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Abstract

We describe a new family of discrete spaces suitable for use with mixed
methods on general quadrilateral and hexahedral elements. The new spaces are
natural in the sense of differential geometry, so all the usual mixed method the-
ory, including the hybrid formulation, carries over to these new elements with
proofs unchanged. Because transforming general quadrilaterals into squares
introduces nonlinearity and because mixed methods involve the divergence op-
erator, the new spaces are more complicated than either the corresponding
Raviart-Thomas spaces for rectangles or corresponding finite element spaces
for quadrilaterals. These new elements may be useful in topologically regular
grids, where initially rectangular grids are deformed to match features of the
physical region.
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1 Introduction

Finite element methods for partial differential equations have long used nonrectan-
gular elements including triangles and tetrahedra, as well as general quadrilaterals
and hexahedra. Such elements are useful in situations where the shape of the compu-
tational domain is non-rectangular, or in situations where highly variable coefficients
in the equations vary in non-rectangular patterns. This occurs for instance in the
simulation of groundwater flow, because the porosity and permeability of the earth
tend to vary sharply across layers, called strata, which are of varying thickness and
slant. However, finite element methods are poorly suited to certain porous me-
dia computations because they do not conserve mass element by element; thus one
might like to use mixed methods on quadrilateral elements, as mixed methods do
conserve mass locally as well as globally.

Finite element methods for second order elliptic partial differential equations
are easily formulated on quadrilaterals because they only involve gradient compu-
tations, which are the same in any coordinate system. Mixed methods however



have generally been restricted to parallelograms, triangles, and other shapes which
are affine transformations of reference elements. Because transforming quadrilater-
als to squares is a non-affine map, and because mixed methods involve divergence
computations, which are not the same in all coordinate systems, generalizing mixed
methods to quadrilaterals is somewhat more complicated, as we shall see below.
However, the increased complication may be worthwhile in certain applications,
such as groundwater flow, where the resulting cell by cell conservation of mass is
important.

We describe a new family of discrete spaces suitable for use with mixed meth-
ods on general quadrilateral and hexahedral elements. We follow [10], constructing a
mixed method by defining properly compatible discrete subspaces of L2 and H (div).
Such subspaces are commonly constructed for general collections of elements by
mapping each element back to a standard reference element on which the spaces are
defined. The mappings used to handle general triangular, rectangular and parallel-
ogram elements are all affine, which allows one to handle transformations of vectors
via the Piola transformation[3]. When one turns to general quadrilaterals, however,
bilinear mappings arise. The resulting square reference element must be viewed as a
manifold with an induced metric which is different from the usual Euclidean metric.
This has a number of consequences. The unit outward normal can vary along edges.
Distinction must be made between covariant and contravariant vector components.
Most significantly the divergence of a vector field is no longer equal to the trace of its
Jacobian matrix. As a result the usual Raviart-Thomas spaces no longer satisfy the
compatibility conditions. We therefore define new spaces which are compatible. We
deliberately avoid degeneracy in the new spaces to prevent conditioning difficulties
with nearly rectangular elements, and we build in good approximation properties
as well. This then allow quadrilaterals to be used like any other type of element,
although the unusual metric must always be kept in mind when doing calculations.

We will also describe the extension of these ideas to three dimensions, which is
straightforward.

We note that there are other approaches one could take in generalizing mixed
methods to quadrilaterals. One approach is to attempt to define a method directly
on the quadrilaterals, rather than through reference elements. Another is to try
to construct “nonconforming” mixed methods which do not require the discrete
velocity space to be a subspace of H(div). Work is in progress on some of these
alternatives[1], but we will not consider them further in this paper.

The remainder of the paper is organized as follows. In section 2 we give a
quick review of the formulation of mixed methods and the compatibility conditions
required of the discrete spaces used in them. In section 3 we describe enough back-
ground material from differential geometry to enable us to apply this tool to general
quadrilaterals in section 4. In section 5 we introduce the new family of discrete



spaces for two dimensional quadrilaterals. In section 6 we extend the results to
three dimensional hexahedral elements. In section 7 we describe a hybrid formula-
tion using these elements. Finally in section 8 we summarize our conclusions.

2 Mixed Methods

2.1 A model problem

We begin with a quick review of mixed methods via a model elliptic problem.
Consider solving the equation

—Ap=fin Q,
with
p =0 on 09,
on some domain 2 € R". We set
U= _Vp7
whence
V-u=f.

We introduce the space
H(div; Q) = {v € (LE(Q))" : div v € L2(Q)},

with norm
10l (givse) = lvllz2q) + [1div o||2(q)-

By the divergence theorem, the original problem is equivalent to solving
(u,v) = (p,div v) for all v € H(div; Q), (1)

and
(div u,w) = (f, w) for all w € L%(). (2)
Here

(a,b) = /Q abdz

is the usual L? inner product.



2.2 The compatibility conditions

To define a mixed method we simply choose appropriate subspaces Vj, C H(div; Q)
and W), C L?(Q) and solve the above equations for u;, € V}, and pj, € Wy, restricting
the test functions to be in V, and Uj, respectively. That is, we seek U € V}, and
P € W), satisfying

(U, V)= (P,div V) for all W € V}, (3)

and
(div U,W) = (f,W) for all W € W, (4)

This gives a finite dimensional linear system which can be solved for the unique
approximate solution.

As described by Raviart and Thomas in [10], if the spaces Vj, and W}, satisfy the
so-called compatibility conditions that

v € V} and (div v,w) = 0 for all w € W}, implies div v = 0, (5)
and that there exist an a > 0 independent of h such that for all w € Wy,

di
sup (div v, w)

> al|w||z2(q), 6
veEV), ||U||H(diu;9) lellz ) ®)

then the approximate method converges to the true solution and the error goes to
zero like approximation error. That is, one has the following theorem.

Theorem 1 (Raviart-Thomas [10] based on Brezzi[2]) If (5) and (6) hold,
then there is a constant C' independent of p, u and h such that (8) and (4) have a
solution, which s unique and satisfies

|lw = Ullggivia) + |Ip — Pllrz(q) <
€ (inf, 1= Vilsainey + jaf, 11~ Wiliaay ) - ()

3 Differential Geometry

Differential geometry may be thought of as a tool for making the integral theorems
of vector calculus, such as the divergence theorem and the various Green’s identities,
hold in general coordinate systems. It explains how to calculate gradients, diver-
gences and normals in any coordinate system. In many coordinate systems these
rules reduce to the ordinary ones, but in non-affine coordinates they do not. Anyone
who tries to apply the divergence theorem in non-affine coordinates using ordinary
Euclidean vector calculus will find that it fails to hold. As mixed methods rely on



the divergence theorem for their very formulation, some knowledge of differential
geometry is essential in generalizing them to quadrilateral elements.

In this section we define the notation we will use from differential geometry.
Readers not familiar with differential geometry are referred to [9] and [7] for a
comprehensive introduction and to such books as [6] for a quick summary of tensor
analysis in general spaces. Books on orthogonal coordinate systems and cartesian
tensors will not suffice. Readers familiar with the subject may skip this section, as
I follow the standard notation closely.

We explain only as much differential geometry as is needed for our application.
In particular we do not define smooth manifolds in their full generality but restrict
attention to the following situation. Let £ C R™ be a simply connected open
set with piecewise C! boundary. Let f : & — R™ be a C! injection. Then f
defines a coordinate system on € in which the coordinates of any point p € Q
are given by f(p). Such an f is also called a chart. For instance when f is the
identity map we have the usual FEuclidean coordinate system. If f' : @ — R" is
also a C! injection then f’ defines a second coordinate system on . We will write
z=(z}...,2") = f(p) and 2’ = (2'V,...,2™) = f'(p) to distinguish them.

The present section will use the techniques of differential geometry to study
the effect of changing between general coordinate systems. The next section will
specialize to the case of a quadrilateral transformed to look like the unit square.

3.1 The Metric Tensor

At each point p of our domain Q is an n-dimensional space of tangent vectors,
denoted T,(2). If ¢ : [-1,1] —  is a smooth curve, and ¢(0) = p, then ¢'(0)
denotes a specific element of T,(£2). Given a set of n basis vectors g; for T,(Q) we
may express any tangent vector v € T, ,,(Q) as a sum

— ol
v =04,

for some numbers v'. Here and henceforth we adopt the summation convention
that repeated upper and lower indices denote summation from 1 to n, and that
unrepeated indices imply that the equation holds for any choice of that index. We
do not repeat two upper or two lower indices.

The coordinate system defines a natural choice of the basis vectors g;. In par-
ticular g; is the tangent vector to the curve ¢;(t) = f~(z!,...,z" + t,...,z") at
t=0.

We suppose that a symmetric inner product has been defined for the real vector
space Tp,(2). In particular, when f is the identity map we may use the usual
Euclidean inner product. The choice of inner product is separate from the choice of
coordinate system; together the two completely determine the intrinsic geometry of



an oriented Riemannian manifold. We define
9i; = 9i - 45,

whence
9i; = Gyi-
The numbers g;; are called the components of the metric tensor. Knowing them is

equivalent to knowing the inner product, since to compute the inner product of any
two vectors u = u'g; and v = vJ g; we simply use

u-v=u'v g

The set of linear functionals which map tangent vectors into real numbers is also
an n-dimensional vector space at each point in the manifold. A natural basis for it
are the functionals G* defined by their action on the set of basis vectors according
to

G'(g9;) = 6.
Here we use the Kronecker delta symbol 5;, which is defined to be one when 7 = j
and zero otherwise.

By the Riesz representation theorem linear functionals correspond one to one

with vectors, via the inner product operation. That is, to each G* there corresponds
a vector ¢* such that

Gi(v) = gi * U,

for all tangent vectors v. Henceforth we identify linear functionals with tangent
vectors. We thus have another “natural” choice for the set of basis vectors for the
tangent space at each point, namely the ¢'.

Let us expand the ¢' in terms of the basis g;- Suppose ¢g' = gijgj for some
numbers g*/. Forming the inner product with g; yields

979k = g' - gk = 6.

Thus the g% are the components of the inverse of the metric tensor, thought of as
a matrix. Similarly we deduce

9i = gi59’ .
In addition,
gi=g-g.

If v is any tangent vector we may express it in terms of either basis. We write

i — i
v=10'g; = vig'".



The v* are called the contravariant components of v, and the v; are called the
covariant components. Inner products with g’ or g; show that the two types of
components are related by

v = giu;,
and

vi = gijv’.

Thus knowing the metric tensor enables us to raise and lower indices as needed.

3.2 Changing Coordinate Systems

A different coordinate system f' will cause us to consider a different set of basis
vectors gy. In this context we write z = z(z') = fo f'"}(a') and 2’ = «'(z) =
f' o f~1(z) for short. Applying the chain rule for partial derivatives shows the g
are related to the g; by

gir = ﬂ:"gia
where .
: dz*
ﬂ:'l = -
ax/z
We also define ,
-t aﬂf”
=
z
Note that the chain rule for partial derivatives implies
i Bl =6},
and ' .
gip7 = 6.
Also,
g =8y

In terms of the new basis a vector v can be written as v = v"gy. The primed
components v" are related to the unprimed components v* through the equation
v gy = v'g;. Substitution of the transformation rule for g; shows that

i il
v _/Biv’
and

vy = ﬁz, v;.

These equations show how the contravariant and covariant components of vectors
transform. That is, a single entity, namely a tangent vector in Tp(2), can be written



in terms of 4 different sets of basis vectors, and the resulting components are related
by the above equations, independent of the particular vector.

A tensor can be thought of as a multi-linear functional on tangent vectors. For
instance a rank 2 tensor A maps pairs of tangent vectors into real numbers. It is
defined by its action on basis vectors, so if

A(gng]) - Aij7
then for any u = u'g; and v = v'g;,
A(u,v) = u'vl 4;;.
Notice that if we write
A= Ayg'g,
then
Auv = Aijglgjukvlgkl = u'v! 4;; = A(u,v).

Hence we may think of the A;; as being the covariant components of the tensor A
in this coordinate system. We find that in the primed coordinate system,

Ai/jr = ﬂ;:ﬂ;,Ai]‘ .

Any entity with n? components in each coordinate system which transform according
to this equation is a rank 2 tensor, and the components are its covariant components.
We can define
Al = g% Ay,
Af = g™ A,
and
A = g* gl A

The dot may be omitted when the tensor is symmetric. One can verify that these
transform according to

ATy = BY Bl AT,
i = BYpL AL,
and N o
AYT = BI B AN
Tensors of rank 3 and higher are defined analogously.

For instance the metric tensor in the primed coordinate system is defined by

i - G50 = gty



which implies .

ity = BiBhgij,
which is exactly the transformation rule for the doubly covariant components of any
two index tensor, so we are justified in calling it a tensor.

Similarly

g = BB} 9"

Note that the general elliptic operator div (A - grad p) may involve a tensor A,
which is often taken to be diagonal in Euclidean coordinates. In the transformed
coordinate system it may be that A will no longer be diagonal. However the identity
tensor A; = 6;'- is unchanged in any coordinate system: A;', = f’ 5,5; = ﬂf’ﬂ;, = 6;’,

In ordinary Euclidean coordinates the two basis sets g; and ¢* are in fact the
same. In orthogonal coordinate systems, which are the subject of books on Cartesian
tensors, the normalized versions of the g; and g¢' are also the same. Hence in both
cases there is no distinction between covariant and contravariant components. In
general curvilinear coordinate systems, however, the bases and the components do
differ.

Because we have not made any assumptions about the two coordinate systems,
all the above equations hold if all primed indices are unprimed and all unprimed
indices are primed. This is one of the virtues of the tensor approach — one can
write equations which are the same in any coordinate system, and hence are more
likely to describe the essence of the situation.

3.3 Integration and Differentiation

We now turn to integration and differentiation of scalar and vector fields. Let
g = det(gi;). For any scalar function ¢, we define

/Q 6= ] @I @ o @) da (8)

Because of the ,/g factor, this definition is independent of the coordinate system
f chosen in which to evaluate it. This follows from the usual change of variables
theorem for integrals in multi-variable calculus.

We next denote partial derivatives by commas in index notation. That is, for
any scalar field ¢, we define

9¢
$i= 55
z
By the chain rule for partial derivatives,
b = Pl

10



Hence the scalars ¢ ; are the covariant components of a vector field. We name that
vector field the gradient of ¢ and write

grad ¢ = ¢; gi.

When differentiating vectors, however, the situation is more complex. If v is a
vector field, neither the partial derivatives of the covariant components nor the par-
tial derivatives of the contravariant components transform like tensor components.
If the divergence of a vector field is to be meaningful, it must not depend on the
coordinate system chosen for the computation. Therefore we consider the entire
entity, in this case a vector, and differentiate it:

vi=(vg;); = vig; + v'gj-
We see that we need to know the derivatives of the basis vectors. These are given
formally by

k
9i; = Pijgkv

where the l‘fj are called the Christoffel symbols. For convenience we also define
Liji = gl

The various T' symbols are not tensors!, but they do satisfy a number of useful
properties. We will not derive them all here but will mention the most important

ones. They are symmetric,
F;Cj = F_];ia
they satisfy
i ik
4;= “ijg ’
and most importantly they can be computed from the equation

1
Lk = i(gik,j + Gkji — Yjik)-

We want to write the ’th partial derivative of v as a vector:
Vi = Vg,

where vjz denotes the j’th contravariant component of the i’th partial derivative of
the vector v. Given the Christoffel symbols, we proceed to calculate

j Tk
v = z)figj + v]I‘ijgk.

'For if they were tensors, the transformation law implies they would all be zero in every coor-
dinate system, as they vanish in Euclidean coordinates.

11



Rewriting this as ' '

v = (v + v* T2, )g;,
shows that ' ' .
vl = '”,Ji + ka‘fk.

i1

Similarly one can derive an expression for the j’th covariant component of the i’th
partial derivative of a vector field:

oy k
'U]:l = ’l)])l — 'U]cF”

Just as the notation ,¢ denotes an ordinary partial derivative, we use : ¢ to denote
this total derivative, which is also called a covariant derivative. For consistency we
set

¢i = b,
for scalar fields ¢.

We can finally write the divergence of a vector field in coordinate invariant form.
It is the scalar field corresponding to the trace of the covariant derivative matrix:

div v = v,
Applying the above definition yields
div v = vfl- + oFT, 9)

Alternatively, recalling v* = gijvj we can write this in terms of the covariant com-
ponents of v as
div v = g”(v]-,i - vkl“fj).

It turns out that in ordinary Euclidean space and in many other manifolds as
well, all the I‘fj are zero, whence we recover the ordinary definition of the divergence
as the trace of the matrix of partial derivatives. Even in the case of a parallelogram
mapped back to a square, the I‘fj all vanish. But for general quadrilaterals they do
not vanish, and the above general definition of the divergence must be used. That
is to say, one wants the integral of the divergence times a test scalar field to be
the same over the quadrilateral and over the reference square. Unless one uses this
definition for div, the integrals will not in general be equal.

For completeness we state the definition of the Laplacian operator in coordinate

invariant form. Let v = grad ¢. Then lap ¢ = div v, whence a short calculation
shows

lap ¢ = ¢ ¢i; = g9 (s — ¢,kaj)~

12



3.4 Submanifolds and Normals

The divergence theorem requires a definition for the unit outward normal vector
along the boundary of a manifold. For a smooth orientable manifold such as €,
with a piecewise C! boundary, the inclusion map i : Q — Q induces an injection
T(z) : T(0Q) — T () which allows us to identify T,(9€) with a subspace of Tp({),
for each p € 9Q. The unit outward normal 7(p) at p is defined to be a unit vector
in T;(Q?) which is perpendicular to all vectors in the subspace T,(9Q). Because the
manifold was assumed to be orientable, there is a consistent continuous choice of
sign over all of 02 which we can call outward.

To calculate the contravariant components of the normal we must first param-
eterize the boundary. Let h, be a chart on 9Q near p, and h, a chart on Q near
p. In this section we will use Greek indices on 9} and Latin indices on Q. Given
the natural basis vectors g; on T,(Q2) and g, on 7,,(99) induced by these charts, the
injection T'(¢) is defined in coordinates by

J — RI b
v? = Bk,
where j=1,...,mand p=1,...,m~ 1, and

i _ a(ha 010 h;l)] .

# dzH

Now, let b, be the image of g, under T'(¢). Note that b, is generally not the
same as a ¢;, as the coordinate systems on 2 and 952 need not be related. In fact,
writing

b, = b,
and noting that
9u = 6,9.,
we find that
bL = IZ/(SZ = Pus

are the contravariant components of b,,.
The unit normal 74 = n'g;. Its contravariant components satisfy

ninlgi; = 1,
and
n'bl gi; = 0,

which say that 7 is a unit vector which is perpendicular to the boundary. One can
check that the solution to these equations defines a set of components which trans-
form like contravariant vector components, and hence # is well defined independent

13



of the choice of coordinates. Its representation in any particular coordinate system,
however, does depend on the coordinate system.
In coordinate free form, we can now state the divergence theorem:

/divv:/ v,
Q a0

which is true in any coordinate system since it is defined in coordinate independent
form and is true, in particular, in Euclidean coordinates. Similarly we can rewrite

it as Green’s theorem:
/¢:ivi= —/ ¢v;’i+/ pv'n? g;;.
Q Q an

To evaluate integrals over the boundary of the region, we need the Jacobian
factor, which here is /g = \/det g,,,. Note that we can evaluate

Guv = Yu gy = by by, = bLb{/giJ"

4 General Quadrilaterals

We now specialize the above theory to the case of a general quadrilateral. The com-
putations are tedious but can be automated with a symbolic mathematics program
— I used Maple V, available from Waterloo Maple Software[4]. Here we simply state
the results.

In our application © will be a general quadrilateral in R?. We choose the initial
coordinate system f to be the identity map composed if necessary with a translation
and rotation so that one vertex of the quadrilateral is at the origin and another is at
some point (a,0) on the positive x-axis. This does not alter any metric properties
as the Euclidean metric is invariant under rotation and translation. There are 4
degrees of freedom remaining. We will think of a as the x-scale, and so let the
vertex opposite (a,0) be (ab, ¢), where ¢ will be the y-scale. We use ab rather than b
to express the new x-coordinate, because this makes b dimensionless and turns out
to simplify the following formulas. If we had a parallelogram, the final vertex would
be at (a 4 ab,c), so we express the actual final vertex as a scaled shift away from
this point. That is, we give it coordinates (a + ab + ad, ¢ + ce). We have now used
up all the degrees of freedom. Figure 1 summarizes this labeling and also shows the
reference element, which will be the unit square.

In the unprimed coordinate system g;; = §; = ¢/, and all the I‘f]- = 0. Also
V9 = 1, so scalars, vectors, integrals and derivatives all obey the usual rules for
calculus in R2.

14



(ab,c)

(a+ab+ad,c+ce)
(0,0) (a,0)
(0,1) (1,1)
(X,y’)
(0,0) (1,0)

Figure 1: A general quadrilateral and its reference element

15



The primed coordinate system is designed to make Q look like the unit square.
In particular we take f’ to be defined by (z,y) = f'~}(z',y’), where

T =az' +aby + adm'y',

and

y=-cy + cez'y.
Note that if the top and bottom edges are parallel, e = 0 and y = cy’. If the left
and right edges are also parallel, then d = 0, and =z = az’ + aby’, resulting in an

affine transformation for parallelograms. For general quadrilaterals, however, the
coefficients of the z'y’ cross terms do not in general vanish.

If we cut the quadrilateral into two triangles and map each into half the unit
square by an affine transformation, we avoid the nonlinear terms, but the resulting
f is only piecewise smooth. This forces us to consider each of the two triangles
separately and form a macro element from the pair. In three dimensions we need
5 tetrahedra to partition a cube. We will see below that while the nonlinear terms
do complicate matters, the resulting spaces are more efficient in terms of number of
unknowns than the tetrahedral macro element. In the rest of this section, therefore,
we restrict attention to the smooth f introduced above.

The metric tensor is given by

gin = a® +2y'ald + <a2d2 + 0262) 42,

gry = a®b + 2'a®d + (anb + 626) Y+ (a2d2 + czez) z'y,
g2 = g2,
and
gorpr = a?b? + ¢ + (2 e+ 2 azdb) '+ (a2d2 + 6262) z'?.
We now define € = d — eb.
To integrate scalars in the primed coordinate system we use

\/det girjy = acV,

where the normalized volume element V is the linear function
V@,y)y=1+ex +ey'.

To compute derivatives we need to know that all the I‘f,'j, = 0 except I"f:w = 1"’5:1,,
which are given by

rl, =&V,
and
rZ, =e/V.

16



We note in passing that the area of the quadrilateral is

1

2

as may be checked by integrating 1 over the unit square in primed coordinates.
Applying (9), the divergence of a vector v = v'g; is here given by

e € 1
Area = ac(1 + 3 + 5) = acV(i,

div v = v}lll + 'v,22’, + vllI‘gzl, + UTI‘%;T,
which reduces to
div v = 1),11', + U?2l/ + (ev + &)V (10)
The unit outward normal along any edge (2o, yo) to (z1,¥1) can be computed by

parameterizing this line segment as [0, 1], for instance. Along the edge from (0,0)
to (a,0), the unit normal at (z',0) turns out to be

(b+dz’,-1)
c(1+ez’) ’
in contravariant components. We choose the plus sign to make it outward. It then
turns out that along this edge,

v = ~v2lc(1 + ez').

While we will not write out the normal for the other edges, one may verify that
each is a rational function of position. In addition one may verify that there are
four linear functions fro, fz1, fy0, and fy1, which depend only on the geometry, such
that

(0" fo0)(y') along 2’ =0,
(o' fu)(of)  along o' = 1,
(v* fyo)(a')  along y' = 0,
(o7 f)(@')  along y' = 1.

v-n =

We have

_ac(l+y'e)
fa:O - m;

_ ac(l+y'e+e)
B Va?b? + c2 + 2c2e + 2a2bd + a2d? + c2e?’
foo=—c(z’e+1),

ac(z'e+1+€)

fyl = .
Va? + 2a2d + a2d? + c2e?
The Jacobian along each edge is just a constant factor. For example, along the

edge y' = 0, using 2’ as the coordinate for the submanifold, we have /7 = a.

fml
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5 The New Spaces

5.1 Why the standard space does not work

The careful reader will now see several reasons why the usual Raviart-Thomas spaces
on reference squares fail to satisfy the compatibility conditions when the original
elements are general quadrilaterals. Consider for instance the lowest order Raviart-
Thomas space on rectangles, in which Wj, is the space of discontinuous piecewise
constants and Vj the space of vectors whose x component is continuous piecewise
linear in x and discontinuous piecewise constant in y, and whose y component is
continuous piecewise linear in y and discontinuous piecewise constant in x. Here
piecewise means element by element, when the domain of the PDE has been subdi-
vided into more than one rectangular element.

Ordinarily the first compatibility condition (5) is trivially satisfied, as the diver-
gence of any vector field in V}, is piecewise constant and hence is in Wp. Similarly
(6) is satisfied because any w € W}, can be written as the divergence of some v € V.
In addition V}, is clearly a subspace of H(div).

For quadrilaterals mapped back to squares, however, several things go wrong.
If two adjacent quadrilaterals have different shapes, the outward normals across
the shared edge are different linear functions, and so V}, is no longer a subspace of
H(div). Even when all the quadrilaterals are the same shape, the divergence of a
vector in V}, is not in general piecewise constant. To see this, take g;» as the basis
vectors for the velocity space and consider v = v* gy with o''(z/,y') = ¢12' + ¢5 and
02 (2", ') = e3y’ + c4. By (10),

div v = ¢; + ¢c3 + (ec1z’ + €czy’ + (eca + €cq))/V. (11)

This is clearly not constant. In fact, the quantity Vdiv v is a completely general
piecewise linear function. Investigating (5) cell by cell using (8) we find that on each
element,

(div v,w) =
1 1
/ / acw(cy + c3 + ecy + Ecq + €(2¢1 + ¢3)z’ + €(cy + 2¢3)y) dz dy.
o Jo

That is, we are integrating a linear function with three degrees of freedom against
a constant test function, which is not enough to match it — the integral vanishing
merely implies the average value of the linear function is zero. Hence the compati-
bility condition is no longer satisfied.

5.2 The new spaces

There are many possible ways to remedy the situation. Each way involves tradeoffs
between power and efficiency. One approach is to abandon the compatibility condi-
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tions and invent a new theory of non-conforming mixed methods in which the normal
fluxes of a velocity vector field can be discontinuous across element boundaries; see
[1]. Alternatively, we can use differential geometry to construct new compatible
spaces which work within the old theory. We take this latter approach here, gain-
ing simplicity from differential geometry at the cost of a restriction on the types of
quadrilateral elements we can connect together.

Returning to the example of the lowest order Raviart-Thomas spaces, we fix
compatibility by letting the pressure space consist of discontinuous piecewise lin-
ears rather than discontinuous piecewise constants. In order to keep the method
conforming, we restrict attention to topologically regular grids where an initially
rectangular grid is deformed globally by a single bilinear transformation — this in-
sures that the normal fluxes all match. Figure 2 shows such a grid. We would prefer
to be able to use irregular grids like the one in Figure 3; however, this introduces
nonconformity. In [1] we will show that this restriction can actually be lifted, by de-
veloping a theory of non-conforming mixed methods; at present however it appears
that one loses a power of h in accuracy if one allows non-conforming elements.

Another restriction on the quadrilaterals arises from the need to avoid degener-
acy. Since the divergence on parallelograms is just a constant (because e = € = 0),
we only need discontinuous piecewise constants for pressure in that case. Therefore,
on elements which are almost parallelograms, the resulting system of three equations
will be ill-conditioned. This follows from (11), which we re-write as

Vdiv v = ¢1 + ¢34 ecy + €cq + e(2¢1 + ¢3)z’ + €(c1 + 2¢3)y’.

The condition number of this system with respect to a basis of linear polynomials
depends inversely on e and é. Thus we restrict to quadrilaterals which are far from
being parallelograms, in the sense that they satisfy

min{le|,|e|} > ¢o > 0, (12)

for some fixed constant cg.
We also need the Jacobian V to be non-singular. Write the Euclidean coordinates
of the fourth point of the quadrilateral as

a(ab, c) + p(a,0).

We see that & = 14€ and § = 1+é€, yielding an explanation for the prevalence of the
symbols e and € in the above formulas. Non-degeneracy is equivalent to requiring
a>0,0>0,and o+ 8 > 1. To prevent ill-conditioning, we therefore require that

1+ min{e,e,e+ €} > ¢; > 0, (13)

for some fixed constant ¢;. Figure 4 illustrates the situation.
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Figure 2: A rectangular mesh and its image under a bilinear map
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Figure 3: An irregular grid of quadrilaterals
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Figure 4: The non-degenerate region for the 4’th vertex of a quadrilateral
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Let
ko1
Poy=< (e y) =) () (')
1=0 ;=0
Note that the dimension of Py ;is (K + 1)(I+ 1).

We now define the new family of spaces more formally. To create the k'th
order member of this family, £ = 1,2, ..., we follow the Raviart-Thomas pattern for
velocities. That is,

Vi = Prg—1 X Pro1 k-

Recall that we have assumed all the quadrilaterals come from the same transfor-
mation, so velocity fluxes are continuous across edges, and are in fact polynomials
of degree k — 1 in one primed variable along each edge, times fixed flux functions
such as fyo. Thus the velocity space contains 2k% 4+ 2k degrees of freedom total,
consisting of 4k values shared across edges and 2k? — 2k internal ones.

Considering divergences, we find

{Vdivv:v eV}
= {(14ex'+ey)Pr_1 k-1 +€Pri-1+ePs_1k} (14)
= Pep—1+ Pro1p. (15)

provided both e and € are nonzero. Therefore we take

Wi = Peg—1+ Pe1k.

This yields k? + 2k pressures.

In the lowest order case, we have 4 velocity degrees of freedom and 3 pressure
degrees of freedom per element. Since this is a conforming method, velocity fluxes
are continuous across edges, giving 5 unknowns net per element, in two dimensions,
compared to 3 in the Raviart-Thomas case on parallelograms. When k = 2, there
are 12 velocities and 8 pressures, with 8 of the velocities shared across edges, for
a total of 16 unknowns net per element, compared with 12 in the Raviart-Thomas
case on parallelograms. Figure 5 illustrates the two lowest order Raviart-Thomas

spaces, and Figure 6 shows the corresponding two lowest order quadrilateral spaces
on the reference element.

We also note that the above spaces have good approximation properties. This
is clear since the spaces are just familiar spaces of polynomials, in the transformed
coordinate system (which is as valid as any other for computing norms of errors in).

6 Three Dimensional Elements

In three dimensions the construction of the new spaces is analogous. We will not
write out the general transformation, though one can easily work it out with a
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Figure 5: The two lowest order Raviart-Thomas spaces
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Figure 6
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symbolic calculator program. A general hexahedron has 6 planar faces, each of
which is a quadrilateral. A plane is determined by 3 points, and we take the first
four vertices to be the same as in the two dimensional case, in the z = 0 plane.
We now add a fifth point which would be the point on the z-axis if we had a cube.
It has three degrees of freedom. Together with the origin and the point (a,0,0) it
determines a plane, so the fourth vertex on that face has only 2 degrees of freedom
remaining. The same holds with the point (ab,c,0). The final vertex is constrained
to lie at the intersection of three planes previously formed, and hence is uniquely
determined. Thus we have 12 degrees of freedom altogether.
The velocity fluxes still satisfy conditions such as

R '
v'n:vlsz’

along 2’ = 0, but the f functions are now functions of two variables. To see that v?

and v do not enter this equation, recall that v = v*'¢gy and by construction, the

normal to the face 2’ = 0 satisfies gy - 2 = g3 - 7 = 0. Similarly for the other faces.
In the k’th order case, we take

Vi = Prr—1k-1 X Ptk k-1 X Pr—1,k-1k-

Then
Wi = Pek—1 k=1 + Pe—1,k k-1 + Pe1,k-1,k-

For instance, in the lowest order case (kK = 1), there are 6 velocity degrees of
freedom, one per face, and 4 pressures. This yields 7 unknowns net per element.
In comparison, subdividing the cube into 5 tetrahedra requires 16 velocities and 5
pressures, with 4 of the velocities internal to the element, yielding 15 unknowns net
per cube.

7 Hybrid Methods

The hybrid form of mixed methods adds Lagrange multiplier unknowns to certain
edges or faces in the set of elements, decoupling the resulting system in a way which
is suitable for use with domain decomposition[8, 5]. The problem is formulated by
replacing equations (1) and (2) with the equivalent system for p, u, and the new
unknown A € LUz OF)

(u,v)g = (p,div v)g— < A\,v- 7 > for all v € H(div, E), (16)
(div v, w)g = (f,w)g for all w € L*(E), (17)
and
> <u-i,pu>sgp=0forall p € LA (UgOE). (18)
E
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Here
(@b)p = [ ab,
E

is the usual L? inner product element by element, and

< a,b >8E:/ ab,
OFE

is the integral over the boundary.

We have written it with Lagrange multipliers on every edge or face; one can do
domain decomposition by applying them to just the edges or faces of subdomains
by thinking of each F as a subdomain rather than an element.

To discretize a hybrid method we proceed as usual, using subspaces Wj(E) C
L?(E) and Vi (E) C H(div, E),and Aj, C L}(Ug OF). The result is that we use the
same spaces as before, except that velocities across subdomain boundaries do not
share the same degree of freedom explicitly. This continuity is then reimposed by
requiring A to be dual to the space of velocity fluxes.

In two dimensions, the k’th order variant of the new spaces requires & multipliers
shared across each cell edge, plus the 2k? + 2k velocities and the k? + 2k pressures.

In the lowest order case this yields 2 multiplier unknowns per element, plus local
problems of 7 unknowns and 7 equations on each element.

In three dimensions, the lowest order case uses 3 multipliers per element, plus
10 by 10 local problems on each element.

In contrast, using triangles to subdivide quadrilaterals also requires 2 multipliers
per cell and 7 by 7 local problems in two dimensions, and using tetrahedra to
subdivide hexahedra requires 6 multipliers per macro element and has 21 equations
and 21 unknowns in each local problem.

8 Results

Quadrilateral and hexahedral elements arise naturally in topologically regular meshes,
where one seeks to combine the flexibility of general geometry with the computa-
tional advantages of rectangular arrays. They can also be used in adaptive mesh
situations, where vertices in the mesh are perturbed from their initially rectangular
layout to optimize the fit to the solution. In the previous two sections we have seen
a new family of discrete spaces for pressure and velocity suitable for use with mixed
methods on such elements. Because mixed methods can be written in coordinate
independent form, and because the compatibility conditions can be as well, and be-
cause our constructed spaces satisfy the compatibility conditions, we immediately
obtain from Theorem 1:

Theorem 2 If the k’th order variant of the above new spaces are used for Vy, and Wy,
to solve an elliptic equation on a domain using quadrilateral or hexahedral elements,
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then there is a constant C independent of p, u and h such that (8) and (4) have a
solution, which is unique and satisfies

llw = Ullggive) + 1P~ Pllz2@q) <

¢ (it lu=Vilnian + jaf, Ip- Wiz ) - (19)

We must check that the usual polynomial approximation theory results still hold
in the primed coordinates. While approximation of functions works the same in any
coordinate system, we also need to approximate the divergence, which is trickier.
However, the extra terms in the divergence formula occur both in the divergence of
a function and in the divergence of any approximation for it, so everything works.
We immediately obtain:

Theorem 3 Let Q be a quadrilateral(hezahedral) domain. Let f be a
bilinear(trilinear) map of the unit square(cube) onto Q, as described above. Given a
constant Cy >= 1, let the unit square(cube) be partitioned into a rectangular array
of N? sub-rectangles(N3 sub-cubes) of mazimum diameter h = C3/N, and let their
images under f be the computational elements within Q. If the k’th order variant
of the above new spaces are used for Vi, and Wy, to solve an elliptic equation on this
domain using these elements, then there is a constant C' depending on the PDE and
on the geometry of the domain, and on the constants ¢y and ¢y in (12) and (13),
but not depending on h, such that

lu ~ Ullpr(aivay + |lp = Pllregay < Ch.

While differential geometry relieves us from having to invent new methods and
new proof techniques, the above result does come with the price tag of increased
complexity of calculation. However, the increased complication may be worthwhile
in certain applications, such as groundwater flow, where the resulting cell by cell con-
servation of mass is important. Numerical comparisons of these new elements with
various competitors, including standard rectangular meshes for the same domain
and triangulations or tetrahedral decompositions, will all be necessary to evaluate
how substantial a penalty this really is.
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