
A Process Semantics for BPMN

Peter Y. H. Wong and Jeremy Gibbons

Computing Laboratory, University of Oxford, United Kingdom
{peter.wong,jeremy.gibbons}@comlab.ox.ac.uk

Abstract. Business Process Modelling Notation (BPMN), developed by
the Business Process Management Initiative (BPMI), intends to bridge
the gap between business process design and implementation. However,
the specification of the notation does not include a formal semantics.
This paper shows how a subset of the BPMN can be given a process se-
mantics in Communicating Sequential Processes. Such a semantics allows
developers to formally analyse and compare BPMN diagrams. A simple
example of a business process is included to demonstrate the application
of the semantics; some theoretical results about the semantics are briefly
discussed.

1 Introduction

Modelling of business processes and workflows is an important area in software
engineering. Business Process Modelling Notation (BPMN) [13] allows devel-
opers to take a process-oriented approach to modelling of systems. There are
currently around forty implementations of the notation, but the notation spec-
ification developed by BPMI and adopted by OMG does not have a formal
behavioural semantics, which we believe is crucial in behavioural specification
and verification activities.

BPMN has been specified to map directly to the BPML standard, which has
subsequently been superceded by WS-BPEL [2]. To the best of our knowledge
the only previous attempt at defining a formal semantics for a subset of BPMN
did so using Petri nets [4, 5]. However, their semantics does not properly model
multiple instances, exception handling and message flows. A significant amount
of work has been done towards the mapping between a particular class of BPMN
diagrams to WS-BPEL and [14, 15], and the formal semantics of WS-BPEL [8,
10–12]. However, as the use of graphical notations to assist the development
process of complex software systems has become increasingly important, it is
necessary to define a formal semantics for BPMN to ensure precise specification
and to assist developers in moving towards correct implementation of business
processes. A formal semantics also encourages automated tool support for the
notation.

The main contribution of our work is to provide a formal process semantics
for a subset of BPMN, in terms of the process algebra CSP [16]. By using the
language and the behavioural semantics of CSP as the denotational model, we
show how the existing refinement orderings defined upon CSP processes can be

applied to the refinement of business process diagrams, and hence demonstrate
how to specify behavourial properties using BPMN. Moreover, our processes
may be readily analysed using a model checker such as FDR [7]. Our semantic
construction starts from syntax expressed in Z [19], following Bolton and Davies’s
work on UML activity graphs [1].

This paper begins with an introduction to BPMN and the mathematical
notations, Z [19] and CSP [16], that are used throughout the paper. Our contri-
bution starts in Section 3, with a Z model of BPMN syntax, and continues in
Section 4 with a behavioural semantics in CSP. In Section 5 we give a simple
example to show how our semantics allows consistency between different levels
of abstraction to be verified, and discuss briefly some theoretical results. We
conclude this paper with a summary.

2 Notation

2.1 BPMN

States in our subset of BPMN [13] can either be pools, tasks, subprocesses,
multiple instances or control gateways; they are linked by sequence, exception
or message flows; sequence flows can be either incoming to or outgoing from a
state and have associated guards; an exception flow from a state represents an
occurrence of error within the state. Message flows represent directional commu-
nication between states. A sequence of sequence flows hence represents a specific
control flow instance of the business process.

Fig. 1. States of BPMN diagram

A table showing each type of state is presented in Figure 1. In the figure,
a start state models the start of the business process in the current scope by
initiating its outgoing transition. It has no incoming transition and only one
outgoing transition. There are two types of end states end and abort. An end
state models the successful termination of an instance of the business process
in the current scope by initialisation of its incoming transition. It has only one
incoming transition with no outgoing transition. The abort state is a variant end
state and models an unsuccessful termination, usually an error of an instance of
the business process in the current scope.

Also in the figure, each of the xgate, agate and ogate state types has one or
more incoming sequence flows and one or more outgoing sequence flows. An xgate
state is an exclusive gateway, accepting one of its incoming flows and taking one
of its outgoing flows; the semantics of this gateway type can be described as an
exclusive choice and a simple merge. An agate state is a parallel gateway, which
waits for all of its incoming flows before initialising all of its outgoing flows. An
ogate state is an inclusive gateway, accepting one or more incoming sequence
flows depending on their associated guards and initialising one or more of its
outgoing flows also depending on their associated guards.

A task state describes an atomic activity and has exactly one incoming and
one outgoing transition. A bpmn state describes a subprocess state; it is a busi-
ness process by itself and so it models a flow of BPMN states. Figure 1 depicts
a collapsed subprocess state where all internal details are hidden; this state has
exactly one incoming and one outgoing transition. Also in Figure 1 there are
graphical notations labelled task* and bpmn*, which depict a task state and a
subprocess state with an exception flow. Each task and subprocess can also be de-
fined as multiple instances. There are two types of multiple instances in BPMN:
The miseq state type represents serial multiple instances, where the specified task
is repeated in sequence; in the mipar state type the specified task is repeated in
parallel. The types miseqs and mipars are their subprocess counterparts.

The graphical notation pool in Figure 1 depicts a participant within a busi-
ness collaboration involving multiple business processes. Each pool forms a con-
tainer for some business processes; only one process instance is allowed at any
one time. While sequence flows are restricted to an individual pool, message
flows represent communications between pools. For reasons of space we have
omitted the syntactic and semantic definitions of message flows, details of which
are in an extended version of this paper [18].

2.2 Z

The Z notation [19] has been widely used for state-based specification. It is
based on typed set theory coupled with a structuring mechanism: the schema.
A schema is essentially a pattern of declaration and constraint. Schemas may be
named using the following syntax:

Name

declaration

constraint

or equivalently

Name =̂ [declaration | constraint]

If S is a schema then θS denotes the characteristic binding of S in which
each component is associated with its current value. Schemas can be used as
declarations. For example, the lambda expression λS • t denotes a function from
the schema type underlying S , a set of bindings, to the type of term expression t .

The mathematical language within Z provides a syntax for set expressions,
predicates and definitions. Types can either be basic types, maximal sets within
the specification, each defined by simply declaring its name, or be free types,
introduced by identifying each of the distinct members, introducing each element
by name. An alternative way to define an object within an specification is by
abbreviation, exhibiting an existing object and stating that the two are the same.

Type ::= element1 | ... | elementn [Type] symbol == term

By using an axiomatic definition we can introduce a new symbol x , an element
of S , satisfying predicate p.

x : S

p

2.3 CSP

In CSP [16], a process is a pattern of behaviour; a behaviour consists of events,
which are atomic and synchronous between the environment and the process.
The environment in this case can be another process. Events can be compound,
constructed using the dot operator ‘.’; often these compound events behave as
channels communicating data objects synchronously between the process and
the environment. Below is the syntax of the language of CSP.

P ,Q ::= P ||| Q | P |[A]|Q | P |[A | B]|Q | P \ A | P 4 Q |
P 2 Q | P u Q | P o

9 Q | e → P | Skip | Stop

e ::= x | x .e

Process P ||| Q denotes the interleaved parallel composition of processes P and
Q . Process P |[A]|Q denotes the partial interleaving of processes P and Q sharing
events in set A. Process P |[A | B]| Q denotes parallel composition, in which P

and Q can evolve independently but must synchronise on every event in the set
A∩B ; the set A is the alphabet of P and the set B is the alphabet of Q , and no

event in A and B can occur without the cooperation of P and Q respectively.
We write ||| i : I • P(i), ‖[A] i : I • P(i) and ‖ i : I • A(i) ◦ P(i) to denote an
indexed interleaving, partial interleaving and parallel combination of processes
P(i) for i ranging over I .

Process P \ A is obtained by hiding all occurrences of events in set A from
the environment of P . Process P 4 Q denotes a process initially behaving as P ,
but which may be interrupted by Q . Process P 2 Q denotes the external choice
between processes P and Q ; the process is ready to behave as either P or Q . An
external choice over a set of indexed processes is written 2 i : I • P(i). Process
P u Q denotes the internal choice between processes P or Q , ready to behave
as at least one of P and Q but not necessarily offer either of them. Similarly an
internal choice over a set of indexed processes is written u i : I • P(i).

Process P o
9 Q denotes a process ready to behave as P ; after P has successfully

terminated, the process is ready to behave as Q . Process e → P denotes a
process capable of performing event e, after which it will behave like process P .
The process Stop is a deadlocked process and the process Skip is a successful
termination.

CSP has three denotational semantics: traces (T), stable failures (F) and
failures-divergences (N) models, in order of increasing precision. In this paper
our process definitions are divergence-free, so we will concentrate on the stable
failures model. The traces model is insufficient for our purposes, because it does
not record the availability of events and hence only models what a process can
do and not what it must do [16]. For example, the processes a → Skip and
(a → Skip) u Stop have the same traces (the traces model is prefix-closed), even
though the latter one is allowed to do nothing at all no matter what we offer it.
In order to distinguish these processes, it is necessary to record not only what a
process can do, but also what it can refuse to do. This information is preserved
in refusal sets, sets of events from which a process in a stable state can refuse to
communicate no matter how long it is offered. The set refusals(P) is P ’s initial
refusals. A failure therefore is a pair (s,X) where s ∈ traces(P) is a trace of P

leading to a stable state and X ∈ refusals(P/s) where P/s represents process P

after the trace s. We write traces(P) and failures(P) as the set of all P ’s traces
and failures respectively.

We write Σ to denote the set of all event names, and CSP to denote the
syntactic domain of process terms. We define the semantic function F to return
the set of all traces and the set of all failures of a given process, whereas the
semantic function T returns solely the set of traces of the given process.

F : CSP → (P seqΣ × P(seqΣ × PΣ))

T : CSP → P seqΣ

These models admit refinement orderings based upon reverse containment; for
example, for the stable failures model we have

vF : CSP ↔ CSP

∀P ,Q : CSP •
P vF Q ⇔ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q)

While traces only carry information about safety conditions, refinement under
the stable failures model allows one to make assertions about a system’s safety
and availability properties. These assertions can be automatically proved us-
ing a model checker such as FDR [7], exhaustively exploring the state space of
a system, either returning one or more counterexamples to a stated property,
guaranteeing that no counterexample exists, or until running out of resources.

3 Syntactic Description of BPMN

In this section we describe the abstract syntax of BPMN using Z schemas and
set theory, and use an example in Section 3.2 to show how the syntax can be
applied on a given BPMN diagram. For reasons of space, we have omitted certain
schema and function definitions and have only concentrated on the definition of
a smaller subset of the BPMN states than shown in Section 2; readers may refer
to our longer paper [18] for their full definitions.

3.1 Abstract Syntax

We first introduce some maximal sets of values to represent constructs such as
lines, task and subprocess name, defined as Z’s basic types:

[CName,PName,Task ,Line,Guard]

We then derive subtypes BName and PLName axiomatically:

BName,PLName : P PName

〈BName,PLName〉 partition PName

The sequence of sets 〈S1 . . Sn 〉 partitions some set T iff⋃
S1 . . Sn = T ∧ (∀ i , j : 1 . . n • Si ∩ Sj = ∅)

Each type of state shown in Figure 1 is defined using the free type Type where
each of its constructors describes a particular type of states. For example, the
type of an atomic task state is defined by task t where t is a unique name that
identifies that task state. Below is the partial definition.

Type ::= start | end〈〈N〉〉 | abort〈〈N〉〉 | task〈〈Task〉〉 |
xgate | bpmn〈〈BName〉〉 | miseq〈〈Task × N〉〉

According to the specification [13], each BPMN state type has other associated
attributes describing its properties; our syntactic definition has included only
some of these attributes. For example, the number of loops of a sequence multiple
instance state type is recorded by the natural number in the constructor function
miseq. We define some abbreviations as follows to assist our specification.

Tasks == ran task ∪ ran miseq ∪ ran mipar

Subs == ran bpmn ∪ ran mipars ∪ ran miseqs

In this paper we call both sequence flows and exception flows ‘transitions’; states
are linked by transition lines representing flows of control, which may have as-
sociated guards. We give the type of a sequence flow or an exception flow by the
following schema definition.

Trans =̂ [guard : Guard ; line : Line]

Here we show a partial definition of the schema State for each BPMN state,
omitting the inclusion of schema components for message flows.

State =̂ [type : Type; in, out , error : P Trans; exit : P(N × Trans); loop : N]

Each state records the type of its content, the sets of incoming, outgoing and
error transitions, and in the case of a subprocess state, a set of number-transition
pairs to align the outgoing transitions of the subprocess within the outgoing
transitions within the subprocess. Each state incorporates the variable loop to
limit the number of state instances the process instance can invoke. The state
also records different types of message flows, but we have omitted their definition
in this paper.

We denote a subset of well-formed states in BPMN by the schema type
WFS , and we define the type WCF : P(P State) to be the set of well-configured
sets of well-formed states WCF . Well-formedness is defined to conform to the
constraints within the official documentation [13]; for example, a start state must
have no incoming transition and only one outgoing transition. A definition of
this subset may be found in the extended version of this paper [18].

Each BPMN diagram, encapsulated by a pool representing an individual
participant in a collaboration, is built up from a well-configured finite set of
well-formed states. We do not allow local states to have type pool , since this rep-
resents a boundary of a business domain. The function type Local represents the
environment of the local specification and each function of its type maps each
name of a BPMN diagram to its associated diagram. Consequently a collabora-
tion is built up from a finite set of names, and each of the names is associated
with a BPMN diagram. For reasons of space both the syntactic and semantic
definition of collaboration have been omitted, again, see the extended version of
this paper [18].

BPD ::= states〈〈WCF 〉〉
Local == PName 7→ BPD

3.2 An Example

We present an example of a business process of an airline reservation system
shown in Figure 2; this example has been taken from the WSCI specification [17].
It could be assumed to have been constructed during the development of the
reservation system. We have abstracted message flows, as there is only one busi-
ness participant in the example. We use this example to illustrate how a BPMN

Fig. 2. A BPMN diagram describing the workflow of an airline reservation application.

diagram can be translated into a well-configured set of states describing the
diagram’s syntax.

We observe that the airline reservation business process is initiated by verify-
ing seat availability, after which seats may be reserved. If the reservation period
elapses, the business process will cancel the reservation automatically and notify
the user. The user might decide to cancel her reservation, or proceed with the
booking. Upon a successful booking, tickets will be issued.

Given the business process name airline, the following shows a set of well-
formed states translated from the diagram describing the reservation part of busi-
ness process. We have omitted details of the bindings of Trans and Messageflow .
We write a1 . . an ; ∅ inside some schema binding s to specify the components
s.a1 . . s.an to be empty. The syntactic details of the subprocesses Reserve and
Booking are also omitted.

airline : PName; book , reserve : BName; verify , timeout ,notify : Task

∃ local : Local ; t1, t2, t3, t4, t5, t6, t7, t8 : Trans; i , j , k , l ,m,n : N •
states∼(local airline) =

{ 〈|type ; start , out ; { t1 }, in, error , exit ; ∅|〉,
〈|type ; mipar verify n, in ; { t1 }, out ; { t2 }, error , exit ; ∅|〉,
〈|type ; bpmn reserve, in ; { t2 }, out ; { t3 }, error ; ∅, exit ; { (m, t3) }|〉,
〈|type ; bpmn book , in ; { t3 }, out ; { t4, t5 }, error ; { t6 },

exit ; { (k , t4), (l , t5) }|〉,
〈|type ; task timeout , in ; { t6 }, out ; { t7 }, error , exit ; ∅|〉,
〈|type ; task notify , in ; { t5, t7 }, out ; { t8 }, error , exit ; ∅|〉,
〈|type ; end i , in ; { t4 }, out , error , exit ; ∅|〉,
〈|type ; abort j , in ; { t8 }, out , error , exit ; ∅|〉 }

4 Behavioural Semantics of BPMN

In Section 3 we gave an overview of the abstracted syntax for BPMN in Z. In
this section, we define a semantic function which takes the syntactic description
of a BPMN diagram and returns the CSP process that models the behaviour
of that diagram. That is, the function returns the parallel composition of pro-
cesses corresponding to the states of the diagram, each synchronising on its own
alphabet, which represents its transition events, to ensure the correct order of
control flow. For reasons of space, we only consider the semantics of a BPMN
diagram with a single participant (i.e. one pool), and each function associated to
the semantics will be defined over a smaller subset of the BPMN states, namely
the states of type start , end , task , miseq, miseqs (subprocess), bpmn (subprocess),
agate, xgate and ogate, which have been described in Section 2; the semantics of
other states in the figure may be defined similarly. The complete semantic defi-
nition of business collaboration and of other states may be found in our longer
paper [18]. The rest of the section is structured as follows: in Section 4.1 we
define functions to associate each transition, state and diagram with their set
of events; Section 4.2 presents the overall semantic functions for mapping each
BPMN diagram to its process describing its behaviour; in Section 4.3 we present
the CSP processes corresponding to the behaviour of each gateway; and in Sec-
tion 4.4 we define processes corresponding to the behaviour of each state type
and transition, and the general functions for mapping each BPMN state to the
CSP process describing its behaviour.

4.1 Alphabets

First we define the basic types Process and Event which correspond to CSP
processes and events.

[Process,Event]

We define the partial injective function εtrans which maps each transition to a
pair of a CSP event and a guard. We insist that each transition maps to a unique
CSP event. The functions εtask and εpname map each task and process name to
a unique event respectively.

εline : Line 7� Event

εtask : Task 7� Event

εpname : PName 7� Event

εtrans : Trans 7� (Event × Guard)

εtrans = λTrans • (εline line, guard)

In order to define the alphabet for each state, corresponding to the events
on which each state must synchronise, we must consider the events associated
with each transition, type and messageflow. We define the function αtrans which
maps each set of transitions to the set of associated events. (Given a tuple of n

elements t , we use the projection notation t .m to the denote the mth element of
the tuple.)

αtrans : P Trans � P Event

αtrans = λ ts : Trans • { t : εtrans(| ts |) • t .1 }

The alphabet of a given state is the set of events associated with a state with
which it must synchronise. A state’s alphabet is the union of the events mapped
from all its incoming and outgoing transitions, type and exception flows. We
define αstate to be a function mapping each state into its alphabet.

αstate : Local 7→ State 7→ P Event

αstate = (λ l : Local • (λState •
if (type /∈ (Tasks ∪ Subs)) then αtrans(out ∪ in)

else (if (type ∈ ran miseq) then αtrans (µ t : miseqt s • { t .1, t .2 }) else ∅))
∪ (if (type ∈ Subs) then

⋃
((αstate l) (| states∼(l(bpmn∼type)))

else (if (type /∈ Tasks) then ∅ else { εtask (task∼type) }))
∪ αtrans(out ∪ in ∪ error))))

The function miseqt maps each state of type miseq to a transition pair used to
connect the state’s task or subprocess state.

miseqt : State 7� (Trans × Trans)

miseqt = (λState • (µ(s, t) : (Trans × Trans) | s 6= t))

We also define the function αprocess to map each diagram to the set of all pos-
sible events performed by the process describing an individual local diagram’s
behaviour.

αprocess : PName 7→ Local 7→ P Event

∀ p : PName; local : Local •
αprocess =

⋃
{ s : states∼(local p) • αstate s local }

4.2 Processes corresponding to Diagrams

Our semantics abstracts the internal flow of individual task states and only
models the sequence of task initialisations and terminations within a business
process. Our semantic function bsem takes a syntactic description of a BPMN
diagram encapsulated by a state of type pool or a BPMN subprocess and returns
a parallel composition of processes, each corresponding to one of the diagram’s
or process’s states. The parallel composition, defined by the function bsm, is
conjoined via partial interleaving with process X to ensure that the business
process either terminates successfully or deadlocks because of an exception flow.
We define compound events fin.i and abt .i where i ranges over N to denote the
successful completion and the abortion of a business process.

bsem : PName 7→ Local 7→ Process

hide : PName 7→ Local 7→ P Event

∀ p : PName; l : Local •
bsem p l =

let A = {a : εabort p l ; e : εend p l • fin.e, abt .a } ∪ αproc p l

X = 2 i : αproc p l • i → X 2 (2 e : εabort p l • abt .e → Stop)

2 (2 e : εend p l • fin.e → Skip)

in (bsm p l |[A]|X) \ hide p l

∧ hide p l =
⋃
{ s : states∼(l p) • αtrans(s.in ∪ s.out ∪ s.error) }

bsm : PName 7→ Local 7→ Process

∀ p : PName; l : Local •
bsm p l =

(‖ s : { s : (states∼(l p)) | s.type 6= start } •
(αstate s l ∪ { i : εend p l • fin.i }
∪ (if (s.type /∈ ran abort) then ∅ else { abt .(abort∼s.type) }) ◦
if (s.type ∈ ran end)

then ((ρstate s o
9 fin.(end∼s.type)→ Skip)

2 (2 e : εend p l \ { end∼s.type } • fin.e → Skip))

else if (s.type ∈ ran abort)

then ((ρstate s o
9 abt .(abort∼s.type)→ Stop) 2 ρend p l)

else let X = ((ρstate s 2 ρend p l) in

(if s.loop = 0 then X

else (ρloop p s l |[αtrans s.in ∪ { i : εend p l • fin.i }]|X))))

|[αstart p l ∪ { i : εend p l • fin.i }]|
2 s : { s : states∼(l p) | s.type = start } • (ρstate s o

9 ρend p l))

We observe that the processes corresponding to a start, an end or an abort
state are the only non-recursive processes; a start, an end or an abort activity can
occur only once, while it is possible for all other states to occur many times within
a single process instance. The function εend returns the set of numbers defined by
each of the end states within the diagram’s syntax, while εabort returns the set of
numbers defined by each of the abort states. We apply external choice over the
processes corresponding to states with a terminating process synchronising on all
end states. This ensures that all processes terminate at the end of the business
process execution. The function αstart returns the set of events corresponding to
all outgoing transitions of all start states within the diagram’s syntax.

αstart : PName 7→ Local 7→ P Event

εend : PName 7→ Local 7→ P N

∀ p : PName; local : Local •
αstart p local =

⋃
{ s : states∼(local p) | s.type = start • αtrans(s.out) }

∧ εend p local = { s : states∼(local p) | s.type ∈ ran end • end∼s.type }

ρend : PName 7→ Local 7→ Process

εabort : PName 7→ Local 7→ P N

∀ p : PName; local : Local •
ρend p local = (2 e : εend p local • fin.e → Skip))

∧ εabort p local =

{ s : states∼(local p) | s.type ∈ ran abort • abort∼s.type }
∪

⋃
{ s : states∼(local p) | s.type ∈ ran bpmn •

εabort (bpmn∼s.type) local }

The function ρloop maps each state of type task and bpmn to a process which
limits the number of iterations of the state.

ρloop : PName 7→ State 7→ Local 7→ Process

∀ p : PName; s : State; local : Local •
ρloop p s local =

let Y = 2 i : αtrans s.in • i → Skip

M = ρextmsg s.in NoEnds

X (n) = n > 0 & (Y o
9 X (n − 1) 2 (M o

9 Y o
9 X (n − 1)) 2 ρend p local)

2 n ≤ 0 & ρend p local

in X (loopMax)

We define the function ρmiseq to map each state of type miseq or miseqs. The
following describes the function ρmiseq .

ρmiseq : State 7→ Local 7→ Process

∀ s : State; local : Local • ∃ t1, t2 : Trans; e1, e2 : Event ; n : N •
(t1, t2) = miseqtst s ∧ (e1, e2) = ((εtrans t1).1, (εtrans t2).1)

∧ (if s.type ∈ ran miseq then n = (miseq∼s.type).2 else n = (miseqs∼s.type).2)

∧ ρmiseq s local =

let SY = αtrans(s.out ∪ s.error) ∪ { e1, e2 }
in ((Cq(n, s, e1, e2) |[SY]| Seq(n, s, local)) 4 AJ (s.error)) \ { e1, e2 }

The function ρmiseq is constructed by partially interleaving a control process Cq

with process Seq, which models the multiple instances of task or subprocess,
specified by the contructor function, executing sequentially.

Seq(i , s, l) =

let tpe = if s.type ∈ ran miseq then task (miseq∼s.type) else bpmn (miseqs∼s.type)

st = 〈|in ; { t1 }, type ; tpe, out ; { t2 }, error ; s.error , loop ; 1 |〉
in i > 0 & ((ρstate st l) o

9 Seq(i − 1, s, l)) 2 XS(s.out)

The process Cq is triggered initially by one of the incoming transitions of the
multiple instance state. Instances are triggered sequentially.

Cq(n, s, e, f) =

((XJ (s.in) 2 f → Skip) o
9

((n > 1) & (e → Cq(n − 1, s, e, f)) 2 n = 1 & (e → f → XS(s.out)) 2 XS(s.out)))

4.3 Processes corresponding to Gateways

We now define some CSP processes that correspond to the behaviour of each of
the gateway states.

Exclusive Choice Gateway Processes XS(tn) and XJ (tn) model the behaviour
of outgoing and incoming transitions of the state type xgate. Note that although
each outgoing transition of the state type xgate is guarded, the choice of its
incoming transitions is determined by the behaviour of the preceding states.

XS(tn) = 2 e : εtrans(| tn |) • (if e.2 then e.1→ Skip else Skip)

XJ (tn) = 2 e : αtrans tn • e → Skip

We also define the process AJ (tn) to model the behaviour of incoming transitions
of the state type abort .

AJ (tn) = 2 e : αtrans tn • e → Stop

Parallel Gateway Process ASJ (tn) models the behaviour of outgoing and in-
coming transitions of the state type agate. Note that all outgoing transitions are
enabled and all incoming transitions are required in this state type.

ASJ (tn) = ||| e : αtrans tn • e → Skip

Inclusive Choice Gateway Process OSJ (tn) models the behaviour of outgoing
and incoming transitions of the state type ogate. Note that all outgoing transi-
tions are guarded in the state type ogate, one or more transitions are enabled and
the choice of transitions is based on the value of their guards. All its incoming
transitions are also guarded; the choice of transitions is based on the value of
their guards.

OSJ (tn) = ||| e : εtrans(| tn |) • (if e.2 then e.1→ Skip else Skip)

4.4 Processes corresponding to Transitions, Types and States

Functions ρout and ρin take a state and return the process describing the be-
haviour of all outgoing and incoming transitions, respectively.

ρout : State 7→ Process

ρin : State 7→ Process

ρout = (λState • if (type = asplit) then ASJ (out)

else if (type = osplit) then OSJ (out) else XS(out))

ρin = (λState • if (type ∈ ran abort) then AJ (in)

else if (type = ajoin) then ASJ (in)

else if (type = ojoin) then OSJ (in) else XJ (in))

The function ρtype maps the type of a given state to its corresponding process.
Since our semantics abstracts the internal flow of task states, we only model

the initialisation, the termination, message flows and any exception flow of each
task.

ρexit : State 7→ Process

ρtype : State 7→ Local 7→ Process

ρexit = (λState •
let Y = { (e, f) : exit • (fin.e, (εtrans f).1) }
in (2(i , j) : Y • i → j → Skip) 2 XJ (error))

ρtype = (λState • (λ l : Local •
if (type ∈ ran task)

then if (error = ∅) then εtask (task∼type) else εtask (task∼type) 4 XJ (error)

else if (type /∈ ran task ∪ ran bpmn) then Skip

else (if (error = ∅) then εpname(bpmn∼type)→ bsem (bpmn∼type) l

else εpname(bpmn∼type)→ (bsem (bpmn∼type) l 4 XJ (error)))))

We define the function ρstate which returns the process corresponding to the
behaviour of a given state; this function essentially maps each state to the
sequential composition of the processes corresponding to the state’s incoming
transitions, type and outgoing transitions.

ρstate : State 7→ Local 7→ Process

ρstate = (λ s : State • (λ l : Local •
if (type ∈ ran task) then (ρin s o

9 ρtype s l o
9 ρout s)

else if (type ∈ ran bpmn)

then (ρin s o
9 ((ρtype s l |[{ e : exit • fin.(e.1) } ∪ αtrans error]|

ρexit s l) |[{ o : out • (εtrans e).1 }]| ρout s))))

else if (type ∈ ran miseq ∪ ran miseqs) then ρmiseq s l

else if (type = start) then ρout s

else if (type ∈ ran end ∪ ran abort) then ρin s

else ρin s o
9 ρout s))

We have implemented the semantics described in this paper as a prototype
tool using the functional programming language Haskell. Readers may find a
copy of the implementation from our web site1. The tool inputs a XML seri-
alised representation of BPMN diagram from the JViews BPMN Modeler [9],
and translates it into an ASCII file containing CSP processes representing its
behaviours expressed in machine-readable CSP [16].

5 Revisiting the Example

5.1 Semantics of the Airline Reservation Application

We use the example of an airline reservation system in Section 3.2 to demonstrate
how our semantic function may be applied to the syntactic definition described
1 http://www.comlab.ox.ac.uk/peter.wong/observation/

in Section 3, and hence provide a semantics to support formal analyses. We
define set J to index the processes corresponding to the states in the diagram.

J = { start , verify , reserve, booking ,notify , timeout , end , abort }

By applying our semantic function to the diagram’s syntactic description, we
obtain the process corresponding to it.

Airline = let X = 2 i : (αY \ {fin.1, abt .1 }) •
(i → X 2 abt .1→ Stop 2 fin.1→ Skip)

Y = (‖ j : J • αP(j) ◦ P(j))

in (Y |[αY]|X) \ {|init |}

where for each j in J , the process P(j) is as defined below and αP(j) is the set
of possible events performed by P(j). We use n, ranging over N, to denote the
number of instances of the task verify, as specified by the second argument of
constructor function miseq.

P(verify) =

let

Ts = { i : { 1 . . n } • (in.i , out .i) }
IC (T) = 2(i , j) : T • i → (j → Skip ||| Cn(T \ { i , j }))
Cn(T) = #T = 1 & (2(i , j) : T • i → j → init .reserve → Skip)

2 #T > 1 & IC (T) 2 init .reserve → Skip

MTask = ‖[{ init .reserve }](i , j) : Ts •
((i → starts.verify → j → Skip o

9 init .reserve → Skip) 2 init .reserve → Skip)

in ((init .verify → Skip o
9

(MTask |[
⋃
{ (i , j) : Ts{ i , j } } ∪ { init .reserve }]|

(init .reserve → Skip 2 Cn(Ts)))) o
9 P(verify)) 2 fin.1→ Skip

P(start) = (init .verify → Skip) o
9 (fin.1→ Skip)

P(reserve) = (init .reserve → Skip o
9 (starts.reserve →

(Reserve |[{fin.2 }]| fin.2→ init .booking → Skip)

|[{ init .booking }]| init .booking → Skip) o
9 P(reserve))

2 (fin.1→ Skip)

P(booking) = (init .booking → Skip o
9 (starts.booking → ((Booking 4 init .timeout → Stop)

|[{fin.3,fin.4, init .timeout }]| (init .timeout → Stop

2 fin.3→ init .notify1→ Skip 2 fin.4→ init .end → Skip))

|[{ init .notify1, init .end }]| (init .notify1→ Skip 2 init .end → Skip)) o
9

P(booking)) 2 (fin.1→ Skip)

P(timeout) = (init .timeout → Skip o
9 starts.timeout → Skip o

9

init .notify2→ Skip o
9 P(notify)) 2 (fin.1→ Skip)

P(notify) = ((init .notify1→ Skip 2 init .notify2→ Skip) o
9

starts.notify → Skip o
9 init .abort → Skip o

9 P(notify)) 2 (fin.1→ Skip)

P(end) = (init .end → Skip o
9 fin.1→ Skip)

P(abort) = (init .abort → Skip o
9 abt .1→ Stop) 2 (fin.1→ Skip)

The process Reserve describes the semantics of the subprocess Reservation upon
its syntactic description. We define set J ′ to index the processes corresponding
to the states of the subprocess:

J ′ = { start1, reseat , end1 }
Reserve = let X = 2 i : (αY \ {fin.2 }) • (i → X 2 fin.2→ Skip)

Y = (‖ j : J ′ • αP(j) ◦ P(j))

in (Y |[αY]|X) \ {|init |}

where for each j in J ′, the process P(j) is as defined below; we write m, ranging
over N, to denote the number of iterations in the multiple instance Reserve Seat :

P(start1) = (init .rseat → Skip o
9 fin.2→ Skip)

P(reseat) =

let X (n) = ((init .reseat → Skip 2 init .out → Skip) o
9

(n > 1 & init .in → X (n − 1)

2 n = 1 & init .in → init .out → init .end1→ Skip

2 init .end1→ Skip 2 n = m & init .end1→ Skip))

A(n) = n > 0 &

(init .in → Skip o
9 starts.reseat → Skip o

9 init .out → Skip o
9 A(n − 1))

2 init .end1→ Skip

in ((X (m) |[{ init .end1, init .in, init .out }]|A(m)) o
9 P(reseat)) 2 fin.2→ Skip

P(end1) = (init .end1→ Skip o
9 fin.2→ Skip)

The process Booking describes the semantics of the subprocess Booking upon its
the syntactic description. It is defined as follows, where we define set J ′′ to index
the processes corresponding to the states of the subprocess:

J ′′ = { start2, xs3, pbooking , cancel , ticket , end3, end4 }Booking =

let X = 2 i : (αY \ {fin.3,fin.4 }) •
(i → X 2 (fin.3→ Skip 2 fin.4→ Skip))

Y = (‖ j : J ′′ • αP(j) ◦ P(j))

in (Y |[αY]|X) \ {|init |}

where for each j in J ′′, the process P(j) is as defined below:

P(start2) = (init .xs3→ Skip o
9 P(start4)) 2 (fin.3→ Skip 2 fin.4→ Skip)

P(xs3) = (init .xs3→ Skip o
9 (init .pbooking → Skip 2 init .cancel → Skip) o

9 P(xs3))

2 (fin.3→ Skip 2 fin.4→ Skip)

P(pbooking) = (init .pbooking → Skip o
9 starts.pbooking → Skip o

9 init .ticket → Skip o
9

P(pbooking)) 2 (fin.3→ Skip 2 fin.4→ Skip)

P(cancel) = (init .cancel → Skip o
9 starts.cancel → Skip o

9 init .end3→ Skip o
9

P(cancel)) 2 (fin.3→ Skip 2 fin.4→ Skip)

P(ticket) = (init .ticket → Skip o
9 starts.ticket → Skip o

9 init .end4→ Skip o
9

P(ticket)) 2 (fin.3→ Skip 2 fin.4→ Skip)

P(end3) = (init .end3→ Skip o
9 fin.3→ Skip) 2 fin.4→ Skip

P(end4) = (init .end4→ Skip o
9 fin.4→ Skip) 2 fin.3→ Skip

5.2 Verifying Consistency of the Airline Reservation System

CSP’s behavioural semantics admits refinement orderings under reverse contain-
ment, therefore a behavioural specification R can be expressed by constructing
the most non-deterministic process satisfying it, called the characteristic process
PR. Any process Q that satisfies specification R has to refine PR, denoted by
PR v Q . For example, Figure 3 is a specification of the diagram in Figure 2,
abstracting details of subprocesses Reserve and Booking in the original diagram
in Figure 2 into a task state.

Fig. 3. A BPMN diagram describing the behavioural property defined by process Spec1.

Letting K = { start3, reserve2, booking2, timeout2,notify2, abort1, end1 }, the pro-
cess Spec1 is defined as follows:

Spec1 = let

X = 2 i : (αY \ {fin.1, abt .1 }) •
(i → X 2 (abt .1→ Stop) 2 (fin.1→ Skip))

Y = ‖ x : K • αP(x) ◦ P(x)

in (Y |[αY]|X) \ {|init |}

where for each k in K , the process P(k) is as defined below:

P(start3) = (init .reserve2→ Skip) o
9 (fin.1→ Skip)

P(reserve2) = ((init .reserve2→ Skip) o
9 starts.reserve → Skip o

9 init .booking2→ Skip o
9

P(reserve2)) 2 (fin.1→ Skip)

P(booking2) = (init .booking2→ Skip o
9 starts.booking → (Skip 4 init .timeout2→ Stop) o

9

(init .end1→ Skip 2 init .notify2→ Skip) o
9 P(booking2)) 2 (fin.1→ Skip)

P(timeout2) = ((init .timeout2→ Skip) o
9 starts.timeout → Skip o

9 init .notify3→ Skip o
9

P(timeout2)) 2 (fin.1→ Skip)

P(notify2) = ((init .notify2→ Skip 2 init .notify3→ Skip) o
9

starts.reserve → Skip o
9 init .abort1→ Skip o

9 P(notify2)) 2 (fin.1→ Skip)

P(end1) = (init .end1→ Skip o
9 fin.1→ Skip)

P(abort1) = (init .abort1→ Skip o
9 abt .1→ Stop) 2 (fin.1→ Skip)

Note that CSP’s traces model is insufficient to verify our models against formal
specifications. If we insist on using the traces model, then under traces refinement
any process P that has the trace-set { 〈〉 } will refine and hence satisfy process
Spec1. Any process which corresponds to a broken or an illegal BPMN diagram
might in fact have this trace-set; this demonstrates the inadequacy of the traces
model. We therefore use the stable failures model to compare process Airline

with Spec1.

Spec1 vF Airline \ (αAirline \ αSpec1)

This refinement captures the claim that our semantic model is consistent with
respect to different levels of abstraction and Airline is indeed a refinement of the
abstraction defined by Spec1. Due to the specific semantic definition presented
in this paper, we are able to verify refinement assertions such as this by model
checking using FDR [7].

The above refinement assertion motivates the following generalisation of re-
finement ordering upon BPMN diagrams. We introduce two types of refinement
based on CSP’s stable-failures model and the hierarchical composition of BPMN
diagrams. We first introduce the notion of hierarchical refinement, where the
specification diagram is an abstraction of the implementation diagram via col-
lapsing subprocess states.

Definition 1. Hierachical Refinement Given two BPMN diagrams, described
by the names n1 and n2, and the specification environment l1 and l2 respectively,
diagram n1 hierachically refines diagram n2 iff

bsem n2 l2 vF (bsem n1 l1 \ S)

where S is the set of events corresponding to the alphabet of states that are
contained in the subprocess states, which are defined in diagram n1, and have
been abstracted by collapsing them into task states in diagram n2.

This refinement ordering semantically relates different levels of abstraction
between BPMN diagrams. Now we can introduce the notion of hierarchical in-
dependence upon behavioural specification.

Definition 2. Hierarchical Independence A diagram n1 in the environment
l1 is a hierarchically independent specification of diagram n2 in the envi-
ronment l2 iff for all names m and specification environments k , the following
expression holds:

bsem m k vF (bsem n2 l2 \ S)⇒ bsem n1 l1 vF bsem m k

where S is the set of events corresponding to the alphabet of states that are
contained in the subprocess states, which have been collapsed.

Hierarchical independence allows us to reason about a BPMN diagram against
a behavioural specification by verifying a more abstract version of that diagram
against the specification. However, sometimes it is not only convenient to hide
details of subprocess states, but it is neccessary to also abstract details which
are irrelevant to the behavioural property we are interested in.

Definition 3. Partial Refinement Given two BPMN diagrams, described by
the names n1 and n2, and the specification environments l1 and l2 respectively,
diagram n1 partially refines diagram n2 iff

bsem n2 l2 vF (bsem n1 l1 \ S)

where S is the set of event corresponding to the alphabet of all states that have
been abstracted.

In our example, the diagram in Figure 2 is a partial refinement of the diagram
in Figure 3. Conversely we say the diagram in Figure 3 is a partial specification
of the diagram in Figure 2. Moreover, these refinement claims may be checked
automatically by FDR. These relationships allow a business process developer
to focus on the specification of part of the diagram.

6 Conclusion

In this paper, we have presented a process semantics in the language of CSP for
a subset of BPMN. We have illustrated by examples how this semantic model
may be used to verify that one BPMN diagram is consistent with another, which
might be its abstract specification using the same graphical notation. Our seman-
tic model makes it possible to formally analyse and compare BPMN diagrams,
and to assert correctness conditions that can be verified using a model checker.
Like any development of a complex system, the application of refinement in
business process design means that development from an abstract design into an
implementation becomes incremental.

The CSP process semantics of a BPMN workflow can be constructed auto-
matically from a simple syntactic presentation of the diagram. We have used Z as
a syntactic vehicle, but something like XMI would work too. We do not expect the
designer to write in this syntax directly, but to generate it from the diagrammatic
notation, annotated with attribute values such as guards and multiplicities.

Future work will include augmenting our semantics with a well-defined trans-
action and compensation handling, perhaps building on Butler’s compensating
CSP [3], to provide a formal semantics for the complete BPMN; formalising
Property Specification Patterns [6] in CSP, specifically to allow such patterns
to be employed for reasoning about behavioural properties of BPMN processes;
and automating the semantic translation to facilitate automatic verification.

This work is supported by a grant from Microsoft Research.

References

1. C. Bolton and J. Davies. Activity graphs and processes. In Proceedings of the
Second International Conference on Integrated Formal Methods, pages 77–96, 2000.

2. Business Process Execution Language for Web Services, Version 1.1., May 2003.
http://www.ibm.com/developerworks/library/ws-bpel.

3. M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transac-
tions. In Proceedings of 25 Years of CSP, volume 3525 of LNCS, 2005.

4. R. M. Dijkman. Choreography-Based Design of Business Collaborations. BETA
Working Paper WP-181, Eindhoven University of Technology, 2006.

5. R. M. Dijkman, M. Dumas, and C. Ouyang. Formal semantics and automated
analysis of BPMN process models. Technical Report Preprint 5969, Queensland
University of Technology, 2007.

6. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property Specification Patterns
for Finite-state Verification. In 2nd Workshop on Formal Methods in Software
Practice, 1998.

7. Formal Systems (Europe) Ltd. Failures-Divergences Refinement, FDR2 User Man-
ual, 1998. www.fsel.com.

8. H. Foster. Mapping BPEL4WS to FSP. Technical report, Imperial College, Lon-
don, 2003.

9. ILOG JViews BPMN Modeler. Available at http://www.ilog.com/.
10. J. Cámara, C. Canal, J. Cubo, and A. Vallecillo. Formalizing WSBPEL Business

Processes using Process Algebra, Aug. 2005. CONCUR’2005 Workshop on the
Foundations of Coordination Languages and Software Architectures.

11. M. Koshkina. Verification of business processes for web services. Master’s thesis,
York University, Toronto, Oct. 2003.

12. R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL. Journal
of Logic and Algebraic Programming, 70(1), Jan. 2007.

13. OMG. Business Process Modeling Notation (BPMN) Specification, Feb. 2006. www.
bpmn.org.

14. C. Ouyang, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede.
Translating BPMN to BPEL. Technical Report BPM-06-02, BPM Center, 2006.

15. J. Recker and J. Mendling. On the Translation between BPMN and BPEL: Concep-
tual Mismatch between Process Modeling Languages. In Proceedings 18th Interna-
tional Conference on Advanced Information Systems Engineering, pages 521–532,
2006.

16. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.
17. W3C. Web Service Choreography Interface (WSCI) 1.0, Nov. 2002. www.w3.org/

TR/wsci.
18. P. Y. H. Wong and J. Gibbons. A Process Semantics for BPMN (extended version).

www.comlab.ox.ac.uk/peter.wong/pub/bpmnsem.pdf, 2007.
19. J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.

Prentice Hall International Series in Computer Science, 1996.

