
Metric spaces as models for real-time concurrency

G.M. Reed and A.W. Roscoe1

Oxford University Computing Laboratory
7-11 Keble Road, Oxford OX1 3QD, U.K.

Abstract. We propose a denotational model for real time concurrent systems, based on the fail-
ures model for CSP. The fixed point theory is based on the Banach fixed point theorem for complete
metric spaces, since the introduction of time as a measure makes all recursive operators naturally
contractive. This frees us from many of the constraints imposed by partial orders on the treatment
of nondeterminism and divergence.

1 Introduction

Real time has generally been considered to be too much an implementation matter to include in
abstract models of concurrency. Most existing theories view of time is restricted to the relative
order of events and to high level concepts such as ‘eventually’ and ‘forever’. Nevertheless there are
several reasons why it is desirable to have the ability to reason about real times. Most obviously, it
is likely that anyone specifying a real system will wish to impose constraints on its running speed
(and perhaps more detailed timing matters concerning its external communications). But perhaps
more importantly from a theoretical point of view, there are several concepts commonly used in
concurrent languages, such as interrupts and priority, which do not fit easily or at all into untimed
models.

We therefore believe that there is a need for models of real-time parallel computation. But since
it is likely to remain easier and cleaner, where possible, to do analysis in an untimed framework,
it is important that a real-time model has well-understood links with an untimed theory. We have
chosen to base our work on (extensions of) the theoretical version of CSP and to try to discover
models that have links with that language’s untimed theory. In an earlier paper [RR] we showed
how the traces model [H1] could be expanded to include time. In this paper we give a timed version
of the ‘failures’ model (including divergence) described in [BR,H2].

One of the main purposes of this paper is to show how real time gives a particularly natural
measure for comparing processes: we can think of two processes as being t-alike if they are indistin-
guishable up to time t. This notion is easily formalised as a metric over the space of processes which
provides a natural fixed point theory, seemingly with few of the disadvantages of the traditional
ways of defining fixpoints in untimed models. In particular, we are able to deal with the problems
of unbounded nondeterminism.

In the next section we present the model and the semantics of CSP. The difficulties of time mean
that the model is quite complex and some of the semantic operators quite subtle; unfortunately
time constraints for publication mean we cannot motivate or explain our definitions as thoroughly
as we would have liked. (We aim to give a fuller presentation of our work in the near future.)

1The work reported in this paper was supported by the U.S. Office of Naval Research under grant N0014-85-G-
0123.



Section 3 shows how we have treated nondeterminism and divergence and how the introduction of
time frees us from difficulties found in the construction of untimed models. Finally we present our
conclusions and outline some ways in which our work can be extended.

2. The timed failures-stability model for CSP

2.1 Objectives of Timed CSP

Our objective is the construction of a timed CSP model which provides a basis for the definition,
specification, and verification of real-time processes with an adequate treatment of divergence and
deadlock. Furthermore, we wish the model to be a “natural” extension of existing untimed models,
and in particular, it should contain the timed equivalents of those CSP constructs modelled in
[BHR,BR].

2.2 Abstract syntax for TCSP (Timed Communicating Sequential Pro-
cesses)

We shall essentially extend the abstract syntax for untimed CSP from [BHR,BR] (with the addition
of ⊥, the diverging process which engages in no event visible to the environment). We use P, Q,R
to range over syntactic processes; a, b over the alphabet Σ; X, Y over subsets of Σ; f over the
set of finite-to-one functions from Σ to Σ; and F over “appropriate” compositions of our syntactic
operators.

The basic requirement for analysing real-time programming languages is the ability to model
time-outs and interrupts. This can be accomplished in CSP simply by the addition of a process
WAIT t for each real number t ≥ 0: the process which engages in no visible event to the environment
and which terminates successfully after t units of time. Intuitively, SKIP should coincide with
WAIT 0.

TCSP

P ::= ⊥ | STOP | SKIP | WAIT t | (a → P ) | P2Q | P uQ | P ‖ Q |

P X ‖Y Q | P Q | P ; Q | P \X | f−1(P ) | f(P ) | µp.F (p)

2.3 Timing Postulates

The following are our basic assumptions about timing in a distributed system.

(1) A global clock. We assume that all events recorded by processes within the system relate
to a conceptual global clock.

(2) A system delay constant. We realistically postulate that a process can engage in only
finitely many events in a bounded period of time. The structure of our timed models allows several
parameters by which to ensure adherence with this postulate. In the current presentation, for
simplicity we assume the existence of a single delay constant δ such that:

a) For each a ∈ Σ and each process P , the process (a → P ) is ready to engage in P only after a
delay of time δ from participation in the event a.



b) A given recursive process is only ready to engage in an observable event after a delay of δ
time from making a recursive call.

Inevitably, our semantics are influenced by these and other decisions about the implementation of
the language. We imagine, however, that the semantics presented below could be modified to take
account of different decisions, or even of a nondeterministic choice of possible implementations.

(3) Hiding. We wish (a → P ) to denote the process that is willing at any time to engage in
the event a and then to behave like the process P . Clearly, if P = a → P , we then wish P \ a = ⊥.
However, consider P = a → STOP (the process that is willing to engage in a at any time ≥ 0 and
then to deadlock). What do we wish P \ a to denote?

By hiding, we remove external control. Hence, any time a process is willing to engage in an
internal action, it is permitted to do so. Thus, we assume that each hidden event has taken place
as soon as such event was possible. In the above example, we would wish:

(a → STOP ) \ a = WAIT δ; STOP

(4) Timed stability. In untimed CSP, it is only necessary to know that a given process can or
cannot diverge after engaging in a trace s; in the timed models, it is necessary to know (if the process
cannot diverge after s) when it will again be ready to respond to the environment. This analysis
leads us to consider the untimed divergence models [Ros,Brookes,OH,BR]) as providing discrete
information for a given trace s (“0” cannot diverge, “∞” can diverge), and our corresponding timed
model as providing continuous information (α ∈ [0,∞] such that the process is guaranteed to be
stable within α time after engaging in s). Our topological models will be based on this notion of
stability, which is the dual of divergence.

We will model a timed CSP process as a specified set of ordered 3-tuples (s, α,ℵ), where s is a
timed trace of the process, ℵ is a timed refusal of the process (a subset of Σ in which the process can
fail to engage over a specifed time interval), and α is the time at which the process is guaranteed
to be stable after the “observation” of s and ℵ. If (s, α,ℵ) is in the process P and α < ∞, then the
next observable event in the life of the process following s may occur at any time on or after time
α at the discretion of the environment, and the set of possible next events must be the same at all
such times after stability. Clearly no event can become available after α.

We think of timed stability as a red light on the outside of a process which goes off when the
process can make no more internal progress.

(5) Termination and sequential composition. The sequential composition operator treats
the termination of its first argument very much as a hidden event. That is, we postulate in P ; Q the
process P must terminate as soon as it can not refuse to do so. Thus, we assume that participation
in the “hidden” event

√
has taken place as soon as such participation was possible.

For example,
((a → STOP)2WAIT 1); b → STOP

is the process that is prepared to participate in the event a for the first unit of time and then
deadlock, or to wait one unit of time and then participate in the event b and then deadlock; after
time 1, it is no longer able to participate in the event a.

It is the above assumption about termination that allows us to model interrupts in Timed CSP.

2.4 Notation

The set (alphabet) of all communications (untimed events) will be denoted Σ. A timed event is an
ordered pair (t, a), where a is a communication and t ∈ [0,∞) is the time at which it occurs. The



set [0,∞)× Σ of all timed events is denoted TΣ. The set of all timed traces is

(TΣ)∗≤ = {s ∈ TΣ∗ | if (t, a) precedes (t′, a′) in s, then t ≤ t′}.

If s ∈ (TΣ)∗≤, we define #s to be the length (i.e., number of events) of s and Σ(s) to be the set of
communications appearing in s (i.e., the second components of all its timed communications).

begin(s) and end(s) are respectively the earliest and latest times of any of the timed events in
s. (For completeness we define begin(〈〉) = ∞ and end(〈〉) = 0.)

If X ⊆ Σ, s\X is the maximal subsequence w of s such that Σ(w) ⊆ X; s \X = s\(Σ−X). If

t ∈ [0,∞), s\t is the subsequence of s consisting of all those events which occur no later than t. If
t ∈ [−begin(s),∞) and s = 〈(t0, a0), (t1, a1), . . . , (tn, an)〉,

s + t = 〈(t0 + t, a0), (t1 + t, a1), . . . , (tn + t, an)〉 .

If s, t ∈ (TΣ)∗≤, we define s ∼= t if, and only if, t is a permutation of s (i.e., events that happen
at the same time can be re-ordered).

If s, w ∈ (TΣ)∗≤, Tmerge(s, w) is defined to be the set of all traces in (TΣ)∗≤ obtained by
interleaving s and w. (Note that this is a far more restricted set than in the untimed case, as the
times of events must increase through the trace. In fact, Tmerge(s, w) only contains more than one
element when s and w record a pair of events at exactly the same time.)

Let TSTAB = [0,∞] = [0,∞) ∪ {∞}. This is the set of all “timed stability values”.

Define:

I∈ TINT = { [l(I), r(I)) | 0 ≤ l(I) < r(I) < ∞} (Time Intervals)
T∈ RTOK = {I ×X | I ∈ TINT ∧X ∈ P (Σ)} (Refusal Tokens)
ℵ∈ RSET = {⋃ Z | Z ∈ p(RTOK)} (Refusal Sets)

1) ∀ℵ ∈ RSET ,

Σ(ℵ) = {a ∈ Σ | ∃t ∈ [0,∞) such that (t, a) ∈ ℵ}
I(ℵ) = {t ∈ [0,∞) | ∃a ∈ Σ such that (t, a) ∈ ℵ}

begin(ℵ) = min(I(ℵ)), ∀ℵ 6= ∅
end(ℵ) = sup(I(ℵ)), ∀ℵ 6= ∅

begin(ℵ) = ∞, for ℵ = ∅
end(ℵ) = 0, for ℵ = ∅

∀t ≥ −begin(ℵ), ℵ+ t = {(t′ + t, a) | (t′, a) ∈ ℵ}.

2) ∀S ⊆ (TΣ)∗≤ × TSTAB ×RSET ,

Traces(S) = {s | ∃α ∈ TSTAB, ℵ ∈ RSET such that (s, α,ℵ) ∈ S}
Stab(S) = {(s, α) | ∃ℵ ∈ RSET such that (s, α,ℵ) ∈ S}
Fail(S) = {(s,ℵ) | ∃α ∈ TSTAB such that (s, α,ℵ) ∈ S}
SUP(S) = {(s, α,ℵ) | (s,ℵ) ∈ Fail(S)

∧ α = sup{β | (s, β,ℵ) ∈ S}}

If ℵ ∈ RSET and t ∈ [0,∞), let ℵ\t denote ℵ ∩ ([0, t)× Σ).



2.5 The evaluation domain TMFS

We formally define TMFS to be those subsets S of (TΣ)∗≤ × TSTAB ×RSET satisfying:

1. 〈〉 ∈ Traces(S)

2. (s.w,ℵ) ∈ Fail(S) ⇒ (s,ℵ\begin(w)) ∈ Fail(S)

3. (s, α,ℵ), (s, β,ℵ) ∈ S ⇒ α = β

4. (s, α,ℵ) ∈ S ∧ s ∼= w ⇒ (w,α,ℵ) ∈ S

5. ∀t ∈ [0,∞), ∃n(t) ∈ N such that ∀s ∈ Traces(S), (end(s) ≤ t ⇒ #s ≤ n(t))

6. (s, α,ℵ) ∈ S ⇒ end(s) ≤ α

7. (s, α,ℵ) ∈ S ⇒ if t > α, t′ ≥ α, a ∈ Σ and w ∈ (TΣ)∗≤ is such that w =

〈(t, a)〉.w′, then (s.w, α′,ℵ′) ∈ S ∧ ℵ ⊆ ℵ′\t ⇒
∃γ ≥ α′+(t′− t). (s.(w+(t′− t)), γ,ℵ1∪ℵ2∪(ℵ3 +(t′− t))) ∈ S,

where ℵ1 = ℵ′\α, ℵ2 = [α, t′)× Σ(ℵ′ ∩ ([α, t)× Σ)),
and ℵ3 = ℵ′ ∩ ([t,∞)× Σ).

8. (s, α,ℵ) ∈ S ∧ (s.〈(t, a)〉,ℵ) ∈ Fail(S) ∧ t > t′ ≥ α ∧ t ≥ end(ℵ) ⇒ (t′, a) 6∈ ℵ

9. (s, α,ℵ) ∈ S ∧ ℵ′ ∈ RSET such that ℵ′ ⊆ ℵ
⇒ ∃α′ ≥ α such that (s, α′,ℵ′) ∈ S

10. (s.w, α,ℵ) ∈ S ∧ ℵ′ ∈ RSET is such that end(s) ≤ begin(ℵ′) ∧
end(ℵ′) ≤ begin(w) ∧ (∀(t, a) ∈ ℵ′, (s.〈(t, a)〉,ℵ\t) /∈ Fail(S))
⇒ (s.w, α,ℵ ∪ ℵ′) ∈ S

11. (s, α,ℵ) ∈ S ⇒
∀I ⊆ [α,∞), (s, α,ℵ ∪ (I × Σ(ℵ ∩ ([α,∞)× Σ)))) ∈ S

Though some of these axioms appear complex, each reflects a simple healthiness property. They
are explained as follows.

1. Every process has initially done nothing at all.

2. If a process has been observed to communicate s.w while refusing ℵ then at the time when

the first event of w occurred the pair (s,ℵ\begin(w)) had been observed.

3. There is only one stability value for each trace/refusal pair: the least time by which we can
guarantee stability after the given observation.

4. Traces which are equivalent (are the same except for the permutation of events happening at
the same times) are interchangeable.

5. The process cannot perform an infinite number of events in a finite time.

6. The time of stability is always after the end of the trace.

7. After stability the same set of events is available at all times. Furthermore the behaviour of
a process after such an event does not depend on the exact time at which it was executed.
Thus the trace w and the corresponding part of the refusal may be translated so as to make



the first event of w now occur at time t′. The stability value γ correponding to the translated
behaviour may, in general, be greater than the obvious value because the translated behaviour
may in some circumstances be possible for other reasons.

8. A stable process cannot communicate an event which it has been seen to refuse since stability.

9. If a process has been observed to communicate s while refusing ℵ then it can communicate the
same trace while refusing any subset of ℵ. This simply reflects the fact that the environment
might offer it less and so have less refused. However, because less has been observed, the
stability value can, in general, be greater.

10. Any set of impossible events must be refused if offered. Such observation does not give any
extra information to the observer, so the stability value is not affected.

11. Something that is refused at one time on or after stability is refused at all such times.

2.6 The complete metric on TMFS

If S ∈ TMFS and t ∈ [0,∞), we define

S(t) = {(s, α,ℵ) ∈ S | α < t}
∪{(s,∞,ℵ\t) | end(s) ≤ t ∧ ∃α ≥ t. (s, α,ℵ) ∈ S}.

This is just a standard representation of the behaviour of S up to time t: S and T have identical
behaviours up to t if and only if S(t) = T (t).

The complete (ultra-)metric on TMFS is defined:

d(S1, S2) = inf{2−t | S1(t) = S2(t)}

The completeness of this metric is a consequence of the fact that, if one of the above axioms is
not satisfied by some set S of behaviours, this will show up in some finite time t. Specifically, if
S(t) = T (t) then T does not satisfy the axiom either.

2.7 The semantic function E

We now define the semantic function E : TCSP → TMFS. The definitions of most of the operators
are closely modelled on their untimed counterparts. The only new operator is WAIT t, which
becomes stable and able to communicate

√
at time t.

Except in the case of hiding the use of the SUP operator simply reflects the fact that there can
only be one stability value record for each trace/refusal pair, and some such pairs can get into the
sets for several different reasons.

The definition of hiding is surprisingly simple, but the way stability is handled is rather subtle.
The fact that X can be refused thoughout the behaviour ensures that hidden events occur as soon
as they can. The βs in the set are all times which are demonstrably lower bounds for the time of
stability, and with thought it can be seen that applying the SUP operator gives exactly the correct
stability value.

Each operator has the important property that the behaviour of F (P ) up to time t depends
only the behaviour of P up to time t. It is this which makes all operators non-expanding. See the
next section for more discussion of this.



E [[⊥]] = {(〈〉,∞,ℵ) | ℵ ∈ RSET}

E [[STOP ]] = {(〈〉, 0,ℵ) | ℵ ∈ RSET}

E [[SKIP ]] = {(〈〉, 0,ℵ) |
√

/∈ Σ(ℵ)}
∪{(〈(t,

√
)〉, t,ℵ1 ∪ ℵ2) | t ≥ 0 ∧ (I(ℵ1) ⊆ [0, t) ∧

√
/∈ Σ(ℵ1))

∧ I(ℵ2) ⊆ [t,∞)}

E [[WAIT t]] = {(〈〉, t,ℵ) | ℵ ∩ ([t,∞)× {
√
}) = ∅}

∪{(〈(t′,
√

)〉, t′,ℵ1 ∪ ℵ2 ∪ ℵ3) | t′ ≥ t ∧ I(ℵ1) ⊆ [0, t)
∧(I(ℵ2) ⊆ [t, t′) ∧

√
/∈ Σ(ℵ2)) ∧ I(ℵ3) ⊆ [t′,∞)}

E [[a → P ]] = {(〈〉, 0,ℵ) | a /∈ Σ(ℵ)}
∪{(〈(t, a)〉.(s + (t + δ)), α + t + δ,ℵ1 ∪ ℵ2 ∪ (ℵ3 + (t + δ))) | t ≥ 0
∧(I(ℵ1) ⊆ [0, t) ∧ a /∈ Σ(ℵ1)) ∧ I(ℵ2) ⊆ [t, t + δ) ∧ (s, α,ℵ3) ∈ E [[P ]]}

E [[P2Q]] = SUP({(〈〉,max{αP , αQ},ℵ) | (〈〉, αP ,ℵ) ∈ E [[P ]] ∧ (〈〉, αQ,ℵ) ∈ E [[Q]]}
∪{(s, α,ℵ) | s 6= 〈〉 ∧ (s, α,ℵ) ∈ E [[P ]] ∪ E [[Q]]

∧ (〈〉,ℵ\begin(s)) ∈ Fail(E [[P ]]) ∩ Fail(E [[Q]])})

E [[P uQ]] = SUP(E [[P ]] ∪ E [[Q]])

E [[P‖Q]] = SUP({(s,max{αP , αQ},ℵP ∪ ℵQ) | (s, αP ,ℵP ) ∈ E [[P ]]
∧(s, αQ,ℵQ) ∈ E [[Q]]})

E [[P X‖Y Q]] = {(s, max{αP , αQ},ℵP ∪ ℵQ ∪ ℵZ) | ∃(sP , αP ,ℵP ) ∈ E [[P ]],
(sQ, αQ,ℵQ) ∈ E [[Q]] with Σ(ℵP ) ⊆ X ∧ Σ(ℵQ) ⊆ Y such that
s ∈ (sP X‖Y sQ) ∧ Σ(ℵZ) ⊆ (Σ− (X ∪ Y ))}
where

v X‖Y w = {s ∈ (TΣ)∗≤ | s
\(X ∪ Y ) = s ∧ s\X = v ∧ s\Y = w}

E [[P Q]] = SUP({(s,max{αP , αQ},ℵ) | ∃(u, αP ,ℵ) ∈ E [[P ]], (v, αQ,ℵ) ∈ E [[Q]]
such that s ∈ Tmerge(u, v)})

E [[P ; Q]] = SUP({(s, α,ℵ) |
√

/∈ Σ(s) ∧ ∀I ∈ TINT
(s, α,ℵ ∪ (I × {

√
})) ∈ E [[P ]]}

∪{(s.(w + t), α + t,ℵ1 ∪ (ℵ2 + t)) |
√

/∈ Σ(s) ∧ end(ℵ1) ≤ t
∧ (s.〈(t,

√
)〉,ℵ1 ∪ ([0, t)× {

√
})) ∈ Fail(E [[P ]])

∧ (w,α,ℵ2) ∈ E [[Q]]})

E [[P \X]] = SUP{s \X, β,ℵ) | ∃α ≥ β ≥ end(s).
(s, α,ℵ ∪ ([0,max{β, end(ℵ)})×X)) ∈ E [[P ]]}

E [[f−1(P )]] = {(s, α,ℵ) | (f(s), α, f(ℵ)) ∈ E [[P ]]}

E [[f(P )]] = SUP({(f(s), α,ℵ) | (s, α, f−1(ℵ)) ∈ E [[P ]]})

E [[µp.F (p)]] = The unique fixed point of the contraction mapping Ĉ(Q) =
C(WAIT δ; Q), where C is the mapping on TMFS represented by F .



3. Remarks on the model

3.1 Hiding and recursion

To illustrate the intuitive appeal of topological limits in the analysis of CSP processes, consider the
following untimed example.

Q = b → Q P0 = Q
P = a → P ∀n ≥ 1, Pn = a → Pn−1

Recall that, by P = a → P , we mean P = µp.F (p) where F (R) = a → R is an appropriate
mapping on our semantic domain.

Clearly, an observer looking at behaviours on traces of length ≤ n cannot distinguish between
P and Pn. Hence it seems intuitive that limn→∞ Pn = P . Indeed this is the case under a complete
metric structure. However, with the standard complete partial order structure for the (untimed)
failures model, limn→∞ Pn does not exist. When we move to the timed CSP models, this situation
becomes critical. If an observer looking at a record of all traces completed in n units of time cannot
distinguish between Pn and P , we would certainly expect limn→∞ Pn = P . In particular, we wish
limt→∞(WAIT t) = ⊥ 6= STOP .

Several authors, for example [N,Ros,BZ,GR,Rou], have considered untimed models of concur-
rency as metric spaces. The metrics have generally been based on equivalence up to a certain number
of steps or communications in much the same way as ours has been based on indistinguishability up
to a certain time. However the fact that hiding deletes communications means that a model with
a metric of visible actions will have a discontinuous hiding operator. For example, in a topological
traces model,

lim
n→∞

(Pn \ a) = Q 6= (P \ a) = {〈〉} = STOP

Also, recursions are not defined unless they represent contraction maps: something which is by no
means automatic, especially when hiding is involved. For example,

µp.a → (p\a) is undefined.

Some authors have chosen to retain hidden actions in their models (often synchronisation trees).
This avoids the above problems, but leads to models which are insufficiently abstract for many
purposes (indeed, semantics of this type are often termed operational).

We had none of these problems in constructing the present model because time cannot be hidden,
and yet we would expect an observer (with a clock) to be able to observe it. There is no operator
(even hiding) whose behaviour up to time t depends on the behaviours of its operands after t:
no reasonable operator can be expected to see into the future. Thus every operator represents at
worst a nonexpansive function of the metric space. (Note that a nonexpansive function is always
continuous.)

Consider P , Q, and Pn as defined above in the timed failures-stability model (with the appro-
priate change in Pn to reflect the delay induced by each recursive call in P ).

Q = b → Q P0 = Q
P = a → P ∀n ≥ 1, Pn = a → (WAIT δ ; Pn−1)

Now, limn→∞ Pn = P and limn→∞(Pn \ a) = P \ a = ⊥ 6= STOP .

We make every recursion into a contraction by observing that, realistically, a recursion will
always take a small amount of time to unwind. For example:

µp.p = fix (Ĉ), where Ĉ(Q) = WAIT δ; Q
= ⊥



3.2 Divergence

The timed failures-stability model (like the timed stability model of [RR]) differs from previous CSP
models relevant to divergence in that (s,∞) ∈ Stab(P ) does not imply that (s.w,∞) ∈ Stab(P )
for all traces w. That is, just because a process may diverge after engaging in a given trace, it
does not mean that some time later after extending the trace, the process might not again become
stable. For example, let P = a → P and consider the process R = (P \ a) u (b → (b → STOP )).
Both (〈 〉,∞) and (〈(t, b)〉, t + δ) ∈ Stab(R) (for any t ≥ 0). This process can diverge on the empty
trace; however, once we observe a b, we know that we are safe. Although it is possible to modify
our model to conform to the untimed models in this regard, we choose to allow the finer distinction
of CSP processes made possible by the topological structure of our evaluation domain.

These distinctions were not made in the failures-divergence model [BR,H2] because of the use
of least fixed points to define recursions. In any model where the partial order is based on non-
determinism or definedness (P v Q iff Q is more deterministic than P ), the least fixed point
of µp.p (operationally, a simply diverging process) is the most nondeterministic process. We are
thus forced to identify the diverging process with one that can do anything (including diverge).
This is closely related to the philosophy of the Smyth powerdomain (the powerdomain of dæmonic
nondeterminism).

The failures-divergence model’s axioms essentially state that we cannot specify anything about
a process’ behaviour after the possibility of divergence. This is tantamount to saying that we will
never be prepared to accept, for any practical purpose, a process that can diverge. Some authors
have disliked being forced to take this very strict view, and would have prefered a theory more like
that of the timed model. This has lead them to use alternative fixed point theories such as optimal
fixed points [Broy] (usually using more than one partial order). By using a metric space we have
been able to achieve the same effect more easily.

3.3 Infinite hiding

The reader will note that the axiom of bounded nondeterminism from the failures model in [BR] is
not included in our model:

(∀Y ∈ p(X), (s, Y ) ∈ S) ⇒ (s,X) ∈ S

or, in a timed context,

I ∈ TINT ∧ X ∈ P (Σ) such that (∀Y ∈ p(X), ∃α such that (s, α,ℵ ∪ (I × Y )) ∈ S)

⇒ ∃α′ such that (s, α′,ℵ ∪ (I ×X))) ∈ S

Operationally, a process can be said to be boundedly nondeterministic if, at each point, it has
only finitely many internal choices which may affect its future behaviour. It has generally proved
much easier to model boundedly nondeterministic processes than to consider the more general case.
In partial orders one often takes limits by intersecting the nondeterministic choices that can be made
in an increasingly deterministic sequence of processes. Where processes have an infinite number of
options it is possible to construct such an infinite sequence with empty intersection. (For example,
suppose Pi is a process which nondeterministically communicates any integer j ≥ i on its first step.)
It becomes necessary to introduce compactness assumptions, such as the axiom above, which are
not natural in every circumstance.

Since the convergence in our metric space is independent of nondeterminism we have the choice
whether to have such an axiom or not.



‘Non-compact’ unbounded nondeterminism can enter models of concurrency through declining
to ignore what might happen after divergence and also through assumptions such as fairness. But
the clearest source of unbounded nondeterminism is infinite hiding, where an infinite set of external
choices are made internal. It has usually been necessary to exclude P\X (X infinite) from CSP
because of this problem.

For example, let Q denote the process which is prepared to input any odd integer n and then
to participate in the event b and then to output n + 1. (See [H2] for the obvious generalization to
our syntax.)

Q = n : Odds → (b → (n + 1 → STOP))

Now, Q is certainly definable in the complete partial order failures-divergence model as well as the
timed model. However, Q \X is not allowed in the failures-divergence model, since {(b, X) | X ∈
p(Evens)} ⊆ Q \Odds, but (b, Evens) /∈ Q \Odds.

Given that in the timed model we have chosen not to ignore what might happen after possible
divergence, it might appear that it is possible to obtain unbounded nondeterminism from only finite
hiding. For example, consider P0\a, where

Pn = (a → Pn+1

2

b → (n → STOP))

Such a process can be defined in the topological models by use of infinite mutual recursion (easily
added to the semantics). After communicating a b, this process can apparently choose to communi-
cate any natural number, but cannot refuse them all. It would be problematic in an untimed model,
but is not in our one because only finitely much nondeterminism is exhibited up to any finite time
(as only finitely many hidden ‘a’s will have occurred).

It will be consistent to bring in an axiom of bounded nondeterminism if, and only if, we do not
want to model any operator which, like infinite hiding, has the potential of introducing infinitely
many choices in a finite time.

3.4 Choice between waiting and participation

Let us postulate the effect of the environment being given the choice of participating in a given
process or of waiting. For example, P = ((a → STOP)2WAIT 1) offers the environment the initial
choice of participating in the event a or of terminating successfully after 1 second. Again, what
do we wish P \ a to denote? Since we have assumed that the hidden event takes place as soon as
possible, we would expect (under the assumption that δ < 1):

((a → STOP)2WAIT 1) \ a = WAIT δ; STOP

Similarly, we would wish:

(((a → SKIP)2WAIT 1) ; b → STOP) \ a = WAIT δ ; b → STOP

(((a → STOP)2WAIT 1) ; b → STOP) \ a = WAIT δ ; STOP

Note from examination of for the above processes, it is clear that to achieve our intuitive se-
mantics, when defining P \ X in the context of 2, we must be able to exclude some traces in P



from consideration based on information about their possible refusals prior to stability. In fact, the
situation is even more complicated. Consider:

P1 = ((a → STOP)2(b → STOP)) u (a → c → STOP)

P2 = ((a → c → STOP)2(b → STOP)) u (a → STOP)

Such processes would seem free of our current concern since they do not involve either hiding
or delays. However, let

Q = (WAIT 12(b → STOP)) ; a → c → STOP

Operationally, as indicated in our assumption (5) from section 2.3, we would expect:

(P1 ‖ Q) \ b 6= (P2 ‖ Q) \ b

In particular, we would expect:

〈(1, a)(1 + δ, c)〉 ∈ Traces((P1‖Q) \ b) but 〈(1, a)(1 + δ, c)〉 /∈ Traces((P2‖Q) \ b)

Hence, in our timed failures-stability model, we must distinguish between processes such as P1

and P2. Note that it is impossible to make such a distinction based on what a process can refuse
after a given trace has been achieved. Hence, it is necessary not only to record refusals on a given
trace prior to stability, but also to record what refusals were involved in the state changes which led
to the final state witnessed by the trace. This seems to be a crucial issue in achieving a successful
semantics for real-time parallel languages. The distributivity of the hiding operator over u depends
on the subtle resolution of this issue.

It is the fact that we record refusals throughout a process’ history that has allowed us to dispense
with the ‘hatted’ events of [RR]. (There, â represented the communication of an event a at the
instant when it became available. These communications were essential for the correct definition of
hiding and sequential composition.) For it is now apparent that an event has just become available
if it communicated immediately after it has been refused.

4. Conclusions

We have seen that using time as the basis of a metric space allows one to be freed from the constraints
of complete partial orders without losing generality or abstractness. The reader should compare
the model presented here to timed models for concurrency based on complete partial orders in
[J,KSRGA,Bo]. The main difficulty that remains (under both structures) is that we still cannot
describe properties (such as fairness) which are only detectable over infinite time spans.

The ideas behind our model are conceptually reasonably straightforward: a process is just
modelled by the records of experiments that an observer can carry out on it (communications
accepted and communications refused). The fact that refusals must be recorded all the way through
a trace is, as was explained in 3.4, a consequence of the way timed processes interact: in some sense
they can perform more delicate experiments on each other than untimed processes. Refusals only
after traces are no longer properly compositional. Other authors [J,Bo] have remarked on this
and suggested or introduced similar solutions (based on partial orders rather than metric spaces).
Phillips [P] has studied the corresponding untimed congruence.

The reader may note that the traces of P\a depend in a crucial way on the (timed) failures of
P . (This is clearly illustrated by the second example of 3.4.) An immediate consequence of this is



that the traces of a CSP program modelled in the timed traces model [RR] may be a strict superset
of the traces that can be extracted from the failures model. Because the earlier did not contain
enough information to accurately predict the possible traces of P\a, it was necessary to give an
upper bound. This is unlike the case with untimed CSP, where the traces predicted by the failures
semantics are always precisely those predicted by the trace semantics. (The problems with hiding
in the timed trace semantics arise from its failure to distinguish P u Q and P2Q: in reality the
traces of (P2Q)\a may be a strict subset of those of (P uQ)\a.)

We believe that a version of our present model with stablity omitted is the simplest equivalence
which is a full and natural congruence with respect to all the usual CSP operators. This congruence
does not exist in the untimed case, since there consideration of divergence is necessary if one is to
consider failures.

Thus our inclusion of stability in the present paper has been in some sense optional. Aside from
the well-known arguments for wishing to distinguish a deadlocked process from a diverging one,
there is another good reason for our inclusion of it. It is our declared aim to build a hierarchy of
models, both timed and untimed, with well-understood links between them. Stability allows natural
links to be formed with the failures-divergence model, since the liveness properties predicted by that
model can be inferred from the time of stability on.

We expect to be able to exploit this link by using reasoning in two simpler models (the timed
stablilty model of [RR] and the failures-divergence model) to infer total correctness properties in
the timed failures-stablity model (where we expect detailed computations to be rather complex).
Such reasoning can be expected to be sufficient when proving simple properties of processes that
do not depend on the details of timed interaction to achieve ‘untimed’ correctness.

The facts that our model is a complete metric space and all recursions are contraction mappings
makes it a natural vehicle for correctness proofs using the form of recursion induction described
in [Ros,RR]. (A predicate that represents a non-empty closed subset and which is preserved by a
recursion must contain the unique fixed point.) The introduction of stability seems to enhance the
range of useful predicates which represent closed sets, since it (to a limited extent) allows us to look
into the future.

The semantics we gave for CSP is by no means the only possible one that is reasonable, for any
such semantics must make specific timing assumptions about the language and its implementation.
We assumed that all events take exactly δ, while in practice each event a might take its own duration
δ(a) or even a time chosen nondeterministically from some interval. In the last case our new-found
ability to cope with unbounded nondeterminism would be essential. We also assumed that none of
the operators except recursion consumed any time by running (i.e, there was never any setting-up or
“overhead” time). Also both the parallel operators we gave were true parallel operators, in that the
time taken by the two operands was not summed: one might well need time-sliced pseudo-parallel
operators in applications. In a particular application one will have to decide on the “right” timed
semantics, but there should never be any problem in accomodating it in the model TMFS. This is
a topic for further research.

As indicated earlier, we intend shortly to give a fuller presentation of the timed failures-stability
model and its CSP semantics. Some of the above issues will be investigated further, and also others
such as full abstraction and the nondeterminism partial order.
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