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Summary

We investigated the problem of imprecisely determined prokaryotic transcription factor
(TF) binding sites (TFBSs). We found that the identification and reinvestigation of ques-
tionable binding motifs may result in improved models of these motifs. Subsequent model-
based predictions of gene regulatory interactions may be performed with increased accu-
racy when the TFBSs annotation underlying these models has been re-adjusted.
We present MoRAine 2.0, a significantly improved version of MoRAine. It can automat-
ically identify cases of unfavorable TFBS strand annotations and imprecisely determined
TFBS positions. With release 2.0, we close the gap between reasonable running time and
high accuracy. Furthermore, it requires only minimal input from the user: (1) the input
TFBS sequences and (2) the length of the flanking sequences.
Conclusions: MoRAine 2.0 is an easy-to-use, integrated, and publicly available web tool
for the re-annotation of questionable TFBSs. It can be used online or downloaded as a
stand-alone version fromhttp://moraine.cebitec.uni-bielefeld.de .

1 Background

We recently considered the problem of imprecisely determined transcription factor (TF) bind-
ing sites (TFBSs), which are stored in public databases that are dedicated to prokaryotic gene
regulatory networks [19]. We found that the identification and reinvestigation of question-
able binding motifs may result in improvedin silico models of thesemotifs. Hence, sub-
sequent model-based bioinformatics predictions of gene regulatory interactions may be per-
formed with increased accuracy [10].Wedeveloped two tools that tackle the problem of TFBS
re-adjustment: (1) MotifAdjuster, a stand-alone software and (2) MoRAine 1.0, a fast heuristic.
While the MotifAdjuster algorithm is based on expectation maximization and highly accurate,
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MoRAine is optimizedto provide a fast, online-available web solution but asks the user for
various parameters to trade between running time and solution quality.

Here, we present a significantly improved version of MoRAine, which now closes the gap
between reasonable running time and high accuracy. As release 1.0, MoRAine 2.0 is an online
tool but it requires only minimal input from the user: (1) the input TFBS sequences and (2) the
length of the flanking sequences, i.e. the expected length of the TF binding motif (TFBM). In
our study, we focus on prokaryotic TFBSs, i.e. those ofEscherichia coli.

In the following, we introduce the biological background, explain why annotation problems
may occur, and show why this may result in a poor TFBS prediction performance.

Transcription factor binding site annotation - A difficult and error-prone task

Transcription factors are important components of the cell’s regulatory machinery. They are
DNA-binding proteins that are able to detect intra- and extracellular signals. By binding to
so-called transcription factor binding sites they control the expression of their target genes and
thereby decisively influence genetic programs like growth, reproduction, and defense [7,1,2,24,
22]. Given a set of known TFBSs for a certain regulator, we can build mathematical models to
performin silico predictions of furtherTFBSs in order to predict regulatory networks. This task
is generally complicated by the relatively low level of TFBS conservation. The most widely
used model for TFBSs are so-called position frequency matrices (PFMs) [25].PFMscanbe
converted to position specific scoring matrices (PSSMs) by calculating log-odds scores. These
matrices are used in turn to predict TFBSs in the upstream sequences of putative target genes for
a certain TF. Various software tools are available: PoSSuMsearch [11], Virtual Footprint [21],
MATCH [20], and P-MATCH [14], to name a few.

Nowadays, TFBS wet lab determination is done by electrophoretic mobility shift assays (EMSA)
[17], DNAse footprinting [16], ChIP-chip [26], ChIP-seq [18], or mutations of putative TFBMs
and subsequent expression studies. All of these methods lack a precise binding sequence iden-
tification that is accurate to one base pair [8]. Another problem occurs: Since TFs bind the
double-stranded DNA, it is a matter of interpretation which strand of the TF-binding sequence
is annotated. Clearly, both issues directly affect and complicate TFBS modeling as position
frequency matrices and hence, the subsequent PSSM-based binding site prediction. This prob-
lem occurs when a TFBS from either strand based on approximate knowledge of its position
is entered in a reference database and subsequently used blindly for PSSM-based predictions.
This does happen in practice for regulatory databases that integrate information from other
sources [19,10], for instance, in CoryneRegNet [3,4,5,8,9]. Here, the data is added manually
to the data repository by curation teams. They scan the literature and transfer the published
knowledge into a formal data structure. This task is difficult, error-prone and, hence, further
supports putative mistakes with the TFBS annotation process.

For mis-annotated TFBSs, we may observe a poor information content of the subsequently
computed PFM, which consequently leads to a decreased binding motif prediction for the
PSSM that was constructed from that PFM. We attack this problem by re-annotating the TFBSs
by possibly switching their strands and/or shifting them a few positions, in order to maximize
the information content of the resulting PFM.

Therefore, MoRAine 1.0 provided a combination of two clustering approaches, a variant of
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k-means(km) and cluster growing (cg), applied to two similarity measures, cluster similar-
ity (simC ) and seed node similarity (simS). In the following, we describe why and how
we replaced these methods in MoRAine 2.0 in order to provide better results within decreased
running times. Afterwards, we compare both releases and demonstrate the increased TFBS pre-
diction performance. Subsequently, we show that the PFMs resulting from MoRAine-adjusted
TFBSs significantly improve the prediction performance of further binding sites in practice,
since the adjusted TFBSs lead to PFMs with higher information content.

2 Methods

We need the following definitions to explain how MoRAine works and to compare the re-
adjustment performances of MoRAine 1.0 and 2.0.

Let Σ := {A,T,C,G} be the DNA alphabet. In accordance with [10], a position frequency
matrixF = (fσj) for a set ofn TFBSs of lengthm over the alphabetΣ is defined as a|Σ| ×m
matrix, wherefσj is the relative frequency of letterσ at positionj.

Crookset al. introduced in [15] the informationcontent as quality measure for PFMs. The
information contentIj for columnj of F is defined as

Ij := log2 |Σ|+
∑
σ∈Σ

fσj · log2 fσj [bits].

If all symbols at positionj agree,Ij reaches its maximum with maximal value 2 bits for a
4-letter alphabetΣ. The mean information contentI(F ) for a given PFMF is defined as the
averageIj over all positionsj:

I(F ) :=
1

m

m∑
j=1

Ij.

In what follows, we use the mean information contentI(F ) as a quality measure for a given
PFM F and denote it shortly withI if F is fixed. We will use the information content to
compare the quality of two different PFMsF1 andF2 by comparingI(F1) with I(F2). If F2

is the PFM of the MoRAine-adjusted TFBSs, whileF1 is the PFM computed from the input
TFBSs, withI(F1) ≤ I(F2), we can calculate the percentage improvement performanceP

with P = 100 · I(F2)
I(F1)

.

MoRAine now works as follows: The input is a set ofn annotated length-m TFBS sequences
that extendl bp to the left andr bp to the right. Hence, the length of the given input sequences
is m+ := m + l + r. First, MoRAine computes the setM of every possible motif of length
m = m+ − l − r derived by the operationsshift andswitch applied to eachof the n input
sequences. The operationshift provides every substring of lengthm for agiven motif of length
m+, and the operationswitch its reverse complement sequence. We obtain a setSi of M :=
|Si| = 2 · (l + r + 1) potential TFBS sequences of lengthm for each input sequencei, with
i = 1, . . . , n.

Sofar MoRAine 1.0 and 2.0 work in a similar way. For both, the goal is to find a setC of TF-
BSs that contains exactly one TFBS from eachSi and maximizes the mean information content
of the corresponding PFMFC . As mentioned earlier, MoRAine 1.0 offers two heuristic clus-
tering algorithms, (cg) and (km), both working on either of two similarity functions, (simC)
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and(simS). Table 1 summarizes the running times and TFBS annotation improvement perfor-
mance of MoRAine 1.0 for all four combinations. One can see a trade-off between accuracy
and running time: (cg/simS) provides best results but (cg/simC) is much faster (see section
Results and Discussion for more details).

With MoRAine 2.0, we close this gap and provide a powerful tool that now provides better
results than MoRAine 1.0 with (cg/simS) at running times equal to (cg/simC). The goal can
be cast as follows: We partition the set of input TFBSs intoM = 2 · (l + r + 1) clusters, where
each cluster contains exactlyn motifs, one of eachSi (i = 1, . . . , n) and thus is a putative
solution. In the following, we describe how we adapted and integrated Transitivity Clustering
with MoRAine 2.0 to find such a setC.

Transitivity Clustering is a clustering method based on the weighted transitive graph projection
(WTGP) problem. By solving this NP-complete graph modification problem, objects are parti-
tioned into groups of similar elements. We briefly describe the underlying WTGP problem and
how it has been modified to fulfill the needs for this specific task. Given a set of objectsV and
a pairwise similarity functions :

(
V
2

) → R a similarity graphG = (V, E) is constructed, where
V is the set of objects andE is the set of undirected edges between these objects. An edge is
present inG if the similarity between the adjacent nodes exceeds a user defined thresholdt.
The goal is to find atransitivegraphG′ = (V,E ′) with smallest distance toG. Transitivity
means that for all triples{u, v, w} ∈ (

V
3

)
: {u, v} ∈ E and{v, w} ∈ E implies{u,w} ∈ E.

A transitive graph is a disjoint union of cliques, also called a cluster graph. Therefore a cost
function for adding/deleting edges is defined asc(u, v) = |t− s(u, v)| serving as optimization
function. Thus, the distance between two edge sets is the cost of transforming one into the
other. The resulting disjoint cliques of the minimum cost transitiveG′ represent the clusters we
are looking for.

Transitivity Clustering is flexible and offers the possiblity to integrate additional knowledge.
As similarity function, instead of the functions from MoRAine 1.0, (cg) and (km), we now
use the difference between the motif length` = |p| = |q| and the hamming distanceh(p, q)
between two TFBSsp, q, hences(p, q) := ` − h(p, q). To ensure that each cluster of TFBSs
contains only one motif from each setSi, we set the similarity functions to −∞ if p ∈ Si

andq ∈ Si for someSi, i.e. if both potential solutions (the TFBSsp andq) originate from
the same input TFBS. The thresholdt is set to zero, which guaranties that each cluster con-
tains exactly one TFBS from each setSi. Transitivity Clustering has successfully been ap-
plied to protein family detection using the layout based heuristic FORCE to solve the NP-
complete WTGP problem [27]. Together with an exact fixed parameter algorithm developed
by Böcker et al. [13] and the fast but less accurate heuristic CAST (Cluster Affinity Search
Technique) by Ben-Dor et al. [12], this layout-based approach has been integrated into the
clustering framework TransClust. The TransClust software combines the different methods
to provide very accurate results in reasonable time. Its integration with MoRAine is mainly
responsible for the increased performance of MoRAine 2.0, as we will demonstrate in the fol-
lowing section. Further information about Transitivity Clustering is available at the web site
http://transclust.cebitec.uni-bielefeld.de .
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3 Results and Discussion

3.1 Implementation

MoRAine 2.0 is an open source JAVA 6 program. It can accessed and downloaded athttp://
moraine.cebitec.uni-bielefeld.de . As shown for MoRAine 1.0 in [6], release 2.0
of MoRAine may be included into a database back-end as quality assurance tool or to provide
a bioinformatics workflow with adjusted position weight matrices for TFBS predictions.

We emphasize that the main advantage of MoRAine is it’s easy-to-use web interface. The user
may copy and paste binding sequences in FASTA format at the MoRAine web site to calculate
the adjusted motifs as well as the corresponding sequence logos by using the Berkeley web
logo software [15]. Just as MoRAine 1.0, the second release is an easy-to-use alternative for
the computation of sequence logos and the adjustment of transcription factor binding sites, but
it now provides increased accuracy at decreased running times and an eased user-interface with
less parameters to adjust.

3.2 Increased information content improvement with MoRAine 2.0

In Figure 1 we exemplarily illustrate the output of the MoRAine online service for the bind-
ing sites of the transcription factor RamB ofCorynebacterium glutamicum. The TFBSshave
been taken from CoryneRegNet release 5.0. As in most databases, in CoryneRegNet [8],each
binding site is annotated in5′ → 3′ direction relative to the regulated target gene. By us-
ing MoRAine 2.0 we improved the average information content from0.64 (original database
TFBSs) to1.15 (MoRAine-adjusted TFBSs) by switching the strands for 15 of the 38 input
sequences. The computation time was less than 2 seconds.

Figure 1: A screenshot from the MoRAine 2.0 web site. A comparison of the sequence logos con-
structed from the original TFBSs (left side) for the transcription factor RamB of Corynebacterium
glutamicum and the adjustedTFBSs by using MoRAine 2.0 (right side).

To demonstratethe performance, i.e. decreased running time and increased information content
improvement, of MoRAine 2.0, we used the same datasets as in [10]: 1165 binding sites of 85
transcription factors ofEscherichia coli. Wecompare the average runtime and the mean infor-
mation content improvement of MoRAine 2.0 with the four methods implemented in MoRAine
1.0 for different lengths of the flanking sequences (l andr, respectively). As shown in Table 1,
with MoRAine 1.0 the combination (cg/simC) had the best runtime, but to gain the best in-
formation content improvement, we used the combination (cg/simS) [10]. With the work
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presentedin this paper, we closed the gap between running time and accuracy. In Table 2,
we compare MoRAine 2.0 with release 1.0 using the most accurate combination (cg/simS)
and the fastest combination (cg/simC), respectively. For a fair running time comparison, we
re-evaluated MoRAine 1.0 (cg/simC) and MoRAine 2.0 on the same standard desktop PC. Ta-
ble 2 shows that MoRAine 2.0 outperforms the previous release in terms of information content
improvement with running times almost as fast as those of (cg/simC). Furthermore, MoRAine
2.0 does not require the user to choose various input parameters to optimize its results.

Difference(%) Time (s)

l = r cg/simC cg/simS km/simC km/simS cg/simC cg/simS km/simC km/simS
0 26.1 27.0 26.5 26.8 0.6 0.7 1.2 1.1
1 50.9 54.4 50.1 52.3 0.7 2.3 7.2 4.0
2 57.5 63.6 57.6 62.4 0.8 4.2 45.9 8.3
3 60.0 69.5 64.6 64.7 1.0 8.4 128.0 12.8
4 65.3 70.1 65.0 69.3 1.1 11.9 198.3 19.5
5 66.3 73.0 68.8 73.3 1.3 16.8 298.3 30.5
6 66.6 73.1 74.3 74.9 1.8 23.9 427.0 34.4
7 68.0 78.7 73.5 78.4 2.0 30.1 505.4 42.6

Table 1: This table was taken from [10] and summarizes the average information content im-
provements and the mean running times of MoRAine 1.0 for differentl- and r-values and the four
search method/similarity function combinations over all TFBSs of 85 transcriptional regulators of
E. coli.

Difference (%) Time (s)

l = r MoRAine1.0(cg/simS) MoRAine2.0 MoRAine1.0(cg/simC) MoRAine2.0
0 27.0 27.2 0.21 0.23
1 54.4 54.7 0.26 0.29
2 63.6 66.5 0.32 0.36
3 69.5 72.2 0.38 0.42
4 70.1 75.5 0.46 0.50
5 73.0 75.7 0.55 0.59
6 73.1 77.8 0.60 0.66
7 78.7 79.1 0.71 0.77

Table 2: In this table we compare the average information content improvement and the mean
running time of MoRAine 1.0 with MoRAine 2.0 for different l- and r-values over all TFBSs
of 85 transcriptional regulators of E. coli. We compare MoRAine 2.0 with the most accurate
combination of similarity function and search method of MoRAine 1.0 (left side) and with the
fastest combination (right side).

3.3 Impr oved binding site prediction performance with MoRAine-adjusted se-
quences

As mentioned earlier, positions specific scoring matrices (PSSMs) are used for the prediction
of TFBSs in sequences upstream of putatively regulated target genes or operons for a specific
regulator. A PSSM allows us to assign a score to any length-m DNA sequence window. A
PSSM matches such a window if the score exceeds a user-given threshold. Such a matching
binding site is considered to be a good candidate for a real TFBS if we properly choose the
score (generally as the log-odds score between the nucleotide distribution of true binding sites
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andabackgrounddistribution) and the threshold (ideally based on statistical considerations; see
e.g. [23]). As in [10], we use the PSSM-based DNA matching tool PoSSuMsearch [11] for the
evaluation of the prediction performance of PSSMs computed from both the original TFBSs and
the MoRAine-adjusted PSSMs. The threshold is computed efficiently by PoSSuMsearch based
on the tolerable frequency of hits in random sequences (p-value) generated from a background
model (the nucleotide frequencies in the upstream sequences); for more details refer to [11].
We show that by using MoRAine 2.0 as preprocessing for the TFBSs that are used for PSSM
calculation, the classification performance is significantly increased.

Again, we use the same datasets as in [10]: the same 1165 binding sites for the 85 transcription
factors fromE. coli and 3341 upstream sequences of all transcription units (genes or operons,
respectively). Here, an upstream region is defined as the DNA sequence from−560 to +20 bps
upstream to the start codon of a transcription unit. For each PSSM, both forward and reverse
strand of upstream sequences are used to predict TFBSs with PoSSuMsearch for varying p-
value thresholds. For each threshold and PSSM, we compute precision, recall and F-measure
over all putative upstream sequences, with:

Precision:=
TP

TP + FN

Recall:=
TP

TP + FP

F-measure:= 2 · Precision· Recall
Precision+ Recall

whereFP := number ofincorrectly predicted motifs,FN := number of wrongly not predicted
motifs, andTP := number of correctly predicted motifs. We extracted the correct motifs from
the CoryneRegNet database and compared them with the predicted binding sites to compute
the number ofFP , FN , andTP .

In Figure 2, we plot precision vs. recall for varying p-value thresholds for all PSSMs readjusted
with MoRAine 2.0 forl = r = 4 (blue curve) in comparison to the prediction performance ob-
tained with the original PSSMs (red curve) and to the performance when using MoRAine 1.0
adjusted PSSMs (green curve). Note that MoRAine 1.0 was used in its most accurate mode
(cg/simS). For a fixed recall, the MoRAine-adjusted precision is always higher than with
original, not adjusted TFBSs/PSSMs. Figure 3 plots the F-measure against different p-value
thresholds. The plot show that predictions based on adjusted PSSMs outperform those based
on original PSSMs for all thresholds. Both plots illustrate that although MoRAine 2.0 is as fast
as the previous release in its fastest mode, it is as helpful as MoRAine 1.0 in its most accu-
rate mode. In additional material (http://moraine.cebitec.uni-bielefeld.de/
download/additional file1.pdf ), we alsoprovide a brief comparison of MoRAine
with six de-novo motif discovery tools by using data from [19].

4 Conclusions

In [19, 10], we showed that imprecisely determined prokaryotic transcription factor binding
sites stored in public databases may cause problems with the prediction of further binding sites.
The exact determination of the TFBS positions down to one basepair is difficult, the strand
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Figure 2: Prediction performance comparison of PoSSuMsearch by means of precision and re-
call. All values are measured for varying p-value thresholds based on PSSMs learned from the
original TFBSs (red line) compared to those of readjusted TFBSs with MoRAine 2.0 (blue line)
and readjusted TFBSs with MoRAine 1.0 (green line).

annotation is sometimes neglected, and TF binding sequences are often stored5′ → 3′ relative
to the target gene. We demonstrated that the identification and reinvestigation of questionable
TFBSs inE. coli may result inimproved in silico models of thesemotifs and improve the
subsequent prediction performance.

To addressthis problem, we presented an extended version of MoRAine, which now integrates
weighted transitive graph projection (by means of Transitivity Clustering) as data partitioning
method. MoRAine 2.0 now provides increased accuracy together with decreased running times,
if compared to MoRAine 1.0. Now, it is as fast as the previous release in its fastest mode but
the optimization performance is even better. Furthermore, MoRAine 2.0 does not require the
user to adjust various parameters to achieve these results. It only requires the necessary input
to solve the readjustment problem, i.e. the input sequences themselves and the length of the
flanking sequences. However, we see the main advantage of MoRAine in its integrative web
interface, which runs on a non-dedicated web server. Biologists may visit the MoRAine web
site, copy and paste their TFBS sequences and obtain readjusted sequences for download along
with the sequence logos.

In summary, this article introduces an improved version of MoRAine, an online tool that sup-
ports the re-annotation of transcription factor binding sites. We provide a web server to fa-
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Figure 3: Prediction performance comparison by means of plotting the F-measure for varying
PoSSuMsearch p-value thresholds for the original TFBSs (red line), the MoRAine 1.0-adjusted
TFBSs (green line), and the MoRAine 2.0-adjusted TFBSs (blue line) allowing 4 shifts to the left
and right (l=r=4).

cilitate using MoRAine and to compute sequence logos. We further demonstrated that the
re-annotation of TFBSs may be necessary for some prokaryotic databases and helps to improve
the PSSM-based prediction performance. MoRAine may also be downloaded as stand-alone
tool and integrated in any data processing pipeline.
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