
Integrated simultaneous analysis of different biomedical
data types with exact weighted bi-cluster editing

Peng Sun1,2,3,*, Jiong Guo2,3, Jan Baumbach1,2

1 Computational Systems Biology group, Max Planck Institute for Informatics, Campus E1.4,
66123 Saarbrücken, Germany

2 Cluster of Excellence for Multimodal Computing and Interaction, Saarland University,
Campus E1.7, 66123 Saarbrücken, Germany

3Saarland University, Campus E1.7, 66123 Saarbrücken, Germany

Summary

The explosion of biological data has largely influenced the focus of today’s biology
research. Integrating and analysing large quantity of data to provide meaningful insights
has become the main challenge to biologists and bioinformaticians. One major problem is
the combined data analysis of data from different types, such as phenotypes and
genotypes. This data is modelled as bi-partite graphs where nodes correspond to the
different data points, mutations and diseases for instance, and weighted edges relate to
associations between them. Bi-clustering is a special case of clustering designed for
partitioning two different types of data simultaneously. We present a bi-clustering
approach that solves the NP-hard weighted bi-cluster editing problem by transforming a
given bi-partite graph into a disjoint union of bi-cliques. Here we contribute with an exact
algorithm that is based on fixed-parameter tractability. We evaluated its performance on
artificial graphs first. Afterwards we exemplarily applied our Java implementation to data
of genome-wide association studies (GWAS) data aiming for discovering new, previously
unobserved geno-to-pheno associations. We believe that our results will serve as
guidelines for further wet lab investigations. Generally our software can be applied to any
kind of data that can be modelled as bi-partite graphs. To our knowledge it is the fastest
exact method for weighted bi-cluster editing problem.

1 Introduction

1.1 Background

The focus of recent biologically motivated studies has shifted due to the explosive growth of
available (sequential) data emerging from laboratories worldwide. For example, GenBank
now stores over 197,000,000 sequences from more than 380,000 organisms [9].
UniProtKb/Swiss-Prot has incorporated ~53,000 annotated sequences, gathered from 205,244
(published) references and PDB (Protein Data Bank) provides approximately 78,400 molecule
structures including proteins, nucleic acids (NA) and protein/NA complexes. Integrating,
processing and analysing these large quantities of different types of data from various sources
have become a main challenge in bioinformatics. Modern bioinformatics algorithms and
computational approaches have been proven to have great potential. The application of
carefully designed problem specific models and methodology allows for discovering novel
interrelations and gaining further insights into the raw data, forming a better understanding. In

* To whom correspondence should be addressed. Email: psun@mpi-inf.mpg.de

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 1

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

this paper we concentrate on the simultaneous analysis of data from different types. We will
exemplarily concentrate on so-called Genome-Wide Association Studies (GWAS).

GWAS is one of the fastest emerging areas of today’s biological research, also known as
Whole Genome Association Study. It is an examination of genetic variants (genotypes) to
check if any of them is associated with a certain phenotypic trait. Typically, millions of
single-nucleotide polymorphisms (SNPs) are investigated as genetic variants and major
diseases are examined as traits. These studies normally compare the genotypes of two groups
of people: healthy people (controls) and diseased people (cases). Then statistical tests are used
to verify if there is any significant association. This is a typical example of a bi-partite data
type, i.e. two types of measurements and relations between concrete instances of the two
types.

Since the first GWAS was published in 2005 on age-related macular degeneration [11], the
number of GWAS publications is growing dramatically. Up to June 2011, there have been
951 publications on GWAS, according to National Human Genome Research Institute
(NHGRI) Catalog of Published Genome-Wide Association Studies [10]. Although the
discovered associations have revealed much insight on the mechanisms of common
diseases/traits, yet how the interactions of the genes confer a risk to diseases still remains
widely unclear. Traditional analysis methodology of GWAS associates one pair of SNP and
phenotype in one statistical test, which tends to incur false positives and false negatives.
Moreover, many gene/SNP markers, conferring a low or moderate risk by themselves,
“interact” with each other and have a significant combined risk. Hence, these markers often
fail to be detected. Novel computational approaches considering combined effects in
analysing GWAS data might provide more meaningful results and insights.

Here, GWAS associations are modelled as graphs, where vertices correspond to SNPs
(genotypes) and traits (phenotypes) while edges symbolize significant associations between
them (Figure 1). We proceed one step forward by associating a group of sequence variations
(SNPs) to a group of traits/diseases, forming a “group to group” association, rather than the
traditional “one to one”. Therefore, we developed an exact algorithm for weighted bi-cluster
editing. We applied it to different GWAS datasets and discovered new associations that have
not been reported before. We believe such results, based on several associations instead of
one pair-wise relation, are thereby with higher confidence.

Figure 1: Bi-partite graph representation of GWAS data. Vertices P1, P2, P3 represent
“phenotypes” and L1, L2, L3, L4 represent “SNP loci”. Our bi-cluster editing algorithm
converts the intransitive GWAS data graph into disjoint bi-cliques. Two putative solutions are
presented at the bottom: the addition of edge P2-L2 and the deletion of edge P3-L2 (left) as well
as the deletion of edge P1-L2 (right). In the unweighted bi-cluster editing problem we would
prefer the right solution since we only need to modify one edge. However, in the more realistic

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 2

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

weighted scenario the preferred solution depends on the concrete edge weights: if the costs for
adding P2-L2 and removing P3-L2 are lower than the costs for removing P1-L2, we would prefer
the left solution.

1.2 Cluster Editing and Bi-cluster Editing

Data clustering is a classical task in computational biology. Its goal is to partition a data set
into clusters such that elements within a cluster are more similar according to one or many
specific characteristics than elements in different clusters. Clustering methods are extensively
used in every area of biological studies (e.g. functional genomics, protein/DNA sequences
analysis, almost all kinds of biological network analysis) [14]. However, in some other
scenarios, the standard clustering model is not satisfactory. One of them is the clustering of
gene expression data under different conditions, which can be modelled as a bipartite graph
[1]. In such cases, clustering only genes or only conditions often does not yield sufficient
insight. Instead, we would like to find subsets of genes and subsets of conditions that together
behave in a consistent way. This type of clustering methods is called bi-clustering.

Clustering and bi-clustering are quite similar, so they share a number of similar strategies. A
common strategy for clustering is to choose a similarity threshold and construct the
corresponding graph according to the following rules: (1) the entities/objects refer to the
vertices in the graph, and (2) an edge is drawn between two vertices if and only if the
similarity between them exceeds a given threshold [15]. Under such setting, we call the end
points 𝑢 , 𝑣 of an edge “similar”, written as 𝑢~𝑣 . However, the constructed graph is not
necessarily “transitive”, which means 𝑢~𝑣, 𝑢~𝑤 does not necessarily imply 𝑣~𝑤. We aim to
convert the preliminarily constructed graph into a graph only consisting of disjoint clusters
with minimal costs (minimal number of edge deletions/insertions, for instance). Such
problems are named “cluster editing”. Formal definitions are given below:

𝑉 is denoted as the set of vertices (objects) to be clustered. (𝑉𝑘) is denoted as the set of k-

element subsets of 𝑉. 𝑢𝑣 is an unordered pair of {𝑢, 𝑣} ∈ (𝑉2). The similarity between two

vertices is a symmetric similarity function 𝑠: (𝑉2) → ℝ. We call 𝑢 and 𝑣 similar, 𝑢~𝑣, if and
only if 𝑠(𝑢, 𝑣) > a given threshold. The edge set of the similarity graph is 𝐸 ∶= {𝑢𝑣: 𝑢~𝑣 }.
Self-loops are not permitted in our graphs.

If the graph satisfies any of the equivalent conditions below, then we call it “transitive”:

(1) For any three vertices 𝑢𝑣𝑤 ∈ (𝑉3), 𝑢𝑣 ∈ 𝐸 and 𝑣𝑤 ∈ 𝐸 ⟹ 𝑢𝑤 ∈ 𝐸 holds.

(2) No paths of length 2 in the graph, i.e., for each 𝑢𝑣𝑤 , we have |𝐸 ∩
{𝑢𝑣, 𝑣𝑤,𝑢𝑤}| ≠ 2.

(3) 𝐺 is a disjoint union of cliques (a clique is a complete graph).

Given a graph 𝐺 = (𝑉,𝐸), we convert 𝐺 into a transitive graph 𝐺’ = (𝑉,𝐸’) by inserting
and deleting edges. Each insertion and deletion of 𝑢𝑣 incurs a certain cost of 𝑠(𝑢𝑣). Define
𝑐𝑜𝑠𝑡(𝐺 → 𝐺’) to be the cost of conversion, 𝑐𝑜𝑠𝑡(𝐺 → 𝐺’) = 𝑠(𝐸\𝐸’) – 𝑠 (𝐸’\𝐸). Our goal is
to find a 𝐺’, such that 𝑐𝑜𝑠𝑡(𝐺 ⟶ 𝐺’) is minimized.

For bi-cluster editing, we have a similar strategy. The graphs are constructed in the same way,
where vertices refer to objects and edges represent the similarity between two vertices. The
only difference is that the resulting graph is a bipartite graph. Bipartite graphs are special
graphs satisfying the following conditions: (1) the vertices of the graph can be divided into

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 3

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

two subsets 𝑉1 and 𝑉2 , (2) edges can only be defined between the vertices from different
subsets, i.e., 𝑠(𝑢, 𝑣) → ℝ if and only if 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2 or 𝑢 ∈ 𝑉2, 𝑣 ∈ 𝑉1.

For a bipartite graph 𝐺 = (𝑉1,𝑉2,𝐸), we have the following equivalent conditions
characterizing it if 𝐺 is transitive:

(1) For each subset of four vertices, 𝑢𝑣𝑤𝑥 ∈ (𝑉4), where {𝑢,𝑤} ∈ (𝑉12), {𝑣, 𝑥} ∈ (𝑉22), we
have 𝑢𝑣 ∈ 𝐸, 𝑤𝑣 ∈ 𝐸 and 𝑤𝑥 ∈ 𝐸 ⟹ 𝑢𝑥 ∈ 𝐸.

(2) 𝐺 does not contain a path of 4 vertices, i.e., for each 𝑢𝑣𝑤𝑥 ∈ (𝑉4), where {𝑢,𝑤} ∈

(𝑉12), {𝑣, 𝑥} ∈ (𝑉22), we have |𝐸 ∩ {𝑢𝑣,𝑤𝑣, 𝑢𝑥,𝑤𝑥}| ≠ 3.

(3) 𝐺 is a disjoint union of bi-cliques (i.e. complete bipartite graphs).

Bi-cluster editing is similar to its counterpart cluster editing: We convert a given bipartite
graph into a set of disjoint union of bi-cliques by inserting/deleting edges with minimal costs.
This problem is called “bi-cluster editing”. The definition of the 𝑐𝑜𝑠𝑡(𝐺 → 𝐺’) is the same.

1.3 Problem Statement

The weighted bi-cluster editing problem is formally defined as follows: Given an undirected
bipartite graph 𝐺 = (𝑉1,𝑉2,𝐸, 𝑠) , where 𝑠 is a similarity function 𝑠: (�𝑉11 � , �𝑉21 �) → ℝ ,
compute 𝛿(𝐺) ≔ min {𝑐𝑜𝑠𝑡(𝐺 ⟶ 𝐺′)} and find one or all 𝐺∗ , such that 𝑐𝑜𝑠𝑡(𝐺 ⟶ 𝐺∗) =
𝛿(𝐺).

1.4 Previous Studies and Results

The unweighted version of this problem, unweighted bi-cluster editing, has a similarity

function of 𝑠:��𝑉11 � , �𝑉21 �� → {+1,−1} . The editing cost is defined as 𝑐𝑜𝑠𝑡(𝐺 → 𝐺’) =

 |𝐸\𝐸’| + |𝐸’\𝐸|. Both the weighted and unweighted cases of bi-cluster editing problems are
NP-hard, proven by N. Amit [2].

Unlike its counterpart, cluster editing, which has been extensively studied [13-15], the study
of bi-cluster editing is far from complete. F. Protti et al. [3] developed an algorithm that
finished in 𝑂(4𝑘 + |𝑉| + |𝐸|) for the unweighted version of bi-cluster editing. Later J. Guo et
al. [4] improved the running time to 𝑂(3.24𝑘 + |𝐸|), by developing an improved branching
strategy. However, most real life graphs are weighted and to our knowledge no exact
algorithm for weighted bi-partite graphs exists so far.

1.5 Our Contributions

Here, we present a fixed-parameter algorithm for the weighted bi-cluster editing problem. We
assume |𝑠(𝑢𝑣)| > 1 for all 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2. Our algorithm checks in 𝑂(4𝑘) time if there is a
set of insertions and deletions that converts the given graph into disjoint bi-cliques. We
implemented the algorithm in Java and evaluated its performance on artificially generated
graphs. Our experiments show that the algorithm can give exact solutions at least to medium-
sized graphs within acceptable running times. To our knowledge, it is the fastest exact
algorithm for weighted problem instances so far.

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 4

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

Furthermore, we applied our software on Genome-Wide Association Studies, searching for
new associations between genotypes and different medical traits. Our algorithm successfully
solved all but two of the GWAS data instances in reasonable time and thereby found 86 new
associations.

1.6 Preliminaries

The vertex set is denoted as 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}. The input to our algorithm is a graph
𝐺 = (𝑉1,𝑉2,𝐸), with similarity function 𝑠(𝑢𝑣) → ℝ and a similarity threshold. 𝐸 denotes the
edge set, 𝐸 = {𝑣1, 𝑣2: 𝑠(𝑣1, 𝑣2) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}. The output of the algorithm is a list of
solutions and their corresponding costs (see 2.2 for details).

Without loss of generality, the input graph is assumed to consist of one single connected
component. If not, we can treat each connected component separately. Obviously, an optimal
solution will never join separate components, since we can always find a solution with less
cost where the disjoint components remain separated, than the solutions linking the separated
components together [4].

We use “P4” as the short form of “a path of 4 vertices”. A P4 is also the “basic conflict
element” in our problem, i.e. the “conflict P4”. As mentioned above, a bipartite graph is a
complete bipartite graph if and only if it contains no conflict P4. Therefore, our goal is to
remove all these P4s by edge insertions and deletions. Let 𝐵(𝐺) be the set of all the basic
conflict elements, i.e. 𝐵(𝐺) = {𝑢𝑣𝑤𝑥 ∈ (𝑉, 4) | |𝐸 ∩ (𝑢𝑣,𝑤𝑣,𝑢𝑥,𝑤𝑥)| = 3} 𝑢,𝑤 ∈
𝑉1,𝑣, 𝑥 ∈ 𝑉2. 𝐺 is transitive if and only if 𝐵(𝐺) = {}.

2 Fixed-Parameter Algorithm

2.1 Introduction to Fixed-Parameter Algorithm

Fixed-parameter algorithm and fixed-parameter tractability were concepts introduced by
Downey and Fellows in 1990s [6]. They provided a possible way of solving NP-hard
problems more efficiently. A problem is called “fixed-parameter tractable” regarding to a
certain parameter, if it can be solved in a running time of 𝑂(𝑓(𝑘) ∙ |𝐼|𝑐), where 𝑓 is a function
that solely depends on the parameter 𝑘, |𝐼| is the input size and 𝑐 is a constant. A more
recently overview of the fixed-parameter algorithms can be found in [7].

Here, we present the first fixed-parameter algorithm for the weighted bi-cluster editing
problem with the parameter 𝑘 as the costs for edge modifications. Given a problem instance,
i.e. an intransitive connected component, the algorithm finds the optimal solution with cost at
most 𝑘 if there is any solution. Our algorithm accepts a running time of 𝑂(4𝑘) with real
weighted edges. The minimum editing cost is required to be >1, in order to guarantee this
running time, since for arbitrarily small edge weights, no fixed-parameter algorithm is able to
solve the problem in a provable running time unless P = NP.

2.2 Algorithm

2.2.1 Data Reduction

We reduce the problem size by identifying existing disjoint bi-cliques since they do not need
to be repaired and thereby are not considered in the following steps. Initially, all disjoint bi-
cliques are removed from the original graph. Afterwards, the algorithm recognizes all the
disjoint connected components as individual input graph. In the next step, for each component
we check whether it is already a bi-clique or not. If this is the case, the algorithm deletes the

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 5

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

whole bi-clique from the input and reports the corresponding component as one bi-cluster.
This procedure can be carried out within 𝑂(|𝑉| + |𝐸|) time.

2.2.2 Branching Strategy

In this section, we present a search tree algorithm for weighted bi-cluster editing in bipartite
graphs. Our goal is to repair all the P4s using edge insertions and edge deletions. For each P4,
basically we have 4 possibilities to convert it into a bi-clique/bi-cliques: we can remove either
one of the three edges in the P4, resulting in two bi-cliques (one with three vertices and the
other with only one isolated vertex, i.e. a singleton), or insert the missing edge such that four
vertices form one bi-clique (refer to Figure 2). The details are elucidated as following:

Let 𝑢𝑣𝑤𝑥 be a P4, where 𝑢,𝑤 ∈ 𝑉1 and 𝑣, 𝑥 ∈ 𝑉2. We assume (𝑢𝑣), (𝑤𝑣), (𝑤𝑥) ∈ 𝐸 (Figure
2a). Afterwards, we recursively check the following four cases to repair the P4.

(1) Insert the missing edge 𝑢𝑥 and set 𝑢𝑥 to “permanent” (Figure 2b)

(2) Delete the edge 𝑢𝑣 and set 𝑢𝑣 to “forbidden” (Figure 2c)

(3) Delete the edge 𝑤𝑣 and set 𝑤𝑣 to “forbidden” (Figure 2d)

(4) Delete the edge 𝑤𝑥 and set 𝑤𝑥 to “forbidden” (Figure 2e)
Once a P4 is located in a connected component, the search tree algorithm starts. For each P4,
four branches in the search tree are created; each of them represents one of the editing
possibilities mentioned above. Then the four branches are visited one by one, performing the
corresponding editing behaviour and updating 𝑘 to 𝑘’ = 𝑘 −(costs required for insertions and
deletions). Afterwards, the program searches the new graph for more P4s. The whole
procedure is implemented in a recursive manner. If the corresponding editing behaviour
would lead to 𝑘’ < 0, then the whole branch in the search tree is skipped. Solutions are
identified and recorded by the algorithm when no P4 can be found in the graph and 𝑘’ > 0.
The algorithm stops when the entire search tree is visited, and returns all the solutions found,
i.e. all bi-cliques. This branching strategy accepts a worst case running time of 𝑂(4𝑘).

2.2.3 Algorithm Procedure

Our algorithm takes graphs as input and outputs a list of solutions. A Solution object is
structured as a pair (actions, cost), where actions is a list of action objects (an action object
represents an editing behaviour, either an edge insertion or edge deletion) and cost is the total
cost of the edit behaviours. In addition to the main algorithm, we have four auxiliary
functions: P4_FINDER(𝐺), BI_CLIQUE_REMOVER(𝐺), TAKE_ACTION(action) and
ROLLBACK_ACTION(action). P4_FINDER(𝐺) is responsible to find P4s in the graph.
BI_CLIQUE_REMOVER(𝐺) removes the existing bi-cliques. TAKE_ACTION(action)
performs the edge insertion or deletion according to the action object and
ROLLBACK_ACTION(action) removes the effect of the action and restores the graph to its
previous condition. The subroutine BRANCHING(𝐺 , action, solution_list) creates the
branches in the search tree algorithm and recursively visits them. It first carries out the given
action, then checks the graph to see if there is any P4 unsolved. If any P4 found, then the
subroutine continues to check the 4 possibilities to repair it, or if no P4 is found, a solution
object will be created and put into the solution_list. The pseudo-code of the algorithm is
described below:

//1. MAIN ALGORITHM
solution_list  empty list
//find the first P4

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 6

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

𝑢𝑣𝑤𝑥  P4_FINDER(𝐺)

if (𝑢𝑣𝑤𝑥 = = null)
 return (empty list)
//branching
𝑎𝑐𝑡𝑖𝑜𝑛  insert 𝑢𝑥
BRANCHING (𝐺, action, solution_list)
action  delete 𝑢𝑣
BRANCHING (𝐺, action, solution_list)
action  delete 𝑤𝑣
BRANCHING (𝐺, action, solution_list)
action  delete 𝑤𝑥
//return the results
return solution_list

//2. SUBROUTINE BRANCHING(𝐺, action, solution_list)
BRANCHING(𝐺, action, solution_list)
 if (k <= 0)
 ROLLBACK_ACTION(action)
 return;

 TAKE_ACTION(action)
 //find the first P4
 𝑢𝑣𝑤𝑥  P4_FINDER(𝐺)
 //if no P4 is found, then we have a solution
 if (𝑢𝑣𝑤𝑥 = = null)
 solution  (actions, cost)
 solution_list.add(solution)
 ROLLBACK_ACTION(action)
 return (empty list)
 //Start branching
 𝑎𝑐𝑡𝑖𝑜𝑛  insert 𝑢𝑥
 BRANCHING (𝐺, action, solution_list)
 action  delete 𝑢𝑣
 BRANCHING (𝐺, action, solution_list)
 action  delete 𝑤𝑣, cost  𝑠(𝑤𝑣)
 BRANCHING (𝐺, action, solution_list)
 action  delete 𝑤𝑥, cost 𝑠(𝑤𝑥)
 ROLLBACK_ACTION(action)
end subroutine

3 Results

We implemented our algorithm in JAVA 1.6 with support for parallel multi-core computing.
For evaluation, we first applied our software on artificially generated data and later on real
GWAS results from two different sources. All measurements were taken on Compute Clusters
with 78 compute nodes consisting of 2×Intel XEON E5430 2.66 Ghz (Quad-core) CPUs and
16 GB RAM.

Figure 2. The graph cluster editing strategy based on P4-branching. Blue dashed lines relate to
edge deletion and red dashed line corresponds to edge insertions. There are four options for

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 7

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

repairing a conflict P4 depicted in (a): Insertion of the missing edge ux (b), deletion of the edge
wx (c), deletion of the edge wv (d), and deletion of the edge uv (e).

3.1 Artificial Graphs

We generated random artificial graphs as follows. Assume we have a graph consisting of 𝑛
vertices, we randomly pick up 𝑘 vertices (𝑘 ∈ [1,𝑛]) and define them to be in one bi-clique.
Then we carry out the procedure in the remaining 𝑛 − 𝑘 vertices until there is no vertex left.
This random graph generator gives us a graph consisting of random numbers of clusters of
random sizes. The edge weights between vertices are obtained from Gaussian distributions
𝑁(𝜇,𝜎2) . Two Gaussian distributions were used to generate weights for edges:
𝑁 (𝜇𝑖𝑛𝑡𝑟𝑎,𝜎𝑖𝑛𝑡𝑟𝑎2) and 𝑁 (𝜇𝑖𝑛𝑡𝑒𝑟,𝜎𝑖𝑛𝑡𝑒𝑟2). The former was used to generate weights for edges
between two vertices belonging to the same bi-clusters, and the latter for vertices connecting
two different bi-cliques. If 𝜇 and 𝜎 are carefully chosen, then we are able to construct an
“almost transitive” bipartite graph. In our case, we chose 𝜇𝑖𝑛𝑡𝑟𝑎 = 21 , 𝜇𝑖𝑛𝑡𝑒𝑟 = −21 ,
𝜎𝑖𝑛𝑡𝑟𝑎 = 𝜎𝑖𝑛𝑡𝑒𝑟 = 18. The probability of finding an “inter-edge” (an edge between vertices in
different bi-clusters) or an “intra-missing-edge” (missing edge between vertices in the same
bi-cluster) is about 0.123 for each node pair.

Table 1 shows the performance of our bi-cluster editing algorithms on artificial graphs. Each
running time and cost is averaged over 5 repeats of graphs of the same size but with different
edge sets. We can see our algorithm works very fast on small-sized and medium-sized graphs.
However, as the size grows, the running times grow drastically; the underlying algorithmic
problem is still NP-hard. When the artificially generated graphs contain more than 40 vertices,
our algorithm cannot finish within reasonable time. Figure 3 visualizes the running times of
our algorithm against the graph component complexity (here we define graph complexity as
|𝑉| ∙ |𝐸|, for all the artificial graphs we generated). The running times are comparably small at
the beginning but hit higher levels very fast as the complexity increases.

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 8

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

No. of
Vertices

No. of
Edges

No. of Vertices Running Times (s) Cost

Vertex
Set1

Vertex
Set2

Ave. Std. Ave. Std.

10 [10,19] 5 5 0.049 0.551 113.02 45.208

20 [35,75] 10 10 0.605 0.512 237.902 72.291

25 [64,130] 15 10 5.061 0.927 333.246 15.847

30 [86,201] 15 15 275.336 124.045 466.903 104.176

35 [104,258] 20 15 1141.572 104.606 1257.912 44.223

40 [161,319] 20 20 3053.877 498.884 2411.566 378.547
Table 1: Results on artificial graphs with different numbers of vertices, including the averages
and standard deviations of cost and running times. Costs and running times are averaged over 5
repeats on 5 inputs.

3.2 Genome-Wide Association Studies

In order to demonstrate the applicability of our algorithm to real world biomedical data, we
studied GWAS data retrieved from two sources: (1) an online available database developed by
A. D. Johnson et al.[8], containing 56,412 significant SNP associations with 52,554 unique
SNPs and 87 different diseases/traits. (2) National Human Genome Research Institute
(NHGRI) Catalog of Published Genome Wide Association Studies, an online catalogue of
SNP-traits from published GWASs, with 5,476 unique SNPs and 526 different diseases [10].
The edge weights are defined as: 𝑠(𝑢𝑣) = −𝑙𝑜𝑔(𝑃) , (𝑃 is the p-value of the given
association). We adopted the most frequently used p-value threshold of 0.05, corresponding to
– 𝑙𝑜𝑔(0.05) = 1.301 in our graph.

Figure 3. Running times of our fixed-parameter algorithm for varying graph complexities, i.e.
|𝑽| ⋅ |𝑬|, of artificial graphs.

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 9

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

Due to the incompatibility of terminologies utilized in these two data sources, we did not
merge the two datasets. The resulting graphs generated from our datasets contain 415
connected components in total, with 136 from the graph generated from Johnson’s dataset and
279 from NHGRI dataset, respectively. Figure 4 shows a histogram of the initial distribution
of component sizes |𝑉|. Note that we excluded two graph components from Figure 4 because
of their exceptionally large sizes (one from NHGRI dataset with size |𝑉| of 3,609 vertices,
and one from Johnson’s dataset with size |𝑉| of 50,161 vertices).
We applied the fixed-parameter algorithm separately on each disjoint connected component
and identified exact solutions for 413 components (99.5% of all the components). We found
in total 86 new associations that were not detected as significant in the two GWAS studies.
Table 2 shows the distribution of the new associations and their corresponding diseases/traits.
For “Conduct disorder (case status)” and “Isochemic Stroke”, 11 associations are found,
followed by “Atrial fibrillation/atrial flutter” and “Permanent tooth development”, each of
which has 10 new associations. Note that our predictions are largely related to the user-given
similarity threshold, i.e. 0.05 in our studies. Supplementary table 1 gives the details of the
new associations.

Figure 4. Distribution of the connected component sizes |𝑽| of the graphs generated from two
GWAS data sources. The red bars represent the data from NHGRI and blue bars represent data
from Johnson’s online dataset. The figure does not include the two biggest connected
components; one from NHGRI (3,609 vertices) and one from Johnson’s online dataset (50,161
vertices).

4 Discussion and Conclusion

Here in this study we have brought forward the first exact algorithm based on fixed-parameter
tractability for bi-cluster editing. The speed-up of our strategy is mainly based on the
assumption that bi-partite graphs generated from real world data, such as GWAS, are not too
far from transitivity. We showed that our algorithm is able to find exact solutions for small-
sized and medium-sized components within reasonable time. When the sizes of the
component exceed a certain value (around 40 vertices), the running times explode and
become unreasonable, at least on standard desktop PCs.

We also applied our algorithm to two different GWAS datasets. Our results show that the
algorithm works well on most of the GWAS data, finding 86 new associations in total. These
newly discovered associations might be useful as guidelines for further wet lab studies.

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f C
om

po
ne

nt
s

Component Size

Johnson

NHGRI

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 10

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

Although the best way of estimating the accuracy of our method is to verify the newly
discovered associations experimentally, yet by comparing the original associations and the
new ones, we might be able to assess the confidence of our results. Results show that our
algorithm clustered related phenotypes together, i.e. most of the SNPs we found associated
with new phenotypes are previously reported to be associated with related phenotypes. For
instance, rs10033464 was reported previously to be associated with “atrial fibrillation/atrial
flutter” and in our results we found it associated with “atrial fibrillation”. rs17145713,
rs1158867 and rs6120849, which we assigned to be associated to “plasma coagulation
factors”, are labelled with “Plasma levels of Protein C” previously (Protien C is one of the
important plasma coagulation factors [17]). Besides, our algorithm clustered the phenotypes
that were found to be related by clinical studies. The 11 new SNPs we identified to
“isochemic stroke” are originally tagged as associated with “atrial fibrillation” and it’s been
reported that atrial fibrillation can increase the risk of isochemic stroke[16]. These results
might imply the confidence of the newly discovered associations before any experiments
performed for verification.

Traits/Disease No. of Newly Found
Associations

Conduct disorder (case status) * 11
Ischemic stroke 11

Atrial fibrillation/atrial flutter* 10
Permanent tooth development* 10

Conduct disorder (symptom count) * 9
Primary tooth development (time to first tooth

eruption) * 8

Cleft lip* 7
Primary tooth development (number of teeth) * 5
Alcoholism (alcohol dependence factor score)* 4

Plasma coagulation factors* 3
Vitamin D insufficiency* 3

Vitamin D levels* 2
Atrial fibrillation* 1

Nonsyndromic cleft lip with or without cleft
palate* 1

Plasma levels of Protein C* 1
Total 86

Table 2: New associations obtained from bi-clustering editing. The items with “*” come from
NHGRI dataset while the remaining emerge from Johnson et al.’s online dataset.

Moreover, there are plenty of other potential applications for our algorithm, especially in the
area of clustering different types of data: e.g. the identification of genetic variants that are
responsible for certain bacterial life styles will require clustering on both genes and species. In
the future we will investigate such applications.

To further understand and improve the performance of the fixed-parameter algorithm, more
complex data reduction and branching procedures are required. The very similar problem,
cluster editing, has been extensively studied. Therefore, it might be interesting to compare the

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 11

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

two problems, making full use of the ideas and techniques for cluster editing problems to
achieve better running times of bi-cluster editing problems as well.

Acknowledgements

All authors wish to thank the Cluster of Excellence for Multimodal Computing and
Interaction of the German Research Foundation for financial support.

References

[1] A. Tanay, R. Sharan and R. Shamir. Handbook of Computational Molecular Biology In
Handbook of Computational Molecular Biology (2004)

[2] N. Amit. The bicluster graph editing problem. Master’s Thesis, Tel Aviv University,
School of Mathematical Sciences (2004)

[3] F. Protti, M. D. da Silva and J. L. Szwarcfiter. Applying modular decomposition to
parameterized bicluster editing. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 1-12. Springer, Heidelberg (2006)

[4] J Guo, F. Hüffner, C. Komusiewicz and Y. Zhang. Improved algorithms for bicluster
editing. In TAMC’08: Proceedings of the 5th international conference on Theory and
applications of models of computation, pp. 445-456, Berlin, Heidelberg, Springer
Verlag. (2008)

[5] N. Ailon, N. Avigdor-Elgrabli and E. Liberty. An improved algorithm for bipartite
correlation clustering. CoRR, abs/1012.3011. (2010)

[6] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer. (1999)

[7] R. Niedermeier. Invitation to Fixed-Parameter Algorithm. Oxford University Press.
(2006)

[8] A. D. Johnson and D. J. O’Donnel. An open access database of genome-wide
association results. BMC Med Genet 10:6 (2009)

[9] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell and E. W. Sayers. GenBank.
Nucleic Acids Res., 39, D32-D37 (2011)

[10] L. A. Hindorff, P. Sethupathy, H. A. Junkins, E. M. Ramos, J. P Mehta, F. S. Collins
and T. A. Manolio. Potential etiologic and functional implications of genome-wide
association loci for human diseases and traits. Doi:10.1073 PNAS (2009)

[11] R. J. Klein, C. Zeiss, E. Y. Chew, J. Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning,
J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C.
Barnstable, J. Hoh. Complement Factor H Polymorphism in Age-Related Macular
Degeneration. Science 308(5720): 385-9. (2005)

[12] S. Böcker, S. Briesemeister, Q. B. A. Bui, A. Truss. Going weighted: Parameterized
algorithms for cluster editing. In: Proc. 2nd COCA. Lecture Notes in Computer Science,
vol. 5165, pp. 1-12 Springer, Berlin (2008)

[13] J. Guo. A more effective linear kernelization for cluster editing. Theor. Comp. Sc. 410,
718-726 (2009)

[14] T. Wittop, D. Emig, S. Lange, S. Rahmann, M. Albrecht, J. H. Morris, S. Böcker, J.
Stoye and J. Baumbach. Partitioning biological data with transitivity clustering. Nat.
Methods 7(6), 419-420(2010)

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 12

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

[15] T. Wittop, D. Emig, A. Trusss, M. Albrecht. S. Böcker, J. Baumbach. Comprehensive
cluster analysis with Transitivity Clustering. Nature Protocols, 6(3) 285-295 (2011)

[16] G. A. Donnan, M. Fisher, M. Macleod, S. M. Davis. Stroke. Lancet 371. 9624. 1612-
1623 (2008)

[17] T. Mather, V. Oganessyan, P. Hof et al. The 2.8 A crystal structure of Gladomainless
activated protein C. EMBO J. 15:6822-6831(1996)

Supplementary Data

Traits/Disease Newly Found SNPs

Alcoholism (alcohol dependence factor score)

rs2548145

rs3930234

rs4293630

rs933769

Atrial fibrillation rs10033464

Atrial fibrillation/atrial flutter

rs13376333

rs7193343

rs958546

rs2106261

rs10501920

rs6843082

rs17042171

rs17375901

rs13038095

rs4776472

Cleft lip

rs9574565

rs7590268

rs17085106

rs227731

rs1258763

rs642961

rs7078160

Conduct disorder (case status)

rs6750486

rs7762160

rs1256531

rs12302829

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 13

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

rs16891867

rs4434872

rs6031252

rs8179116

rs2122554

rs3136202

rs4792394

Conduct disorder (symptom count)

rs2184898

rs17007017

rs2720508

rs1550057

rs10776612

rs7581919

rs13398848

rs1861046

rs1861050

Ischemic stroke

rs13376333

rs7193343

rs958546

rs2106261

rs10501920

rs6843082

rs17042171

rs17375901

rs10033464

rs13038095

rs4776472

Nonsyndromic cleft lip with or without cleft palate rs10863790

Permanent tooth development

rs9674544

rs1956529

rs6504340

rs10506525

rs8079702

rs4844096

rs5936487

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 14

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

rs2817937

rs9386463

rs6435957

Plasma coagulation factors

rs17145713

rs1158867

rs6120849

Plasma levels of Protein C rs9390459

Primary tooth development (number of teeth)

rs2281845

rs4491709

rs7924176

rs5936487

rs9386463

Primary tooth development (time to first tooth
eruption)

rs2281845

rs1956529

rs6504340

rs4491709

rs7924176

rs4844096

rs2817937

rs6435957

Vitamin D insufficiency

rs1993116

rs2060793

rs3829251

Vitamin D levels
rs12785878

rs10741657
Supplement Table 1. Newly found traits/diseases, SNPs associations.

Journal of Integrative Bioinformatics, 9(2):197, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-197 15

C
op

yr
ig

ht
 2

01
2

Th
e

A
ut

ho
r(

s)
. P

ub
lis

he
d

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

Th

is
 a

rti
cl

e
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

Li
ce

ns
e

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

	1 Introduction
	1.1 Background
	1.2 Cluster Editing and Bi-cluster Editing
	For a bipartite graph 𝐺 = (,𝑉-1., ,𝑉-2., 𝐸), we have the following equivalent conditions characterizing it if 𝐺 is transitive:
	(1) For each subset of four vertices, 𝑢𝑣𝑤𝑥∈(,𝑉-4.), where {𝑢,𝑤}∈(,,𝑉-1.-2.), {𝑣,𝑥} ∈(,,𝑉-2.-2.), we have 𝑢𝑣∈𝐸, 𝑤𝑣∈𝐸 and 𝑤𝑥∈𝐸⟹𝑢𝑥∈𝐸.
	(2) 𝐺 does not contain a path of 4 vertices, i.e., for each 𝑢𝑣𝑤𝑥∈(,𝑉-4.), where {𝑢,𝑤}∈(,,𝑉-1.-2.), {𝑣,𝑥} ∈(,,𝑉-2.-2.), we have |𝐸∩,𝑢𝑣,𝑤𝑣,𝑢𝑥,𝑤𝑥.|≠3.
	(2) 𝐺 does not contain a path of 4 vertices, i.e., for each 𝑢𝑣𝑤𝑥∈(,𝑉-4.), where {𝑢,𝑤}∈(,,𝑉-1.-2.), {𝑣,𝑥} ∈(,,𝑉-2.-2.), we have |𝐸∩,𝑢𝑣,𝑤𝑣,𝑢𝑥,𝑤𝑥.|≠3.
	(3) 𝐺 is a disjoint union of bi-cliques (i.e. complete bipartite graphs).

	1.3 Problem Statement
	1.4 Previous Studies and Results
	1.5 Our Contributions
	1.6 Preliminaries

	2 Fixed-Parameter Algorithm
	2.1 Introduction to Fixed-Parameter Algorithm
	2.2 Algorithm
	2.2.1 Data Reduction
	2.2.2 Branching Strategy
	2.2.3 Algorithm Procedure

	3 Results
	3.1 Artificial Graphs
	3.2 Genome-Wide Association Studies

	4 Discussion and Conclusion
	Acknowledgements
	References
	Supplementary Data

