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Summary 

The explosion of biological data has largely influenced the focus of today’s biology 
research. Integrating and analysing large quantity of data to provide meaningful insights 
has become the main challenge to biologists and bioinformaticians. One major problem is 
the combined data analysis of data from different types, such as phenotypes and 
genotypes. This data is modelled as bi-partite graphs where nodes correspond to the 
different data points, mutations and diseases for instance, and weighted edges relate to 
associations between them. Bi-clustering is a special case of clustering designed for 
partitioning two different types of data simultaneously. We present a bi-clustering 
approach that solves the NP-hard weighted bi-cluster editing problem by transforming a 
given bi-partite graph into a disjoint union of bi-cliques. Here we contribute with an exact 
algorithm that is based on fixed-parameter tractability. We evaluated its performance on 
artificial graphs first. Afterwards we exemplarily applied our Java implementation to data 
of genome-wide association studies (GWAS) data aiming for discovering new, previously 
unobserved geno-to-pheno associations. We believe that our results will serve as 
guidelines for further wet lab investigations. Generally our software can be applied to any 
kind of data that can be modelled as bi-partite graphs. To our knowledge it is the fastest 
exact method for weighted bi-cluster editing problem. 

1 Introduction 

1.1 Background 

The focus of recent biologically motivated studies has shifted due to the explosive growth of 
available (sequential) data emerging from laboratories worldwide. For example, GenBank 
now stores over 197,000,000 sequences from more than 380,000 organisms [9]. 
UniProtKb/Swiss-Prot has incorporated ~53,000 annotated sequences, gathered from 205,244 
(published) references and PDB (Protein Data Bank) provides approximately 78,400 molecule 
structures including proteins, nucleic acids (NA) and protein/NA complexes. Integrating, 
processing and analysing these large quantities of different types of data from various sources 
have become a main challenge in bioinformatics. Modern bioinformatics algorithms and 
computational approaches have been proven to have great potential. The application of 
carefully designed problem specific models and methodology allows for discovering novel 
interrelations and gaining further insights into the raw data, forming a better understanding. In 
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this paper we concentrate on the simultaneous analysis of data from different types. We will 
exemplarily concentrate on so-called Genome-Wide Association Studies (GWAS). 

GWAS is one of the fastest emerging areas of today’s biological research, also known as 
Whole Genome Association Study. It is an examination of genetic variants (genotypes) to 
check if any of them is associated with a certain phenotypic trait. Typically, millions of 
single-nucleotide polymorphisms (SNPs) are investigated as genetic variants and major 
diseases are examined as traits. These studies normally compare the genotypes of two groups 
of people: healthy people (controls) and diseased people (cases). Then statistical tests are used 
to verify if there is any significant association. This is a typical example of a bi-partite data 
type, i.e. two types of measurements and relations between concrete instances of the two 
types. 

Since the first GWAS was published in 2005 on age-related macular degeneration [11], the 
number of GWAS publications is growing dramatically. Up to June 2011, there have been 
951 publications on GWAS, according to National Human Genome Research Institute 
(NHGRI) Catalog of Published Genome-Wide Association Studies [10]. Although the 
discovered associations have revealed much insight on the mechanisms of common 
diseases/traits, yet how the interactions of the genes confer a risk to diseases still remains 
widely unclear. Traditional analysis methodology of GWAS associates one pair of SNP and 
phenotype in one statistical test, which tends to incur false positives and false negatives. 
Moreover, many gene/SNP markers, conferring a low or moderate risk by themselves, 
“interact” with each other and have a significant combined risk. Hence, these markers often 
fail to be detected. Novel computational approaches considering combined effects in 
analysing GWAS data might provide more meaningful results and insights. 

Here, GWAS associations are modelled as graphs, where vertices correspond to SNPs 
(genotypes) and traits (phenotypes) while edges symbolize significant associations between 
them (Figure 1). We proceed one step forward by associating a group of sequence variations 
(SNPs) to a group of traits/diseases, forming a “group to group” association, rather than the 
traditional “one to one”. Therefore, we developed an exact algorithm for weighted bi-cluster 
editing. We applied it to different GWAS datasets and discovered new associations that have 
not been reported before. We believe such results, based on several associations instead of 
one pair-wise relation, are thereby with higher confidence.  

 
 

Figure 1: Bi-partite graph representation of GWAS data. Vertices P1, P2, P3 represent 
“phenotypes” and L1, L2, L3, L4 represent “SNP loci”. Our bi-cluster editing algorithm 
converts the intransitive GWAS data graph into disjoint bi-cliques. Two putative solutions are 
presented at the bottom: the addition of edge P2-L2 and the deletion of edge P3-L2 (left) as well 
as the deletion of edge P1-L2 (right). In the unweighted bi-cluster editing problem we would 
prefer the right solution since we only need to modify one edge. However, in the more realistic 
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weighted scenario the preferred solution depends on the concrete edge weights: if the costs for 
adding P2-L2 and removing P3-L2 are lower than the costs for removing P1-L2, we would prefer 
the left solution. 

1.2 Cluster Editing and Bi-cluster Editing 

Data clustering is a classical task in computational biology. Its goal is to partition a data set 
into clusters such that elements within a cluster are more similar according to one or many 
specific characteristics than elements in different clusters. Clustering methods are extensively 
used in every area of biological studies (e.g. functional genomics, protein/DNA sequences 
analysis, almost all kinds of biological network analysis) [14]. However, in some other 
scenarios, the standard clustering model is not satisfactory. One of them is the clustering of 
gene expression data under different conditions, which can be modelled as a bipartite graph 
[1]. In such cases, clustering only genes or only conditions often does not yield sufficient 
insight. Instead, we would like to find subsets of genes and subsets of conditions that together 
behave in a consistent way. This type of clustering methods is called bi-clustering. 

Clustering and bi-clustering are quite similar, so they share a number of similar strategies. A 
common strategy for clustering is to choose a similarity threshold and construct the 
corresponding graph according to the following rules: (1) the entities/objects refer to the 
vertices in the graph, and (2) an edge is drawn between two vertices if and only if the 
similarity between them exceeds a given threshold [15]. Under such setting, we call the end 
points 𝑢 , 𝑣  of an edge “similar”, written as 𝑢~𝑣 . However, the constructed graph is not 
necessarily “transitive”, which means 𝑢~𝑣, 𝑢~𝑤 does not necessarily imply 𝑣~𝑤. We aim to 
convert the preliminarily constructed graph into a graph only consisting of disjoint clusters 
with minimal costs (minimal number of edge deletions/insertions, for instance). Such 
problems are named “cluster editing”. Formal definitions are given below: 

𝑉 is denoted as the set of vertices (objects) to be clustered. (𝑉𝑘) is denoted as the set of k-

element subsets of 𝑉. 𝑢𝑣 is an unordered pair of {𝑢, 𝑣} ∈ (𝑉2). The similarity between two 

vertices is a symmetric similarity function  𝑠: (𝑉2) → ℝ. We call 𝑢 and 𝑣 similar, 𝑢~𝑣, if and 
only if 𝑠(𝑢, 𝑣)  > a given threshold. The edge set of the similarity graph is 𝐸 ∶=  {𝑢𝑣: 𝑢~𝑣 }. 
Self-loops are not permitted in our graphs.  

 

If the graph satisfies any of the equivalent conditions below, then we call it “transitive”: 

(1) For any three vertices 𝑢𝑣𝑤 ∈ (𝑉3), 𝑢𝑣 ∈  𝐸 and 𝑣𝑤 ∈  𝐸 ⟹ 𝑢𝑤 ∈ 𝐸 holds. 

(2) No paths of length 2 in the graph, i.e., for each 𝑢𝑣𝑤 , we have |𝐸 ∩
{𝑢𝑣, 𝑣𝑤,𝑢𝑤}| ≠ 2. 

(3) 𝐺 is a disjoint union of cliques (a clique is a complete graph). 

Given a graph 𝐺 =  (𝑉,𝐸), we convert 𝐺 into a transitive graph 𝐺’ =  (𝑉,𝐸’) by inserting 
and deleting edges. Each insertion and deletion of 𝑢𝑣 incurs a certain cost of 𝑠(𝑢𝑣). Define 
𝑐𝑜𝑠𝑡(𝐺 → 𝐺’) to be the cost of conversion, 𝑐𝑜𝑠𝑡(𝐺 → 𝐺’)  =  𝑠(𝐸\𝐸’) –  𝑠 (𝐸’\𝐸). Our goal is 
to find a 𝐺’, such that 𝑐𝑜𝑠𝑡(𝐺 ⟶ 𝐺’) is minimized.  

For bi-cluster editing, we have a similar strategy. The graphs are constructed in the same way, 
where vertices refer to objects and edges represent the similarity between two vertices. The 
only difference is that the resulting graph is a bipartite graph. Bipartite graphs are special 
graphs satisfying the following conditions: (1) the vertices of the graph can be divided into 
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two subsets 𝑉1 and 𝑉2 , (2) edges can only be defined between the vertices from different 
subsets, i.e., 𝑠(𝑢, 𝑣)  → ℝ if and only if 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2 or 𝑢 ∈ 𝑉2, 𝑣 ∈ 𝑉1. 

For a bipartite graph  𝐺 =  (𝑉1,𝑉2,𝐸), we have the following equivalent conditions 
characterizing it if 𝐺 is transitive: 

(1) For each subset of four vertices, 𝑢𝑣𝑤𝑥 ∈ (𝑉4), where {𝑢,𝑤} ∈ (𝑉12 ), {𝑣, 𝑥}  ∈ (𝑉22 ), we 
have 𝑢𝑣 ∈ 𝐸, 𝑤𝑣 ∈ 𝐸 and 𝑤𝑥 ∈ 𝐸 ⟹ 𝑢𝑥 ∈ 𝐸. 

(2) 𝐺 does not contain a path of 4 vertices, i.e., for each 𝑢𝑣𝑤𝑥 ∈ (𝑉4), where {𝑢,𝑤} ∈

(𝑉12 ), {𝑣, 𝑥}  ∈ (𝑉22 ), we have |𝐸 ∩ {𝑢𝑣,𝑤𝑣, 𝑢𝑥,𝑤𝑥}| ≠ 3. 

(3) 𝐺 is a disjoint union of bi-cliques (i.e. complete bipartite graphs). 

Bi-cluster editing is similar to its counterpart cluster editing: We convert a given bipartite 
graph into a set of disjoint union of bi-cliques by inserting/deleting edges with minimal costs. 
This problem is called “bi-cluster editing”. The definition of the 𝑐𝑜𝑠𝑡(𝐺 → 𝐺’) is the same. 

1.3 Problem Statement 

The weighted bi-cluster editing problem is formally defined as follows: Given an undirected 
bipartite graph 𝐺 = (𝑉1,𝑉2,𝐸, 𝑠) , where  𝑠  is a similarity function 𝑠: (�𝑉11 � , �𝑉21 �) → ℝ , 
compute 𝛿(𝐺) ≔ min {𝑐𝑜𝑠𝑡(𝐺 ⟶ 𝐺′)} and find one or all 𝐺∗ , such that 𝑐𝑜𝑠𝑡(𝐺 ⟶ 𝐺∗) =
𝛿(𝐺).  

1.4 Previous Studies and Results 

The unweighted version of this problem, unweighted bi-cluster editing, has a similarity 

function of 𝑠:��𝑉11 � , �𝑉21 �� → {+1,−1} . The editing cost is defined as 𝑐𝑜𝑠𝑡(𝐺 → 𝐺’)  =

 |𝐸\𝐸’| + |𝐸’\𝐸|. Both the weighted and unweighted cases of bi-cluster editing problems are 
NP-hard, proven by N. Amit [2]. 

Unlike its counterpart, cluster editing, which has been extensively studied [13-15], the study 
of bi-cluster editing is far from complete. F. Protti et al. [3] developed an algorithm that 
finished in 𝑂(4𝑘 + |𝑉| + |𝐸|) for the unweighted version of bi-cluster editing. Later J. Guo et 
al. [4] improved the running time to 𝑂(3.24𝑘 + |𝐸|), by developing an improved branching 
strategy. However, most real life graphs are weighted and to our knowledge no exact 
algorithm for weighted bi-partite graphs exists so far. 

1.5 Our Contributions 

Here, we present a fixed-parameter algorithm for the weighted bi-cluster editing problem. We 
assume |𝑠(𝑢𝑣)|  > 1 for all 𝑢 ∈  𝑉1, 𝑣 ∈ 𝑉2. Our algorithm checks in 𝑂(4𝑘) time if there is a 
set of insertions and deletions that converts the given graph into disjoint bi-cliques. We 
implemented the algorithm in Java and evaluated its performance on artificially generated 
graphs. Our experiments show that the algorithm can give exact solutions at least to medium-
sized graphs within acceptable running times. To our knowledge, it is the fastest exact 
algorithm for weighted problem instances so far. 
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Furthermore, we applied our software on Genome-Wide Association Studies, searching for 
new associations between genotypes and different medical traits. Our algorithm successfully 
solved all but two of the GWAS data instances in reasonable time and thereby found 86 new 
associations. 

1.6 Preliminaries 

The vertex set is denoted as 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}. The input to our algorithm is a graph 
𝐺 = (𝑉1,𝑉2,𝐸), with similarity function 𝑠(𝑢𝑣) → ℝ and a similarity threshold. 𝐸 denotes the 
edge set, 𝐸 = {𝑣1, 𝑣2: 𝑠(𝑣1, 𝑣2) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}. The output of the algorithm is a list of 
solutions and their corresponding costs (see 2.2 for details). 

Without loss of generality, the input graph is assumed to consist of one single connected 
component. If not, we can treat each connected component separately. Obviously, an optimal 
solution will never join separate components, since we can always find a solution with less 
cost where the disjoint components remain separated, than the solutions linking the separated 
components together [4]. 

We use “P4” as the short form of “a path of 4 vertices”. A P4 is also the “basic conflict 
element” in our problem, i.e. the “conflict P4”. As mentioned above, a bipartite graph is a 
complete bipartite graph if and only if it contains no conflict P4. Therefore, our goal is to 
remove all these P4s by edge insertions and deletions. Let 𝐵(𝐺) be the set of all the basic 
conflict elements, i.e. 𝐵(𝐺) = {𝑢𝑣𝑤𝑥 ∈ (𝑉, 4) | |𝐸 ∩ (𝑢𝑣,𝑤𝑣,𝑢𝑥,𝑤𝑥)|  =  3}   𝑢,𝑤 ∈
𝑉1,𝑣, 𝑥 ∈ 𝑉2. 𝐺 is transitive if and only if 𝐵(𝐺) = {}. 

2 Fixed-Parameter Algorithm 

2.1 Introduction to Fixed-Parameter Algorithm 

Fixed-parameter algorithm and fixed-parameter tractability were concepts introduced by 
Downey and Fellows in 1990s [6]. They provided a possible way of solving NP-hard 
problems more efficiently. A problem is called “fixed-parameter tractable” regarding to a 
certain parameter, if it can be solved in a running time of 𝑂(𝑓(𝑘) ∙ |𝐼|𝑐), where 𝑓 is a function 
that solely depends on the parameter 𝑘, |𝐼| is the input size and 𝑐 is a constant.  A more 
recently overview of the fixed-parameter algorithms can be found in [7]. 

Here, we present the first fixed-parameter algorithm for the weighted bi-cluster editing 
problem with the parameter 𝑘 as the costs for edge modifications. Given a problem instance, 
i.e. an intransitive connected component, the algorithm finds the optimal solution with cost at 
most 𝑘  if there is any solution. Our algorithm accepts a running time of 𝑂(4𝑘) with real 
weighted edges. The minimum editing cost is required to be >1, in order to guarantee this 
running time, since for arbitrarily small edge weights, no fixed-parameter algorithm is able to 
solve the problem in a provable running time unless P = NP. 

2.2 Algorithm  

2.2.1 Data Reduction 

We reduce the problem size by identifying existing disjoint bi-cliques since they do not need 
to be repaired and thereby are not considered in the following steps. Initially, all disjoint bi-
cliques are removed from the original graph. Afterwards, the algorithm recognizes all the 
disjoint connected components as individual input graph. In the next step, for each component 
we check whether it is already a bi-clique or not. If this is the case, the algorithm deletes the 
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whole bi-clique from the input and reports the corresponding component as one bi-cluster. 
This procedure can be carried out within 𝑂(|𝑉| + |𝐸|) time. 

2.2.2 Branching Strategy 

In this section, we present a search tree algorithm for weighted bi-cluster editing in bipartite 
graphs. Our goal is to repair all the P4s using edge insertions and edge deletions. For each P4, 
basically we have 4 possibilities to convert it into a bi-clique/bi-cliques: we can remove either 
one of the three edges in the P4, resulting in two bi-cliques (one with three vertices and the 
other with only one isolated vertex, i.e. a singleton), or insert the missing edge such that four 
vertices form one bi-clique (refer to Figure 2). The details are elucidated as following: 

Let 𝑢𝑣𝑤𝑥 be a P4, where 𝑢,𝑤 ∈ 𝑉1 and 𝑣, 𝑥 ∈ 𝑉2. We assume (𝑢𝑣), (𝑤𝑣), (𝑤𝑥) ∈ 𝐸 (Figure 
2a). Afterwards, we recursively check the following four cases to repair the P4. 

(1) Insert the missing edge 𝑢𝑥 and set 𝑢𝑥 to “permanent” (Figure 2b) 

(2) Delete the edge 𝑢𝑣 and set 𝑢𝑣 to “forbidden” (Figure 2c) 

(3) Delete the edge 𝑤𝑣 and set 𝑤𝑣 to “forbidden” (Figure 2d) 

(4) Delete the edge 𝑤𝑥 and set 𝑤𝑥 to “forbidden” (Figure 2e) 
Once a P4 is located in a connected component, the search tree algorithm starts. For each P4, 
four branches in the search tree are created; each of them represents one of the editing 
possibilities mentioned above. Then the four branches are visited one by one, performing the 
corresponding editing behaviour and updating 𝑘 to 𝑘’ = 𝑘 −(costs required for insertions and 
deletions). Afterwards, the program searches the new graph for more P4s. The whole 
procedure is implemented in a recursive manner. If the corresponding editing behaviour 
would lead to 𝑘’ < 0, then the whole branch in the search tree is skipped. Solutions are 
identified and recorded by the algorithm when no P4 can be found in the graph and 𝑘’ > 0. 
The algorithm stops when the entire search tree is visited, and returns all the solutions found, 
i.e. all bi-cliques. This branching strategy accepts a worst case running time of 𝑂(4𝑘). 

2.2.3 Algorithm Procedure 

Our algorithm takes graphs as input and outputs a list of solutions. A Solution object is 
structured as a pair (actions, cost), where actions is a list of action objects (an action object 
represents an editing behaviour, either an edge insertion or edge deletion) and cost is the total 
cost of the edit behaviours. In addition to the main algorithm, we have four auxiliary 
functions: P4_FINDER( 𝐺 ), BI_CLIQUE_REMOVER( 𝐺 ), TAKE_ACTION(action) and 
ROLLBACK_ACTION(action). P4_FINDER(𝐺 ) is responsible to find P4s in the graph. 
BI_CLIQUE_REMOVER( 𝐺 ) removes the existing bi-cliques. TAKE_ACTION(action) 
performs the edge insertion or deletion according to the action object and 
ROLLBACK_ACTION(action) removes the effect of the action and restores the graph to its 
previous condition. The subroutine BRANCHING( 𝐺 , action, solution_list) creates the 
branches in the search tree algorithm and recursively visits them. It first carries out the given 
action, then checks the graph to see if there is any P4 unsolved. If any P4 found, then the 
subroutine continues to check the 4 possibilities to repair it, or if no P4 is found, a solution 
object will be created and put into the solution_list. The pseudo-code of the algorithm is 
described below: 

//1. MAIN ALGORITHM 
solution_list  empty list 
//find the first P4 
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𝑢𝑣𝑤𝑥  P4_FINDER(𝐺) 
 
if (𝑢𝑣𝑤𝑥 = = null) 
       return (empty list) 
//branching 
𝑎𝑐𝑡𝑖𝑜𝑛  insert 𝑢𝑥 
BRANCHING (𝐺, action, solution_list) 
action  delete  𝑢𝑣 
BRANCHING (𝐺, action, solution_list) 
action  delete 𝑤𝑣 
BRANCHING (𝐺, action, solution_list) 
action  delete 𝑤𝑥 
//return the results 
return solution_list 
 
//2. SUBROUTINE BRANCHING(𝐺, action, solution_list) 
BRANCHING(𝐺, action, solution_list) 
       if (k <= 0) 
           ROLLBACK_ACTION(action) 
           return; 
 
       TAKE_ACTION(action) 
       //find the first P4 
       𝑢𝑣𝑤𝑥  P4_FINDER(𝐺) 
       //if no P4 is found, then we have a solution 
       if (𝑢𝑣𝑤𝑥 = = null) 
           solution  (actions, cost) 
           solution_list.add(solution) 
           ROLLBACK_ACTION(action) 
           return (empty list) 
      //Start branching 
      𝑎𝑐𝑡𝑖𝑜𝑛  insert 𝑢𝑥 
      BRANCHING (𝐺, action, solution_list) 
      action  delete  𝑢𝑣 
      BRANCHING (𝐺, action, solution_list) 
      action  delete 𝑤𝑣, cost  𝑠(𝑤𝑣) 
      BRANCHING (𝐺, action, solution_list) 
      action  delete 𝑤𝑥, cost 𝑠(𝑤𝑥) 
      ROLLBACK_ACTION(action) 
end subroutine 

3 Results 

We implemented our algorithm in JAVA 1.6 with support for parallel multi-core computing. 
For evaluation, we first applied our software on artificially generated data and later on real 
GWAS results from two different sources. All measurements were taken on Compute Clusters 
with 78 compute nodes consisting of 2×Intel XEON E5430 2.66 Ghz (Quad-core) CPUs and 
16 GB RAM. 

Figure 2. The graph cluster editing strategy based on P4-branching. Blue dashed lines relate to 
edge deletion and red dashed line corresponds to edge insertions. There are four options for 
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repairing a conflict P4 depicted in (a): Insertion of the missing edge ux (b), deletion of the edge 
wx (c), deletion of the edge wv (d), and deletion of the edge uv (e). 

3.1 Artificial Graphs 

We generated random artificial graphs as follows. Assume we have a graph consisting of 𝑛 
vertices, we randomly pick up 𝑘 vertices (𝑘 ∈ [1,𝑛]) and define them to be in one bi-clique. 
Then we carry out the procedure in the remaining 𝑛 − 𝑘 vertices until there is no vertex left. 
This random graph generator gives us a graph consisting of random numbers of clusters of 
random sizes. The edge weights between vertices are obtained from Gaussian distributions 
𝑁(𝜇,𝜎2) . Two Gaussian distributions were used to generate weights for edges:  
𝑁 (𝜇𝑖𝑛𝑡𝑟𝑎,𝜎𝑖𝑛𝑡𝑟𝑎2 ) and 𝑁 (𝜇𝑖𝑛𝑡𝑒𝑟,𝜎𝑖𝑛𝑡𝑒𝑟2 ). The former was used to generate weights for edges 
between two vertices belonging to the same bi-clusters, and the latter for vertices connecting 
two different bi-cliques. If 𝜇 and 𝜎 are carefully chosen, then we are able to construct an 
“almost transitive” bipartite graph. In our case, we chose 𝜇𝑖𝑛𝑡𝑟𝑎 = 21 , 𝜇𝑖𝑛𝑡𝑒𝑟 = −21 , 
𝜎𝑖𝑛𝑡𝑟𝑎 = 𝜎𝑖𝑛𝑡𝑒𝑟 = 18. The probability of finding an “inter-edge” (an edge between vertices in 
different bi-clusters) or an “intra-missing-edge” (missing edge between vertices in the same 
bi-cluster) is about 0.123 for each node pair. 

Table 1 shows the performance of our bi-cluster editing algorithms on artificial graphs. Each 
running time and cost is averaged over 5 repeats of graphs of the same size but with different 
edge sets. We can see our algorithm works very fast on small-sized and medium-sized graphs. 
However, as the size grows, the running times grow drastically; the underlying algorithmic 
problem is still NP-hard. When the artificially generated graphs contain more than 40 vertices, 
our algorithm cannot finish within reasonable time. Figure 3 visualizes the running times of 
our algorithm against the graph component complexity (here we define graph complexity as 
|𝑉| ∙ |𝐸|, for all the artificial graphs we generated). The running times are comparably small at 
the beginning but hit higher levels very fast as the complexity increases.  
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No. of 
Vertices 

No. of 
Edges 

No. of Vertices Running Times (s) Cost 

Vertex 
Set1 

Vertex 
Set2 

Ave. Std. Ave. Std. 

10 [10,19] 5 5 0.049 0.551 113.02 45.208 

20 [35,75] 10 10 0.605 0.512 237.902 72.291 

25 [64,130] 15 10 5.061 0.927 333.246 15.847 

30 [86,201] 15 15 275.336 124.045 466.903 104.176 

35 [104,258] 20 15 1141.572 104.606 1257.912 44.223 

40 [161,319] 20 20 3053.877 498.884 2411.566 378.547 
Table 1: Results on artificial graphs with different numbers of vertices, including the averages 
and standard deviations of cost and running times. Costs and running times are averaged over 5 
repeats on 5 inputs. 

 

3.2 Genome-Wide Association Studies 

In order to demonstrate the applicability of our algorithm to real world biomedical data, we 
studied GWAS data retrieved from two sources: (1) an online available database developed by 
A. D. Johnson et al.[8], containing 56,412 significant SNP associations with 52,554 unique 
SNPs and 87 different diseases/traits. (2) National Human Genome Research Institute 
(NHGRI) Catalog of Published Genome Wide Association Studies, an online catalogue of 
SNP-traits from published GWASs, with 5,476 unique SNPs and 526 different diseases [10]. 
The edge weights are defined as:  𝑠(𝑢𝑣) = −𝑙𝑜𝑔(𝑃) , ( 𝑃  is the p-value of the given 
association). We adopted the most frequently used p-value threshold of 0.05, corresponding to 
– 𝑙𝑜𝑔(0.05) = 1.301 in our graph. 

 

 
Figure 3.  Running times of our fixed-parameter algorithm for varying graph complexities, i.e. 
|𝑽| ⋅ |𝑬|, of artificial graphs. 
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Due to the incompatibility of terminologies utilized in these two data sources, we did not 
merge the two datasets. The resulting graphs generated from our datasets contain 415 
connected components in total, with 136 from the graph generated from Johnson’s dataset and 
279 from NHGRI dataset, respectively. Figure 4 shows a histogram of the initial distribution 
of component sizes |𝑉|. Note that we excluded two graph components from Figure 4 because 
of their exceptionally large sizes (one from NHGRI dataset with size |𝑉| of 3,609 vertices, 
and one from Johnson’s dataset with size |𝑉| of 50,161 vertices). 
We applied the fixed-parameter algorithm separately on each disjoint connected component 
and identified exact solutions for 413 components (99.5% of all the components). We found 
in total 86 new associations that were not detected as significant in the two GWAS studies. 
Table 2 shows the distribution of the new associations and their corresponding diseases/traits. 
For “Conduct disorder (case status)” and “Isochemic Stroke”, 11 associations are found, 
followed by “Atrial fibrillation/atrial flutter” and “Permanent tooth development”, each of 
which has 10 new associations. Note that our predictions are largely related to the user-given 
similarity threshold, i.e. 0.05 in our studies. Supplementary table 1 gives the details of the 
new associations. 

 

 
Figure 4. Distribution of the connected component sizes |𝑽| of the graphs generated from two 
GWAS data sources. The red bars represent the data from NHGRI and blue bars represent data 
from Johnson’s online dataset. The figure does not include the two biggest connected 
components; one from NHGRI (3,609 vertices) and one from Johnson’s online dataset (50,161 
vertices). 

4 Discussion and Conclusion 

Here in this study we have brought forward the first exact algorithm based on fixed-parameter 
tractability for bi-cluster editing. The speed-up of our strategy is mainly based on the 
assumption that bi-partite graphs generated from real world data, such as GWAS, are not too 
far from transitivity. We showed that our algorithm is able to find exact solutions for small-
sized and medium-sized components within reasonable time. When the sizes of the 
component exceed a certain value (around 40 vertices), the running times explode and 
become unreasonable, at least on standard desktop PCs. 

We also applied our algorithm to two different GWAS datasets. Our results show that the 
algorithm works well on most of the GWAS data, finding 86 new associations in total. These 
newly discovered associations might be useful as guidelines for further wet lab studies. 
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Although the best way of estimating the accuracy of our method is to verify the newly 
discovered associations experimentally, yet by comparing the original associations and the 
new ones, we might be able to assess the confidence of our results. Results show that our 
algorithm clustered related phenotypes together, i.e. most of the SNPs we found associated 
with new phenotypes are previously reported to be associated with related phenotypes. For 
instance, rs10033464 was reported previously to be associated with “atrial fibrillation/atrial 
flutter” and in our results we found it associated with “atrial fibrillation”. rs17145713, 
rs1158867 and rs6120849, which we assigned to be associated to “plasma coagulation 
factors”, are labelled with “Plasma levels of Protein C” previously (Protien C is one of the 
important plasma coagulation factors [17]).  Besides, our algorithm clustered the phenotypes 
that were found to be related by clinical studies. The 11 new SNPs we identified to 
“isochemic stroke” are originally tagged as associated with “atrial fibrillation” and it’s been 
reported that atrial fibrillation can increase the risk of isochemic stroke[16]. These results 
might imply the confidence of the newly discovered associations before any experiments 
performed for verification. 

 

Traits/Disease No. of Newly Found 
Associations 

Conduct disorder (case status) * 11 
Ischemic stroke 11 

Atrial fibrillation/atrial flutter* 10 
Permanent tooth development* 10 

Conduct disorder (symptom count) * 9 
Primary tooth development (time to first tooth 

eruption) * 8 

Cleft lip* 7 
Primary tooth development (number of teeth) * 5 
Alcoholism (alcohol dependence factor score)* 4 

Plasma coagulation factors* 3 
Vitamin D insufficiency* 3 

Vitamin D levels* 2 
Atrial fibrillation* 1 

Nonsyndromic cleft lip with or without cleft 
palate* 1 

Plasma levels of Protein C* 1 
Total 86 

Table 2: New associations obtained from bi-clustering editing. The items with “*” come from 
NHGRI dataset while the remaining emerge from Johnson et al.’s online dataset. 

Moreover, there are plenty of other potential applications for our algorithm, especially in the 
area of clustering different types of data: e.g. the identification of genetic variants that are 
responsible for certain bacterial life styles will require clustering on both genes and species. In 
the future we will investigate such applications. 

To further understand and improve the performance of the fixed-parameter algorithm, more 
complex data reduction and branching procedures are required. The very similar problem, 
cluster editing, has been extensively studied. Therefore, it might be interesting to compare the 
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two problems, making full use of the ideas and techniques for cluster editing problems to 
achieve better running times of bi-cluster editing problems as well. 
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Supplementary Data 

 

Traits/Disease Newly Found SNPs 

Alcoholism (alcohol dependence factor score) 

rs2548145 

rs3930234 

rs4293630 

rs933769 

Atrial fibrillation rs10033464 

Atrial fibrillation/atrial flutter 

rs13376333 

rs7193343 

rs958546 

rs2106261 

rs10501920 

rs6843082 

rs17042171 

rs17375901 

rs13038095 

rs4776472 

Cleft lip 

rs9574565 

rs7590268 

rs17085106 

rs227731 

rs1258763 

rs642961 

rs7078160 

Conduct disorder (case status) 

rs6750486 

rs7762160 

rs1256531 

rs12302829 
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rs16891867 

rs4434872 

rs6031252 

rs8179116 

rs2122554 

rs3136202 

rs4792394 

Conduct disorder (symptom count) 

rs2184898 

rs17007017 

rs2720508 

rs1550057 

rs10776612 

rs7581919 

rs13398848 

rs1861046 

rs1861050 

Ischemic stroke 

rs13376333 

rs7193343 

rs958546 

rs2106261 

rs10501920 

rs6843082 

rs17042171 

rs17375901 

rs10033464 

rs13038095 

rs4776472 

Nonsyndromic cleft lip with or without cleft palate rs10863790 

Permanent tooth development 

rs9674544 

rs1956529 

rs6504340 

rs10506525 

rs8079702 

rs4844096 

rs5936487 

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 14

C
op

yr
ig

ht
 2

01
2 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



rs2817937 

rs9386463 

rs6435957 

Plasma coagulation factors 

rs17145713 

rs1158867 

rs6120849 

Plasma levels of Protein C rs9390459 

Primary tooth development (number of teeth) 

rs2281845 

rs4491709 

rs7924176 

rs5936487 

rs9386463 

Primary tooth development (time to first tooth 
eruption) 

rs2281845 

rs1956529 

rs6504340 

rs4491709 

rs7924176 

rs4844096 

rs2817937 

rs6435957 

Vitamin D insufficiency 

rs1993116 

rs2060793 

rs3829251 

Vitamin D levels 
rs12785878 

rs10741657 
Supplement Table 1. Newly found traits/diseases, SNPs associations. 
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