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Abstract

Human-robot interaction is a growing research domain;
there are many approaches to robot design, depending on
the particular aspects of interaction being focused on. In
this paper we present an action-based framework that pro-
vides a natural means for robots to interact with humans
and to learn from them. Perception and action are the es-
sential means for a robot’s interaction with the environ-
ment; for successful robot performanceit is thus important
to explait this relation between a robot and its environment.
Our approach links perception and actions in a unique ar-
chitecture for representing a robot’s skills (behaviors). We
use this architecture to endow the robots with the ability
to convey their intentions by acting upon their environment
and also to learn to perform complex tasks from observ-
ing and experiencing a demonstration by a human teacher.
We demonstrate these concepts with a Pioneer 2DX mo-
bile robot, learning various tasks from a human and, when
needed, interacting with a human to get help by conveying
its intentions through actions.

1. Introduction

Human-robot interaction is an area of growing interest in
Robotics. Environments that feature the interaction of hu-
mans and robots present a significant number of challenges,
spawning several important research directions. These do-
mains of human-machine co-existence form a new type of
“saciety” in which the robot’s role is essential in determin-
ing the nature of resulting interactions. In this work we fo-
cus on two major challenges of key importance for design-
ing robots that will be effective in human-robot domains.

The first challenge we address is the design of robots that
exhibit social behavior, in order to allow them to engage in

various types of interactions. This is a very large domain,
with examples including teachers [5], workers, members of
a team, cooperating with other robots and people to solve
and perform tasks [9]. Robots can be entertainers, such as
museum tour-guides [8], toys [17], pets, or emotional com-
panions [4]. Designing control architectures for such robots
presents particular challenges, in large part specific for each
of these domains.

The second challenge we address is to build robots that
have the ability to learn through social interaction with hu-
mans or with other robots in the environment, in order to
improve their performance and expand their capabilities.
Successful examples include robots imitating demonstrated
tasks (such as maze learning [10] and juggling [21]) and the
use natural cues (such as models of joint attention [20]) as
means for social interaction.

In this paper we present an approach that unifies the two
challenges above, interaction and learning in human-robot
environments, by unifying perceptionand action in the form
of action-based interaction. Our approach relies on an ar-
chitecture that is based on a set of behaviors or skills con-
sisting of both active and perceptual components.

The perceptual component of a behavior gives the robot
the capability of creating a link between its observations
and its own actions, which enables it to learn to perform a
particular task from the experiences it had while interacting
with humans.

The active component of a robot behavior allows the
use of implicit communication, which does not rely on a
symbolic language, and instead uses actions, whose out-
comes are invariant to the specific body performing them.
A robot can thus convey its intentions by suggesting them
through actions, rather than communicating them through
conventional signs, sounds, gestures, or marks with previ-
ously agreed-upon meanings. We employ these actions as
a vocabulary that a robot could use to induce a human to



assist it for parts of tasks that it is not able to perform on
its own. The particularities of our behavior architecture are
described in Section 2.

To illustrate our approach, we present experiments in
which a human acts both as a teacher and a collaborator
for a mobile robot. The different aspects of this interaction
help demonstrate the robot’s learning and social abilities.

This paper is organized as follows. Section 2 presents
the behavior representation that we are using, and the im-
portance of the architecture for our proposed challenges.
In Section 3, we present the model for human-robot inter-
action and the general strategy for communicating inten-
tions, including experiments in which a robot engaged a
human in interaction through actions indicative of its in-
tentions. Section 4 describes the method for learning task
representations from experienced interactions with humans
and presents experimental demonstrations and validation of
learning task representations from demonstration. Sections
5and 6 discuss different related approaches and present the
conclusions of the described work.

2. Behavior representation

Perception and action are the essential means of inter-
action with the environment. The performance and the ca-
pabilities of a robot are dependent on its available actions,
and thus they are an essential component of its design. As
underlying control architecture we are using a behavior-
based approach [15, 1], in which time-extended actions that
achieve or maintain a particular goal are grouped into be-
haviors, the key building blocks for intelligent, complex ob-
servable behavior. The complexity of a robot’s skills can
range from elementary actions (such as “go forward”, “turn
left”) to temporally-extended behaviors (such as “follow”,
“go home”, etc.).
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Figure 1. Structure of the inputs/outputs of an
abstract and primitive behavior.

Within our architecture, behaviors are build from two
components: one related to perception (Abstract behavior),
the other to actions (Primitive behavior) (Figure 1). The
abstract behavior is simply an explicit specification of the
behavior’s activation conditions (i.e., preconditions), and its
effects (i.e., postconditions). The behaviors that do the work

that achieves the specified effects under the given condi-
tions are called primitive behaviors. An abstract behavior
takes sensory information from the environment and, when
its preconditions are met, activates the corresponding prim-
itive behavior(s), which achieve the effects specified in its
postconditions.

This architecture provides a simple and natural way of
representing robot tasks in the form of behavior networks
[19], and also has the flexibility required for robust function
in dynamically changing environments. Figure 2 shows a
generic behavior network.
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The abstract behaviors embed representations of a be-
havior’s goals in the form of abstracted environmental
states. This is a key feature of our architecture, and a critical
aspect for learning from experience. In order tolearn atask
the robot hasto create a link between perception (observa-
tions) and the actionsthat would achieve the same observed
effects. This process is enabled by the abstract behaviors,
the perceptual component of a behavior. This component
fires each time the observations match a primitive’s goals,
allowing the robot to identify during its experience the be-
haviors that are relevant for the task being learned.

The primitive behaviors are the active component of a
behavior, executing the robot’s actions and achieving its
goals. Acting in the environment is a form of implicit com-
munication that plays a key role in human interaction. Us-
ing evocative actions, people (and other animals) convey
emotions, desires, interests, and intentions. Action-based
communication has the advantage that it need not be re-
stricted to robots or agents with a humanoid body or face:
structural similarities between the interacting agents are not
required to achieve successful interaction. Even if there is
no exact mapping between a mobile robot’s physical char-
acteristics and those of a human user, the robot may still
be able to convey a message, since communication through
action also draws on human common sense [6]. In the next
section we describe how our approach achieves this type of
communication.

3. Communication by acting - a means for
robot-human interaction

Our goal is to develop a model of interaction with hu-
mans that would allow a robot to induce a human to assist it



by being able to express its intentions in a way that humans
could easily understand. We first present a general example
that illustrates the basic idea of our approach.

Consider a prelinguistic child who wants a toy that is out
of his reach. To get it, the child will try to bring a grown-up
to the toy and will then point and even try to reach it, in-
dicating his intentions. Similarly, a dog will run back and
forth to induce its owner to come to a place where it has
found something it desires. The ability of the child and the
dog to demonstrate their intentions by calling a helper and
mock-executing an action is an expressive and natural way
to communicate a problem and need for help. The capac-
ity of a human observer to understand these intentions from
exhibited behavior is also natural since the actions carry in-
tentional meanings, and thus are easy to understand.

We apply the same strategy in the robot domain. The
action-based communication approach we propose for the
purpose of suggesting intentions is general and can be ap-
plied across different tasks and physical bodies/platforms.
In our approach, a robot performs its task independently,
but if it fails in a cognizant fashion, it searches for a human
and attempts to induce him to follow it to the place where
the failure occurred and demonstrates its intentions in hopes
of obtaining help. Next, we describe how this communica-
tion is achieved.

Immediately after a failure, the robot saves the current
state of the task execution (failure context), in order to be
able to later restart execution from that point.
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Figure 3. Behavior network for calling a hu-
man

Next, the robot starts the process of finding and luring
a human to help. This is implemented as a behavior-based
system, which uses two instances of a Track(Human, an-
gle, distance) behavior, with different values of the Dis-
tance parameter: one for getting close (50cm) and one for
getting farther (1m) (Figure 3). As part of the first track-
ing behavior, the robot searches for and follows a human
until he stops and the robot gets sufficiently close. At that
point, the preconditions for the second tracking behavior
are active, so the robot backs up in order to get to the far-
ther distance. Once the outcomes of this behavior have been
achieved (and detected by the Init behavior), the robot re-
instantiates the network, resulting in a back and forth cy-
cling behavior, much like a dog’s behavior for enticing a
human to follow it. When the detected distance between
the robot and the human becomes smaller than the values of
the Distance parameter for any one of its Track behaviors
for some period of time, the cycling behavior is terminated.

The Track behavior enables the robot to follow colored
targets at any distance in the [30, 200] cm range and any
angle in the [0, 180] degree range, by merging the infor-
mation from the camera and the laser range-finder. Thus,
the behavior gives the robot the ability to keep track of po-
sitions of objects around it, even if they are not currently
visible, akin to working memory.

After capturing the human’s attention, the robot switches
back to the task it was performing, from the point where it
failed, while making sure that the human is following. This
is achieved by adjusting the speed of the robot such that the
human follower is kept within desirable range behind the
robot. If the follower is lost, the robot starts searching again
for another helper. After a few experiences with unhelpful
humans, the robot will again attempt to perform the task on
its own. If a human provides useful assistance, and the robot
is able to execute the previously failed behavior, the robot
continues with task execution as normal.

Thus, the robot retries to execute its task from the point
where it has failed, while making sure that the human helper
is near by. Executing the previously failed behavior will
likely fail again, effectively expressing to the human the
robot’s problem.

In the next section we describe the experiments we per-
formed to test the above approach to human-robot interac-
tion, involving cases in which the human is helpful, unhelp-
ful, or uninterested.

3.1. Experiments on Robot Interacting with hu-
mans - Communication by Acting

The experiments that we present in this section focus on
performing actions as a means of communicating intentions
and needs. Initially, the robot (which has a typical mobile
robot form entirely different from that of the human) was
given a behavior set that allowed it to track colored targets,
open doors, pick up, drop, and push objects. The behaviors
were implemented using AYLLU [22], an extension of the
C language for development of distributed control systems
for mobile robot teams.

We tested our concepts on a Pioneer 2-DX mobile robot,
equipped with two rings of sonars (8 front and 8 rear), a
SICK laser range-finder, a pan-tilt-zoom color camera, a
gripper, and on-board computation on a PC104 stack.

In order to test the interaction model we described above,
we designed a set of experiments in which the environment
was changed so that the robot’s execution of the task be-
came impossible without some outside assistance.

The failure to perform any one of the steps of the task
induced the robot to seek help and to perform evocative ac-
tions in order to catch the attention of a human and get him
to the place where the problem occurred. In order to com-
municate the nature of the problem, the robot repeatedly



tried to execute the failed behavior in front of its helper.
This is a general strategy that can be employed for a wide
variety of failures. However, as demonstrated in our third
example below, there are situations for which this approach
is not sufficient for conveying the message about the robot’s
intent. In those, explicit communication, such as natural
language, is more effective. We discuss how different types
of failures require different modes of communication for
help.

In our validation experiments, we asked a person that had
not worked with the robot before to be close during the tasks
execution and expect to be engaged in interaction. During
the experiment set, we encountered different situations, cor-
responding to different reactions of the human in response
to the robot. We can group these cases into the following
main categories:

e uninterested: the human was not interested in, did not
react to, or did not understand the robot’s calling for help.
As a result, the robot started to search for another helper.

e interested, unhelpful: the human was interested and
followed the robot for a while but then abandoned it. As in
the previous case, when the robot detected that the helper
was lost, it started to look for another one.

¢ helpful: the human followed the robot to the location of
the problem and assisted the robot. In these cases the robot
was able to finish the execution of the task, benefiting from
the help it had received.

We purposefully constrained the environment in which
the task was to be performed, in order to encourage human-
robot interaction. The helper’s behavior, consequently, had
a decisive impact on the robot’s task performance: when
uninterested or unhelpful, failure ensued either due to ex-
ceeding time constraints or to the robot giving up the task
after trying for too many times. However, there were also
cases when the robot failed to find or entice the human to
come along, due to visual sensing limitations or the robot
failing to expressively execute its calling behavior. The few
cases in which a failure occurred despite the assistance of a
helpful human are presented below, along with a description
of each of the three experimental tasks and overall results.

3.1.1. Traversing blocked gates

In this section we discuss an experiment in which a robot
is given a task of traversing gates formed by two closely
placed colored targets (see Figure 4(a)). The environment
is arranged such that the path between the targets is blocked
by a large box that prevents the robot from going through.

Expressing intentionality of performing this task is done
by executing the Track behavior, which allows the robot
to make its way around one of the targets. While trying to
reach the desired distance and angle to the target, hindered

by the large box, the robot shows the direction it wants to
go in, which is blocked by the obstacle.
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Figure 4. The human-robot interaction exper-
iments setup

We performed 12 experiments in which the human
proved to be helpful. Failures in accomplishing the task oc-
curred in three of the cases, in which the robot could not get
through the gate even after the human had cleared the box
from its way. For the rest of the cases the robot successfully
finished the task with the human’s assistance.

3.1.2. Moving inaccessible located objects

The experiment described in this section involves mov-
ing objects around. The robot is supposed to pick up a small
object, close to a big blue target. In order to induce the robot
to seek help, we placed the desired object in a narrow space
between two large boxes, thus making it inaccessible to the
robot (see Figure 4(b)).

The robot expresses the intentions of getting the object
by simply attempting to execute the corresponding PickUp
behavior. This forces the robot to lower and open its gripper
and tilt its camera down when approaching the object. The
drive to pick up the object is combined with the effect of
avoiding large boxes, causing the robot to go back and forth
in front of the narrow space and thus convey an expressive
message about its intentions and its problem.

From 12 experiments in which the human proved to be
helpful, we recorded two failures in achieving the task.
These failures were due to the robot losing track of the ob-
ject during the human’s intervention and being unable to
find it again before the allocated time expired. For the rest
of the cases the help received allowed the robot to success-
fully finish the task execution.

3.1.3. Visiting non-existing targets

In this section we present an experiment that does not fall
into the category of the tasks mentioned above and is an ex-



ample for which the framework of communicating through
actions should be extended to include more explicit means
of communication. Consider a task of visiting a number of
targets, in a given order (Green, Orange, Blue, Yellow, Or-
ange, Green), in which one of the targets has been removed
from the environment (Figure 4(c)).

The robot gives up after some time of searching for the
missing target and goes to the human for help. By applying
the same strategy of executing in front of the helper the be-
havior that failed, the result will be a continuous wandering
in search of the target from which it is hard to infer what
the robot’s goal and problem are. It is evident that the robot
is looking for something - but without the ability to name
the missing object, the human cannot intervene in a helpful
way.

3.2. Discussion

The experiments presented above demonstrate that im-
plicit yet expressive action-based communication can be
successfully used even in the domain of mobile robotics,
where the robots cannot utilize physical structure similari-
ties between themselves and the people they are interacting
with. However, as our third experiment showed, there are
situations in which actions alone are not sufficient for con-
veying the robot’s intent. This is due to the fact that the
failure the robot encountered has aspects that could not be
expressed by only repeating the unsuccessful actions. For
those cases we should employ explicit forms of communi-
cation, such as natural language, to convey the necessary
information.

From the results, our observations, and the report of the
human subject interacting with the robot throughout the ex-
periments, we derive the following conclusions about the
various aspects of the robot’s social behavior:

e Capturing a human’s attention by approaching and
then going back and forth in front of him is a behavior typ-
ically easily recognized and interpreted as soliciting help.

e Getting a human to follow by turning around and start-
ing to go to the place where the problem occurred (after cap-
turing the human’s attention) requires multiple trials in or-
der for the human to completely follow the robot the entire
way. This is due to several reasons: first, even if interested
and realizing that the robot wants something from him, the
human may not actually believe that he is being called by
a robot in a way in which a dog would do it and does not
expect that following is what he should do. Second, after
choosing to go with the robot, if wandering in search of
the place with the problem takes too much time, the human
gives up not knowing whether the robot still needs him.

e Conveying intentions by repeating the actions of a fail-
ing behavior in front of a helper is easily achieved for tasks

in which all the elements of the behavior execution are ob-
servable to the human. Upon reaching the place of the
robot’s problem, the helper is already engaged in interac-
tion and is expecting to be shown something. Therefore,
seeing the robot trying and failing to perform certain ac-
tions is a clear indication of the robot’s intentions and need
for assistance.

4. Learning from human demonstrations

Automating the robot controller design process is a topic
of particular interest for robotic researchers; its goal is to
allow both specialized and non-specialized users to easily
“program” the robots according to their needs. A natural
approach to this problem is the use of teaching by demon-
stration. Instead of having to write, by hand, a controller
that achieves a particular task, we allow a robot to automat-
ically build it from observation or from the experience it had
while interacting with a teacher. It is the latter approach that
we will consider in this work, as a means for transfer of task
knowledge from teachers to robots.

We assume that the robot is equipped with a set of be-
haviors, also called primitives, which can be combined into
a variety of tasks. We then focus on a learning strategy that
would help a robot build high-level task representation that
will achieve the goals demonstrated by a teacher through the
activation of the existing behavior set. We do not attempt to
reproduce exact trajectories or actions of the teacher, but
rather learn the task in terms of its high-level goals.

In our particular approach to learning, we use learning
by experienced demonstrations. This implies that the robot
actively participates in the demonstration provided by the
teacher, by following the human, and experiencing the task
through its own sensors. Thus, our approach is once again
action-based: the robot has to perform the task in order
to learn it. This is an essential characteristic of our ap-
proach, and is what is providing the robot the data necessary
for learning. In the mobile robot domain the experienced
demonstrations are achieved by following of and interact-
ing with the teacher. The advantage of “putting the robot
through” the task during the demonstration is that the robot
is able to adjust its behaviors (through their parameters) us-
ing the information gathered through its own sensors. In
contrast, if the task were designed by hand, a user would
have to determine those parameter values. Furthermore, if
the robot were merely observing but not executing the task,
it would also have to estimate the parameter values at least
for the initial trial or set of trials. In addition to experienc-
ing parameter values directly, the execution of the behaviors
provides observations that contain temporal information for
proper behavior sequencing, which would be tedious to de-
sign by hand for tasks with long temporal sequences.

An important challenge for a learning method that is



based on robot’s observations is to distinguish between the
relevant and irrelevant information that the robot is perceiv-
ing. In our architecture, the abstract behaviors help the
robots significantly in pruning the observations that are not
related to their own skills, but it is still impossible to de-
termine exactly what is really relevant for a particular task.
For example, while teaching a robot to go and pick up the
mail, a robot can detect numerous other aspects along its
path (e.g., passing a chair, meeting another robot, etc.).
However, these observations should not be included in the
robot’s learned task, as they are irrelevant for getting the
mail.

To have a robot learn a task correctly in such conditions,
the teacher needs a means of providing the robot with addi-
tional information than just the demonstration experience.
In our approach, the teacher is allowed to signal through
gestures (by showing a colored marker) the moments in
time when the environment presents aspects relevant to the
task. While this allows the robot to distinguish some of the
irrelevant observations, it still may not help it to perfectly
learn the task. For this, methods such as multiple demon-
strations and generalization techniques can be applied. We
are currently investigating these methods as a future exten-
sion to this work.

The general idea of the algorithm is to add to the network
task representation an instance of all behaviors whose post-
conditions have been true during the demonstration, and
during which there have been signals from the teacher, in
the order of their occurrence. At the end of the teaching
experience, the intervals of time when the effects of each
of the behaviors have been true are known, and are used
to determine if these effects have been active in overlap-
ping intervals or in sequence. Based on the above infor-
mation, the algorithm generates the proper network links
(i.e., precondition-postcondition dependencies). This learn-
ing process is described in more detailed in [18].

4.1. Experimental results - learning in clean envi-
ronments

We performed three different experiments in a 4m x
6m arena, in which only the objects relevant to the tasks
were present. During the demonstration phase, a human
teacher led the robot through the environment while the
robot recorded its observations relative to the postconditions
of its behaviors.

We repeated these teaching experiments more than five
times for each of the demonstrated tasks, to validate that our
learning algorithm reliably constructs the same task repre-
sentation for the same demonstrated task. Next, using the
behavior networks constructed during the robot’s observa-
tions, we performed experiments in which the robot reliably
repeated the task it had been shown and had learned. We

tested the robot in executing the task five times in the same
environment as the one in the learning phase, and also five
times in a changed environment. We present the details and
the results for each of the tasks in the following sections.

4.1.1. Learning to visit targets in a particular order

The goal of this experiment was to teach the robot to
reach a set of targets in the order indicated by the arrows in
Figure 5(a). The robot’s behavior set contains a Tracking
behavior, parameterizable in terms of the colors of targets
that are known to the robot. Therefore, during the demon-
stration phase, different instances of the same behavior pro-
duced output according to their settings.
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Figure 6. Task representation learned from
the demonstration of the “Visit targets” task

Figure 6 shows the behavior network the robot con-
structed as a result of the above demonstration.

More than five trials of the same demonstration were per-
formed in order to verify the reliability of the network gen-
eration mechanism. All of the produced controllers were
identical and validated that the robot learned the correct rep-
resentation for this task.

4.1.2. Learning to slalom

In this experiment, the goal was to teach a robot to
slalom through four targets placed in a line, as shown in



Figure 7(a). We changed the size of the arena to 2m x 6m
for this task.
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Figure 7. The “Slalom” task: (a) Experimental
setup; (b) Approximate robot trajectory; (c)
Task representation learned from the demon-
stration of the Slalom task

During 8 different trials the robot learned the correct task
representation as shown in the behavior network from Fig-
ure 7(c).

We performed 20 experiments, in which the robot cor-
rectly executed the slalom task in 85% of the cases. The
failures consisted of two types: 1) the robot, after passing
one “gate,” could not find the next one due to the limita-
tions of its vision system; and 2) the robot, while search-
ing for a gate, turned back toward the already visited gates.
Figure 7(b) shows the approximate trajectory of the robot
successfully executing the slalom task on its own.

4.1.3. Learning to traverse “gates” and move ob-
jects from one place to another

The goal of this experiment was to extend the complex-
ity of the task to be learned by adding to it object manipu-
lation. For this, the robot used its behaviors for picking up
and dropping objects in addition to the behaviors for navi-
gation and tracking, already described.

The setup for this experiment is presented in Figure 8(a).
Note the small orange box close to the green target. In order
to teach the robot that the task is to pick up the orange box
placed near the green target (the source), the human led the
robot to the box, and when sufficiently near it, placed the
box between the robot’s grippers. After leading the robot
through the “gate” formed by the blue and yellow targets,
when reaching the orange target (the destination), the hu-
man took the box from the robot’s gripper. The learned be-
havior network representation is shown in Figure 9. Since
the robot started the demonstration with nothing in the grip-
per, the effects of the Drop behavior were met, and thus an
instance of that behavior was added to the network. This
ensures correct execution for the case when the robot might

start the task while holding something: the first step would
be to drop the object being carried.
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The ability to track targets within a [0, 180] degree range
allows the robot to learn to naturally execute the part of
the task involving going through a gate. This experience
is mapped onto the robot’s representation as follows: “track
the yellow target until it is at 180 degrees (and 50cm) with
respect to you, then track the blue target until it is at O de-
grees (and 40cm).” At execution time, since the robot is
able to track both targets even after they disappeared from
its visual field, the goals of the above Track behaviors were
achieved with a smooth, natural trajectory of the robot pass-
ing through the gate.

Due to the increased complexity of the task demonstra-
tion, in 10% of the cases (out of more than 10 trials) the
behavior network representations built by the robot were
not completely accurate. The errors represented special-



ized versions of the correct representation, such as: Track
the green target from a certain angle and distance, followed
by the same Track behavior but with different parameters -
only the last was in fact relevant.

The robot correctly executed the task in 90% of the cases.
The failures were all of the type involving exceeding the al-
located amount of time for the task. This happened when
the robot failed to pick up the box because it was too close
to it and thus ended up pushing it without being able to per-
ceive it. This failure results from the undesirable arrange-
ment and range of the robot’s sensors, not to any algorithmic
issues.

4.1.4. Discussion

The results obtained from the above experiments demon-
strate the effectiveness of using human demonstration com-
bined with our behavior architecture as a mechanism for
learning task representations. The approach we presented
allows a robot to automatically construct such representa-
tions from a single demonstration. The summary of the ex-
perimental results is presented in Table 1. Furthermore, the
tasks the robot is able to learn can embed arbitrarily long
sequences of behaviors, which are encoded within the be-
havior network representation.

Table 1. Summary of the experimental results.

Experiment name Trials Successes
Nr. | Percent
Six targets (learning) 5 5 100 %
Six targets (execution) 5 5 100 %
Slalom (learning) 8 8 100 %
Slalom (execution) 20 17 85 %
Object move (learning) 10 9 90 %
Object move (execution) 10 9 90 %

Analyzing the task representations the robot built dur-
ing the experiments above, we observe the tendency to-
ward over-specialization. The behavior networks the robot
learned enforce that the execution go through all demon-
strated steps of the task, even if some of them might not be
relevant. Since there is no direct information from the hu-
man about what is or is not relevant during a demonstration,
and since the robot learns the task representation from even
a single demonstration, it assumes that everything that it
notices about the environment is important and represents it
accordingly. In the next section we demonstrate how simple
feedback cues can be used to signal to the robot the saliency
of particular events. While this does not eliminate irrelevant
environment state from being observed, it biases the robot
to notice and (if capable) capture the key elements.

4.2. Learning in Environments With Distractors

The goal of the experiments presented in this section is
to show the ability of the robots to learn from in environ-
ments with distractor objects, which are not relevant for the
demonstrated tasks.

The task to be learned by the robot is similar to the mov-
ing objects task from above (Figure 10(a)): pick up the or-
ange box placed near the light green target (the source), go
through the “gate” formed by the yellow and light orange
target, drop the box at the dark green target (the destina-
tion) and then come back to the source target. The orange
and the yellow targets at the left are distractors that should
not be considered as part of the task. In order to teach the
robot that it has to pick up the box, the human led the robot
to it and then, when sufficiently near it, placed it between
the robot’s grippers. At the destination target, the teacher
took the box from the robot’s grippers. Moments in time
signaled by the teacher as being relevant to the task are: giv-
ing the robot the box while close to the light green target,
teacher reaching the yellow and light orange target, taking
the box from the robot while at the green target, and teacher
reaching the light green target in the end. Thus, although
the robot observed that it had passed the orange and distant
yellow targets during the demonstration, it did not include
them in its task representation, since the teacher did not sig-
nal any relevance while being at them.

Moving objects and traversing gates task
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Figure 10. The “Object manipulation” task in
environments with distractors

We performed 10 human-robot demonstration experi-
ments to validate the performance of our learning algo-
rithm. In 9 of the 10 experiments the robot learned a struc-
turally correct representation (sequencing of the relevant
behaviors) and also performed it correctly. In one case,
although the structure of the behavior network was cor-
rect, the learned values of one of the behavior’s parameters
caused the robot to perform an incorrect task (instead of go-
ing between two of the targets the robot went to them and
then around). The learned behavior network representation
of this task is presented in Figure 11.

(a) Environment
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Figure 11. Task representation learned from
human demonstration for the “Object manip-
ulation” task

In Figure 10(b) we show the robot’s progress during the
execution of the task, more specifically the instants of time
or the intervals during which the postconditions of the be-
haviors in the network were true.

For the 9 out of 10 successes we have recorded, the
95% confidence interval for the binomial distribution of the
learning rate is [0.5552 0.9975], obtained using a Paulson-
Camp-Pratt approximation [2] of the confidence limits.

As a base-case scenario, to demonstrate the reliability of
the learned representation, we performed 10 trials, in which
a robot repeatedly executed one of the learned representa-
tions of the above task. In 9 of the 10 cases the robot cor-
rectly completed the execution of the task. The only failure
was due to a time-out in tracking the green target.

5. Related work

The work presented here is most related to two impor-
tant areas of robotics research: human-robot interaction and
robot learning. Here we discuss its relation to both areas
and state the advantages gained by combining the two in
the context of adding social capabilities to agents in human-
robot domains.

Most of the approaches to human-robot interaction so
far rely on using predefined, common vocabularies of ges-
tures [12], signs or words. These can be said to be using
a symbolic language, whose elements explicitly communi-
cate specific meanings. In this work, we show that commu-
nication between robots and humans can be achieved even
without such explicit prior vocabulary sharing.

One of the most important forms of implicit communi-
cation, which has received a great deal of attention among
researchers, is the use of various forms of body language.
For example, it has been applied to humanoid robots (in
particular head-eye systems), for communicating emotional
states through face expressions [3] or body movements [4],
where the interaction is performed through body language.
While facial expressions are a natural means of interac-
tion for a humanoid, or in general a “headed,” robot, they
cannot be entirely applied to the domain of mobile robots,
where the platforms typically have a very different, and
non-anthropomorphic physical structure. In our approach,
we demonstrate that the use of implicit, action-based meth-
ods for communicating and expressing intentions can be ex-
tended to the mobile robot domain, despite the structural
differences between mobile robots and humans.

Teaching robots new tasks is a topic of great interest
in robotics. In the context of behavior-based robot learn-
ing, methods for learning policies (situation-behavior map-
pings) have been successfully applied to single-robot learn-
ing of various tasks, most commonly navigation [7], hexa-
pod walking [13] and box-pushing [14].

In the area of teaching robots by demonstration, also re-
ferred to as imitation, [10] demonstrated simplified maze
learning, i.e., learning turning behaviors, by following an-
other robot teacher. The robot used its own observations
to relate the changes in the environment with its own for-
ward, left, and right turn actions. [21] used model-based
reinforcement learning to speed-up learning for a system
in which a 7 DOF robot arm learned the task of balancing
a pole from a brief human demonstration. Other work in
our lab is also exploring imitation based on mapping ob-
served human demonstration onto a set of behavior primi-
tives, implemented on a 20 DOF dynamic humanoid simu-
lation [16, 11]. The key difference between the work pre-
sented here and those above is at the level of learning. The
work above focuses on learning at the level of action imita-
tion (and thus usually results in acquiring reactive policies),
while our approach enables learning of high-level, sequen-
tial tasks.

6. Conclusions

In this paper we presented an action-based approach
to human-robot interaction and robot learning, both deal-
ing with aspects of designing socially intelligent agents.
The method was shown to be effective for interacting with
humans using implicit, action-based communication and
learning from experienced demonstration.

We argued that the means of communication and interac-
tion of mobile robots which do not have anthropomorphic,
animal, or pet-like appearance and expressiveness should
not necessarily be limited to explicit types of interaction,



such as speech or gestures. We demonstrated that simple
actions could be used in order to allow a robot to success-
fully interact with users and express its intentions. For a
large class of intentions such as: | want to do "this” - but
| can’t, the process of capturing a human’s attention and
then trying to execute the action and failing is expressive
enough to effectively convey the message, and thus obtain
assistance.

We also presented a methodology for learning from
demonstration in which the robot learns by relating the ob-
servations to the known effects of its behavior repertoire.
This is made possible by our behavior architecture that has
a perceptual component (abstract behavior) which embeds
representations of the robot’s behavior goals. We demon-
strated that the method is robust and can be applied to a
variety of tasks involving the execution of long, and some-
times even repeated sequences of behaviors.

While we believe that robots should be endowed with
as many interaction modalities as is possible and efficient,
we focus on action-based interaction as a lesser studied
but powerful methodology for both learning and human-
machine interaction in general.
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