2

∫ t

0

ηT
s ηs ds

)

for t ∈ [0, T ]. Then17 Ŵt := Wt +
∫ t

0
ηsds is a standard Qη-Brownian motion where dQη/dP = LT .

17Again it is necessary to make some further assumptions in order to guarantee that Lt is a martingale. Novikov’s condition
is sufficient.
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11 A Useful EMM: The Forward Measure

We now discuss the τ -forward measure, P τ , which is the EMM that corresponds to taking the zero-coupon
bond with maturity τ as the numeraire. We therefore let Zτ

t denote the time t price of a zero-coupon bond
maturing at time τ ≥ t and with face value $1. As usual, we let Q denote the EMM corresponding to taking the
cash account, Bt, as numeraire. We assume without loss of generality that B0 = $1 and now use Zτ

t to define
our new measure. To do this, set

dP τ

dQ
=

1
BτZτ

0

. (30)

Exercise 7 Check that (30) does indeed define an equivalent probability measure.

Now let Ct denote the time t price of a contingent claim that expires at time τ . We then have

Ct = BtE
Q
t

[
Cτ

Bτ

]
(by martingale pricing with EMM Q) (31)

=
BtEP τ

t

[
Cτ

Bτ
BτZτ

0

]

EP τ

t [BτZτ
0 ]

(going from Q to P τ using (26)) (32)

=
BtZ

τ
0 EP τ

t [Cτ ]

EQ
t [1] /EQ

t [1/(BτZτ
0 )]

(going from P τ to Qin the denominator of (32) using (26))

= Zτ
t EP τ

t [Cτ ] (by martingale pricing with EMM Q). (33)

We can now find Ct, either through equation (33) or through equation (31) where we use the cash account as
numeraire. Computing Ct through (31) is our “usual method” and is often very convenient. When pricing
equity derivatives, for example, we usually take interest rates, and hence the cash account, to be deterministic.
This means that the factor 1/Bτ in (31) can be taken outside the expectation so only the Q-distribution of Cτ

is needed to compute Ct.

When interest rates are stochastic we cannot take the factor 1/Bτ outside the expectation in (31) and we
therefore need to find the joint Q-distribution of (Bτ , Cτ ) in order to compute Ct. On the other hand, if we
use equation (33) to compute Ct, then we only need the P τ -distribution of Cτ , regardless of whether or not
interest rates are stochastic. Working with a univariate-distribution is generally much easier than working with a
bivariate-distribution so if we can easily find the P τ -distribution of Cτ , then it can often be very advantageous
to work with this distribution. The forward measure is therefore particularly useful when studying term-structure
models.

Switching to a different numeraire can also be advantageous in other circumstances, even when interest rates
are deterministic. For example, we will find it convenient to do so when pricing quanto-options and options on
multiple underlying securities. Moreover, we will see how we can use Girsanov’s Theorem to move back and
forth between Q and other EMMs corresponding to other numeraires.
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12 Applying Stochastic Calculus: Martingale Pricing Theory

We now briefly outline how the martingale pricing theory that we have seen in a discrete-time, discrete-space
framework translates to a continuous-time setting. We use St to denote the time t price of a risky asset and Bt

to denote the time t value of the cash account. For ease of exposition we assume the risky asset does not18 pay

dividends. Let φ
(s)
t and φ

(b)
t denote the number of units of the security and cash account, respectively, that is

held in a portfolio at time t. Then the value of the portfolio at time t is given by Vt = φ
(s)
t St + φ

(b)
t Bt.

Definition 11 We say φt := (φ(s)
t , φ

(b)
t ) is self-financing if

dVt = φ
(s)
t dSt + φ

(b)
t dBt.

Note that this definition is consistent with our definition for discrete-time models. It is also worth emphasizing
the mathematical content of this definition. Note that Itô’s Lemma implies

dVt = φ
(s)
t dSt + φ

(b)
t dBt + St dφ

(s)
t + Bt dφ

(b)
t + dSt dφ

(s)
t + dBt dφ

(b)
t︸ ︷︷ ︸

A

so that the self-financing assumption amounts to assuming that the sum of the terms in A are identically zero.

Our definitions of arbitrage, numeraire securities, equivalent martingale measures and complete markets is
unchanged from the discrete-time setup. We now state19 without proof the two fundamental theorems of asset
pricing. These results mirror those from the discrete-time theory.

Theorem 13 (The First Fundamental Theorem of Asset Pricing) There is no arbitrage if and only if
there exists an EMM, Q.

A consequence of Theorem 13 is that in the absence of arbitrage, the deflated value process, Vt/Nt, of any
self-financing trading strategy is a Q-martingale. This implies that the deflated price of any attainable security
can be computed as the Q-expectation of the terminal deflated value of the security.

Theorem 14 (The Second Fundamental Theorem of Asset Pricing) Assume there exists a security
with strictly positive price process and that there are no arbitrage opportunities. Then the market is complete if
and only if there exists exactly one risk-neutral martingale measure, Q.

Beyond their theoretical significance, these theorems are also important in practice. If our model is complete
then we can price securities with the unique EMM that accompanies it, assuming of course the absence of
arbitrage. This is the case for the Black-Scholes model as well as local volatility models. If our model is
incomplete then we generally work directly under an EMM, Q, which is then calibrated to market data. In
particular, the true data-generating probability measure, P , is often completely ignored when working with
incomplete models. In some sense the issue of completeness then only arises when we discuss replicating or
hedging strategies.

Determining Replicating Strategies

The following example is particularly useful in many financial engineering applications. While we focus on the
case of a single risky security the result generalizes easily to multiple risky securities. We assume the market is
complete of course, since only in that case can we guarantee that a replicating strategy actually exists.

18We can easily adapt our definition of a self-financing trading strategy to accommodate securities that pay dividends.
19Additional technical conditions are generally required to actually prove these results.
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Example 8 (Wealth Dynamics and Hedging)

We know the value of the cash-account, Bt, satisfies dBt = rtBt dt and suppose in addition that St satisfies

dSt = µtSt dt + σtStdWt. (34)

Then for a portfolio (φ(s)
t , φ

(b)
t ), the portfolio value, Vt, at time t satisfies Vt := φ

(s)
t St + φ

(b)
t Bt. If

φt := (φ(s)
t , φ

(b)
t ) is self-financing, then we have

dVt = φ
(s)
t dSt + φ

(b)
t dBt

= φ
(s)
t µtSt dt + φ

(s)
t σtSt dWt + φ

(b)
t rtBt dt

= Vt

[
φ

(s)
t St

Vt
µt +

φ
(b)
t Bt

Vt
rt

]
dt +

φ
(s)
t St

Vt
σtVt dWt

= Vt [rt + θt(µt − rt)] dt + θtσtVt dWt (35)

where θt and (1− θt) are the fractions of time t wealth, Vt, invested in the risky asset and cash account,
respectively, at time t.

Suppose now that Vt is the time t value of some derivative security and that we want to determine the

self-financing trading strategy, (φ(s)
t , φ

(b)
t ), that replicates it. By writing the dynamics of Vt as in (35), we can

immediately determine θt, the fraction of time t wealth that is invested in the risky asset. In particular, θt is the
coefficient of σtVt dWt in the dynamics of Vt. Note also that we can work under any probability measure we
choose since different probability measures will only change the drift of Vt and not the volatility. Once we have

θt we immediately have 1− θt and then also (φ(s)
t , φ

(b)
t ).

Remark 7 If a security pays dividends or coupons, then in the above statements we should replace the security
price with the total gain process from holding the security. For example, if a stock pays a continuous dividend
yield of q, then Yt := eqtSt is the total gain process. It is what your portfolio would be worth at time t if you
purchased one unit of the security at time t = 0 and reinvested all dividends immediately back into the stock.

The portfolio (φ(s)
t , φ

(b)
t ) is then said to be self-financing if

dVt = φ
(s)
t dYt + φ

(b)
t dBt

= φ
(s)
t d(eqtSt) + φ

(b)
t dBt

= φ
(s)
t

(
eqt dSt + qYt dt

)
+ φ

(b)
t dBt. (36)

We shall make use of (36) later in the course when we price options on dividend-paying securities.

The Role of Girsanov’s Theorem

Suppose we again adopt the setting of Example 8 and that the risky security does not pay dividends. If we
deflate as usual by the cash account then we can let Zt := St/Bt denote the deflated time t value of the risky
asset. Assume also that Wt is a P -Brownian motion where P is the true data-generating probability measure.
Then it is easy to check using Itô’s Lemma that

dZt = Zt(µt − r) dt + Ztσt dWt. (37)

But we know from the first fundamental theorem that Zt must be a Q-martingale. Girsanov’s Theorem,
however, implies that Zt is a Q-martingale only if Ŵt := Wt +

∫ t

0
ηs ds is a Q-Brownian motion with

ηs := (µs − r)/σs. Indeed, because there is only one such process, ηs, this Q is unique20 and the market is
therefore complete by the second fundamental theorem. We then obtain that the Q-dynamics for St satisfy

dSt = rSt dt + σtSt dŴt.

20If, for example, there were two Brownian motions and only one risky security then there would be infinitely many processes,
ηs, that we could use to make Zt a martingale. In this case we could therefore conclude that the market was incomplete.
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Exercise 8 Suppose now that the risky asset pays a continuous dividend yield, q. Show that the Q-dynamics
of St now satisfy

dSt = (r − q)St dt + σtSt dŴt.

(Hint: Remember that it is now the deflated total gains process that is now a Q-martingale.)

We can use these observations now to derive the Black-Scholes formula. Suppose the stock-price, St, has
P -dynamics

dSt = µtSt dt + σSt dWt

where Wt is a P -Brownian motion. Note that we have now assumed a constant volatility, σ, as Black and
Scholes originally assumed. If the stock pays a continuous dividend yield of q then martingale pricing implies
that the price of a call option on the stock with maturity T and strike K is given by

C0 = EQ
0

[
e−rT (ST −K)+

]
(38)

where log(ST ) ∼ N
(
(r − q − σ2/2)T, σT

)
. We can therefore compute the right-hand-side of (38) analytically

to obtain the Black-Scholes formula.

The following exercise is perhaps too difficult at this stage of the course. Later on, however, when we have had
plenty of practice with Girsanov’s Theorem and changing probability measures, we will see how straightforward
such questions are.

Exercise 9 Consider an equity model with two securities, A and B, whose price processes, S
(a)
t and S

(b)
t

respectively, satisfy the following SDE’s

dS
(a)
t = rS

(a)
t dt + σ1S

(a)
t dW

(1)
t

dS
(b)
t = rS

(b)
t dt + σ2S

(b)
t

(
ρ dW

(1)
t +

√
1− ρ2 dW

(2)
t

)

where (W (1)
t , W

(2)
t ) is a 2-dimensional Q-standard Brownian motion. We assume the cash account is the

numeraire security corresponding to Q (which is consistent with the Q-dynamics of S
(a)
t and S

(b)
t ) and that the

continuously compounded interest rate, r, is constant. Use the change of numeraire technique to compute the

time 0 price, C0 of a European option that expires at time T with payoff max (0, S
(a)
T − S

(b)
T ).


