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Abstract—Compressed-sensing reconstruction of still images
and video sequences driven by multihypothesis predictions is
considered. Specifically, for still images, multiple predictions
drawn for an image block are made from spatially surrounding
blocks within an initial non-predicted reconstruction. For video,
multihypothesis predictions of the current frame are generated
from one or more previously reconstructed reference frames.
In each case, the predictions are used to generate a residual
in the domain of the compressed-sensing random projections.
This residual being typically more compressible than the original
signal leads to improved reconstruction quality. To appropriately
weight the hypothesis predictions, a Tikhonov regularization
to an ill-posed least-squares optimization is proposed. Exper-
imental results demonstrate that the proposed reconstructions
outperform alternative strategies not employing multihypothesis
predictions.

I. INTRODUCTION

The compressed sensing (CS) of images and video faces
several challenges including a large computational cost as-
sociated with multidimensional signal reconstruction and a
huge memory burden when the random sampling operator
is represented as a dense matrix. To address these issues,
structurally random matrices (SRMs) (e.g., [1]) can be used
to provide a sampling process with little computation and
memory. An alternative to SRMs is to limit CS sampling to rel-
atively small blocks (e.g., [2, 3]). Block-based CS (BCS) with
smoothed projected Landweber reconstruction (BCS-SPL) [3],
as well as a multiscale variant (MS-BCS-SPL) [4] deployed in
the domain of a discrete wavelet transform (DWT), typically
provides much faster reconstruction than techniques based on
full-image CS sampling. For video, a motion-compensated
reconstruction (MC-BCS-SPL) [5] extends this advantage to
the CS reconstruction of video in which one or more frames
are used to make predictions of the current frame such that
the resulting residual is more efficiently reconstructed.
In this paper, we extend this concept of prediction plus

residual reconstruction to the use of multihypothesis (MH)
predictions (e.g., [6]). That is, we couple BCS-SPL with MH
predictions for both still-image as well as video reconstruction.
For video, we cull the multiple hypothesis predictions from
previously reconstructed frames. For still images, we first
reconstruct the image with an initial BCS-SPL reconstruc-
tion, cull predictions for each image block from spatially
surrounding blocks, and then finally reconstruct the resulting
prediction-residual image. We also consider a similar multi-
scale variant in which the MH predictions occur in the wavelet

domain.
In all cases, we determine the MH predictions in the domain

of CS random projections. Due to the ill-posed nature of
the resulting prediction problem, we apply Tikhonov regu-
larization [7] to arrive at a solution. Experimental results
for video demonstrate that this Tikhonov-regularized recon-
struction usually provides higher PSNR as compared to a
similar �1-regularized approach [8, 9], as well as compared
to a straightforward intraframe BCS-SPL reconstruction. The
same Tikhonov-regularized reconstruction is then applied to
the MH-based still-image reconstruction; corresponding ex-
perimental results indicate a significant gain in PSNR as
compared to the original BCS-SPL as well as to a popular
still-image reconstruction based on total-variation (TV) mini-
mization [10].

II. BACKGROUND

Suppose we want to recover real-valued signal x ∈ R
N

from M measurements such that M � N ; i.e., y = Φx,
where y ∈ R

M , and Φ is an M ×N measurement matrix with
subsampling rate, or subrate, being S = M/N . CS theory
holds that, if x is sufficiently sparse in some transform basis
Ψ, then x is recoverable from y by the optimization,

x̂ = arg min
x∈RN

‖Ψx‖1 , such that y = Φx, (1)

as long as Φ and Ψ are sufficiently incoherent, and M is
sufficiently large. High-dimensional signals, such as a images
or video, impose a huge memory burden when explicitly
storing the sampling operator Φ as a dense matrix. In addition,
the reconstruction process will be time consuming if the
dimensionality is large. To assuage the computation com-
plexity, in [2, 3], an image is partitioned into smaller blocks
while sampling is applied on a block-by-block basis. In such
BCS, the global measurement matrix takes a block-diagonal
structure, Φ = diag(ΦB , . . . ,ΦB), wherein ΦB independently
samples blocks within the image. That is, yi = ΦBxi, where xi

is a column vector with length B2 representing block i of the
image, and ΦB is a MB×B2 measurement matrix such that the
subrate of BCS is S = MB/B2. In [2, 3], reconstruction uses
a procedure that couples projected Landweber (PL) iteration
with a smoothing operation intended to reducing blocking
artifacts. The overall technique was called BCS-SPL in [3].
BCS-based techniques such as BCS-SPL that rely on a

block-based sampling operator can be at a disadvantage in
terms of reconstruction quality since CS sampling generally
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works better the more global it is. To improve reconstruction
quality, in [4], BCS-SPL was deployed independently within
each subband of each decomposition level of a wavelet trans-
form of an image to provide multiscale sampling and recon-
struction; the resulting algorithm for image reconstruction was
called MS-BCS-SPL.
For video, one can simply apply a CS image sampling

and reconstruction independently frame by frame (i.e., “in-
traframe” CS sampling and reconstruction). Alternatively, one
can incorporate motion estimation (ME) and motion com-
pensation (MC) into the CS reconstruction of video while
maintaining the same frame-by-frame image sampling (e.g.,
[5, 8, 9, 11, 12]). In the latter approach, a motion-compensated
prediction of the current frame is created during reconstruction
such that some CS image-reconstruction algorithm is applied
to the residual between the current frame and its ME/MC
prediction. Specifically, if a ME/MC prediction is similar to
the original frame, then the prediction residual will be more
amenable to CS reconstruction since the residual is typically
more compressible than the original frame itself. Suppose x̃
is a prediction of original frame x which satisfies x̃ ≈ x;
the residual of between the two signals is r = x − x̃.
With a measurement basis Φ, the projection of r is q =
Φr = y − Φx̃. The final reconstruction of y is calculated as
x̂ = x̃ + Reconstruct(q, Φ), where Reconstruct(·) is some
suitable CS image reconstruction.
To produce a highly compressible residual, one should

create a prediction that is as close as possible to x, which
implies that the following optimization problem is desired,

x̃ = arg min
p∈P(xref)

‖x − p‖
2
2 , (2)

where P(xref) is the set of all ME/MC predictions that
can be made from a reference frame, xref. However, since
x is unknown in CS reconstruction, solving (2) directly is
infeasible. Instead, one approach is to reformulate (2) as

x̃ = arg min
p∈P(xref)

‖x̂ − p‖
2
2 , (3)

wherein some initial reconstruction, x̂, is used as a proxy for
x in (2); this is, in fact, the approach taken in [5, 12].

An alternative is to recast the optimization of (2) from the
ambient signal domain of x into the measurement domain of
y; specifically,

x̃ = arg min
p∈P(xref)

‖y − Φp‖
2
2 . (4)

The Johnson-Lindenstrauss (JL) lemma [13] holds that L
points in R

N can be projected into a K-dimensional subspace
while approximately maintaining pairwise distances as long as
K ≥ O(ε−2 log L) for any 0 < ε < 1. This suggests that the
solution of (4) will likely coincide with that of (2). The next
section explores two general strategies for implementing (4)
with MH prediction.

III. MULTIHYPOTHESIS PREDICTIONS FOR VIDEO

A. MH with Tikhonov Regularization

For a MH CS reconstruction of video, the goal is to
reformulate (4) so that, instead of choosing a single prediction,
or hypothesis, we find an optimal linear combination of all
hypotheses contained in some search set; i.e, (4) becomes
x̃t,i = Ht,iŵt,i where

ŵt,i = arg min
w

‖yt,i − ΦHt,iw‖
2
2 , (5)

and we have also recast (4) for block-based prediction with i
being the block index and t being the temporal frame index.
Here, Ht,i is a matrix of dimensionality B2 × K whose
columns are the rasterizations of the possible blocks within
the search space of the reference frames. In this context, ŵt,i

is a column vector which represents a linear combination of
the columns of Ht,i. However, because M � K, the ill-posed
nature of the problem requires some kind of regularization in
order to differentiate among the infinite number of possible
linear combinations which lie in the solution space of (5).
The most common approach to regularizing a least-squares

problem is Tikhonov regularization [7] which imposes an �2
penalty on the norm of ŵt,i,

ŵt,i = arg min
w

‖yt,i − ΦHt,iw‖
2
2 + λ ‖Γw‖

2
2 , (6)

where Γ is known as the Tikhonov matrix; this strategy for MH
prediction was initially proposed in [11]. The Γ term allows the
imposition of prior knowledge on the solution—we take the
approach that hypotheses which are the most dissimilar from
the target block should be given less weight than hypotheses
which are most similar. Specifically, we propose a diagonal
Γ in the form of Γj,j = ‖yt,i − Φht,j‖

2
2, where ht,j are the

columns of Ht,i, J = 1, . . . , K. For each block then, ŵt,i can
be calculated directly by the closed form solution,

ŵt,i =
(
(ΦHt,i)

T
(ΦHt,i) + λ2ΓT Γ

)−1

(ΦHt,i)
T

yt,i. (7)

B. MH with �1 Regularization

An alternate to the Tikhonov regularization used in (6) was
suggested in [8, 9]. Specifically, it was assumed in [8, 9] that
the MH weights ŵt,i in (5) are sparse; i.e., only relatively
few of the possible hypotheses in Ht,i should contribute
the prediction. As a consequence of this assumption, the
reconstructions in [8, 9] essentially impose an �1 penalty term
on ŵt,i; i.e.,

ŵt,i = arg min
w

‖ΦHt,iw − yt,i‖
2
2 + λ ‖w‖1 . (8)

The intuition here is that only a few blocks within the
search space contribute significantly to the linear combination.
However, in the context of CS reconstruction, a regularization
enforcing sparsity is needlessly restrictive on the structure of
ŵt,i, which can potentially result in lower prediction quality.
Furthermore, Tikhonov regularization in the form of (6) is a
much more amenable solution than �1 regularization in terms
of scalability and computation time, as well—with the �1
penalty, the optimization in (8) is approached as a traditional
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CS problem using some generic CS solver independently on
each block, while Tikhonov regularization simply uses (7).

IV. MULTIHYPOTHESIS PREDICTIONS FOR IMAGES

A. MH-BCS-SPL

Above, we considered the use of MH prediction for the CS
of video. We now consider applying MH prediction for the
CS of a still image. In this case, (6) becomes

ŵi = arg min
w

‖yi − ΦHiw‖
2
2 + λ ‖Γw‖

2
2 , (9)

and the matrix of hypotheses, Hi, is assembled from an initial
reconstruction, x̄, of the image x using either BCS-SPL or
MS-BCS-SPL. That is, for each block in x̄, MH predictions
are generated from blocks spatially surrounding x̄ in the initial
reconstruction. Specifically, suppose image x is split into
blocks of size B×B in BCS; each block is further divided into
subblocks of size b × b. MH predictions are created for each
individual subblock of the block by sliding a b×b mask across
the entire search window to create all candidate predictions for
each subblock. Since the block size is B × B, the region in
the block outside of the b × b subblock is set to all zeros;
the resulting B × B “zero-padded” block is then placed as a
column in Hi; Hi thus contains all the predictions for all of
the subblocks of block i. This subblock-based MH-prediction
process is illustrated in Fig. 1(a)–(c).

The parameter λ in (9) controls the regularization. Unfortu-
nately, there does not appear to be a straightforward approach
for finding an optimal value without foreknowledge of x.
Some possible approaches to choose an appropriate λ include
the L-curve, generalized cross validation, and the discrepancy
principle. Through empirical analysis, we test a set of λ values
and choose the one gives the best performance.

We incorporate the proposed MH-based prediction into
BCS-SPL image reconstruction, resulting in a technique we
call MH-BCS-SPL (see Algorithm 1). In MH-BCS-SPL, MH
prediction and residual reconstruction are repeated with in-
creasing subblock size in order to improve the quality of the
recovered image.

Specifically, the original BCS-SPL reconstruction of [3]
uses a block size of B = 32 and a dual-tree DWT (DDWT)
[14] as the sparsity transform Ψ. In MH-BCS-SPL, we start
with an initial subblock size of b = 16 and an initial search
window of w = 8. The subblock size b and search window
w are increased based on a criterion involving structural
similarity (SSIM) [15]. As a stopping criterion, we apply
cross validation [16] to predict the performance. Specifically,
three measurements as a holdout set yH are used for the
performance test. For example, at subrate = 0.1 and block
size B = 32, the measurement matrix Φ ∈ R

102×1024 has
three more rows than ΦR ∈ R

99×1024 which is used for
reconstruction. ΦH ∈ R

3×1024 is the measurement matrix for
the holdout set. In other words, Φ = [ΦR; ΦH ]. The residual
calculated in the projected domain is

R = ‖ΦHx − ΦH x̂‖2 = ‖yH − ΦH x̂‖2 . (10)

This means that, if x̂ is close to x, then R should be small.

Algorithm 1 MH-BCS-SPL

Input: y, Φ = [ΦR; ΦH ], Ψ, x̄, b (initial subblock size), w (initial search
window size), B = 32 (block size), τ .
Output: x̄.
Initialization: i = 1, x̃0 = x̄, s0 = 0, R0 = +∞.
repeat

x̃i = MH Prediction(x̄, y, ΦR, b, w, B)
x̂i = x̃i + BCS-SPL(y − ΦRx̃i, ΦR, Ψ, B)
Compute si = SSIM(x̂i, x̂i−1), Ri = ||yH − ΦH x̂i||2
if b < B then

if (Ri < Ri−1 & |si − si−1| ≤ τ ) or Ri > Ri−1 then
b← b× 2, w ← w × 2

end if
end if
Update x̄← x̂i

i = i + 1
until Ri > Ri−1 & b = B

B. MH-MS-BCS-SPL

As described in [4], MS-BCS-SPL performs both CS mea-
surement and reconstruction in the wavelet domain; i.e., the CS
measurement process becomes y = ΦΩx, where Ω is a 3-level
DWT with the popular 9/7 biorthogonal wavelet. Block size
depends on transform level, with Bl = 16, 32, and 64 for levels
l = 1, 2, and 3, respectively (l = 3 is the highest-resolution
level). A DDWT is again used as the sparsity transform Ψ.
We now formulate a MH version of MS-BCS-SPL by

performing MH predictions within the wavelet domain. That
is, in MH-MS-BCS-SPL, multiple predictions for a block
are made using the procedure of Fig. 1(a) applied in the
wavelet domain of the MS-BCS-SPL reconstructed image. In
the case that the subblocks are smaller than the block size
(i.e., bl < Bl), the MH predictions are carried out within a
subband of a DWT. However, for the bl = Bl case, predictions
are calculated using a redundant DWT (RDWT) for Ω. Such
a RDWT is an overcomplete transform, effectively created by
eliminating downsampling from the traditional DWT; see, e.g.,
[17]. In this latter case, the multiple hypotheses are culled
from the various RDWT phases associated with the subband
as illustrated in Fig. 1(d).

In our experiments, λ = 0.035 is used when bl < Bl,
and λ = 0.5 when bl = Bl. The initial subblock size bl is
one eighth of the block size Bl at each decomposition level.
The initial search window is set to w = 1. For the stopping
criterion, we did not apply cross validation, as we found that
the reduced number of measurements y due to the holdout
set would adversely affect the recovery performance since CS
sampling is deployed in the wavelet domain. In this case, a
threshold τs calculated from the SSIM between two successive
residual reconstructed images is used as a stopping criterion:
τs = 0.9995 when subrate = 0.1, 0.2, and 0.3; τs = 0.99995
when subrate = 0.4 and 0.5. Algorithm 2 details the MH-MS-
BCS-SPL procedure.

V. RESULTS

A. Video

We consider the first three consecutive frames, x1, x2, and
x3 of a given video sequence—the first and third frames,
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Algorithm 2 MH-MS-BCS-SPL

Input: y, Φ, Ψ, x̄, L = 3, {bl}, w, {Bl}, τs.
Output: x̄.
Initialization: i = 1, x̃0 = x̄, s0 = 0.
repeat

if bl = Bl for each level l then
ẋi = ΩRDWTx̄ {Perform redundant wavelet transform}

else
ẋi = ΩDWTx̄ {Perform discrete wavelet transform}

end if
for 1 ≤ l ≤ L do

for each subband θ ∈ {H, V, D} do
˜̇xi(θ) = MH Prediction(ẋi(θ), y(θ), Φ, Bl, bl, w)

end for
end for
x̃i = Ω−1 ˜̇xi

x̂i = x̃i + BCS-SPL(y − Φx̃i, Φ, Ψ, {Bl})
Compute si = SSIM(x̂i, x̂i−1)
if |si − si−1| ≤ τ and bl < Bl for each level l then

for 1 ≤ l ≤ L do
bl ← bl × 2

end for
w ← w × 2

end if
Update x̄← x̂i

until |si − si−1| ≤ τs

x1 and x3, are used as reference frames, while the second
frame, x2, is the “test frame” used to measure reconstruction
performance. In all cases, the reference frame is BCS sampled
with a relatively high subrate of S1 = 0.5 and reconstructed
using BCS-SPL [3]1. On the other hand, the test frame is BCS
sampled using a range of subrates, S2 ≤ S1. For video-frame
reconstruction, we use a block size of B = 16 for BCS and a
DWT with 4 levels of decomposition as the sparsity basis for
BCS-SPL reconstruction. Block-based sampling operator ΦB

is a B × B dense Gaussian matrix.
The reconstructed reference frames are used to create a

prediction of each block of the test frame; afterward, residual
reconstruction of the test frame is conducted. We investigate
the Tikhonov and �1 prediction strategies as discussed in
Sec. III. For the Tikhonov approach, we use a regularization
parameter of λ = 0.25. Additionally, for the �1-regularized
MH prediction, we use GPSR2 [18] to find the weights. We
also consider performance of the straightforward BCS-SPL
reconstruction of the test frame independent of the reference
frame. In all cases, a spatial window size of ±15 pixels about
the current block is used as the search space for finding the
hypotheses.

The PSNR performance of the test-frame reconstruction as
the subrate, S2, for the test frame varies is presented in Table I.
As can be seen in Table I, the proposed Tikhonov-regularized
MH prediction provides significantly superior reconstruction
for x2 at low subrates as compared to the �1-regularized
prediction of [8]. For higher subrates near S2 ≈ 0.5, the
performance of the �1 regularization is generally more com-
petitive, and even exceeds that of the proposed Tikhonov
regularization for the News sequence at S2 = 0.5. However,

1http://www.ece.msstate.edu/∼fowler/BCSSPL/
2http://www.lx.it.pt/∼mtf/GPSR/

such a high-subrate case is of less interest than low-subrate
reconstructions due to the necessity of maintaining the subrate
of non-key frames as low as possible to minimize the overall
sampling rate of the system.

In terms of computation, MH prediction performs much
more quickly than the �1 method, taking just a few minutes for
a single frame reconstruction, while the �1 method can take
exceedingly long to calculate, up to 4 or 5 hours for a single
frame.

B. Still Images

The performance of the MH-BCS-SPL and MH-MS-BCS-
SPL is evaluated on a number of grayscale images of size
512×512 (see Fig. 2) with τ = 0.0001. We compare to
the original BCS-SPL [3] and MS-BCS-SPL [4] as well as
to the TV reconstruction described in [10] and a multiscale
variant of GPSR as described in [19]. Block-based sampling
operator ΦB is a B × B dense Gaussian matrix; on the other
hand, TV uses the scrambled block-Hadamard SRM of [1]
to provide a fast whole-image CS sampling. The multiscale
GPSR (MS-GPSR) uses the same Ω as MS-BCS-SPL in
implementing GPSR reconstruction at each DWT level. We
use our implementations3 of BCS-SPL and MS-BCS-SPL, and
l1-MAGIC4 for TV.

The reconstruction performance of the various algorithms
under consideration is presented in Table III. In all cases
except the “Barbara” and “Barbara2” images, MH-MS-BCS-
SPL performs uniformly better than other algorithms. For
“Barbara,” MH-BCS-SPL provides a substantial gain in re-
construction quality over TV, generally on order of a 5- to
7-dB increase in PSNR. A visual comparison of the various
algorithms is shown in Fig. 3.

As can be seen in Table II, in terms of execution time,
reconstruction with MH-BCS-SPL and MH-MS-BCS-SPL is,
as expected, slower than BCS-SPL and MS-BCS-SPL due to
iterated MH prediction. Both algorithms run for less than 3
minutes on a quadcore 2.67-GHz machine. On the other hand,
the execution times of TV are much slower than MH-BCS-
SPL and MH-MS-BCS-SPL, with TV requiring more than 20
minutes to reconstruct a single image even with fast SRM
implementation of the sampling operator.

VI. CONCLUSIONS

In this paper, we considered how the high degree of spatial
correlation in images and frame-to-frame temporal correlation
in video signals can be exploited to enhance CS reconstruction.
In essence, we formed MH predictions using a distance-
weighted Tikhonov regularization to find the best linear combi-
nation of hypotheses. The MH predictions were used to create
a measurement-domain residual of the signal to be recovered—
such a residual is typically more compressible than the original
signal making it more amenable to CS reconstruction. The
proposed approach to MH prediction showed a significant
improvement in reconstruction quality over several alternative

3http://www.ece.msstate.edu/∼fowler/BCSSPL/
4http://www.l1magic.org
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current subblock

B

Multi-phase RDWT

hypothesis subblock
search window

zero-padding

(a)

(b)

(c)

(d)

S1 S2

S4S3 0 0

0 0

0 0

S2S1

S3 S4

0 0

0 0

0 0

b

S1 S2

S4S3
even-even phase even-odd phase odd-even phase odd-odd phase

Fig. 1. (a) Generation of multiple hypotheses for a subblock in a search window; (b) generation of multiple hypotheses for each b × b subblock within
a B × B block; (c) zero-padding of subblock predictions into blocks; (d) generation of multiple hypotheses within the multiple phases of an RDWT (four
phases are shown—each phase has the same size as the corresponding DWT subband and results from various combinations of even and odd downsampling
in the horizontal and vertical directions).

reconstructions for both image and video reconstruction, in-
cluding, for video, a straightforward intraframe reconstruction
as well as an alternative �1-regularized prediction/residual
reconstruction; and, for still images, a popular TV-based
reconstruction.
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TABLE I
PSNR IN DB OF RESIDUAL RECONSTRUCTION (RR) OF VIDEO

Subrate
0.1 0.2 0.3 0.4 0.5

Foreman
RR w/ MH-TIK 31.5 33.8 35.0 35.9 36.7
RR w/ MH-�1 28.0 31.0 32.9 34.5 36.3
BCS-SPL 25.1 27.5 29.9 31.8 33.7

Susie
RR w/ MH-TIK 34.2 36.3 37.3 38.0 38.6
RR w/ MH-�1 30.7 33.4 35.2 36.7 38.1
BCS-SPL 29.4 31.9 33.6 35.1 36.4

Football
RR w/ MH-TIK 25.5 27.6 29.1 30.3 31.4
RR w/ MH-�1 24.6 26.7 28.3 29.7 31.1
BCS-SPL 24.0 25.9 27.2 28.5 29.9

News
RR w/ MH-TIK 30.9 31.6 32.0 32.1 32.2
RR w/ MH-�1 23.7 27.0 29.5 31.6 34.1
BCS-SPL 20.2 23.4 26.3 28.9 31.8

Fig. 2. The 512× 512 grayscale still images used in the experiments. Top
row (left to right): Lenna, Barbara, Barbara2, Goldhill; Bottom row (left to
right): Mandrill, Peppers, Boat, Cameraman.

Fig. 3. Barbara (detail) for subrate = 0.1. Top-row (left to right): BCS-
SPL, MH-BCS-SPL, MS-BCS-SPL; bottom-row (left to right): MS-GPSR,
MH-MS-BCS-SPL, TV.

TABLE II
RECONSTRUCTION TIME FOR LENNA AT SUBRATE 0.3

Algorithm Time (sec.)
BCS-SPL 14.38

MH-BCS-SPL 146.77
MS-BCS-SPL 12.93

MH-MS-BCS-SPL 45.98
MS-GPSR 138.40

TV 1211.96

TABLE III
IMAGE RECONSTRUCTION PSNR (dB)

Subrate
0.1 0.2 0.3 0.4 0.5

Lenna

B
C
S-
SP

L Original 27.93 31.27 33.41 35.15 36.71
MH 29.85 32.85 34.73 36.34 37.82
MS 31.48 34.59 36.61 37.82 38.94

MH-MS 31.61 34.88 36.79 38.32 39.74
MS-GPSR 30.30 33.60 35.29 36.29 37.73

TV 29.84 32.93 35.05 36.82 38.43

Barbara

B
C
S-
SP

L Original 22.28 23.78 25.32 26.88 28.51
MH 27.89 31.46 33.63 35.68 37.29
MS 23.84 25.12 26.05 27.27 28.83

MH-MS 24.28 26.42 27.98 32.95 36.21
MS-GPSR 24.03 25.24 26.06 27.50 29.64

TV 22.95 24.48 26.30 28.42 30.78

Barbara2

B
C
S-
SP

L Original 23.64 25.56 27.19 28.75 30.38
MH 26.83 30.19 32.03 33.71 35.27
MS 25.14 27.31 29.12 30.34 31.66

MH-MS 25.61 28.87 31.06 33.74 36.30
MS-GPSR 25.28 27.34 28.82 30.19 32.21

TV 23.90 26.24 28.51 30.74 32.97

Goldhill

B
C
S-
SP

L Original 26.57 28.92 30.42 31.72 33.03
MH 27.67 30.28 31.82 33.26 34.62
MS 28.97 31.06 32.75 33.67 34.64

MH-MS 29.07 31.35 33.06 34.55 36.10
MS-GPSR 28.39 30.55 32.10 32.89 34.20

TV 27.52 29.87 31.63 33.23 34.81

Mandrill

B
C
S-
SP

L Original 20.45 21.80 22.90 23.96 25.10
MH 20.47 22.36 24.03 25.36 26.67
MS 21.45 23.07 24.69 25.54 26.46

MH-MS 21.66 23.20 24.82 25.81 27.10
MS-GPSR 21.52 22.92 24.27 25.07 26.21

TV 20.53 22.02 23.44 24.94 26.52

Peppers

B
C
S-
SP

L Original 28.83 31.98 33.72 35.12 36.36
MH 30.28 32.82 34.32 35.63 36.87
MS 31.75 34.59 35.76 36.77 37.67

MH-MS 32.08 34.73 35.96 37.15 38.37
MS-GPSR 29.25 31.90 33.03 34.22 35.75

TV 30.36 33.14 34.70 35.91 37.05

Boat

B
C
S-
SP

L Original 25.14 27.78 29.57 31.12 32.60
MH 26.17 29.30 31.18 32.89 34.45
MS 27.35 30.08 31.98 33.12 34.22

MH-MS 27.46 30.38 32.23 33.89 35.46
MS-GPSR 26.52 29.21 30.84 32.06 33.64

TV 26.42 29.24 31.28 32.97 34.53

Cameraman

B
C
S-
SP

L Original 26.02 30.36 33.65 36.42 38.90
MH 29.86 33.97 36.57 39.28 41.48
MS 31.05 36.54 39.98 42.91 44.91

MH-MS 31.71 38.08 42.85 45.63 48.15
MS-GPSR 29.53 34.76 39.59 41.82 45.08

TV 30.87 35.08 38.32 41.09 43.73
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