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ABSTRACT

This paper proposes a classification-based approach to seg-
menting and recognizing patterns in motion signals. Fea-
ture vectors are extracted based on singular value decom-
position (SVD) for classification. Multi-class support vec-
tor machine (SVM) classifiers with class probability esti-
mates are explored for segmenting and recognizing motion
streams. Experiments show that the proposed approach can
find patterns in the multi-attribute motion streams with high
accuracy.

1. INTRODUCTION

Recognition of motions signals or streams from 3D motion
capture systems or data gloves can find wide uses in many
applications, such as surveillance video systems, 3D ani-
mation and simulation-based training, gait analysis and re-
habilitation and gesture recognition. Distance measures can
be defined as in [5] to capture motion similarities in streams,
or machine learning techniques can be employed to recog-
nize motions as in [7].

SVM classifiers with decision values, rather than class
probabilityestimates, have been successfully applied to clas-
sify complete patterns/isolated hand gesture motions gener-
ated by using a data glove in [4]. As shown in [8] and [4],
when only isolated motions or patterns are considered and
multiple examples for each pattern are available, classifica-
tion can have higher recognition rate than template match-
ing with certain similarity or distance measure.

We observe two intuitive yet important facts:

• If a pattern belongs to some class, the probability of
any of its sub-patterns being in the same class is less
than the probability of the complete pattern being in
the class.

• If all classes contain complete patterns only, the prob-
ability of a pattern being in its own class is higher than
the probability of any of its sub-patterns being in any
class.
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Proposed Approach: Based on the observations, we pro-
pose to apply classification to stream segmentation and pat-
tern recognition in order to take advantage of the high ac-
curacy of classification. In order for classification to be ap-
plicable to multi-attribute matrices, feature vectors captur-
ing the major geometric structures of motion matrices are
extracted by using singular value decomposition for mo-
tion matrix classification. Multi-class SVM classifiers with
class probability estimates are explored for recognizing pat-
terns in streams. Class probability estimates are proposed
not only for recognizing class labels of complete patterns,
but also for rejecting incomplete patterns or sub-patterns.
We propose to use complete pattern examples only, and no
non-pattern/incomplete examples at all for training. For the
sequentially segmented motion candidates, the best class
is chosen from the two classes which give the two highest
probabilities. The class to which a larger number of motion
candidates belong is determined to be the best class and the
motion candidate which has the highest class probability is
the best motion segment.

2. FEATURE SELECTION

Multi-attribute motions can be represented by matrices in
which each column represents one attribute, and each row
is for one recording of the motion signal. This section de-
scribes how to extract features from motion matrices for
stream segmentation.

The geometric structure of a matrix can be revealed by
the SVD of the matrix. As shown in [2], any real m × n
matrix A can be decomposed into A = WΣZT , where
W = [w1, w2, . . . , wm] ∈ Rm×m and Z = [z1, z2, . . . , zn]
∈ Rn×n are two orthogonal matrices, and Σ is a diagonal
matrix with diagonal entries being the singular values of A:
σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0. Column vectors wi and zi

are the ith left and right singular vectors of A, respectively,
and all the right singular vectors have the same dimension
n, which is independent of the number of matrix rows m.

The ith largest singular value σi of A is geometrically
the 2-norm or Euclidean length of the ith largest projected
vector Ax which is orthogonal to all the i−1 larger orthog-



onal vectors as shown by

σi = max
U

min
x∈U,‖x‖2=1

‖ Ax ‖2

where the maximum is taken over all i-dimensional sub-
spaces U ⊆ <n [2]. Hence, the right singular vectors are the
corresponding projection directions of the associated singu-
lar values, and the singular values account for the Euclidean
lengths of different vectors projected by the row vectors in
A onto different right singular vectors.

When two motions are similar, the row vectors in the
motion matrices should cover similar trajectories in the n-
dimensional space, hence the geometric structures of the
motion data matrices are similar. For realistic motions with
variations, singular vectors associated with different singu-
lar values have different sensitivities to motion variations. If
a singular value is large and well separated from its neigh-
bors, the associated singular vector would be relatively in-
sensitive to small motion variations. On the other hand, if a
singular value is among a poorly separated cluster, its asso-
ciated singular vector would be highly sensitive to motion
variations.

Figure 1 shows the accumulative singular values for hand
gestures and captured human subject motions. It shows that
the first two singular values account for more than 95% of
the sum of singular values, while the others might be very
small. Accordingly, the corresponding first two singular
vectors of similar motions, especially the first singular vec-
tors would be close or parallel to each other as shown in
Figure 2.
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Fig. 1. Accumulated singular value percentages in the sums
of singular values for two data sources: CyberGlove data
and captured human subject motion data. There are 22 sin-
gular values for one CyberGlove motion, and 54 singular
values for one motion capture motion.

Since the right singular vector u1 can have opposite signs,
the following steps can be taken to obtain consistent signs
for u1 of similar patterns.

1. Generate a matrix S with rows being the first right
singular vectors u1 of all known patterns.
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Fig. 2. Singular vectors of similar patterns. The first sin-
gular vectors are similar to each other, while other singular
vectors, even the second vectors as shown in the bottom, can
be quite different.

2. Subtract the elements of S by their corresponding col-
umn means, and update S to be the resulting matrix
with zero column means.

3. Compute the SVD of S and let its first right singular
vector be s1.

4. Project the first right singular vector u1 of patterns (or
pattern candidates) onto s1 by computing u1 · s1.

5. Negate all components of any u1 if the corresponding
the inner product u1 ·s1 < 0, and let u1 be the negated
vector.

Since the projections of u1 onto s1 have the largest vari-
ances among projections on any unit vectors, we can expect
that u1 · s1 will not cluster around zero. Our experiments
with hundreds of patterns of different sources show that no
pattern has |u1 · s1| < 0.3. Because similar patterns should
have close projections |u1·s1|, reasonable variations in simi-
lar patterns would not result in u1·s1 projections of opposite
signs if their u1 signs are the same. That is, only if the u1

signs of similar motions are opposite can their u1 · s1 pro-
jections have different signs. Hence, u1 of similar motions
would have the same sign by requesting u1 · s1 > 0.

Similarly, the above steps can be repeated for u2 with
all u1 replaced by u2, resulting in consistent signs for the
second singular vectors of similar motions.

We can extract the feature vectors from the singular vec-
tors and singular values. The first two singular vectors are
the most dominating factors contributing to the similarity of
two motions due to their associated large singular values.
Other singular vectors are less reliable in capturing the sim-
ilarities due to their associated singular values which might



be small and approach zero. Hence we can use singular
values as weights to reflect the reliability of the associated
singular vectors. Feature vectors are thus constructed by
concatenating the weighted first singular vectors w1u1 with
the weighted second singular vectors w2u2, where wi =
σi/

∑n

k=1 σk . These feature vectors are extracted by us-
ing only the prominent information from the right singular
vectors and singular values, and have the same dimension
n irrespective of the variable number of rows of different
motion matrices.

3. STREAM SEGMENTATION BY
CLASSIFICATION

This section discusses how to recognize patterns in multi-
attribute streams by classifying the feature vectors extracted
as above using SVM classifiers.

3.1. Classifier Selection

SVM classifiers have found widespread successful uses in
many pattern recognition problems [1]. The good classifica-
tion performances are due to the optimal hyperplane which
maximizes the margin, or the distance between separating
hyperplane and the training examples nearest to the hyper-
plane. Efforts of mapping standard SVM outputs to poste-
rior probabilities have been made in [6, 8]. For multi-class
classification, class probabilities can be estimated from bi-
nary class probabilities by pairwise coupling. Wu et al. [9]
propose a multi-class probability approach which is more
stable than other popular existing methods and the class
with the largest posterior is chosen to be the winning class
for a test vector: arg maxi[pi].

It has been shown by experiments on large-scale prob-
lems in [3] that in general the accuracy rate of one-versus-
one multi-class SVM is higher than that of one-versus-rest,
and the training time of one-versus-one multi-class SVM is
less than that needed for one-versus-rest classifiers. Due to
these reasons, we propose to use the one-versus-one multi-
class SVM classifiers with estimated class probabilities for
classification, and the Gaussian radial basis function (RBF)
is used as the kernel function for classifier training. We
use multi-class SVM classifiers for distinguishing patterns
from incomplete patterns or sub-patterns segmented from a
stream, and for classifying patterns. No sub-patterns or non-
patterns are needed as negative examples, and all classes
include only complete patterns.

3.2. Stream Segmentation

We assume that a pattern in a stream has a minimum length
l and a maximum length L. A stream is segmented into
multiple segments ending between l and L with segment
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Fig. 3. Changes in estimated probabilities. The probability
estimate reaches maximum as a pattern is completed, and
decreases as the stream continues.

length difference ∆ > 0. The feature vector for each motion
segment is constructed as described in Section 2.

The completely segmented pattern in a stream will have
the highest probabilityof being recognized as its correspond-
ing correct class in the training set. When the optimal hy-
perplane divides the space between the correct and incorrect
classes, this completely segmented pattern will lie on the
side of the correct class. Similarly as the lengths of the mo-
tion candidates increase from l and the motion candidates
approach a motion pattern, their feature vectors would be-
come closer to the optimal hyperplane if they are on the
side of any other classes, and move away from the optimal
hyperplane if they are on its correct class side. The corre-
sponding probability of the incomplete motion candidates
being classified to the correct pattern class will eventually
increase to the maximum as shown in Figure 3. Hence, the
point with the highest probability should be the segmenta-
tion point for a complete pattern, and the class with the high-
est probability should be the right class for the segmented
pattern.

Extracting a feature vector from a motion matrix un-
avoidably loses some minor information of the motion, and
this information loss can be reflected in the class probabili-
ties of motion candidates when stream segmentation is con-
sidered. It might be possible that the probability of the fea-
ture vector of certain motion candidate belonging to some
class is higher than the probability of the feature vector of
the best motion candidate belonging to the correct class. To
address this issue, we obtain two classes with the highest
probabilities instead of only one class with the highest prob-
ability. To choose the correct class, we consider the number
of motion segment candidates belonging to each of the two
classes. As Figure 3 indicates, the candidates which are
close to the best candidate also have the highest probabili-
ties of belonging to the expected class. This might not be
true for the feature vector of some other motion candidate,
which happens to have higher probability of belonging to
some class than that of the best candidate belonging to the
expected class. Hence we choose the class to which more



motion candidates belong to be the best one, and choose
the segment, which has the highest probability among all
the candidates belonging to the same class, to be the best
motion candidate.

The next pattern recognition starts from the end of the
last recognized pattern in the stream, and the same process
repeats until the remaining stream has length less than the
minimum stream length l.

4. EXPERIMENT EVALUATION

4.1. Data Generation

Hand gesture streams and human subject motion streams
are used for performance evaluation. Hand gestures were
generated by suing a data glove called CyberGlove, and the
human subject motions were captured by using 16 Vicon
cameras and the Vicon iQ Workstation software.

CyberGlove Data: The data for a hand gesture contain
22 angular values for each time instant/frame, one value for
a joint of one DOF. The motion data are extracted at 120
frames per second. One hundred and ten different isolated
motions were generated as motion patterns, and each mo-
tion was repeated for 3 times. That is, each of the 110
classes has 3 examples. Twelve different motion streams
were generated for segmentation and recognition purpose.
A gesture stream contains 5 to 10 gestures.

Motion Capture Data: The global 3D joint coordinates
have been transformed by translations and rotations to be
positions of different joints relative to a moving coordinate
system with the origin at some fixed point of the subject,
for example the pelvis, and the transformed data would be
translation and rotation invariant. Motion matrices have 54
columns for coordinates of 18 joints.

One hundred isolated motions including Taiqi, Indian
dances, and western dances were performed for generating
captured motions, and each motion was repeated 5 times.
Every motion repetition has a different location and can face
different orientations. Hence we have 100 classes of motion
patterns, and each of the classes has 5 examples for SVM
training. Twelve motion streams were also generated for
stream segmentation. The motion streams include 3 to 5
different length motion patterns each and the patterns in the
motion streams have various-length transitions.

4.2. Performance of Classification

k-fold cross validations are used for training of SVMs, where
k is 3 for the hand gestures and 5 for the 3D captured mo-
tions. The average cross validation accuracy is 96.7% for
isolated hand gestures, and is 97.7% for the isolated cap-
tured motions.

We use the recognition accuracy as defined in [7]. For
the CyberGlove data streams, there are 74 patterns in the 12

streams. Out of the 74 patterns, there are 11 insertions (I), 1
deletion (D) and 1 substitution (S). The accuracy is 82.43%.
For the motion capture data streams, there are 45 patterns in
the 12 streams. There are 5 deletions (D). The accuracy is
88.9% as shown in Table 1.

Table 1. Pattern Recognition Accuracy (%)
Data Source Isolated Motions Motion Streams
CyberGlove 96.7 82.43 (N=74,

I=11,D=1,S=1)
Motion 97.7 88.9
Capture (N=45, D=5)

5. CONCLUSIONS

In this paper, multi-class SVMs with probability estimates
are proposed for segmenting streams and recognizing the
patterns in streams. SVD is applied to extract feature vec-
tors for multi-attribute motion patterns. Two classes with
the highest probabilities are chosen to be the best class can-
didates for the motion candidates of one motion pattern, and
the class to which more motion candidates belong is the
winning class. The candidate which has the highest prob-
ability of belonging to the best class is the best segmented
motion candidate. Experiments with CyberGlove data and
3D motion capture data show that SVMs combined with
SVD can segment and recognize motion patterns in multi-
attribute motion streams with high accuracy.
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