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Abstract —A major assumption in many machine learning and data mining algorithms is that the training and future data must be
in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold.
For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another
domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases,
knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data labeling
efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on
categorizing and reviewing the current progress on transfer learning for classification, regression and clustering problems. In this survey,
we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multi-
task learning and sample selection bias, as well as co-variate shift. We also explore some potential future issues in transfer learning
research.

Index Terms —Transfer Learning, Survey, Machine Learning, Data Mining.
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1 INTRODUCTION problems, which aims to detect a user’s current location based

- . . . on previously collected WiFi data, it is very expensive to
Data mining and machine learning technologies have alreaé&l P Y y eXp

. 2 : . ibrate WiFi data for building localization models in a large-
achlev_ed S|g_n|f|cant success in many_knowledge ENYINCENO e environment, because a user needs to label a large
areas including classification, regression and clustering (e. !

1. 121). However. manv machine learning methods work we llection of WiFi signal data at each location. However, the
[1], [2]). However, y I ] ing n WOrK We{hiFi signal-strength values may be a function of time, device
only under a common assumption: the training and tegt d_ata_g Cother dynamic factors. A model trained in one time period
S\r/ﬁwn tf;org.trggbs?me fﬁature spaceta?dt.tf;'e slameddllstrlbutl tP ‘'on one device may cause the performance for location

en he distribution changes, most statistical Models NEEGG; 1 4iiqn in another time period or on another device to be
be rebuilt from scratch using newly collected training data. | duced. To reduce the re-calibration effort, we might wish to
many real world applications, it is expensive or impossible %) '

o . apt the localization model trained in one time period (the
re-collect the needed training data and rebuild the models._It P b (

. urce domain) for a new time period (the target domain), or
WO.U|.d be nice to reduce the need and effort to re-collect tl?sg adapt the localization model trained on a mobile device (the
training data. In such caseknowledge transfeor transfer

. . ) source domain) for a new mobile device (the target domain),
learning between task domains would be desirable. ) ( g )

as done in [7].
Many examples in knowledge engineering can be foun(? in [7]

h tor | i ulv be beneficial. O As a third example, consider the problem of sentiment
where transfer learning can truly be beneficial. One exam fassification, where our task is to automatically classify the
is Web document classification [3], [4], [5], where our go

i< t0 classi . Web d tint | dof eviews on a product, such as a brand of camera, into positive
IS 1o C§SS|fyAa given vve | o;umr(]an Into sefve:/rva bp(rje e 'n%%d negative views. For this classification task, we need to
categ_o_ne; S an example in the area of Web-documgnl, ey many reviews of the product and annotate them.
classification (see, e.g., [6]), the labeled examples may

h ) ity Web H iated with would then train a classifier on the reviews with their
.t € unlv_er5|ty 'eb pages that are assoclate W't_ Categ(iErc}'rresponding labels. Since the distribution of review data
information obtained through previous manual-labeling effort

F lassification task | ted Web site wh mong different types of products can be very different, to
or a classification task on a néwly created Web SIte Wnere iye;iqi, good classification performance, we need to collect

data features or data distributions may be different, there mSWarge amount of labeled data in order to train the review-

be a lack of labeled training data. As a result, we may ot g, qqiication models for each product. However, this data-
ab!e to'd|rectly gpply the Web-page' classifiers Iearneq on t eling process can be very expensive to do. To reduce the
university Web site to the new Web site. In such cases, it wo ort for annotating reviews for various products, we may

be helpful if we could transfer the classification knowledg&,ant to adapt a classification model that is trained on some

mtohthe ne(\;vfdomaln.f | i ) hen the d products to help learn classification models for some other
The need for transfer learning may arise when the data aan,q, s, In such cases, transfer learning can save a significant
be easily outdated. In this case, the labeled data obtaine Hount of labeling effort [8]

lone tlme perlpd may not foII;)w _th? same d,'s_tr'lbu“‘l)_n N8 n this survey article, we give a comprehensive overview of
ater time period. For example, in indoor WiFi localizationansfer learning for classification, regression and clustering
) — _developed in machine learning and data mining areas. There
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[9], [10]). However, in this paper, we only focus on transfea closely related learning technique to transfer learning is
learning for classification, regression and clustering problerttee multi-task learning framework [21], which tries to learn
that are related more closely to data mining tasks. By doimgultiple tasks simultaneously even when they are different.
the survey, we hope to provide a useful resource for the d&atypical approach for multi-task learning is to uncover the
mining and machine learning community. common (latent) features that can benefit each individual task.
The rest of the survey is organized as follows. In the nextIn 2005, the Broad Agency Announcement (BAA) 05-29
four sections, we first give a general overview and defiref Defense Advanced Research Projects Agency (DARPA)'s
some notations we will use later. We then briefly survey tHaformation Processing Technology Office (IPT®)gave a
history of transfer learning, give a unified definition of transfemew mission of transfer learning: the ability of a system to
learning and categorize transfer learning into three differer@cognize and apply knowledge and skills learned in previous
settings (given in Table 2 and Figure 2). For each setting, wasks to novel tasks. In this definitiomansfer learningaims
review different approaches, given in Table 3 in detail. Afteao extract the knowledge from one or maseurce tasksand
that, in Section 6, we review some current research on thpplies the knowledge @target taskIn contrast to multi-task
topic of “negative transfer”, which happens when knowleddearning, rather than learning all of the source and target tasks
transfer has a negative impact on target learning. In Sectiornsimultaneously, transfer learning cares most about the target
we introduce some successful applications of transfer learnitagk. The roles of the source and target tasks are no longer
and list some published data sets and software toolkits fymmetric in transfer learning.
transfer learning research. Finally, we conclude the article withFigure 1 shows the difference between the learning

a discussion of future works in Section 8. processes of traditional and transfer learning techniques. As
we can see, traditional machine learning techniques try to learn
2 OVERVIEW each task from scratch, while transfer learning techniques try

to transfer the knowledge from some previous tasks to a target

2.1 A Brief History of Transfer Learning X . o
. . . . . task when the latter has fewer high-quality training data.
Traditional data mining and machine learning algorithms make

predictions on the future data using statistical models that are

cesof TraditionalMachine Tesmming Learning Process of Transfer Learning
trained on previously collected labeled or unlabeled training e e e rem
)

data [11], [12], [13]. Semi-supervised classification [14], [15],
[16], [17] addresses the problem that the labeled data me
be too few to build a good classifier, by making use of ¢
large amount of unlabeled data and a small amount of labele
data. Variations of supervised and semi-supervised learnir
for imperfect datasets have been studied; for example, Zt
and Wu [18] have studied how to deal with the noisy class-
label problems. Yan@t al.considered cost-sensitive learning (@) Traditional Machine Learning (b) Transfer Learning
[19] when additional tests can be made to future samplq_ﬁ
Nevertheless, most of them assume that the distributionsl\ﬁ
the labeled and unlabeled data are the samansfer learning

in contrast, allows the domains, tasks, and distributions usedToday transfer learning methods appear in several top

in training and testing to be different. In th_e real world, W?/enues, most notably in data mining (ACM KDD, IEEE ICDM
observe many examples of transfer learning. For example . .

! ) . ) rnd PKDD, for example), machine learning (ICML, NIPS,
we may find that Iga.rnmg to recognize apples might .help CML, AAAI and IJCAI, for example) and applications of
recognize pears. Similarly, learning to play the electronic Orgalil. hine learning and data mining (ACM SIGIR, WWW and
may help facilitate learning the piano. The studyTo&nsfer '

o . e ACL for example)®. Before we give differen rization
learning is motivated by the fact that people can intelligentl CL for example)”. Before we give different categorizations

. %f transfer learning, we first describe the notations used in this
apply knowledge learned previously to solve new pmble”};\srticle

faster or with better solutions. The fundamental motivation ’

for Transfer learningin the field of machine learning was

discussed in a NIPS-95 workshop on “Learning to Learr?.2 Notations and Definitions

, which focused on the need for lifelong machine-learning, this section, we introduce some notations and definitions

methods that retain and reuse previously learned knowledgggt are used in this survey. First of all, we give the definitions
Research on transfer learning has attracted more agdy “domain” and a “task’, respectively.

more attention since 1995 in different names: leamning 10|y this survey, adlomainD consists of two components: a

learn, life-long learning, knowledge transfer, inductive trangaatyre space’ and a marginal probability distributioR(X),
fer, multi-task learning, knowledge consolidation, contex{yhere X = {z1,...,z,} € X. For example, if our learning
sensitive learning, knowledge-based inductive bias, meta learn-
ing, and incremental/cumulative learning [20]. Among these,2. http://www.darpa.mil/ipto/programs/ti/tl.asp
3. We summarize a list of conferences and workshops where transfer

1. http://socrates.acadiau.ca/courses/comp/dsilver/N|IRS2% learning papers appear in these few years in the following webpage for
transfer.workshop.1995.html reference, http://www.cse.ust.hkéinnopan/conferenceTL.htm

l-of

. 1. Different Learning Processes between Traditional
chine Learning and Transfer Learning



task is document classification, and each term is taken as &iven specific domain®s and Dy, when the learning
binary feature, thenY is the space of all term vectors,; tasks7g and7Zr are different, then either (1) the label spaces
is thei*" term vector corresponding to some documents, abetween the domains are different, i)y # Yr, or (2) the
X is a particular learning sample. In general, if two domainsonditional probability distributions between the domains are
are different, then they may have different feature spacesdifferent; i.e. P(Ys|Xs) # P(Yr|Xr), whereYs, € Vs and
different marginal probability distributions. Yr, € Yr. In our document classification example, case (1)

Given a specific domairp = {X, P(X)}, ataskconsists corresponds to the situation where source domain has binary
of two components: a label spageand an objective predictive document classes, whereas the target domain has ten classes to
function f(-) (denoted by7T = {J, f(-)}), which is not classify the documents to. Case (2) corresponds to the situation
observed but can be learned from the training data, whiethere the source and target documents are very unbalanced
consist of pairs{z;,y;}, wherexz, € X andy; € Y. The in terms of the user-defined classes.
function f(-) can be used to predict the corresponding label, In addition, when there exists some relationship, explicit or
f(x), of a new instancer. From a probabilistic viewpoint, implicit, between the feature spaces of the two domains, we
f(z) can be written a$>(y|z). In our document classification say that the source and target domainsretated
example,) is the set of all labels, which is True, False for a
binary classification task, ang is “True” or “False”.

For simplicity, in this survey, we only consider the cas
where there is one source domd, and one target domain,
Dr, as this is by far the most popular of the research works ip transfer learning we have the following three main research
the literature. More specifically, we denote theurce domain issues: (1) What to transfer; (2) How to transfer; (3) When to
dataas Ds = {(zs,,ys,).-- ., (xs,_,ys,.)}, Wherexzs, € transfer. _

Xg is the data instance angk, € Vs is the corresponding “What to transfer” asks which part of knowledge can
class label. In our document classification examilg, can be transferred across domains or tasks. Some knowledge is
be a set of term vectors together with their associated trueSfcific for individual domains or tasks, and some knowledge
false class labels. Similarly, we denote the target domain d&t&y be common between different domains such that they may

2.3 A Categorization of Transfer Learning Tech-
iques

asDy = {(zr,,y1,);- .-, (1, ,yr. )}, where the input:;, Nelp improve performance for the target domain or task. After

is in X7 andyr, € Yy is the corresponding output. In mostdiscovering which knowledge can be transferred, learning

casesp) < ny < ng. algorithms need to be developed to transfer the knowledge,
We now give a unified definition of transfer learning. ~ Which corresponds to the “how to transfer” issue.

o ) ] ] “When to transfer” asks in which situations, transferring
Definition 1 (Transfer Learning)Given a source domai®s  gills should be done. Likewise, we are interested in knowing
and leamning tasK’s, a target domairDr and leaming task j, which situations, knowledge shouttbt be transferred. In
7r, transfer learningaims to help improve the learning of thegome situations, when the source domain and target domain are
target predictive functiorfz(-) in Dy using the knowledge in ot rejated to each other, brute-force transfer may be unsuc-
Ds and7s, whereDs # Dr, or Ts # Tr. cessful. In the worst case, it may even hurt the performance

In the above definition, adomainis a pmr: {X’ P(X)} of Iearning in the target domain, a situation which is often
Thus the conditiorDg # Dy implies that eithetYs # X or referred to asiegative transferMost current work on transfer
Ps(X) # Pr(X). For example, in our document classificatiof¢arning focuses on “What to transfer” and “How to transfer”,
example, this means that between a source document set Bydmplicitly assuming that the source and target domains be
a target document set, either the term features are differépigted to each other. However, how to avoid negative transfer
between the two sets (e.g., they use different languages),o@n important open issue that is attracting more and more
their marginal distributions are different. attention in the future.

Similarly, a task is defined as a palf = {V, P(Y|X)}. Based on the definition of transfer learning, we summarize
Thus the conditionZs # 77 implies that eitherYs # Yr the relationship between traditional machine learning and var-
or P(Ys|Xg) # P(Yr|Xr). When the target and sourcelous transfer learning settings in Table 1, where we categorize
domains are the same, iBgs = Dr, and their learning tasks transfer learning under three sub-settingsjuctive trans-
are the same, i.e7s = 77, the learning problem becomedfer learning transductive transfer learningnd unsupervised
a traditional machine learning problem. When the domaifi@nsfer learning based on different situations between the
are different, then either (1) the feature spaces between §@irce and target domains and tasks.
domains are different, i.eXs # Xp, or (2) the feature 1) Intheinductive transfer learningetting, the target task
spaces between the domains are the same but the marginal is different from the source task, no matter when the
probability distributions between domain data are different;  source and target domains are the same or not.
ie. P(Xg) # P(Xr), where Xg, € Xs and X, € Xr. In this case, some labeled data in the target domain are
As an example, in our document classification example, case required toinducean objective predictive modefr(-)

(1) corresponds to when the two sets of documents are for use in the target domain. In addition, according to
described in different languages, and case (2) may correspond different situations of labeled and unlabeled data in the
to when the source domain documents and the target domain source domain, we can further categorize itheguctive
documents focus on different topics. transfer learningsetting into two cases:



2)

3)

The relationship between the different settings of transfgr

TABLE 1
Relationship between Traditional Machine Learning and Various Transfer Learning Settings

Learning Settings Source and Target Domains | Source and Target Tasks
Traditional Machine Learning the same the same
Inductive Transfer Learning the same different but related
Transfer Learning | Unsupervised Transfer Learning different but related different but related
Transductive Transfer Learning different but related the same

(1.1) A lot of labeled data in the source domain are Approaches to transfer learning in the above three different
available. In this case, thmductive transfer learning settings can be summarized into four cases based on “What to
setting is similar to the multi-task learning settingtransfer”. Table 3 shows these four cases and brief description.
However, theinductive transfer learningsetting only The first context can be referred to as instance-based transfer-
aims at achieving high performance in the target tas&arning (or instance-transfer) approach [6], [28], [29], [30],
by transferring knowledge from the source task whilf81], [24], [32], [33], [34], [35], which assumes that certain
multi-task learning tries to learn the target and sourgearts of the data in the source domain can be reused for
task simultaneously. learning in the target domain bge-weighting Instance re-
(1.2) No labeled data in the source domain are availablgeighting and importance sampling are two major techniques
In this case, thdanductive transfer learningsetting is in this context.

similar to the self-taught learningsetting, which is A second case can be referred to as feature-representation-
first proposed by Rain&t al.[22]. In the self-taught transfer approach [22], [36], [37], [38], [39], [8]. [40], [41],
learning setting, the label spaces between the soufd@], [43], [44]. The intuitive idea behind this case is to learn
and target domains may be different, which impliea “good” feature representation for the target domain. In this
the side information of the source domain cannot hbease, the knowledge used to transfer across domains is encoded
used directly. Thus, it's similar to the inductive transfeinto the learned feature representation. With the new feature
learning setting where the labeled data in the soureepresentation, the performance of the target task is expected
domain are unavailable. to improve significantly.

In thetransductive transfer learningetting, the source A third case can be referred to as parameter-transfer ap-
and target tasks are the same, while the source and tafgetach [45], [46], [47], [48], [49], which assumes that the
domains are different. source tasks and the target tasks share some parameters or
In this situation, no labeled data in the target domaiprior distributions of the hyper-parameters of the models. The
are available while a lot of labeled data in the souragansferred knowledge is encoded into the shared parameters
domain are available. In addition, according to differendr priors. Thus, by discovering the shared parameters or priors,
situations between the source and target domains, Weowledge can be transferred across tasks.

can further categorize theansductive transfer learning  Finally, the last case can be referred to as the relational-

setting into two cases. knowledge-transfer problem [50], which deals with transfer
(2.1) The feature spaces between the source and targaining for relational domains. The basic assumption behind
domains are differentYs # X'r. this context is that some relationship among the data in the

(2.2) The feature spaces between domains are the sagtirce and target domains are similar. Thus, the knowledge
Xg = Xp, but the marginal probability distributions ofto be transferred is the relationship among the data. Recently,
the input data are differenf?(Xs) # P(Xr). statistical relational learning techniques dominate this context
The latter case of thdransductive transfer learning [51], [52].

setting is related to domain adaptation for knowledge Table 4 shows the cases where the different approaches
transfer in text classification [23] and sample selectiofre used for each transfer learning setting. We can see that
bias [24] or co-variate shift [25], whose assumptions at@e inductive transfer learningsetting has been studied in
similar. many research works, while thimsupervised transfer learning
Finally, in the unsupervised transfer learningetting, setting is a relatively new research topic and only studied
similar to inductive transfer learningetting, the target in the context of thefeature-representation-transferase. In
task is different from but related to the source taskddition, thefeature-representation-transfe@roblem has been
However, theunsupervised transfer learninfpcus on proposed to all three settings of transfer learning. However,
solving unsupervised learning tasks in the target domathe parameter-transferand therelational-knowledge-transfer
such as clustering, dimensionality reduction and densigpproach are only studied in theductive transfer learning

estimation [26], [27]. In this case, there are no labelegktting, which we discuss in detail below.
data available in both source and target domains in

training.
INDUCTIVE TRANSFER LEARNING

learning and the related areas are summarized in Table 2 &wefinition 2 (Inductive Transfer LearningiGiven a source
Figure 2. domainDg and a learning taskg, a target domairDr and



TABLE 2
Different Settings of Transfer Learning
Transfer Learning Settings Related Areas Source Domain Labels Target Domain Label§ Tasks
Inductive Transfer Learning Multi-task Learning Available Available Regression,
Classification
Self-taught Learning Unavailable Available Regression,
Classification
Transductive Transfer Learningl Domain Adaptation, Sample Available Unavailable Regression,
Selection Bias, Co-variate Shift Classification
Unsupervised Transfer Learning Unavailable Unavailable Clustering,
Dimensionality
Reduction

Self-taught
/ |-ase < Leaming

No labeled data in a source domain £

Inductive Transfer

/ Learning

T eoeflesd i 2ive vkl H Labeled data are available in a source domain

e Source and Multi-task
'-C ase 2 target tasks are {5 R
learnt Learning

simultaneously

Transfer ———_ i Labeled dataare

Assumption:

Learning “":0‘111‘12? d";iln};]‘ﬁ a | Transductive | —i diffrent > Domain
Transfer Learning l«— domainsbut & A dqaptation
single task
No labeled data in
both source and Assumption: single
target domain domain and single task
\ Unsuperv1se§1 Sample Selection Bias
Transfer Learning /Covariance Shift

Fig. 2. An Overview of Different Settings of Transfer

TABLE 3
Different Approaches to Transfer Learning

Transfer Learning Approaches Brief Description
Instance-transfer To re-weight some labeled data in the source domain for use in the target domain [6], [28]}, [29],
[30], [31], [24], [32], [33], [34], [35].
Feature-representation-transfer Find a “good” feature representation that reduces difference between the source and the target
domains and the error of classification and regression models [22], [36], [37], [38], [39]} [8],

[40], [41], [42], [43], [44].

Parameter-transfer Discover shared parameters or priors between the source domain and target domain models, which
can benefit for transfer learning [45], [46], [47], [48], [49].
Relational-knowledge-transfer Build mapping of relational knowledge between the source domain and the target domains. Both

domains are relational domains and i.i.d assumption is relaxed in each domain [50], [51],|[52].

TABLE 4
Different Approaches Used in Different Settings

Inductive Transfer Learning Transductive Transfer Learning Unsupervised Transfer Learning

i
Vv v

Instance-transfer
Feature-representation-transfer
Parameter-transfer
Relational-knowledge-transfer

<<




a learning taskZr, inductive transfer learningims to help source domain data. If a lot of labeled data in the source
improve the learning of the target predictive functifn(-) in domain are available, supervised learning methods can be
Dr using the knowledge ig and7g, where7g # Tr. used to construct a feature representation. This is similar to
Based on the above definition of theductive transfer common feature Iearningw the field of muIti-Fask Iearni.ng
learning setting, a few labeled data in the target domain a%o]' I no labeled Qata in the source domain are available,

. o .. uhsupervised learning methods are proposed to construct the
required as the training data fnduce the target predictive feature representation
function. As mentioned in Section 2.3, this setting has two '
cases: (1) Labeled data in the source domain are available; ) _
(2) Labeled data in the source domain are unavailable white>-1 ~Supervised Feature Construction
unlabeled data in the source domain are available. Mdstipervised feature construction methods for thductive
transfer learning approaches in this setting focus on the fornteansfer learningsetting are similar to those used in multi-
case. task learning. The basic idea is to learn a low-dimensional
representation that is shared across related tasks. In addition,
the learned new representation can reduce the classification
or regression model error of each task as well. Argyraiu
Theinstance-transfer approado the inductive transfer learn- 3. [40] proposed a sparse feature learning method for multi-
ing setting is intuitively appealing: although the source domajisk learning. In thenductive transfer learningsetting, the

data cannot be reused directly, there are certain parts of gitnmon features can be learned by solving an optimization
data that can still be reused together with a few labeled d@fgblem, given as follows.

in the target domain.
Dai et al.[6] proposed a boosting algorithniyAdaBoost

3.1 Transferring Knowledge of Instances

¢

arg min Z ZL(ytm <ata UTxti>) + ’7”"4”371 (1)

which is an extension of thAdaBoostalgorithm, to address AU o o
theinductive transfer learningrroblems.TrAdaBoostassumes te{T 5} ;7
that the source and target domain data use exactly the same set 5t UecO

of features and labels, but the distributions of the data in the , . . .
. ) o I this equation,S and 7' denote the tasks in the source
two domains are different. In additiofrAdaBoostassumes . ' . %2
: L domain and target domain, respectively= [ag,ar] € R
that, due to the difference in distributions between the source : . .
IS"a matrix of parameterd/ is a d x d orthogonal matrix

and the target domains, some of the source domain data may . ; . o : . :
”& pping function) for mapping the original high-dimensional

be useful in learning for the target domain but some of the Lta to low-dimensional representations. Tirep)-norm of
may not and could even be harmful. It attempts to iterative P - \ep

. . L d illp % - .
re-weight the source domain data to reduce the effect of tf%(eIS defined as“AHW = (i ”a.H”) ..The opt|m|zat|on_
“bad” source data while encourage the “good” source d oblem (1) estimates the low-dimensional representations

T
to contribute more for the target domain. For each round of XTt’_ u )_iﬁ andt_th_e p;_arametslr%, Olf the ?O?eltst t?e
iteration, TrAdaBoostrains the base classifier on the weighte ame time. The optimization problem (1) can be further trans-

source and target data. The error is only calculated on émed into an equivalent convex optimization formulation and

target data. Furthermor&fAdaBoosuses the same strategy a € solve((jj eff|C|enttIyi In a ';O".OWI'.UD \]lgvork, Arginoet aI.£41] ;
AdaBoostto update the incorrectly classified examples in {HOPOSEd a Spectral regularization framework on matrices for

target domain while using a different strategy fréxdaBoost muLIt|-task|st£;cture Iear(rjung. o laorithm f
to update the incorrectly classified source examples in the eeet al.[42] proposed a convex optimization algorithm for

source domain. Theoretical analysis BfAdaBoostin also simultaneously learning meta-priors and feature weights from
given in [6] an ensemble of related prediction tasks. The meta-priors can
Jiang and Zhai [30] proposed a heuristic method to remo@g transferred among different tasks. Jebara [43] proposed to

“misleading” training examples from the source domain basé lect featl_Jres for multi-task learning with SVMS' RUCIEM
on the difference between conditional probabilitieéyz|ar) al.[54] designed a kernel-based approach to inductive transfer,

and P(ys|zs). Liao et al.[31] proposed a new active Iearningwhich aims at finding a suitable kernel for the target data.

method to select the unlabeled data in a target domain to ] .

be labeled with the help of the source domain data. Wu afe?-2 Unsupervised Feature Construction

Dietterich [53] integrated the source domain (auxiliary) data an [22], Rainaet al.proposed to apply sparse coding [55],
SVM framework for improving the classification performancewhich is an unsupervised feature construction method, for
learninghigher levelfeatures for transfer learning. The basic
idea of this approach consists of two steps. In the first step,
higher-level basis vectorls= {b;,bs,...,bs} are learned on

) . ] the source domain data by solving the optimization problem
The feature-representation-transfer approach toirtdactive (2) as shown as follows,
transfer learning problem aims at finding “good” feature
representations to minimize domain divergence and classifi- min lzs, = >°; ab.b;113 + Bllas,
cation or regression model error. Strategies to find “good” wb 3 /

feature representations are different for different types of the s.t. bjlls <1,¥j€l,....s

3.2 Transferring Knowledge of Feature Representa-
tions

1 )



In this equationagi is a new representation of badis for In inductive transfer learning
input g, and § is a coefficient to balance the feature con-
struction term and the regularization term. After learning the

basis vectors, in the second step, an optimization algorithiiyhere g andwy are parameters of the SVMs for the source
(3) is applied on the target domain data to lebigher level task and the target learning task, respectivelyis a common

wg = wo +vs and wp = wy + v,

features based on the basis vectors parameter whilevs and vy are specific parameters for the
« . . i paII2 ‘ 3) source task and the target task, respectively. By assuyipirg
o, arga;?m e, ZaTi ill2 + Bllar, | 3) wy - = to be a hyper-plane for task an extension of SVMs

! to multi-task learning case can be written as the following:

Finally, discriminative algorithms can be applied {o7, }'s

with corresponding labels to train classification or regressi%‘gifl&i J(wo, v, &) (4)
models for use in the target domain. One drawback of this ne

method is that the s_o-(_:alled hig_he_r-le\_/el basis vectors learned - Z an + A Z llvell? + Azlwoll?
on the source domain in the optimization problem (2) may not te(S.T} i=1 2 te(S.T}

be suitable for use in the target domain. sty (wo+ve) wy, > 1— &,

Recently, manifold learning methods have been adapted for .
transfer learning. In [44], Wang and Mahadevan proposed &, 20, 1€{1,2,.,m} and t € {S,T}.

a Procrustes analysis based approach to manifold alignmgitsolving the optimization problem above, we can learn the
without correspondences, which can be used to transfer figametersy, vs and vy simultaneously.

knowledge across domains via the aligned manifolds. Several researchers have pursued the parameter transfer
approach further. Gaet al.[49] proposed a locally weighted
3.3 Transferring Knowledge of Parameters ensemble learning framework to combine multiple models for

transfer learning, where the weights are dynamically assigned

Most parameter-transfer approaches to itiuctive transfer ,..,4ing to a model's predictive power on each test example
learningsetting assume that individual models for related tas'iﬁthe target domain

should share some parameters or prior distributions of hyper-
parameters. Most approaches described in this section, includ- ) )
ing a regularization framework and a hierarchical Bayesigh# Transferring Relational Knowledge
framework, are designed to work under multi-task learnin@ifferent from other three contexts, the relational-knowledge-
However, they can be easily modified for transfer learningansfer approach deals with transfer learning problems in
As mentioned above, multi-task learning tries to learn botelational domains, where the data are non-i.i.d. and can be
the source and target tasks simultaneously and perfectly, whid@resented by multiple relations, such as networked data and
transfer learning only aims at boosting the performance sécial network data. This approach does not assume that the
the target domain by utilizing the source domain data. Thugata drawn from each domain be independent and identically
in multi-task learning, weights of the loss functions for thelistributed (i.i.d.) as traditionally assumed. It tries to transfer
source and target data are the same. In contrast, in transfer relationship among data from a source domain to a
learning, weights in the loss functions for different domaingrget domain. In this contexstatistical relational learning
can be different. Intuitively, we may assign a larger weight t@chniquesare proposed to solve these problems.
the loss function of the target domain to make sure that weMihalkova et al.[50] proposed an algorithiTAMAR that
can achieve better performance in the target domain. transfers relational knowledge with Markov Logic Networks
Lawrence and Platt [45] proposed an efficient algorithfMLNs) across relational domains. MLNs [56] is a powerful
known as MT-IVM, which is based on Gaussian Processtsrmalism, which combines the compact expressiveness of
(GP), to handle the multi-task learning case. MT-IVM tries téirst order logic with flexibility of probability, for statistical
learn parameters of a Gaussian Process over multiple taskgddgtional learning. In MLNs, entities in a relational domain
sharing the same GP prior. Bonikd al.[46] also investigated are represented by predicates and their relationships are rep-
multi-task learning in the context of GP. The authors proposeelsented in first-order logicCAMARis motivated by the fact
to use a free-form covariance matrix over tasks to modgiat if two domains are related to each other, there may exist
inter-task dependencies, where a GP prior is used to indunappings to connect entities and their relationships from a
correlations between tasks. Schwaighaderl.[47] proposed source domain to a target domain. For example, a professor
to use a hierarchical Bayesian framework (HB) together witten be considered as playing a similar role in an academic
GP for multi-task learning. domain as a manager in an industrial management domain.
Besides transferring the priors of the GP models, sonhe addition, the relationship between a professor and his or
researchers also proposed to transfer parameters of SMMs students is similar to the relationship between a manager
under a regularization framework. Evgeniou and Pontil [4&nd his or her workers. Thus, there may exist a mapping
borrowed the idea of HB to SVMs for multi-task learningfrom professor to manager and a mapping from the professor-
The proposed method assumed that the parametér,SVMs  student relationship to the manager-worker relationship. In this
for each task can be separated into two terms. One isvein, TAMARIries to use an MLN learned for a source domain
common term over tasks and the other is a task-specific tetmaid in the learning of an MLN for a target domain. Basically,



TAMARIs a two-stage algorithm. In the first step, a mappinigarning, we also assume that some target-domain unlabeled
is constructed from a source MLN to the target domain basddta be given. In the above definition of transductive transfer
on weighted pseudo loglikelihood measure (WPLL). In thkearning, the source and target tasks are the same, which
second step, a revision is done for the mapped structure in timplies that one can adapt the predictive function learned
target domain through theORTEalgorithm [57], which is an in the source domain for use in the target domain through
inductive logic programming (ILP) algorithm for revising firstsome unlabeled target-domain data. As mentioned in Section
order theories. The revised MLN can be used as a relatio2aB, this setting can be split to two cases: (a) The feature
model for inference or reasoning in the target domain. spaces between the source and target domains are different,
In the AAAI-2008 workshop on transfer learning for com-Xs # Xr, and (b) the feature spaces between domains are the
plex tasks*, Mihalkova et al.[51] extendedTAMARto the same,Xs = X7, but the marginal probability distributions of
single-entity-centered setting of transfer learning, where ortlye input data are differenf(Xgs) # P(Xr). This is similar
one entity in a target domain is available. Daeis al.[52] to the requirements in domain adaptation and sample selection
proposed an approach to transferring relational knowledb&s. Most approaches described in the following sections are
based on a form of second-order Markov logic. The basielated to case (b) above.
idea of the algorithm is to discover structural regularities in
the source domain in the form of Markov logic formulast.1 Transferring the Knowledge of Instances

with predicate variables, by instantiating these formulas wif}st instance-transfer approaches to ttemsductive transfer

predicates from the target domain. learning setting are motivated by importance sampling. To
see how importance sampling based methods may help in
4 TRANSDUCTIVE TRANSFER LEARNING this setting, we first review the problem of empirical risk

The termtransductive transfer learningvas first proposed minimization (ERM) [60]. In general, we might want to learn
by Arnold et al.[58], where they required that the sourcéhe optimal parameterg” of the model by minimizing the
and target tasks be the same, although the domains mayekpected risk,

different. On top of these conditions, they further required 0" — are minE [i(z,.0)]

that that all unlabeled data in the target domain are available %e@ () €P T Y Bl

at training time, but we believe that this condition can b\?/herel(x,y,e) is a loss function that depends on the para-

relaxed; instead, in our definition of thensductive transfer meterd. However, since it is hard to estimate the probability
learning setting, we only require thapart of the unlabeled distribution P, we choose to minimize the ERM instead,
target data be seen at training time in order to obtain the N
marginal probability for the target data. 0" — ar minl Ut v 6

Note that the word ’transductive’ is used with several mean- %e@ n ;[ (i, 9, 0)]
ings. In the traditional machine learning settitgnsductive wheren is size of the training data
Iearn_ing [59] refers to thg -situf’ition where all test data are ||n tr:le transductive transfegr Iearﬁing;etting we want to
required to be seen at training time, and that the learned mo%e m an optimal model for the target domair’1 by minimizing
cannot be reused for future data. Thus, when some new tt%% expected risk
data arrive, they must be classified together with all existing P '
data. In our categorization of transfer learning, in contrast, we 6* = arg min Z P(D7)l(z,y,0).
use the terntransductiveto emphasize the concept that in this 0€©  (1y)eDr
type of transfer learning, the tasks must be the same and thﬁ

. . 6%vever, since no labeled data in the target domain are
must be some unlabeled data available in the target domalg

bserved in training data, we have to learn a model from the
Definition 3 (Transductive Transfer Learningiven a source source domain data instead A{Ds) = P(Dr), then we may
domainDg and a corresponding learning taSk, a target simply learn the model by solving the following optimization
domainD+ and a corresponding learning taBk, transductive problem for use in the target domain,

transfer learningaims to improve the learning of the target X .

predictive functionfr(-) in Dr using the knowledge iDg = ar%ergm Z P(Ds)i(.y.6).

and 7g, whereDg # Dy and 7s = 7. In addition, some (@y)€Ds
unlabeled target domain data must be available at training tintherwise, whenP(Dgs) # P(Dr), we need to modify
the above optimization problem to learn a model with high

This definition covers the work of Arnolet al.[58], since generalization ability for the target domain, as follows:

the latter consideredomain adaptationwhere the difference

lies between the marginal probability distributions of source g« _ 0 min P(DT)P(DS)l(x,y,G)
and target data; i.e., the tasks are the same but the domains oco ( Tn. P(Ds)
are different. .
Similar to the traditional transductive learning setting, which A arg min Z Pr(en,yr) Uzs,,ys,,0). (5)
aims to make the best use of the unlabeled test data for learn- bco ‘= Ps(zs,ys,) 7

ing, in our classification scheme under transductive tra”StPﬁerefore, by adding different penalty values to each instance
Pr(zr, yr;)

4. http:/iwww.cs.utexas.edumtaylor/AAAIOSTL/ (zs;,ys;) with the corresponding weig S(zsys,) WE Can



learn a precise model for the target domain. Furthermoigetween the domains. The first step of SCL is to define a set
since P(Yr|X7) = P(Ys|Xs). Thus the difference betweenof pivot features® (the number ofpivot feature is denoted
P(Dg) and P(Dr) is caused byP(Xs) and P(Xr) and by m) on the unlabeled data from both domains. Then, SCL
I;ngTi ;/T; _ ’;Ez;; If we can estimatei(i;fj) for each removes thespivotfeatures from the data and treats epistot
instance, we can solve thansductive transfer learning feature as a new label vector. The classification problems
problems. can be constructed. By assuming each problem can be solved

There exist various ways to estimatggzi%;. Zadrozny by linear classifier, which is shown as follows,
[24] proposed to estimate the term3(zg,) and P(zr,) filz) = sgn(wT - z), I=1,...,m
independently by constructing simple classification problems.
Fanet al.[35] further analyzed the problems by using variou§CL can learn a matri¥’ = [wiws . .. wy,| of parameters. In
classifiers to estimate the probability ratio. Huastgal.[32] the third step, singular value decomposition (SVD) is applied
proposed a kernel-mean matching (KMM) algorithm to lea® matrix W = [wiwy...w,,]. Let W = UDVT, then

Pls) directly by matching the means between the sourfe= Ui,y (b is the number of the shared features) is the

Pz, . H . .
domain data and the target domain data in a reproducif§2trix (linear mapping) whose rows are the top left singular

kernel Hilbert space (RKHS). KMM can be rewritten as thyectors of W. Finally, standard discriminative algorithms can
be applied to the augmented feature vector to build models.

following quadratic programming (QP) optimization problem; ) -
The augmented feature vector contains all the original feature
min 1BTKB - k"B (6) x; appended with the new shared featufes. As mentioned
A s in [38], if the pivot features are well designed, then the
st i €[0,B] and |35 Bi —ns| < nse learned mapping encodes the correspondence between the

Kss Ksr J features from the different domains. Although Ben-David and

whereK = Krs Kror andKi; = k(zi, z;). Ks,s and - gchyller [61] showed experimentally that SCL can reduce the

Kr.r are kernel matrices for the source domain data and tHiéference between domains, how to select piwot features
target domain data, respectively; = 2s Z;‘jl k(z;,zr,), s difficult and domain-dependent. In [38], Blitzet al.used a

nr = J .. .
wherez; € Xg|J X7, while 27, € Xr. heuristic method to select pivot features for natural language

It can be proved that; — P(zs,) [32]. An advantage of processing (NLP) problems, such as tagging of sentences. In

P(le) R . . . i -
using KMM is that it can avoid performing density estimatiof"€i" follow-up work, the researchers proposed to use Mutual

of either P(zs,) or P(zr,), which is difficult when the size Information (MI) to choose the pivot features instead of using

of the data set is small. Sugiyane al.[34] proposed an more heuristic criteria [8]. MI-SCL tries to find some pivot
algorithm known as Kullback-Leibler Importance Estimatiofc2tures that have high dependence on the labels in the source

. P(zs,) omain.
Procedure (KLIEP) to estlmatg(x—n) directly, based on the Transfer learning in the NLP domain is sometimes re-

minimization of the Kullback-Leibler divergence. KLIEP Caoired to as domain adaptation. In this area, Daujag]
be integrated with cross-validation to perform model seleérI y '

. . . ] o >~ ~proposed a kernel-mapping function for NLP problems, which
tion automatically in two steps: (1) estimating the weigh aps the data from both source and target domains to a
of the source domain data; (2) training models on the reg- . . L
weighted data. Bickekt al.[33] combined the two steps in ﬁ|gh dimensional feature space, where standard discriminative

- - . ._learning methods are used to train the classifiers. However,
a unified framework by deriving a kernel-logistic regressio

classifier. Besides sample re-weighting techniques. ©ai the constructed kernel mapping function is domain knowledge
|28 >.(t nded a tr ditipn | Naiv gB g ian cl q i ,rf rthdriven. It is not easy to generalize the kernel mapping to other
al. [28] extended a traditional Naive Bayesian classifier fo Kreas or applications. Blitzeat al.[62] analyzed the uniform

tran tive transfer learning problems. For more informati :
ansductive transfer learning problems. For more informa c3:r<‘5nvergence bounds for algorithms that minimized a convex

on importance sampling and re-weighting methods for “@ombination of source and target empirical risks.

variate shift or sample selection bias, readers can refer to 3, [36], Dai et al.proposed a co-clustering based algorithm
recently published book [29] by Quionero-Candela et al. On ' -Prop g 9

can also consult a tutorial on Sample Selection Bias by F%\Sn propagate the label information across different domains.
and Sugiyama in ICDM-08. n [63], Xing et al.proposed a novel algorithm known as

bridged refinemento correct the labels predicted by a shift-

unaware classifier towards a target distribution and take the
4.2 Transferring Knowledge of Feature Representa- mixture distribution of the training and test data as a bridge to
tions better transfer from the training data to the test data. In [64],

Most feature-representation transfer approaches to the trad§9 et al.proposed a spectral classification framework for
ductive transfer learning setting are under unsupervised leaff@SS-domain transfer learning problem, where the objective
ing frameworks. Blitzeret al.[38] proposed a structural cor-function is introduced to seek consistency between the in-
respondence learning (SCL) algorithm, which extends [37tjpmain supervision and the out-of-domain intrinsic structure.
to make use of the unlabeled data from the target domain!fb[65], Xue et al.proposed a cross-domain text classification

extract some revelent features that may reduce the differe@g@orithm that extended the traditional probabilistic latent
semantic analysis (PLSA) algorithm to integrate labeled and

5. Tutorial slides can be found at http://www.cs.columbia.edu/
fan/PPT/ICDMO08SampleBias.ppt 6. Thepivot features are domain specific and depend on prior knowledge
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unlabeled data from different but related domains, into A&n iterative algorithm for solving the optimization function

unified probabilistic model. The new model is called Topic8) was given in [26].

bridged PLSA, or TPLSA. Similarly, [27] proposed #ransferred discriminative analy-
Transfer learning via dimensionality reduction was resis (TDA) algorithm to solve thetransfer dimensionality

cently proposed by Pan et al. [66]. In this work, Panh reduction problem. TDA first applies clustering methods to

al. exploited the Maximum Mean Discrepancy Embeddingenerate pseudo-class labels for the target unlabeled data. It

(MMDE) method, originally designed for dimensionality rethen applies dimensionality reduction methods to the target

duction, to learn a low dimensional space to reduce tliata and labeled source data to reduce the dimensions. These

difference of distributions between different domains for transao steps run iteratively to find the best subspace for the target

ductive transfer learning. However, MMDE may suffer frondata.

its computational burden. Thus, in [67], Pat al.further

proposed an efficient feature extraction algorithm, known & TRANSFER BOUNDS AND NEGATIVE

Transfer Component Analysis (TCA) to overcome the drawrp ANSEER

back of MMDE. . . . . .
An important issue is to recognize the limit of the power of

transfer learning. In [68], Hassan Mahmud and Ray analyzed
5 UNSUPERVISED TRANSFER LEARNING the case of transfer learning using Kolmogorov complexity,
Definition 4 (Unsupervised Transfer Learningsiven a where some theoretical bounds are proved. In particular, the
source domaiDs with a learning task’s, a target domai®7  authors used conditional Kolmogorov complexity to measure
and a corresponding learning tagk, unsupervised transfer relatedness between tasks and transfer the “right” amount
learning aims to help improve the learning of the targedf information in a sequential transfer learning task under a
predictive functionfr(-) 7 in Dy using the knowledge iPs  Bayesian framework.
and7s, where7s # 7y andYs and Y are not observable.  Recently, Eatoret al.[69] proposed a novel graph-based
method for knowledge transfer, where the relationships be-
/gen source tasks are modeled by embedding the set of

target domains in training. So far, there is little research wo ﬁarn.ed source models in a graph using transferablhty as the
on this setting. RecenthySelf-taught clusteringSTC) [26] metric. Transferring to a new task proceeds by mapping the

and transferred discriminative analysis (TDA) [27] aIgorithmBrObIem into the graph and thep learning a function on this
are proposed to transfer clustering and transfer dimensiona bh that automatically determines the parameters to transfer

reduction problems, respectively. to'the new leaming task. .
Negative transfer happens when the source domain data and

task contribute to the reduced performance of learning in the
target domain. Despite the fact that how to avoid negative
transfer is a very important issue, little research work has
Dai et al.[26] studied a new case of clustering problemsyeen published on this topic. Rosensteiral.[70] empirically
known asself-taught clusteringSelf-taught clusterings an showed that if two tasks are too dissimilar, then brute-force
instance ofunsupervised transfer learningvhich aims at transfer may hurt the performance of the target task. Some
clustering a small collection of unlabeled data in the targaforks have been exploited to analyze relatedness among tasks
domain with the help of a large amount of unlabeled data é#nd task clustering techniques, such as [71], [72], which
the source domain. STC tries to learn a common feature spaggy help provide guidance on how to avoid negative transfer
across domains, which helps in clustering in the target domaémutomatically. Bakker and Heskes [72] adopted a Bayesian
The objective function of STC is shown as follows. approach in which some of the model parameters are shared
J(XT Xs Z) ) fo_r all task_s and others more loosely connected through a joint
e o L prior distribution that can be learned from the data. Thus,
= I(X7,2Z2) - 1(X7,Z)+ X [I(XS,Z) - 1(Xs,2) the data are clustered based on the task parameters, where
. tasks in the same cluster are supposed to be related to each
where X and X7 are the source and target domain datgyye g Argyriouet al.[73] considered situations in which the
respectlvely.Z 'S a share.d featur-e space s and Xr, learning tasks can be divided into groups. Tasks within each
and I(-,-) is the mutual information between two rando roup are related by sharing a low-dimensional representation,

variables. Suppose that there exist three clustering functi Rich differs among different groups. As a result, tasks within

Cxr: X1 — X7, COx5 1 Xs = XsandCyz : Z — Z, where group can find it easier to transfer useful knowledge.
X7, Xg and Z are corresponding clusters &f;, Xg and Z,

respectively. The goal of STC is to leai; by solving the
optimization problem (7):

Based on the definition of thensupervised transfer learn-
ing setting, no labeled data are observed in the source

5.1 Transferring Knowledge of Feature Representa-
tions

7 APPLICATIONS OF TRANSFER LEARNING

) . . Recently, transfer learning techniques have been applied suc-
arg min J(Xr, Xs, Z) (8)  cessfully in many real-world applications. Raietal.[74] and
X, Xs,2 Dai et al.[36], [28] proposed to use transfer learning tech-

7. In unsupervised transfer learning, the predicted labels are latent variab[%@ues to learn text data across doma_ins’ respectively. Blitzer
such as clusters or reduced dimensions et al.[38] proposed to use SCL for solving NLP problems. An
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extension of SCL was proposed in [8] for solving sentiment data sets are categorized to a hierarchical structure.

classification problems. Wu and Dietterich [53] proposed to Data from different sub-categories under the same
use both inadequate target domain data and plenty of low parent category are considered to be from different
guality source domain data for image classification problems. but related domains. The task is to predict the labels
Arnold et al.[58] proposed to usransductive transfer learn- of the parent category.

ing methods to solve name-entity recognition problems. In Email This data set is provided by the 2006 ECML/PKDD
[75], [76], [77], [78], [79], transfer learning techniques are discovery challenge.

proposed to extract knowledge from WiFi localization models WiFi This data set is provided by the ICDM-2007 Contest
across time periods, space and mobile devices, to benefit WiFi 10, The data were collected inside a building for
localization tasks in other settings. Zhetal.[80] studied how localization around 45.5 x 37.5 m? in two different

to transfer domain knowledge to learn relational action models time periods.

across domains in automated planning. Sen This data set was first used in }8] This data set con-

In [81], Raykaret al.proposed a novel Bayesian multiple- tains product reviews downloaded from Amazon.com
instance learning algorithm, which can automatically identify from 4 product types (domains): Kitchen, Books,
the relevant feature subset and use inductive transfer for DVDs, and Electronics. Each domain has several
learning multiple, but conceptually related, classifiers, for thousand reviews, but the exact number varies by
computer aided design (CAD). In [82], Lirgt al.proposed an domain. Reviews contain star ratings (1 to 5 stars).

information-theoretic approach for transfer learning to addreggnpjrical Evaluation To show how much benefit transfer
the cross-language classification problefor translating Web |earning methods can bring as compared to traditional learning
pages from English to Chinese. The approach addressed f{i&hods, researchers have used some public data sets. We
problem when there are plenty of labeled English text daigow a list taken from some published transfer learning
whereas there are only a small number of labeled Chinese t8¥bers in Table 5. In [6], [84], [49], the authors used the 20
documents. Transfer learning across the two feature spacesNgRisgroups datd? as one of the evaluation data sets. Due
achieved by designing a suitable mapping function as a bridgg the differences in the preprocessing steps of the algorithms

So far, there are at least two international competitions baq%g different researchers, it is hard to compare the proposed
on transfer learning, which made available some much neegdgéthods directly. Thus, we denote them by 20-Newsgraups
pUb"C data. In the ECML/PKDD-2006 diSCOVEI’y.Chz':'.l”engQO_Newsgroupﬁand 20-Newsgroups respectively, and show
8 the task was to handle personalized spam filtering aftk comparison results between the proposed transfer learning
generalization across related learning tasks. For trainingpi:thods and non-transfer learning methods in the table.
spam-filtering syst(_am, we need tg collect a lot of emails from o, the 20 Newsgroupsdata, Daiet al.[6] showed the
a group of users with corresponding labeisamor not spam  comparison experiments between standard Support Vector
and train a classifier based on these data. For a new email Ugg{chine (SVM) and the proposed TrAdaBoost algorithm. On
we might want to adapt the learned model for the user. The Newsgroups Shi et al.[84] applied an active learning
challenge is that the distributions of emails for the first set %flgorithm to select important instances for transfer learning
users and the new user are different. Thu.s, this problem Q@ TraK) with TrAdaBoost and standard SVM. Gabal.[49]
be modeled as an inductive transfer learning problem, whighya|yated their proposed locally weighted ensemble learning
aims to adapt an old spam-filtering model to a new Situati%ﬂgorithms, pLWE and LWE, on the 20 Newsgroypsom-
with fewer training data and less training time. pared to SVM and Logistic Regression (LR).

A second data set was made available through the ICDM-j aqdition, in the table, we also show the comparison

2007 Contest, in which a task was to estimate a WiFi clientgsyits on the sentiment classification data set reported in [8].
indoor locations using the WiFi signal data obtained ovesp this data set, SGD denotes the stochastic gradient-descent
different periods of time [83]. Since the values of WiFhgorithm with Huber loss, SCL represents a linear predictor
signal strength may be a function of time, space and devicg the new representations learned by Structural Correspon-
dlstrlbL_ltlons of WiFi data over dn‘fer_ent time periods may bgence Learning algorithm, and SCL-MI is an extension of SCL
very different. Thus, transfer learning must be designed g applying Mutual Information to select the pivot features for
reduce the data re-labeling effort. the SCL algorithm.
Data Sets for Transfer Learning: So far, several data Finally, on the WiFi localization data set, we show the
sets have been pl'Jb.Ilshed for transfer Igarnmg r'ese'arch. %nparison results reported in [67], where the baseline is a
denote the text mining data sets, Email spam-filtering da{@y|arized least square regression model (RLSR), which is
set, the WiFi localization over time periods data set and thestandard regression model, and KPCA, which represents to
Sentiment classification data set Bgxt, Email, WiFi and 5551y RLSR on the new representations of the data learned by
Sen respectively. Kernel Principle Component Analysis. The compared transfer

Text Three data sets, 20 Newsgroups, SRAA and Reutefgarning methods include Kernel Mean Matching (KMM) and

21578, have been preprocessed for a transfer leanthe proposed algorithm, Transfer Component Analysis (TCA).
ing setting by some researchers. The data in these

10. http://www.cse.ust.hk/~qgyang/ICDMDMC2007
8. http://www.ecmlpkdd2006.org/challenge.html 11. http://lwww.cis.upenn.edu/~mdredze/datasets/sentiment/
9. http://apex.sjtu.edu.cn/apex_wiki/dwyak 12. http://people.csail.mit.edu/jrennie/20Newsgroups/
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For more detail about the experimental results, the readassume that the selected source domain is related to the target
may refer to the reference papers showed in the table. Frdomain.
these comparison results, we can find that the transfer learningn the future, several important research issues need to be
methods designed appropriately for real world applications caddressed. First, how to avoid negative transfer is an open
indeed improve the performance significantly compared to theoblem. As mentioned in Section 6, many proposed transfer
non-transfer learning methods. learning algorithms assume that the source and target domains
Toolboxes for Transfer Learning: Researchers at UC Berke-are related to each other in some sense. However, if the as-
ley provided a MATLAB toolkit for transfer learning®. sumption does not hold, negative transfer may happen, which
The toolkit contains algorithms and benchmark data sets foay cause the learner to perform worse than no transferring at
transfer learning. In addition, it provides a standard platforail. Thus, how to make sure that no negative transfer happens
for developing and testing new algorithms for transfer learning a crucial issue in transfer learning. In order to avoid negative
transfer learning, we need to first study transferability between
7.1 Other Applications of Transfer Learning source domains or.tgsks and target domains or tasks. Based on
. L , syitable transferability measures, we can then select relevant
Trans_fer Iearn_mg has found many applications in sequentigy .o qomains or tasks to extract knowledge from for learning
machine leaming as wel!. For exa”.‘p'e’ [85] proposed a granfle target tasks. To define the transferability between domains
based mgthod.for |dent|fy|ng previously encoqntered 9aMeR 4 tasks, we also need to define the criteria to measure the
and applied this technique to automate domain mapping ,&Fnilarity between domains or tasks. Based on the distance

value function transfer and speed up reinforcement leam'ﬂ%asures we can then cluster domains or tasks, which may
on variants of previously played games. A new approach ﬁ%l ' ’

tor b relv diff ; ' p measure transferability. A related issue is when an entire
transter between entirely different feature spaces Is propo ain cannot be used for transfer learning, whether we can

n translfated Iearmng Wh'Ch_ IS made possple by Iearr_nngsti” transfer part of the domain for useful learning in the target
a mapping function for bridging features in two entlrelydomain

different doma"ﬁs (images and te>_<t) [86]. Flnally,elll_al. [8_7]' . In addition, most existing transfer learning algorithms so far
[88] have applied transfer learning to collaborative f||ter|n%g

. cused on improving generalization across different distribu-
problems to solve the cold start and sparsity problems. In [87. ns between source and target domains or tasks. In doing so
Li et al. learned a shared rating-pattern mixture model, kno R !

; . . . ey assumed that the feature spaces between the source and
as a Rating-Matrix Generative Model (RMGM), in terms o y P

X . —, _target domains are the same. However, in many applications,
the latent user- and item-cluster variables. RMGM b”dg%e may wish to transfer knowledge across domains or tasks

multiple rating matrices from different domains by MappiNghat have different feature spaces, and transfer from multiple

the users z_and items in e_ach rating matrix onto the shared latgﬂéh source domains. We refer to this type of transfer learning
user and item spaces in order to transfer useful knowled% heterogeneous transfer learning

In [88], they applied co-clustering algorithms on users an Finally, so far transfer learning techniques have been mainly

gﬁgtse rl-r:e\allgl ?;)i(r;“azaﬁinfngnv\?:zs' ;réiﬁetgizkccénsggi?gm plied to small scale applications with a limited variety, such
ating ma . - - BY . sensor-network-based localization, text classification and
the target rating matrix (on movies) is related to the auxiliar:

one (on books), the target domain can be reconstructed |E'|age classification problems. In the future, transfer learning
' 9 thiques will be widely used to solve other challenging ap-

S)r(g:;:smg the codebook, completing the knowledge tr":1r15¥p1q‘|rcations, such as video classification, social network analysis

and logical inference.

8 CONCLUSIONS

In this survey article, we have reviewed several current trené(s:
of transfer learning. Transfer learning is classified to thré&e thank the support of Hong Kong CERG Project 621307
different settings: inductive transfer learning, transducti@&nd a grant from NEC China Lab.
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TABLE 5
Comparison between transfer learning and non-transfer learning methods

Data Set (reference) Source v.s. Target Baselines TL Methods

20 Newsgroups ([6]) SVM TrAdaBoost

ACC (unit: %) rec v.s. talk 87.3% 92.0%
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sci v.s. talk 82.3% 87.5%
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