
Introduction of Cache Memory 

  

1. Basic Cache Structure 

Processors are generally able to perform operations on operands faster 
than the access time of large capacity main memory. Though 
semiconductor memory which can operate at speeds comparable with the 
operation of the processor exists, it is not economical to provide all the 
main memory with very high speed semiconductor memory. The problem 
can be alleviated by introducing a small block of high speed memory 
called a cache between the main memory and the processor.  

The idea of cache memories is similar to virtual memory in that some 
active portion of a low-speed memory is stored in duplicate in a higher-
speed cache memory. When a memory request is generated, the request is 
first presented to the cache memory, and if the cache cannot respond, the 
request is then presented to main memory.  

The difference between cache and virtual memory is a matter of 
implementation; the two notions are conceptually the same because they 
both rely on the correlation properties observed in sequences of address 
references. Cache implementations are totally different from virtual 
memory implementation because of the speed requirements of cache.  

We define a cache miss to be a reference to a item that is not resident in 
cache, but is resident in main memory. The corresponding concept for 
cache memories is page fault, which is defined to be a reference to a page 
in virtual memory that is not resident in main memory. For cache misses, 
the fast memory is cache and the slow memory is main memory. For page 
faults the fast memory is main memory, and the slow memory is auxiliary 
memory. 

 



Fig 1. A cache-memory reference. The tag 0117X matches address 
01173, so the cache returns the item in the position X=3 of the matched 

block 

Figure 1 shows the structure of a typical cache memory. Each reference to 
a cell in memory is presented to the cache. The cache searches its 
directory of address tags shown in the figure to see if the item is in the 
cache. If the item is not in the cache, a miss occurs.  

For READ operations that cause a cache miss, the item is retrieved from 
main memory and copied into the cache. During the short period available 
before the main-memory operation is complete, some other item in cache 
is removed form the cache to make rood for the new item.  

The cache-replacement decision is critical; a good replacement algorithm 
can yield somewhat higher performance than can a bad replacement 
algorithm. The effective cycle-time of a cache memory (teff) is the average 
of cache-memory cycle time (tcache) and main-memory cycle time (tmain), 
where the probabilities in the averaging process are the probabilities of 
hits and misses.  

If we consider only READ operations, then a formula for the average 
cycle-time is:  

teff = tcache + ( 1 - h ) tmain  

where h is the probability of a cache hit (sometimes called the hit rate), the 
quantity ( 1 - h ), which is the probability of a miss, is know as the miss 
rate. 

In Fig.1 we show an item in the cache surrounded by nearby items, all of 
which are moved into and out of the cache together. We call such a group 
of data a block of the cache. 

  

2. Cache Memory Organizations 



 

fig.2 The logical organization of a four-way set-associate cache 

Fig.2 shows a conceptual implementation of a cache memory. This system 
is called set associative because the cache is partitioned into distinct sets 
of blocks, ad each set contains a small fixed number of blocks. The sets 
are represented by the rows in the figure. In this case, the cache has N sets, 
and each set contains four blocks. When an access occurs to this cache, the 
cache controller does not search the entire cache looking for a match. 
Instead, the controller maps the address to a particular set of the cache and 
searches only the set for a match.  

If the block is in the cache, it is guaranteed to be in the set that is searched. 
Hence, if the block is not in that set, the block is not present in the cache, 
and the cache controller searches no further. Because the search is 
conducted over four blocks, the cache is said to be four-way set 
associative or, equivalently, to have an associativity of four.  

Fig.2 is only one example, there are various ways that a cache can be 
arranged internally to store the cached data. In all cases, the processor 
reference the cache with the main memory address of the data it wants. 
Hence each cache organization must use this address to find the data in the 
cache if it is stored there, or to indicate to the processor when a miss has 
occurred. The problem of mapping the information held in the main 
memory into the cache must be totally implemented in hardware to 
achieve improvements in the system operation. Various strategies are 
possible. 

�� Fully associative mapping 



Perhaps the most obvious way of relating cached data to the 
main memory address is to store both memory address and 
data together in the cache. This the fully associative 
mapping approach. A fully associative cache requires the 
cache to be composed of associative memory holding both 
the memory address and the data for each cached line. The 
incoming memory address is simultaneously compared 
with all stored addresses using the internal logic of the 
associative memory, as shown in Fig.3. If a match is fund, 
the corresponding data is read out. Single words form 
anywhere within the main memory could be held in the 
cache, if the associative part of the cache is capable of 
holding a full address 

 

Fig.3 Cache with fully associative mapping 

In all organizations, the data can be more than one word, 
i.e., a block of consecutive locations to take advantage of 
spatial locality. In Fig.4 aline constitutes four words, each 
word being 4 bytes. The least significant part of the address 
selects the particular byte, the next part selects the word, 
and the remaining bits form the address compared to the 
address in the cache. The whole line can be transferred to 
and from the cache in one transaction if there are sufficient 
data paths between the main memory and the cache. With 
only one data word path, the words of the line have to be 
transferred in separate transactions. 



 

Fig.5 Fully associative mapped cache with multi-word lines 

The fully associate mapping cache gives the greatest 
flexibility of holding combinations of blocks in the cache 
and minimum conflict for a given sized cache, but is also 
the most expensive, due to the cost of the associative 
memory. It requires a replacement algorithm to select a 
block to remove upon a miss and the algorithm must be 
implemented in hardware to maintain a high speed of 
operation. The fully associative cache can only be formed 
economically with a moderate size capacity. 
Microprocessors with small internal caches often employ 
the fully associative mechanism. 

�� Direct mapping 

The fully associative cache is expensive to implement 
because of requiring a comparator with each cache 
location, effectively a special type of memory. In direct 
mapping, the cache consists of normal high speed random 
access memory, and each location in the cache holds the 
data, at an address in the cache given by the lower 
significant bits of the main memory address. This enables 
the block to be selected directly from the lower significant 
bits of the memory address. The remaining higher 
significant bits of the address are stored in the cache with 
the data to complete the identification of the cached data.  

Consider the example shown in Fig.5. The address from the 
processor is divided into tow fields, a tag and an index. The 



tag consists of the higher significant bits of the address, 
which are stored with the data. The index is the lower 
significant bits of the address used to address the cache. 

 

Fig.5 Cache with direct mapping 

When the memory is referenced, the index is first used to 
access a word in the cache. Then the tag stored in the 
accessed word is read and compared with the tag in the 
address. If the two tags are the same, indicating that the 
word is the one required, access is made to the addressed 
cache word. However, if the tags are not the same, 
indicating that the required word is not in the cache, 
reference is made to the main memory to find it. For a 
memory read operation, the word is then transferred into 
the cache where it is accessed. It is possible to pass the 
information to the cache and the processor simultaneously, 
i.e., to read-through the cache, on a miss. The cache 
location is altered for a write operation. The main memory 
may be altered at the same time (write-through) or later.  

Fig.6. shows the direct mapped cache with a line consisting 
of more than one word. The main memory address is 
composed of a tag, an index, and a word within a line. All 
the words within a line in the cache have the same stored 
tag. The index part to the address is used to access the 
cache and the stored tag is compared with required tag 
address. For a read operation, if the tags are the same the 
word within the block is selected for transfer to the 



processor. If the tags are not the same, the block containing 
the required word is first transferred to the cache. 

 

Fig.6 Direct mapped cache with a multi-word block 

In direct mapping, the corresponding blocks with the same 
index in the main memory will map into the same block in 
the cache, and hence only blocks with different indices can 
be in the cache at the same time. A replacement algorithm 
is unnecessary, since there is only one allowable location 
for each incoming block. Efficient replacement relies on 
the low probability of lines with the same index being 
required. However there are such occurrences, for example, 
when two data vectors are stored starting at the same index 
and pairs of elements need to processed together. To gain 
the greatest performance, data arrays and vectors need to be 
stored in a manner which minimizes the conflicts in 
processing pairs of elements. Fig.6 shows the lower bits of 
the processor address used to address the cache location 
directly. It is possible to introduce a mapping function 
between the address index and the cache index so that they 
are not the same. 

�� Set-associative mapping 

In the direct scheme, all words stored in the cache must 
have different indices. The tags may be the same or 
different. In the fully associative scheme, blocks can 
displace any other block and can be placed anywhere, but 



the cost of the fully associative memories operate relatively 
slowly. 

Set-associative mapping allows a limited number of blocks, 
with the same index and different tags, in the cache and can 
therefore be considered as a compromise between a fully 
associative cache and a direct mapped cache. The 
organization is shown in Fig.7. The cache is divided into 
"sets" of blocks. A four-way set associative cache would 
have four blocks in each set. The number of blocks in a set 
is know as the associativity or set size. Each block in each 
set has a stored tag which, together with the index, 
completes the identification of the block. First, the index of 
the address from the processor is used to access the set. 
Then, comparators are used to compare all tags of the 
selected set with the incoming tag. If a match is found, the 
corresponding location is accessed, other wise, as before, 
an access to the main memory is made. 

 

Fig.7 Cache with set-associative mapping 

The tag address bits are always chosen to be the most 
significant bits of the full address, the block address bits are 
the next significant bits and the word/byte address bits form 
the least significant bits as this spreads out consecutive man 
memory blocks throughout consecutive sets in the cache. 
This addressing format is known as bit selection and is used 
by all known systems. In a set-associative cache it would 



be possible to have the set address bits as the most 
significant bits of the address and the block address bits as 
the next significant, with the word within the block as the 
least significant bits, or with the block address bits as the 
least significant bits and the word within the block as the 
middle bits.  

Notice that the association between the stored tags and the 
incoming tag is done using comparators and can be shared 
for each associative search, and all the information, tags 
and data, can be stored in ordinary random access memory. 
The number of comparators required in the set-associative 
cache is given by the number of blocks in a set, not the 
number of blocks in all, as in a fully associative memory. 
The set can be selected quickly and all the blocks of the set 
can be read out simultaneously with the tags before waiting 
for the tag comparisons to be made. After a tag has been 
identified, the corresponding block can be selected.  

The replacement algorithm for set-associative mapping 
need only consider the lines in one set, as the choice of set 
is predetermined by the index in the address. Hence, with 
two blocks in each set, for example, only one additional bit 
is necessary in each set to identify the block to replace. 

�� Sector mapping 

In sector mapping, the main memory and the cache are both 
divided into sectors; each sector is composed of a number 
of blocks. Any sector in the main memory can map into any 
sector in the cache and a tag is stored with each sector in 
the cache to identify the main memory sector address. 
However, a complete sector is not transferred to the cache 
or back to the main memory as one unit. Instead, individual 
blocks are transferred as required. On cache sector miss, 
the required block of the sector is transferred into a specific 
location within one sector. The sector location in the cache 
is selected and all the other existing blocks in the sector in 
the cache are from a previous sector.  

Sector mapping might be regarded as a fully associative 
mapping scheme with valid bits, as in some microprocessor 
caches. Each block in the fully associative mapped cache 
corresponds to a sector, and each byte corresponds to a 
"sector block". 



  

3. Cache Performance 

The performance of a cache can be quantified in terms of the hit and miss 
rates, the cost of a hit, and the miss penalty, where a cache hit is a memory 
access that finds data in the cache and a cache miss is one that does not.  

When reading, the cost of a cache hit is roughly the time to access an entry 
in the cache. The miss penalty is the additional cost of replacing a cache 
line with one containing the desired data. 

(Access 
time) = (hit cost) + (miss rate)*(miss penalty)  

 =(Fast memory access time) + (miss rate)*(slow memory access 
time) 

Note that the approximation is an underestimate - control costs have been 
left out. Also note that only one word is being loaded from the faster 
memory while a whole cache block's worth of data is being loaded from 
the slower memory.  

Since the speeds of the actual memory used will be improving 
``independently'', most effort in cache design is spent on fast control and 
decreasing the miss rates. We can classify misses into three categories, 
compulsory misses, capacity misses and conflict misses. Compulsory 
misses are when data is loaded into the cache for the first time (e.g. 
program startup) and are unavoidable. Capacity misses are when data is 
reloaded because the cache is not large enough to hold all the data no 
matter how we organize the data (i.e. even if we changed the hash function 
and made it omniscient). All other misses are conflict misses - there is 
theoretically enough space in the cache to avoid the miss but our fast hash 
function caused a miss anyway. 

  

4. Fetch and write mechanism 

�� Fetch policy 

We can identify three strategies for fetching bytes or blocks 
from the main memory to the cache, namely: 

�� Demand fetch  



Which is the fetching a block when it is needed and is not already 
in the cache, i.e. to fetch the required block on a miss. This 
strategy is the simplest and requires no additional hardware or tags 
in the cache recording the references, except to identify the block 
in the cache to be replaced. 

  

�� Prefetch  

Which is fetching blocks before they are requested. A simple 
prefetch strategy is to prefetch the (i+1)th block when the ith block 
is initially referenced on the expectation that it is likely to be 
needed if the ith block is needed. On the simple prefetch strategy, 
not all first references will induce a miss, as some will be to 
prefetched blocks. 

  

�� Selective fetch  

Which is the policy of not always fetching blocks, dependent upon 
some defined criterion, and in these cases using the main memory 
rather than the cache to hold the information. For example, shared 
writable data might be easier to maintain if it is always kept in the 
main memory and not passed to a cache for access, especially in 
multi-processor systems. Cache systems need to be designed so 
that the processor can access the main memory directly and bypass 
the cache. Individual locations could be tagged as non-cacheable. 

�� Instruction and data caches 

The basic stored program computer provides for one main 
memory for holding both program instructions and program 
data. The cache can be organized in the same fashion, with 
the cache holding both program instructions and data. This 
is called a unified cache. We also can separate the cache 
into two parts: data cache and instruction (code) cache. The 
general arrangement of separate caches is shown in fig.8. 
Often the cache will be integrated inside the processor chip. 



 

Fig.8 Separate instruction and data caches 

�� Write operations 

As reading the required word in the cache does not affect 
the cache contents, there can be no discrepancy between the 
cache word and the copy held in the main memory after a 
memory read instruction. However, in general, writing can 
occur to cache words and it is possible that the cache word 
and copy held in the main memory may be different. It is 
necessary to keep the cache and the main memory copy 
identical if input/output transfers operate on the main 
memory contents, or if multiple processors operate on the 
main memory, as in a shared memory multiple processor 
system.  

If we ignore the overhead of maintaining consistency and 
the time for writing data back to the main memory, then the 
average access time is given by the previous equation, i.e. 
teff = tcache + ( 1 - h ) tmain , assuming that all accesses are 
first made to the cache. The average access time including 
write operations will add additional time to this equation 
that will depend upon the mechanism used to maintain data 
consistency.  

There are two principal alternative mechanisms to update 
the main memory, namely the write-through mechanism 
and the write-back mechanism. 

�� Write-through mechanism 



In the write-though mechanism, every write operation to 
the cache is repeated to the main memory, normally at the 
same time. The additional write operation to the main 
memory will, of course, take much longer than to the cache 
and will dominate the access time for write operations. The 
average access time of write-through with transfers from 
main memory to the cache on all misses (read and write) is 
given by: 

ta  = tcache + ( 1 - h ) ttrans + w(tmain - tcache) 
 = (1 - w) tcache + (1 - h) ttrans + wtmain 
  

Where 
ttrans 

= time to transfer block to cache, assuming the 
whole block must be transferred together 

 W  = fraction of write references.  
  

The term (tmain - tcache) is the additional time to write the 
word to main memory whether a hit or a miss has occurred, 
given that both cache and main memory write operation 
occur simultaneously but the main memory write operation 
must complete before any subsequent cache read/write 
operation can be proceed. If the size of the block matches 
the external data path size, a whole block can be transferred 
in one transaction and ttrans = tmain.  

On a cache miss, a block could be transferred from the 
main memory to the cache whether the miss was caused by 
a write or by a read operation. The term allocate on write is 
used to describe a policy of bringing a word/block from the 
main memory into the cache for a write operation. In write-
through, fetch on write transfers are often not done on a 
miss, i.e., a Non- allocate on write policy. The information 
will be written back to the main memory but not kept in the 
cache.  

The write-through scheme can be enhanced by 
incorporating buffers, as shown in Fig.9, to hold 
information to be written back to the main memory, freeing 
the cache for subsequent accesses. 



 

Fig.9 Cache with write buffer 

For write-through, each item to be written back to the main 
memory is held in a buffer together with the corresponding 
main memory address if the transfer cannot be made 
immediately. 

Immediate writing to main memory when new values are 
generated ensures that the most recent values are held in the 
main memory and hence that any device or processor 
accessing the main memory should obtain the most recent 
values immediately, thus avoiding the need for complicated 
consistency mechanisms. There will be latency before the 
main memory has been updated, and the cache and main 
memory values are not consistent during this period. 

�� Write-back mechanism 

In the write-back mechanism, the write operation to the 
main memory is only done at block replacement time. At 
this time, the block displaced by the incoming block might 
be written back to the main memory irrespective of whether 
the block has been altered. The policy is known as simple 
write-back, and leads to an average access time of:  

ta = tcache + ( 1 - h ) ttrans + (1 - h) ttrans  

Where one (1 - h) ttrans term is due to fetching a block from 
memory and the other (1 - h) ttrans term is due to writing 
back a block. Write-back normally handles write misses as 
allocate on write, as opposed to write-through, which often 
handles write misses as Non-allocate on write. 

 The write-back mechanism usually only writes back lines 
that have been altered. To implement this policy, a 1-bit tag 
is associated with each cache line and is set whenever the 



block is altered. At replacement time, the tags are examined 
to determine whether it is necessary to write the block back 
to the main memory. The average access time now 
becomes:  

ta = tcache + ( 1 - h ) ttrans + wb(1 - h) ttrans  

where wb is the probability that a block has been altered 
(fraction of blocks altered). The probability that a block has 
been altered could be as high as the probability of write 
references, w, but is likely to be much less, as more than 
one write reference to the same block is likely and some 
references to the same byte/word within the block are 
likely. However, under this policy the complete block is 
written back, even if only one word in the block has been 
altered, and thus the policy results in more traffic than is 
necessary, especially for memory data paths narrower than 
a line, but still there is usually less memory traffic than 
write-through, which causes every alteration to be recorded 
in the main memory. The write-back scheme can also be 
enhanced by incorporating buffers to hold information to be 
written back to the main memory, just as is possible and 
normally done with write-through. 

  

5. Replacement policy 

When the required word of a block is not held in the cache, we have seen 
that it is necessary to transfer the block from the main memory into the 
cache, displacing an existing block if the cache is full. Except for direct 
mapping, which does not allow a replacement algorithm, the existing 
block in the cache is chosen by a replacement algorithm. The replacement 
mechanism must be implemented totally in hardware, preferably such that 
the selection can be made completely during the main memory cycle for 
fetching the new block. Ideally, the block replaced will not be needed 
again in the future. However, such future events cannot be known and a 
decision has to be made based upon facts that are known at the time.  

�� Random replacement algorithm 

Perhaps the easiest replacement algorithm to implement is a 
pseudo-random replacement algorithm. A true random 
replacement algorithm would select a block to replace in a 
totally random order, with no regard to memory references 
or previous selections; practical random replacement 



algorithms can approximate this algorithm in one of several 
ways. For example, one counter for the whole cache could 
be incremented at intervals (for example after each clock 
cycle, or after each reference, irrespective of whether it is a 
hit or a miss). The value held in the counter identifies the 
block in the cache ( if fully associative) or the block in the 
set if it is a set-associative cache. The counter should have 
sufficient bits to identify any block. For a fully associative 
cache, an n-bit counter is necessary if there are 2n words in 
the cache. For a four-way set-associative cache, one 2-bit 
counter would be sufficient, together with logic to 
increment the counter. 

�� First-in first-out replacement algorithm 

The first-in first-out replacement algorithm removes the 
block that has been in the cache for the longest time. The 
first-in first-out algorithm would naturally be implemented 
with a first-in first-out queue of block address, but can be 
more easily implemented with counters, only one counter 
for a fully associative cache or one counter for each set in a 
set-associative cache, each with a sufficient number of bits 
to identify the block. 

�� Least recently used algorithm for a cache 

In the least recently used (LRU) algorithm, the block which 
has not been referenced for the longest time is removed 
from the cache. Only those blocks in the cache are 
considered. The word "recently" comes about because the 
block is not the least used, as this is likely to be back in 
memory. It is the least used of those blocks in the cache, 
and all of those are likely to have been recently used 
otherwise they would not be in the cache. The least recently 
used (LRU) algorithm is popular for cache systems and can 
be implemented fully when the number of blocks involved 
is small. There are several ways the algorithm can be 
implemented in hardware for a cache, these include: 

1) Counters 

In the counter implementation, a counter is associated with 
each block. A simple implementation would be to 
increment each counter at regular intervals and to reset a 
counter when the associated line had been referenced. 
Hence the value in each counter would indicate the age of a 



block since last referenced. The block with the largest age 
would be replaced at replacement time. 

2) Register stack 

In the register stack implementation, a set of n-bit registers 
is formed, one for each block in the set to be considered. 
The most recently used block is recorded at the "top" of the 
stack and the least recently used block at the bottom. 
Actually, the set of registers does not form a conventional 
stack, as both ends and internal values are accessible. The 
value held in one register is passed to the next register 
under certain conditions. When a block is referenced, 
starting at the top of the stack, starting at the top of the 
stack, the values held in the registers are shifted one place 
towards the bottom of the stack until a register is found to 
hold the same value as the incoming block identification. 
Subsequent registers are not shifted. The top register is 
loaded with the incoming block identification. This has the 
effect of moving the contents of the register holding the 
incoming block number to the top of the stack. This logic is 
fairly substantial and slow, and not really a practical 
solution. 

 

Fig.10 Least recently used replacement algorithm implementation 

3) Reference matrix 



The reference matrix method centers around a matrix of 
status bits. There is more than one version of the method. 
In one version (Smith, 1982), the upper triangular matrix of 
a B X B matrix is formed without the diagonal, if there are 
B blocks to consider. The triangular matrix has (B * (B - 
1))/2 bits. When the ith block is referenced, all the bits in 
the ith row of the matrix are set to 1 and then all the bits in 
the ith column are set to 0. The least recently used block is 
one which has all 0's in its row and all 1's in its column, 
which can be detected easily by logic. The method is 
demonstrated in Fig.10 for B = 4 and the reference 
sequence 2, 1, 3, 0, 3, 2, 1, …, together with the values that 
would be obtained using a register stack. 

4) Approximate methods. 

When the number of blocks to consider increases above 
about four to eight, approximate methods are necessary for 
the LRU algorithm. Fig.11 shows a two-stage 
approximation method with eight blocks, which is 
applicable to any replacement algorithm. The eight blocks 
in Fig.11 are divided into four pairs, and each pair has one 
status bit to indicate the most/least recently used block in 
the pair (simply set or reset by reference to each block). 
The least recently used replacement algorithm now only 
considers the four pairs. Six status bits are necessary (using 
the reference matrix) to identify the least recently used pair 
which, together with the status bit of the pair, identifies the 
least recently used block of a pair. 

 

Fig.11 Two-stage replacement algorithm 



The method can be extended to further levels. For example, 
sixteen blocks can be divided into four groups, each group 
having two pairs. One status bit can be associated with each 
pair, identifying the block in the pair, and another with each 
group, identifying the group in a pair of groups. A true least 
recently used algorithm is applied to the groups. In fact, the 
scheme could be taken to its logical conclusion of 
extending to a full binary tree. Fig.12 gives an example. 
Here, there are four blocks in a set. One status bit, B0, 
specifies which half o the blocks are most/least recently 
used. Two more bits, B1 and B2, specify which block of 
pairs is most/least recently used. Every time a cache block 
is referenced (or loaded on a miss), the status bits are 
updated. For example, if block L2 is referenced, B2 is set to 
a 0 to indicate that L2 is the most recently used of the pair 
L2 and L3. B0 is set to a 1 to indicate that L2/L3 is the most 
recently used of the four blocks, L0, L1, L2 and L3. To 
identify the line to replace on a miss, the status bits are 
examined. If B0 = 0, then the block is either L0 or L1. If 
then B1 = 0, it is L0. 

 

Fig.12 Replacement algorithm using a tree selection 

  

6. Second-level caches 

When the cache is integrated into the processor, it will be impossible to 
increase its size should the performance not be sufficient. In any case, 
increasing the size of the cache may create a slower cache. As an 
alternative, which has become very popular, a second larger cache can be 
introduced between the first cache and the main memory as shown in 
Fig.13. This "second-level" cache is sometimes called a secondary cache. 



 

Fig.13 Two-level caches 

On a memory reference, the processor will access the first-level cache. If 
the information is not found there (a first-level cache miss occurs), the 
second-level cache will be accessed. If it is not in the second cache (a 
second-level cache miss occurs), then the main memory must be accessed. 
Memory locations will be transferred to the second-level cache and then to 
the first-level cache, so that two copies of a memory location will exist in 
the cache system at least initially, i.e., locations cached in the second-level 
cache also exist in the first-level cache. This is known as the Principle of 
Inclusion. (Of course the copies of locations in the second-level cache will 
never be needed as they will be found in the first-level cache.) Whether 
this continues will depend upon the replacement and write policies. The 
replacement policy practiced in both caches would normally be the least 
recently used algorithm. Normally write-through will be practiced 
between the caches, which will maintain duplicate copies. The block size 
of the second-level cache will be at least the same if not larger than the 
block size of the first-level cache, because otherwise on a first-level cache 
miss, more than one second-level cache line would need to be transferred 
into the first-level cache block. 



Optimizing the data cache performance    
------- Taking advantage of locality in matrix multiplication  

  

When we dealing with multiple arrays, with some arrays accessed by rows 
and some by columns. Storing the arrays row-by-row or column-by-
column does not solve the problem because both rows and columns are 
used in every iteration of the loop. We must bring the same data into the 
cache again and again if the cache is not large enough to hold all the data, 
which is a waste. We will use a matrix multiplication (C = A.B, where A, 
B, and C are respectively m x p, p x n, and m x n matrices) as an example 
to show how to utilize the locality to improve cache performance. 

  

1. Principle of Locality 

Since code is generally executed sequentially, virtually all programs repeat 
sections of code and repeatedly access the same or nearby data. This 
characteristic is embodied in the Principle of Locality, which has been 
found empirically to be obeyed by most programs. It applies to both 
instruction references and data references, though it is more likely in 
instruction references. It has two main aspects: 

1. Temporal locality (locality in time) -- individual locations, once 
referenced, are likely to be referenced again in the near future.  

2. Spatial locality (locality in space) - references, including the next 
location, are likely to be near the last reference.  

Temporal locality is found in instruction loops, data stacks and variable 
accesses. Spatial locality describes the characteristic that programs access 
a number of distinct regions. Sequential locality describes sequential 
locations being referenced and is a main attribute of program construction. 
It can also be seen in data accesses, as data item are often stored in 
sequential locations. 

�� Taking advantage of temporal locality  

When instructions are formed into loops which are 
executed many times, the length of a loop is usually quite 
small. Therefore once a cache is loaded with loops of 
instructions from the main memory, the instructions are 
used more than once before new instructions are required 
from the main memory. The same situation applies to data; 
data is repeatedly accessed. Suppose the reference is 



repeated n times in all during a program loop and after the 
first reference, the location is always found in the cache, 
then the average access time would be: 

ta = (n*tcache + tmain)/n = tcache + tmain/n 

where n = number of references. As n increases, the 
average access time decreases. The increase in speed will, 
of course, depend upon the program. Some programs might 
have a large amount of temporal locality, while others have 
less. We can do some optimization about this. 

�� Taking advantage of spatial locality  

To take advantage of spatial locality, we will transfer not 
just one byte or word from the main memory to the cache 
(and vice versa) but a series of sequential locations called a 
block. We have assumed that it is necessary to reference 
the cache before a reference is make to the main memory to 
fetch a word, and it is usual to look into the cache first to 
see if the information is held there. 

  

2. Data Blocking 

For the matrix multiplication C = A.B, if we made code as below: 

For (I = 0; I < m; I++)  
    For (J = 0; J < n; J = J++) {  
        R = 0;  
        For (K = 0; K < p; K++)              
           R = R + A[I][K] * B[K][J];  
        C[I][J] = R; }  

 
The two inner loops read all p by n elements of B and access the same p 
elements in a row of A repeatedly, and write one row of n elements of C. 
The number of capacity misses clearly depends on the dimension 
parameters: m, n, p and the size of the cache. If the cache can hold all 
three metrics, then all is well, provided there are no cache conflicts. In the 
worst case, there would be (2*m*n*p + m*n) words read form memory 
for m*n*p operations.  

To enhance the cache performance if it is not big enough, we use an 
optimization technique: blocking. The block method for this matrix 
product consist of:  



�� Split result matrix C into blocks CI,J of size Nb x Nb, each blocks is 
constructed into a continuous array Cb which is then copied back 
into the right CI,J.   

�� Matrices A and B are spit into panels AI and BJ of size (Nb x p) and 
(p x Nb) each panel is copied into continuous arrays Ab and Bb. 
The choice of Nb must ensure that Cb, Ab and Bb fit into one level 
of cache, usually L2 cache.   

Then we rewrite the code as: 

For (I = 0; I < m/Nb; I++){ 
   Ab = AI; 
   For (J = 0; J < n/Nb; J++) { 
      Bb = BJ; Cb = 0;  
      For (K = 0; K < p/Nb; K++) 
         Cb = Cb + AbK*BKb; 
      CI,J = Cb; }}           here "=" means assignment for matrix   

We suppose for simplicity that Nb divides m, n and p. The figure below 
may help you in understanding operations performed on blocks. In the 
case of previous algorithm matrix A is loaded only one time into cache 
compared to the n times access of the original one, while matrix B is still 
accessed m times. This simple block method greatly reduce memory 
access and real codes may choose by looking at matrix size which loop 
structure (ijk vs. jik) is best appropriate and if some matrix operand fits 
totally into cache. 



 

In the previous we do not talk about L1 cache use. In fact L1 will be 
generally too small to handle a CI,J block and one panel of A and B, but 
remember that operation performed at Cb = Cb + AbK*BKb is a matrix-
matrix product so each operand AbK and BKb is aceessed Nb times: this part 
could also use a block method. Since Nb is relatively small, the 
implementation may load only one of Cb, AbK, BKb into L1 cache and 
works with others from L2. 

 


