
Boosting: Min-Cut Placement with Improved Signal Delay

Andrew B. Kahng
CSE and ECE Departments
University of CA, San Diego

La Jolla, CA, 92093
abk@cs.ucsd.edu

Igor L. Markov
EECS Department

University of Michigan
Ann Arbor, MI, 48109

imarkov@eecs.umich.edu

Sherief Reda
CSE Department

University of CA, San Diego
La Jolla, CA, 92093
sreda@cs.ucsd.edu

ABSTRACT
In this work we improve top-down min-cut placers in the con-
text of timing closure. Using the concept of boosting factors,
we adjust net weights according to net spans, so as to reduce
the quadratic wirelength. Our method is generic and does not
involve any timing analysis during or prior to placement. In
essence, we skew the netlength distribution produced by a min-
cut placer so as to decrease the number of long nets, with minimal
impact on the overall wirelength. Empirically this approach does
not significantly affect runtime, but reduces the worst negative
slack and total negative slack of industrial benchmarks by up to
70% compared to Capo [5] and a leading industrial placer.

1. INTRODUCTION
As VLSI technology advances, interconnect delays dominate

gate delays and become the bottleneck for high-performance de-
signs [10]. Since signal delay grows quadratically with net length
[7], long nets are often responsible for critical paths. Force-
directed placement addresses this effect by minimizing the sum
of squared netlengths. On the other hand, minimization of total
netlength to meet routing supply constraints remains the pri-
mary objective for most placement strategies. Recent work [5,
22, 1] shows that top-down min-cut placers1 produce high-quality
placements in terms of wirelength, and moreover have excellent
scalability and reasonable runtime. While optimal buffer inser-
tion can make net delay linear in netlength [13], it consumes
additional power and requires that unused space be available in
the right regions. Both limitations may affect the feasibility of
optimal buffer insertion. Additionally, buffers themselves intro-
duce non-trivial signal delays.

The fact that many analytical placers [6, 21] minimize the
quadratic length objective has been historically viewed as a com-
promise between mathematical and computational convenience
and the end goal of total wirelength minimization. The debate
regarding the use of linear versus quadratic wirelength goes back
to at least the mid-1980s [19, 16, 8, 11]. However, most compar-
isons in the literature do not include the evaluation of signal
delay, and focus instead on routability and wirelength [16]. A

1From now on, we will refer to top-down min-cut placers as
min-cut placers. It is not clear whether our proposed boosting
technique improves results if min-cut is already combined with
quadratic placement, as in [2]. However, unlike the addition of
quadratic placement, boosting does not imply increased runtime.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

common conclusion is that minimization of linear wirelength is
preferable since the objective better models routed wirelength
and thus the demand for routing resources. Nevertheless, recent
studies [20] confirm that quadratic placers produce placements
with better timing than min-cut placers. Hence, a modern placer
must minimize linear wirelength while at the same time attempt-
ing to reduce the quadratic wirelength measure for better timing.
To this end, recent work on timing-driven placement proposes
limiting netlengths in several ways [18, 15, 14, 9, 10].

In this paper, we modify modify net weights during min-cut
placement to decrease the number of large nets. Observe that
some previous approaches tend to do the opposite, e.g., by lin-
earizing the quadratic objective in analytical placement so as to
minimize linear wirelength [16]. In contrast, we seek to reduce
signal delay. We introduce boosting factors that increase the
weights of nets which are likely to be long. These adjustments
are computed dynamically based on lower bounds of nets during
min-cut placement. Through tie-breaking this reduces quadratic
wirelength with little impact on linear wirelength. Empirical
validation involves global and detailed routing after placement,
followed by static timing analysis using Cadence Pearl. Our tech-
niques do not affect runtime min-cut placement, but significantly
improve circuit delay in resulting placements.

In our experiments we do not consider optimal buffer insertion
that makes signal delay asymptotically linear in terms of net
length [13]. Optimal buffer insertion is often infeasible because
optimal buffer locations may already be occupied by existing
cells. Additional buffers may increase routing congestion and
power dissipation. Similar problems arise from logic replication.

The organization of this paper is as follows. Section 2 pro-
vides a brief overview of related work in the literature. Section 3
gives basic definitions and motivates our work. Section 4 intro-
duces the concept of boosting, determines which nets should be
boosted and discusses the effect of boosting on cut size. Empiri-
cal validation is covered in Section 5, and Section 6 summarizes
our contributions.

2. PREVIOUS WORK
Several related techniques give important context to this work.

Most timing-driven placement methods start by identifying nets
that belong to critical paths. Various methods are then used to
control the net lengths [12, 17, 18, 15, 6, 14, 9, 10]. Main differ-
ences are associated with whether the placement methodology
is analytical [17, 18, 6] or top-down [12, 14, 9, 10]. Top-down
methodologies use quadratic partitioners [14] or min-cut parti-
tioners [12, 10]. Net length constraints are typically translated
into net weights [12, 14] or handled as upper bounds [17, 9].

Ou and Pedram [14] control the number of cuts in a critical
path, since the more cuts a path experiences, the longer the
path tends to be. Hence, the method of [14] gives large weights

to critical nets and imposes an upper bound on the maximum
number of times a path can be cut. In [9], linear programming
is used to constrain the bounding boxes of critical nets.

Marek-Sadowska and Lin [12] perform static timing analysis
at each level of recursive bisection and then translate slacks to
net weights. These weights affect the min-cut partitioner and
eventually reduce signal delay. Another recent approach that
uses a min-cut partitioner is due to Kahng et al. [10]. Given a
block under partition, some of the block’s cells are pre-assigned
and fixed to the child partitions so as to reduce the negative
slack of critical paths. After cell pre-assignment, the hypergraph
partitioner is invoked on the remaining cells.

While we later show how our approach attempts to reduce the
quadratic measure of placement produced from linear min-cut
placers, it is interesting to note that historically attempts are
made in the opposite direction, that is, to linearize quadratic
programs [16, 8, 15]. This is primarily motivated by wirelength
reduction and improvement of routability. In GORDIAN-L [16],
edges are given weights to linearize the squared edge-lengths.
These weights decrease as the edge lengths increase. In our
work, by contrast, the net weights increase as the net lengths in-
crease. Our motivation is primarily signal delay reduction since
we expect good wirelength quality from min-cut placers. We
also note that GORDIAN-L requires several iterations within
each of the multiple steps of GORDIAN, while boosting has no
runtime overhead. Furthermore, GORDIAN-L attempts to opti-
mize wirelength only, whereas we are also attempting to optimize
delay, while keeping wirelength low.

3. DEFINITIONS & MOTIVATING EXAMPLE
A circuit netlist is represented by a hypergraph H(V,E), where

V is the set of nodes corresponding to the circuit cells such that
each node v ∈ V has weight w(v) reflecting its physical area.
We refer to the horizontal location of v by vx and the vertical
location by vy. Hyperedges E ⊆ 2V model circuit nets, where
each hyperedge ei ∈ E is a set of nodes that are connected by
a net. Associated with each placed hyperedge ei is a bounding
box BB(ei) whose corners are the four points (el

i, e
u
i), (el

i, e
b
i),

(er
i , e

u
i) and (er

i , e
b
i), where the superscripts u, b, l and r refer

to upper, bottom, left and right respectively. The length of a
given net/hyperedge is the half-perimeter of the bounding box,
sometimes denoted with HPWL (half-perimeter wirelength).

We think of a placement region as a collection of blocks as
shown in Figure 1. Each block corresponds to a fixed rectan-
gle into which some (sub)hypergraph vertices should be placed.
Initially, the chip area is comprised of one block. The min-
cut placement methodology proceeds by recursively partition-
ing each block and its associated hypergraph, and assigning the
partitioned subhypergraphs to sub-blocks. Cut direction usually
alternates between vertical and horizontal, or is determined the
block aspect ratio [5]. Hence, the product of the partitioning
process is a slicing floorplan as illustrated in Figure 1. In this
figure, we illustrate two horizontal and vertical cut levels num-
bered from 1 to 2. The partitioning process continues until a
certain block threshold size, beyond which end-case placers are
used to assign actual locations for the hypergraph nodes in their
corresponding blocks [4, 5, 22]. For each block Bj , we let BB(Bj)
represent the bounding box of block Bj , where the bounding box
of a block BB(Bj) is the rectangle whose corners are the corners
of the block.

Minimizing wirelength has been the most traditional place-
ment objective, yet the total delay is proportional to the sum of
the squared net lengths. Consequently, it would be a boost for

1V CUT

1H CUT

2V CUT2V CUT

2H CUT

2H CUT

Sample blocks

Figure 1: A slicing floorplan produced by a top-down
min-cut placer. Two rounds of vertical and horizontal
cuts are illustrated. 1H CUT indicates the first hor-
izontal cut level, while 2H CUT indicates the second
horizontal cut level. 1V CUT and 2V CUTS are for
vertical cuts.

performance to minimize the quadratic wirelength measure, i.e.,
the sum of the net squared lengths, while trying to minimize
the wirelength. Hence, the placer should also minimize L2 =

� |E|
i=1 l2i , where li is the Half-Perimeter Wirelength (HPWL)

of the ith hyperedge ei, alongside the traditional objective of

L1 =
� |E|

i=1 li.
Since the squared length of “long” nets contributes heavily to

L2, it is desirable to restrict incremental elongation of long nets
since this is costly in terms of the squared distance metric. This
restriction can reduce the total delay, as shown below.
Example 1: Assume as in Figure 2 that we have three hyper-
edges e1, e2 and e3 and that we are currently partitioning the
shaded blocks. We have two solutions: solution A and solution
B. In both solutions, the total wirelength and cuts are both equal
to 8. However, we prefer solution B since its total delay may be
smaller. Solution A has 38 units of delay (in terms of squared
length), while solution B has 24 units of delay.

The length of each net can be upper-bounded and lower-bounded
at any point during top-down placement, based on which blocks
contain incident cells (“incident blocks”). For convenience, we
treat fixed cells, pins and pads as individual blocks. The half-
perimeter (HPWL) of a net cannot exceed the common half-
perimeter of all incident blocks. Related lower bounds can be
defined separately in the horizontal and vertical dimensions as
we now describe for the horizontal case. Indeed, the left-most
cell on the net must be placed to the left from the right edge
of every incident block; similarly, the right-most cell on the net
must be placed to the right from the left edge of every incident
block (note that we do not need to know which particular cells
will eventually be left-most and right-most when the final place-
ment is produced). To lower-bound the horizontal component
of the net’s half-perimeter, we need to consider right edges of

1

1

2

2

3

3

(A)

(B)

U1 U2

U2U1

V1 Y1

Y1V1

e

e

e e

ee

Figure 2: Two placements with equal linear wirelength
but different squared wirelength, which is greater in the
(A) example.

all incident blocks and find the left-most. Similarly, we find the
right-most left edge over all incident blocks, and compute the
distance between the two horizontal locations. The net’s span
cannot be smaller than that. A lower bound for net’s length is
produced by adding the horizontal and vertical components.

Let us study the progression of lower and upper bounds for
nets that are not incident to fixed cells, pins or pads. At the
beginning of top-down placement the upper bound for every such
net is the half-perimeter of the core area, and the lower bound
is zero. At every cut, the upper bound decreases for every uncut
net and does not change for every cut net. Similarly, the lower
bound increases for every cut net, and does not change for every
uncut net. Thus, in general, lower bounds gradually increase and
upper bounds gradually decrease until they meet at the end of
top-down placement, at which point their values are both equal
to the net’s actual length.

4. ACHIEVING SMALLER SIGNAL DELAY
WITH MIN-CUT PLACERS

In this section we highlight one of the drawbacks of the min-cut
placement methodology in the context of timing-driven place-
ment, and then outline a potential solution.

4.1 Boosting Min-Cut Placement
Most netlists allow multiple placements with equal total wire-

length, however in timing-driven placement it is important to
prevent very long nets because net delay grows quadratically
with net length. Traditional min-cut placers may end up pro-
ducing several long nets so as to shorten medium-sized nets, and
often leave such trade-offs up to chance. This suggests the pos-
sibility of useful tie-breaking that would not affect runtime or
solution quality, but may address additional design objectives.
Motivated by this, we propose a way to discourage very long
nets by dynamically increasing the weight of each net after it
has been cut, so as to prevent further cuts.

Below we assume a placer that partitions each block in approx-
imately equal sub-blocks (this is typically true for sufficiently
large blocks in the absence of significant design constraints).

Example 2: Let us examine the first two vertical cuts (and
skip horizontal cuts if any), which may be at 50% and 75% of the
chip width, as shown in Figure 3. If a hyperedge is cut twice, its
length can be as high as the chip width. However, if it is cut only
once, its length can be upper bounded by either 50% of the chip
width (cut by the second cut) or by 75% of the chip’s width (cut
by the first cut). In this case, our proposed modification to the
standard min-cut framework applies after the first cut. Namely,
the weights of cut hyperedges are increased so as to discourage
them from being cut again. This way we may achieve a 75%
upper bound for the net length of many such hyperedges, while
the length of each previously uncut hyperedge is already subject
to a 50% upper bound.

In our example, we can also track lower bounds for net lengths.
Indeed, two cuts imply a 25% lower bound, while any one cut
implies only a 0% lower bound. Given how upper bounds change,
it appears that increasing the weights of cut hyperedges may
prevent very long nets. Furthermore, given how lower bounds
change, it appears that if we do not prevent multiple cuts early
in top-down placement, it may be difficult to prevent long nets.

In practical terms, we multiply the weight of the hyperedge e2

by the factor β = 2 as shown in Figure 3 (b). This strength-
ens the connection between the nodes of hyperedge e2 encourag-
ing the partitioner to move node v to the left shaded sub-block

and consequently improving the upper bound on the hyperedge’s
length by a quarter of the chip width. To formalize the idea of
increasing the weight of longer nets, we define boosting as follows.
Definition 1: A hyperedge ei ∈ E is boosted by multiplying
ei’s weight by a certain factor, i.e., the boosting factor β, and a
hyperedge is boosted only if partitioning the current block can
increase the lower bound on the hyperedge span (HPWL).

We now propose eligibility conditions for boosting a hyperedge,
i.e., conditions where partitioning can decrease an upper bound
on net length. Given a block Bj and a corresponding hypergraph
H(V, E) to be partitioned, a hyperedge ei ∈ E is eligible for
boosting only if it meets all of the following conditions:

1. BB(ei) 6⊆ BB(Bj), i.e., ei has been cut before.

2. There exists some node v of ei in BB(Bj) such that
If Bj is cut vertically:

• either vx = el
i and no point of the line segment

[(er
i , e

b
i), (e

r
i , e

u
i)] is in BB(Bj).

• or vx = er
i and no point of the line segment

[(el
i, e

b
i), (e

l
i, e

u
i)] is in BB(Bj).

If Bj is cut horizontally:

• either vy = eu
i and no point of the line segment

[(er
i , e

b
i), (e

l
i, e

b
i)] is in BB(Bj).

• or vy = eb
i and and no point of the line segment

[(er
i , e

u
i), (el

i, e
u
i)] is in BB(Bj).

We illustrate these conditions by the following example.

Example 3: Figure 4 illustrates the eligibility for boosting in
four sample cases:

• Case i: The hyperedge is eligible for boosting since par-
titioning the current (shaded) block can extend the lower
bound on the hyperedge length.

• Case ii: The two hyperedges are not eligible for boosting
since partitioning the current block will not affect on the
lower bound of their length. Condition 2 is violated.

• Case iii: Not eligible for boosting since the position of the
node contained within the current block does not affect the
hyperedge span. Condition 2 is violated.

• Case iv: The hyperedge is eligible since partitioning the
current block can increase the lower bound.

While Definition 1 gives eligibility conditions for boosting a
hyperedge, this does not mean that we should necessarily boost
the hyperedge. We introduce a further condition in order to
optimize L2 (the quadratic wirelength) while keeping L1 (linear
wirelength) small.

If we assume an alternating horizontal-vertical cut sequence
and we examine the vertical cut sequences2 then the first vertical
cut bisects the chip width. If the chip width is W then the first
vertical cut is at W

2
, creating 2 blocks. The second-level vertical

cuts are at W
4

and 3W
4

, creating 4 blocks, and the ith level cuts

create 2i blocks each of width W

2i . This process continues until
all blocks reach a certain threshold.

If a hyperedge is cut at a certain cut level then nodes of this
hyperedge exist on both sides of the cut. Hence, if a hyper-
edge is first cut at cut level l and and later at cut level l + 1

2Horizontal cuts are treated similarly.

e
e

e

e
e2

1

2

2

e1
e1

e1

e

e

1

2

1

0

1

0

0

1

W

(a) Without boosting

v v

0

1

0

0

2

W

(b) With boosting

vv

Figure 3: An illustration of boosting. The hyperedge e2 was cut at the first vertical cut. The dashed vertical
line represents the new second vertical cut. With respect to the new cut, each hyperedge can be cut or uncut as
illustrated by the various positions of each hyperedge; we label each possibility by its contribution (0/1) to the cut
value as well. We notice that without boosting the partitioner does not differentiate between the two hyperedges.
However, if e2 is cut then its length is upper-bounded by three quarters of the chip width. To encourage the
partitioner to cut e1 over e2, we multiply the weight of e2 by a factor of 2 as shown in picture (b).

(iii) Not Eligible for Boosting (iv) Eligible for Boosting

(ii) Not Eligible for Boosting(i) Eligible for Boosting

Figure 4: Illustrative cases for the eligibility of hyper-
edge boosting. The shaded block represents a block un-
der partitioning by the vertical dashed line. A hyper-
edge is eligible for boosting if partitioning the block can
increase the lower bound on its length.

then this increases the lower bound on its horizontal length by
W/2l+1. Suppose that a hyperedge was cut at levels l through
l + τ , where τ ≥ 1, then the lower bound on the hyperedge’s

length is
� l+τ

i=l+1 W/2i = W ·(2τ −1)

2l+τ
, where the contribution of

level l + τ to the lower bound is W

2l+τ
. This means that the con-

tribution of new cuts is exponentially decreasing as we descent
in the top-down hierarchy. Hence, there is little point in boost-
ing after τ ≥ 4 since the total contributions of new cut levels (if
the hyperedge ever gets cut again) will never exceed 7% of the
hyperedge’s horizontal length at τ = 4. In practice, we never
boost a hyperedge past level 8 (to account for 4 horizontal cuts
and 4 vertical cuts) in min-cut placement since block sizes at
that point are less than 0.39% of the chip size, and boosting will
effectively hurt the cutsize without any prospect of significant
reduction of the L2 objective.

4.2 Effect of Boosting on Cut Values
In the previous subsection, we determined the eligibility con-

ditions for boosting a hyperedge. However, a crucial parameter
is the value of the boosting factor β. A high value for β is ex-
pected to encourage a min-cut partitioner to move nodes so as
to reduce the hyperedge’s span. In the following, we analyze the
relation between β and the cut size, which directly affects L1 [3].

Suppose that we have two nodes v and u as shown in Figure
5, where the rectangle represents the current block under parti-
tion. We say that a hyperedge is external if some of its nodes
lie outside the current block under partition, and a hyperedge is
internal if all of its nodes lie within the block under partition.
Node v is connected to the sets E1 and E1 of external hyper-
edges eligible for boosting, where |E2| > |E1|, and to the sets of
internal hyperedges sets I1 and I2. Node u is connected to only
the internal hyperedges sets N1 and N2, where |N1| = |I1| and
|N2| = |I2|. Thus, the gain of moving node v from partition 1 to
partition 2 is δv = |I2|− |I1|+ |E2|− |E1|, while the gain of mov-
ing node u is δu = |N2| − |N1|. With boosting, the gain of node
v becomes δβ

v = |I2|−|I1|+β(|E2|−|E1|), while the gain of node
u remains the same since it is not connected to any hyperedges
eligible for boosting. We now distinguish three important cases
for a min-cut partitioner operating with boosting:

• Case 1: δu = δv but δβ
v > δu. In this case the partitioner

ends up moving node v rather than u. Hence, boosting
does not worsen the cut size but at the same time the span
of the long external hyperedges is reduced.

• Case 2: δu > δv but δβ
v < δu. Here the partitioner ends

up moving node u rather than v as if it is not operating
under boosting. Hence, boosting does not worsen the cut
size but there is no benefit from boosting either.

• Case 3: δu > δv and δβ
v > δu. In this case the partitioner

moves node v rather than u, effectively reducing the spans
of the external hyperedges but worsening the cut size by
(|E2| − |E1|)(β − 1).

Under any scheme that boosts net weights only for small values
of τ (the maximum amount of levels a hyperedge can be boosted),

E1 E2

I1 I2

N1 N2

v

u

Partition 1 Partition 2

Figure 5: The effects of boosting on cut size. Node
v is connected to the sets of hyperedges I1, I2, E1, and
E2 (these are not individual hyperedges). Node u is
connected to the two sets of hyperedge N1 and N2.

the likelihood of Case 3 is small. To see this, we observe that with
β = 2, the difference between moving node v and u is |E2|−|E1|.
However, during the first few levels in min-cut placement, the
number of nodes within each block is essentially large while the
min-cut values are practically low. Thus, the common case is
that each node is connected to few boosted hyperedges, leading
to a graceful reduction in the cut size.

5. EXPERIMENTAL VALIDATION
In this section we empirically assess how boosting affects cir-

cuit delay in terms of the worst negative slack and the total
negative slack (TNS). We also report the sum of squared net
lengths as well as wirelength distributions before and after boost-
ing. Our implementation is based on Capo [5] (version 8.7) and
is compared to (i) the original Capo, (ii) Cadence’s QPlace place
(version 5.2). After placement, we perform global and detailed
routing using Cadence’s WRoute (version 5.4) and evaluate cir-
cuit timing by means of static timing analysis using Cadence’s
Pearl (version 5.1). The four industrial benchmarks used for
experiments are described in Table 1.

Since Capo is randomized, Table 2 reports the best results out
of three independent runs. The alternate design flows in this ta-
ble are as follows. In the flow indust NTD, the industrial placer
is used to place the benchmark in a non-timing driven mode and
then WRoute is used to route the benchmark in a timing-driven
mode. In the flow indust TD, the industrial placer is used to
place the benchmark in a timing-driven mode and then WRoute
is used to route the benchmark in a timing-driven mode. In the
flow CAPO regular, Capo is used to place the benchmark and
then WRoute performs timing-driven routing on Capo’s output
placement. In the flow CAPO BOOST, we use a modified ver-
sion of Capo and route the resulting placements using WRoute in
timing-driven mode. In Table 2, we report a number of metrics:
L1 is the Half-Perimeter Wirelength, L2 is the sum of squared
net lengths, SLACK PRE is the worst negative slack as com-
puted by pre-routing timing analysis, time is the placement time
in seconds, Wirelength is the actual wirelength as reported by
WRoute, SLACK is the worst negative slack as reported by the
analysis using Pearl, TNS is the Total Negative Slack of all nets
that have negative slack.

The data in Table 2 suggest that boosting improves circuit
timing. For example, in Design A negative slack improves by
about 53% over the industrial placer in timing-driven mode and
57% over Capo, and furthermore boosting reduces the TNS by
about 76% over the industrial placer and 78% over Capo. Also,
boosting improves the worst negative slack of Design B by 25%
over the industrial placer and 21% over Capo. For Design C,
none of the placers is able to exploit any advantage in their
timing-driven mode. For Design D, boosting reduces the TNS
by about 13% over Capo and the industrial placer in timing-
driven mode. We have experienced a small number of routing
violations with some test cases. These can be handled by logic
transformations or manually.

We also examine net length distribution of placements pro-
duced by regular Capo and boosted Capo to further support our
claims that boosting reduces the number of long nets. For de-
signs A and B we normalize the half-perimeter of each net with
respect to the half perimeter of the core area and then produce a
histogram of net lengths. Each normalized net length is assigned
to one of 10 equal bins, and results are shown in Table 3. These
data confirm that in general boosting reduces the number of long
nets, but increase the number of small nets. All in all, boost-
ing alters the distribution of net lengths and tends to reduce the

total quadratic length and circuit delay.

6. CONCLUSIONS
Our work improves improves min-cut placers in terms of signal

delay. The novel technique we propose (boosting) is based on
dynamically changing net weights during top-down placement.
We first observe that the length of each net is subject to a series
of increasing lower bounds that depend on when the net is cut.
Therefore we increase the weights of nets with the highest lower
bounds, so as to discourage cutting them in the future. This
limits the further increase of lower bounds.

While the changes in weights do not significantly affect the re-
sulting half-perimeter wirelength, they can be informally seen to
decrease squared wirelength, and therefore generically improve
circuit delay. To validate this empirically, we implement boost-
ing within the well-known min-cut placer Capo, perform detailed
routing, and evaluate timing with Cadence Pearl. As a result,
we improve circuit timing in several industrial benchmarks, com-
pared to both Capo and a leading industrial placer. It is surpris-
ing that such an improvement in timing can be achieved, across
several real-world circuits, without giving timing constraints to
the placer and with a slight runtime penalty. We believe that
more can be done by accounting for timing constraints during
placement and by performing timing analysis during placement,
but this may imply longer runtimes and would require a more
complex software infrastructure.

Compared to other means of improving circuit delay, such as
buffer insertion, gate sizing and logic duplication, our technique
requires no additional cells/area and is unlikely to increase over-
all power dissipation. Quantifying these comparisons is the sub-
ject of our future work.

7. REFERENCES
[1] S. N. Adya et al., “Benchmarking for Large-Scale

Placement and Beyond”, Proc. ACM/IEEE Intl. Symp.
Physical Design, 2003, pp. 95-103.

[2] C. Alpert, G Nam and P. Villarubia, “Free Space
Management for Cut-Based Placement”, Proc. IEEE Intl.
Conf. Computer-Aided Design, 2002, pp. 746-751.

[3] M. A. Breuer, “Min-Cut Placement”, Design Automation
and Fault Tolerant Computing, 1977, pp. 343-962, vol. 1(4).

[4] A. Caldwell, A. B. Kahng and I. Markov, “End-Case
Placers for Standard-Cell Layout”, Proc. ACM/IEEE Intl.
Symp. Physical Design, 1999, pp. 90-96.

[5] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can
Recursive Bisection Alone Produce Routable
Placements?”, Proc. ACM/IEEE Design Automation
Conf., 2000, pp. 477-482.

[6] H. Eisenmann and F. M. Johannes, “Generic Global
Placement and Floorplanning”, Proc. ACM/IEEE Design
Automation Conf., 1998, pp. 269-274.

[7] W. Elmore, “The Transient Response of Damped Linear
Networks with Particular Regard to Wideband
Amplifiers”, J. of Applied Physics 19 (1948), pp. 55-63.

[8] L. Hagen and A. B. Kahng, “Improving the Quadratic
Objective Function in Module Placement”, Proc. IEEE
Intl. ASIC Conf., 1992, pp. 171-174.

[9] B. Halpin, C. Y. Roger Chen and N. Sehgal, “Timing
Driven Placement Using Physical Net Constraints”, Proc.
ACM/IEEE Design Automation Conf., 2001, pp. 780-783.

[10] A. B. Kahng, S. Mantik and I. L. Markov, “Min-Max
Placement for Large-Scale Timing Optimization”, Proc.

benchmark cells nets core region whitespace metal layers clock period (ns)

A 21103 21230 2142.20 x 1969.40 13.5% 4 9.459
B 33917 39153 23157.00 x 12732.30 49.8% 4 30.962
C 9585 10398 8705.40 x 86968.90 29.7% 5 37.515
D 40347 42487 2483.00 x 2456.00 42.5% 4 27.166

Table 1: Benchmark characteristics.

benchmark flow L1 L2 SLACK Wire SLACK TNS
tool mode (HPWL) (x107) PRE (ns) length (ns) (ns)

A indust NTD 2826832 135 -0.796 3491503 -0.660 28.107
TD 2892279 131 -0.413 3570024 -0.368 12.022

CAPO regular 2702130 125 -0.547 3335483 -0.607 23.36
boost 2758502 103 -0.376 3260184 -0.342 5.107

B indust NTD 7392711 514 -28.344 9080259 -31.793 68253.5
TD 7352731 469 -28.520 9100552 -31.750 56618.6

CAPO regular 6654505 361 -22.548 8375939 -29.595 44951.8
boost 6978647 315 -18.12 8711281 -25.757 49627.6

C indust NTD 579958 125 -0.302 839408 -1.882 1870.3
TD 574717 127 -1.119 841585 -1.878 1750.8

CAPO regular 590833 118 -0.323 835962 -1.875 1810.6
boost 629473 110 -0.819 872089 -1.878 1799.5

D indust NTD 3514553 1180 -5.226 4251419 -5.226 3016.4
TD 3524751 1130 -5.253 4257518 -5.264 3270.7

CAPO regular 3165932 954 -5.322 4076119 -5.315 3178.3
boost 3282640 826 -5.383 4182982 -5.363 3083.6

Table 2: Benchmark Results (average of 4 seeds). NTD is the industrial placer in a non-timing driven mode. TD
is the industrial placer in timing-driven mode. In CAPO flows, regular is for unmodified Capo and boost is for
Capo in boosted mode. L1 is Half-Perimeter WireLength. L2 is the sum of SQUARE of net HPWLs. SLACK
PRE is the negative slack calculated before actual routing. SLACK is the negative slack calculated after routing.
TNS is the total negative slack. Numerical values in bold indicate the best result of each respective benchmark.

ACM/IEEE Intl. Symp. Physical Design, 2002, pp.
143-148.

[11] J.-M. Li et al., “New Spectral Linear Placement and
Clustering Approach”, Proc. ACM/IEEE Design
Automation Conf., 1996, pp. 88-93.

[12] M. Marek-Sadowska and S.-P. Lin, “Timing Driven
Placement”, Proc. IEEE Intl. Conf. Computer-Aided
Design, 1989, pp. 94-97.

[13] R. Otten and R. Brayton, “Planning For Performance”,
Proc. ACM/IEEE Design Automation Conf., 1998, pp.
122-127.

[14] S. L. Ou and M. Pedram, “Timing-Driven Placement
Based on Partitioning with Dynamic Cut-Net Control”,
Proc. ACM/IEEE Design Automation Conf., 2000, pp.
472-476.

[15] B. Riess and G. Ettelt, “SPEED: Fast and Efficient
Timing Driven Placement”, Proc. IEEE Intl. Symp.
Circuits and Systems, 1995, pp. 377-380.

[16] G. Sigl, K. Doll and F. M. Johannes, “Analytical
Placement: A Linear or a Quadratic Objective Function?”,
Proc. ACM/IEEE Design Automation Conf., 1991, pp.
427-431.

[17] A. Srinivasan, K. Chaudhary and E. S. Kuh, “RITUAL: A
Performance Driven Placement Algorithm for Small Cell
ICs”, Proc. IEEE Intl. Conf. Computer-Aided Design,
1991, pp. 48-51.

[18] R. Tsay and J. Koehl, “An Analytical Net Weighting
Approach for Performance Optimization in Circuit
Placement”, Proc. ACM/IEEE Design Autom. Conf.,
1991, pp. 620-625.

[19] R. S. Tsay, E. S. Kuh and C. P. Hsu, “PROUD: A
Sea-of-Gates Placement Algorithm”, IEEE Design & Test
of Computers (1988), pp. 44-56.

bin Design A Design B
regular boost change regular boost change

1 19661 19578 -0.4% 35070 35002 -0.2%
2 889 1002 12.7% 2765 3077 11.2%
3 340 381 12.0% 844 710 -15.8%
4 195 150 -23.1% 262 186 -29.0%
5 60 40 -33.3% 130 141 8.4%
6 41 34 -17.1% 58 31 -46.6%
7 11 13 18% 18 1 -94.4%
8 3 2 -33.3% 2 2 0%
9 0 0 0.0% 3 2 -33.33%
10 0 0 0.0% 0 0 0%

Table 3: Wirelength distribution histogram for designs
A and B for the two modes of Capo. We normalize the
HPWL of individual nets with respect to the chip’s half
perimeter and assign each normalized net length to one
of 10 equal bins.

[20] P. Villarrubia, “Important Considerations for Modern
VLSI Chips”, Proc. ACM/IEEE Intl. Symp. Physical
Design, 2003, pp. 1-6.

[21] J. Vygen, “Algorithms for Large-Scale Flat Placement”,
Proc. ACM/IEEE Design Autom. Conf., 1997, pp. 746-751.

[22] M. Wang, X. Yang and M. Sarrafzadeh, “DRAGON2000:
Standard-Cell Placement Tool for Large Industry
Circuits”, Proc. IEEE Intl. Conf. Comp.-Aided Des., 2001,
pp. 260-263.

