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Abstract 
 

A novel external energy construction for active 

contours is proposed in this paper. In contrast to the 

standard approach of using linear filtering to smooth 

the external energies and to avoid noise, we define 

feature weighted active contours for extracting 

features of interest without distortion. The advantages 

of this innovation are demonstrated by examples and 

comparisons with Gaussian filtered external energy. 

Compared to the linear filtering approach, the feature 

weighted active contours yield lower root mean 

squared errors of contour position and improve upon 

the ability to capture fine details in noisy images. 

 

 

1. Introduction 
 

Snakes [1], or active contours, have been widely 

used for image segmentation [2-4] and tracking [5-7]. 

Snakes are curves that can deform within the image 

plane and capture a desired feature. The snake 

evolution method is modeled as minimizing an energy 

functional subject to certain constraints. The energy 

functional usually contains two terms: an internal 

energy, which constrains the smoothness and tautness 

of the contour, and an external energy, which attracts 

the contour to the features of interest.  

Typical external energy formulations employ a 

Gaussian filter or another appropriate filter to mitigate 

the sensitivity to image noise; however, the filtering 

also distorts the features of interest. In this case, the 

standard deviation of the Gaussian filter governs the 

tradeoff between the preservation of desired features 

and the suppression of the noise. As a result, fine 

features are very difficult to capture for active contours 

in a noisy image. In this paper, we propose a novel 

external energy to address this problem by designing a 

weighting function. We focus on parametric active 

contours in this paper, though the result could be easily 

generalized to geometric active contours [8] and to 

higher dimensionality [9]. A comparison of results 

using different external forces on noisy images is 

presented that reveals the efficacy of our method. 

 

2. Background 
 

An active contour is represented by a parametric 

curve ( ) ( ) ( ),s x s y s =  x , [ ]0,1s ∈ , that deforms 

through the image domain to minimize the energy 

functional  
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where α  and β  are weighting parameters 

representing the degree of the smoothness and tautness 

of the contour, respectively, and ( )s′x  and ( )s′′x  are 

the first and second derivatives of ( )sx  with respect to 

s. 
ext

E  denotes the external energy, the value of which 

is small at the features of interest. Typical external 

energies for a gray-level image ( ),I x y  for seeking the 

edges are given as [1] 
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where ( ),G x yσ  is a 2D Gaussian function with 

standard deviation σ , ∗  denotes linear convolution, 

and ∇  denotes the gradient operator . If the image is 

binary image, where the features of interest are one and 

the background is zero, the typical external energies are 

given as [10] 
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To minimize (1), the contour must satisfy the Euler 

equation  



( ) ( ) ext
0s s Eα β′′ ′′′′− − ∇ =x x , (6) 

which can be considered as a force balance equation 

int
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where ( ) ( )int
" s "" sα β= −F x x  is the internal force to 

constraint the contour smoothness and 
extext

E= −∇F  is 

the external force to attract the contour toward the 

features of interest. 

To solve (6), ( )sx  is treated as a function of time t 

as well as of parameter s, and the solution is obtained 

when the steady state solution of the following gradient 

descent equation is reached from an initial contour 

( ),0sx  

( )
( ) ( )

,
, ,

ext

s t
s t s t

t
α β

∂
′′ ′′′′= − +

∂

x
x x F . (8) 

A solution to (8) on a discrete grid can be achieved by 

solving the discretized equation iteratively using a 

finite difference approach [1]. 

The gradient vector flow (GVF) field is the vector 

field ( ) ( ) ( ), , , ,x y u x y v x y =  v  that minimizes the 

energy functional  
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where 
ext

f E= −  is an edge map derived from the 

image, and µ  is a fundamental parameter controlling 

the degree of smoothness of the vector field. As shown 

in [11], the GVF field has a large capture range and the 

ability to progress into concavities. By replacing the 

external force 
ext

F  in (8) by the GVF field v , the 

solution for GVF active contours can be written as  
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3. Feature Weighted Active Contours 
 

We propose the feature weighted (FW) active 

contour external energy functional 

( ) ( )( ) ( ) ( )ext ext, , ,
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where 
( ) ( )ext

,
p

E x y  is the standard external force, which 

is usually unfiltered or Gaussian filtered with a small 

standard deviation σ , ( )( ),w S x y  is the weighting 

function of the feature score ( ),S x y  at ( ),x y . The 

feature score is employed to distinguish desired 

features from others. The weighting function is 

designed to be close to one at desired features and 

close to zero otherwise. Note that 
( ) ( )ext

,
p

E x y  is less 

than or equal to zero, the FW active contours will not 

be distracted by undesired features with low external 

energy, such as noise and clutters, because the external 

energy of undesired features is scaled to nearly zero. 

The FW external energy can be viewed as a non-linear 

filtered version of the standard external energy. Two 

weighting functions are proposed in the following 

sections for distinct applications. 

 

3.1. Area Based Weighting 
 

Based on the observation that the noise is 

manifested as a collection of impulses and edges of 

objects are contiguous 2D contours, the area based 

(AB) weighting function is given as 

( )( ) ( ){ }2 2
, 1 exp ,= − −

AB AB AB
w S x y S x y a  (12) 

where a is a soft threshold, which should be increased 

with increased noise variance. The feature score 

( ),
AB

S x y  can be calculated by counting the number of 

pixels (i.e., the area) of the connected strong features at 

( ),x y . A strong feature is present if the standard 

external energy 
( )
ext

p
E  at ( ),x y  is less than a certain 

threshold τ , which is determined by the minimum 

edge length to be preserved. We set the threshold to 

2τ µ= −  in our application, where µ  is the GVF 

weighting parameter in (9). We also note that if  
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then this process is equivalent to an area open 

morphological filter. Although both weight functions 

are valid, (12) leads to a soft threshold where (13) 

yields a hard threshold. Morphological filters could be 

employed to connect the strong features if the image is 

noisy and strong features are not contiguous. 

Note that the AB weighting function 
AB

w is close 

to one if the area of the connected strong features is 

much larger than a, and close to zero if the area is 

small. 

 

3.2. Cross-Correlation Based Weighting 
 

In a noisy image, the desired edges may be broken 

or weak, and the snake could be “distracted” by nearby 

strong edges. By considering the prior shape 

information, clutter can be eradicated. An edge 

template T is defined by a set of coordinates 

( ){ }, ; 1,...,i im n i M= , which is centered around ( )0,0 . 

Let †T  denote the mirrored edge template defined by a 



set of coordinates ( ){ }, ; 1,...,i im n i M− − =  and 

( ),T I x y◊  denote the set of image I pixels covered by 

the edge template T centered at ( ),x y . A pixel p in 

image I participates in the cross-correlation 

( ),T I x y◊∑  if ( ),p T I x y∈ ◊ . The cross-correlation 

based (CCB) weighting function is given as  
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where ( )
,

max ,= −CCB
x y

n S x y c  is a normalization 

constant, and c is the minimum desired feature score. 

The feature score ( ),
CCB

S x y  is the maximum 

normalized cross-correlation in which the pixel 
( ) ( )ext

,
p

E x y−  participates, given by 
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which can be implemented as  
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where ⊗  denotes cross-correlation operation and �  

denotes morphological dilation filter.  

If an edge matches the edge template T, the feature 

scores 
CCB

S  at all the pixels on the edge will have a 

high value. In this case, the CCB weighting function 

CCB
w  is close to one at all the pixels on the edge; 

otherwise, the CCB weighting function is close to zero. 

A bank of templates can be used together if the 

shapes are difficult to be characterized as one shape. 

The final CCB weighting function combines all the 

CCB weighting functions for all templates. 

 

4. Results 
 

We first compare the snake results using the area 

based feature weighted (AB-FW) external energy with 

those using the Gaussian filtered (GF) external energy 

on a simulated binary image and a magnetic resonance 

image of the human ankle cartilage. As shown in Fig. 

1(a), two independent snakes are initialized in a noise 

corrupted binary image, where two U-shapes are close 

to each other. As we can see from Fig. 1(b), the GF 

external energy with a small σ  value fails to overcome 

the noise, while the GF external energy with a large σ  

value distorts the edges, as shown in Fig. 1(c). The 

standard deviation of the Gaussian filter controls the 

tradeoff between the feature preservation and noise 

suppression. In contrast, the AB-FW snakes capture the 

correct boundaries, as shown in Fig. 1(d). To quantify 

the accuracy of the results using different external 

energies, the root mean square error (RMSE) is 

calculated for outer snake and inner snake (denoted by 

superscripts 1 and 2, respectively). The error of a point 

on the snake is defined by the minimum distance 

between the point and the corresponding boundary in 

the noise-free image. These results reveal the superior 

performance afforded by the AB-FW external energy. 

In Fig. 2(a), two snakes are initialized to capture 

the inner and outer boundaries of the bright object. The 

standard deviation of Gaussian filter is chosen to be the 

minimum integer required for outer snake to overcome 

the noise. The AB weighting function highlights the 

features of interest and removes noise and clutter, as 

shown in Fig. 2(f). As shown in Fig. 2(g), the corners 

on the bottom and inside the object are blurred by the 

Gaussian filter, which causes the inner snake failure; 

while the corners are segmented correctly using the 

AB-FW external force.  

An image containing leukocytes observed in vivo is 

used to evaluate the performance of the snake using the 

cross-correlation based feature weighed (CCB-FW) 

external energy, shown in Fig. 3. In this image, two 

leukocytes roll along the endothelial wall. The 

endothelial wall yields strong edges, shown in Fig. 3(d), 

which distract the snakes targeted at the leukocytes. As 

shown in Fig. 3(h), the CCB weighting function 

eliminates majority of the edges generated from the 

wall.  The snakes using GF external energy fail because 

of the broken and weak leukocyte edges, which are 

captured properly by the CCB-FW snakes. 

 

5. Conclusion 
 

This paper has proposed a new external energy 

functional for active contours, which has the ability to 

capture the weak or broken edges and the ability to 

filter the noise without blurring the features of interest. 

The external energy is scaled by multiplying the 

weighting function, which highlights the desired 

features. The area based weighting function and the 

cross-correlation based weighting function have been 

introduced for tailored applications. We showed that 

the FW active contours are robust to noise and clutter 

and are able to capture the fine features within noisy 

medical images. Different weighting functions can be 

designed for other applications. This novel external 

energy paradigm can be easily extended to an active 

surface model for 3D data. 
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Fig. 1. (a) Impulse noise corrupted image and two 
independent initial snakes; (b) and (c) the GF 
external energy and snake results using (5) where 

1σ =  and 3σ = , respectively; (d) the AB-FW 

external energy and snake results using (12) and 

(4) where 7a = . All results are computed using 

GVF with 0.3α = , 0β =  and 0.1µ = . 
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(e) (f) 
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Fig. 2. (a) A magnetic resonance image of the 
human ankle cartilage and two independent initial 
snakes; (b) the GF external energy and snake 

results using (3) where 4σ = ; (c) the external 

energy ( )
ext

p
E  using (2); (d) the strong features 

(white); (e) the AB weighting function 
AB

w ; (f) the 

AB-FW external energy and snake results using 

(12) where 8a = ; (g) the image superposed with 

snake results using the GF external energy 
(green) and the AB-FW external energy (red). All 

results are computed using GVF with 0.1α = , 

0β =  and 0.01µ = . 
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(c) (d) 

  

(e) (f) 
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(i) 

Fig. 3. (a) An image containing leukocytes in vivo 
and two independent initial snakes; (b) the GF 
external energy and snake results using (3) where 

2σ = ; (c) the edge template used for the CCB 

weighting function; (d) the external energy ( )
ext

p
E  

using (2); (e) the cross-correlation result and (f) 

the CCB feature score 
CCB

S  (red and blue 

represent high and low values, respectively); (g) 

the CCB weighting function 
CCB

w ; (h) the CCB-

FW external energy and snake results using (14);  
(i) the image superposed with snake results using 
the GF external energy (green) and the CCB-FW 
external energy (red). All results are computed 

using GVF with 0.25α = , 0β =  and 0.01µ = .  
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