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Abstract -- With the trend of cellular providers shifting to higher
frequencies, there is an increasing migration to smaller cells that
is further driven by the growing demand for wireless Internet
service. This obviously calls for higher resolution Radio
Frequency (RF) validation and prediction. Yet, to our knowledge,
there has been no study as to what resolution is required for
accurate RF modeling and prediction. Many of today’s computer
prediction tools can provide estimates of RF signal strength at
arbitrary spatial resolution. However, the choice of this resolution
is often left up to the discretion of the user.  Even worse,
sometimes the prediction resolution is hard-coded to be the same
as that of the terrain data base. Choosing a resolution bin size
that is too small is both computationally inefficient and
unnecessarily wasteful of valuable memory resources. Choosing a
resolution bin size that is too coarse introduces ubiquitous
uncertainty about the quality of RF coverage. This paper
investigates the spatial quantization noise requirements of RF
prediction and RF coverage validation. It is found that the
minimum resolution bin size required to mitigate spatial
quantization noise effects is about one fortieth of the cell radius.

I.  INTRODUCTION

PERHAPS the best introduction to this topic is by way of a
much more familiar example found in speech processing.
Without companding, speech encoders require about 12 bits
since the dynamic range of most speech is about 70 dB. For
unsigned sample values, this yields 4096 (=212) different
quantum levels. Thus, speech signals that are encoded with 12
bit A/D converters are imperceptibly degraded by quantization
noise.

An extreme example of how quantization noise can affect an
RF design is given in Figure 1. As shown in Figure 1(a), what
we are asking in this paper is: “What is the quantization noise
level of large scale Radio Frequency (RF) prediction and
coverage validation?” Alternatively, we wish to know what
spatial resolution is required before our estimates of RF
coverage are imperceptibly degraded. Note that though there
could be significant variation of the signal strength from one
sample to another, we are only interested in the large scale
path loss model and, hence, we present the following example.
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Suppose the resolution bin size, ∆x, is set equal to the
diameter, 2R, of the cell (In practice, one would never do this;
this is only an example to demonstrate the effect). As
illustrated in Figure 1(b), it is impossible to determine the full
extent of RF coverage since model tuning requires more than
one sample. In Figure 1(c) the bin size is reduced to be equal
to the cell radius, R. As illustrated in Figure 1(d), making the
bin size smaller improves the estimate of the extent of RF
coverage by improving the accuracy of the tuned prediction
model.

II.  BACKGROUND

In reference [6] the requirements for accurately estimating the
radius of a cell were characterized under the assumption of  a
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Figure 1. Extreme example of sampling resolution and
quantization noise in RF design: (a) The sampling
resolution, ∆x, is equal to the diameter of the cell (one sample)
(b) For this case, it is impossible to estimate path loss as a
function of range since there is only one signal strength sample
(c) The sampling resolution is reduced to equal the cell radius
(four samples) (d) A slightly better estimate of path loss can be
made since there are more (four) strength samples than for the
first example.

linear path loss and uncorrelated lognormal shadowing (worst
case shadowing). It was shown that the cell radius is a much
better metric of RF coverage than estimating area reliability.
For the past 25 years, area reliability has been considered the
most important metric of RF coverage [2]. The cell radius that
results from prediction model tuning is another common
method of estimating RF coverage [1]. In reference [6] it was
discovered that these two measures cannot be treated
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separately and that cell radius estimation is a much more
critical step in the RF validation process. It was shown that
area reliability and cell radius are an equation pair which
jointly describe the reliability of cellular coverage. It is
impossible to measure an area reliability without specifying a
cell radius. Alternatively, it is impossible to measure a cell
radius without also specifying an area(/edge) reliability. The
results of this analysis showed that it takes 50 times as many
independent signal strength samples to estimate the cell radius
as it does to estimate the area reliability. Thus, estimating the
cell radius is the limiting factor in determining the reliability of
RF coverage. It was recommended that radio survey analyses
select cell radius estimation as the preferred method of the
coverage validation.

Although the following discussion is primarily concerned with
omni cell networks, the conclusions are easily extended to
include sectored cells. The signal strength measurements are
inverse filtered and averaged to remove the anisotropic
weighting introduced by the horizontal antenna pattern since
we seek to characterize the propagation effects of the
environment (terrain and clutter), not of the antenna [3].

It has long been known that the equal power contours of real
cells can be highly irregular due to terrain and clutter
shadowing effects. The focus on predicting these irregularities
has been so extreme that there is now an overwhelmingly
popular belief that there is little or no value in considering a
real world cell as a regular shape (e.g., circular, hexagonal,
etc.), except perhaps only at the highest level of initial network
design. The following quote supports this point [7]:

“Some otherwise perfectly intelligent people are convinced
that… the more irregular the contour, the more accurately it
describes the limits of coverage. Therefore my admonition:

Never draw circular contours”

The prevailing wisdom is that more information is always
better, and this seems to be regardless of whether the
information is correct or even necessary.  In this view, the
network engineer is like a stone mason mortising together
irregular shaped cells to build a contiguous wall of RF
coverage.

However, unlike the mason who gets to search through dozens
of stones to find the shape that fits, the network designer is
constrained to accept whatever irregular cell shape that the
adjacent propagation environment dictates. Because of this, it
is nearly impossible to exploit the irregularities of individual
cell boundaries in a network design.

The goal of the network engineer is to determine the average
extent of reliable coverage and the position of the next base
station in the network. We contend that this decision must be
viewed as an inherently lowpass process, having little or
nothing to do with the high (spatial) frequency irregularities of
cell boundaries. We argue that the majority of the
degradations from these irregularities must be absorbed by
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Figure 2. Effective radius of a cell. The measurement
approach computes the best circular approximation to the
equal power contour. The effective radius, R, of the cell is
measured and the accuracy quantified in terms of a radius
inaccuracy ring, ±∆R. The average signal strength on the
circular contour  is equal to the signal strength of the equal
power contour. The radius (faded contour, dashed circle) is
computed by subtracting the fade margin from the radius of
50% cell edge reliability.

the fade margin in the design as shown in Figure 2 (see the
faded circular contour).

For all of the above reasons, we have proposed estimating the
“effective radius” of a cell as an alternative to the current
coverage validation approaches [4][5]. The proposed method
estimates the best circular boundary that matches the cell edge
at the desired area reliability, as illustrated in Figure 2. It
should be emphasized that this approach does not in any way
require that the true cell edge be circular. Rather, even the
most irregular cell edge can be fitted with a circle such that the
average power along the circumference is equal to the power
of the true cell edge. This circle encloses the area over which
the RF signal meets or exceeds the desired area reliability
(e.g., over 90% of the area, the signal power is above -90
dBm). It is the radius of this fitted circle that is estimated.
Thus, this radius can be considered the “effective radius” of
the cell and is well defined for any cell, circular or otherwise.

The accuracy of the cell radius estimate is quantified in terms
of a radius inaccuracy ring, ±∆R, also shown in Figure 2,
where the dimension of ∆R is expressed in units of distance.
The width of this ring depends mostly on the number of signal
strength samples in the regression, and also upon the amount
of lognormal fading in the cell.

Provided the error of the cell radius estimate, 
R

δ , is less than

50%, it can be approximated with a simple empirical
expression [6]
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where

R
δ  is the relative error of the cell  radius estimate (%)

 R∆ is the absolute error of the cell radius estimate (meters)
 R is the cell radius (meters)
 σ is the standard deviation of the lognormal shadowing  (dB)

 N is the number of independent signal strength samples.

Here 
R

δ is chosen according to the following two-sided 95%

confidence interval
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where  R̂ is the estimate of the cell radius (meters).

The dependence of the accuracy of coverage estimation, 
R

δ ,

on the standard deviation of the lognormal shadowing,  σ ,of
the terrain and clutter is clear in equation (1).  However, the
effect of terrain is greatly reduced if a large number of
independent signal strength measurements, N,  are taken. For
example, if N=5000 samples and 106 ≤≤ σ , the simulations

in reference [6] showed that 
R

δ was between 2% and 3%.

There is little value in increasing the number of independent
samples much beyond 5000 since this provides less than a 3%
improvement in the cell radius estimate. At this point there is
almost no relationship between the resolution required to
describe the terrain and the resolution required for accurate
coverage estimation. Thus, the dynamic range requirements of
RF prediction and coverage validation are similar to that of the
speech processing in that they require about 12 bits since

3.1225000 ≈ .

III. UNIFORM SPATIAL SAMPLING APPROACH

We recommend that all the signal strength measurements be
averaged in distance with a window that is at least 40λ in
length [3].

From the previous section, 5000 independent signal strength
samples are all that is needed to accurately characterize the path
loss within a cell. An important question is: “How should these
samples be distributed within the cell?” Since we are trying to
estimate the cell radius, samples at the cell edge are more useful
than samples under the base station. Hence, we choose the
arbitrary but reasonable sampling strategy illustrated in Figure
3.

We wish to sample a region equal to the area of the cell.
However, the measurements within half of the cell radius of the
base station are excluded (i.e., the inner 25% of the cell area).
For typical wireless designs, less than 1% of the outages are
contained within this area, so this data contributes very little to
the cell radius estimate.  An additional 25% of the cell area is
sampled beyond the cell radius. Thus, the total sampled area is

still 
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Figure 3. Uniform spatial sampling approach for estimating
RF coverage. The inner 25% of the cell area is excluded and an
additional 25% of the area is sampled beyond the cell radius.
The annulus is enclosed by a bounding square of 90 bins and
subdivided into 5000 bins of equal size.

Let the resolution bins be square and of size ∆xX∆x. The
minimum resolution bin size, ∆x, can now be easily calculated

since    5000
2

2

≈
∆x

Rπ

which yields   (3)                                 40/Rx ≈∆

As shown in reference [3], ∆x must also be greater than about
forty wavelengths of the carrier frequency.

Table 1 shows the bin sizes that are required for several typical
cell radii. To reduce the effects of spatial quantization, the
resolution bin must be reduced in proportion to any reduction in
the cell radius.

Cell radius
   R (m)

Bin Size
∆x (m)

1000   2000   3000   4000   6000   8000

25        50       75      100     150     200 

Table 1. The minimum bin sizes required to virtually eliminate
quantization noise effects for several cell radii.

Thus, equation (3) demonstrates that to avoid spatial
quantization errors in RF coverage validation and prediction,
the resolution bin size must be at least one fortieth of the cell
radius. There is no need to make the bin size any smaller.

Note, for example, that 100 meter resolution is insufficient for
cell radii less than 4 km (most urban cells). For urban and dense
urban designs, coverage predictions (and model tuning) with
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100 meter resolution will be unsatisfactorily corrupted with
quantization error.

IV.  QUANTIZATION NOISE IN TERMS OF CELL
RADIUS UNCERTAINTY

In this section the quantization noise level is represented in
terms of an equivalent error in the cell radius estimate. We
begin by assuming that if all 5000 bins in Figure 3 are driven,
then 100% of the cell area has been sampled (i.e., we will
ignore any reduction in error below 3%). Likewise, 50 bins
corresponds to 1% of the cell area and 500 bins corresponds to
10%. Let p be the percentage (decimal, 102.0 ≤< p ) of the

cell that has been driven.  Then from equation (1) and (3), it is

easy to show that provided %50<
R

δ , the error of the cell

radius estimate is given by
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The above equations can be used to define the quantization
noise level and are plotted in Figure 4 for p=0.10 and σ=8 dB.
The meaning of the curves in this figure is easily understood by
tracing one curve. Observe from equation (4) that

%7),( ≈σδ p
R

, provided the resolution bin size is sufficiently

small (i.e., xR ∆≥ 40 ). For ∆x=100m, this is true provided
km 4≥R . However, note that as the cell radius is decreased

below 4 km, the cell radius error increases rapidly. This
increase is solely due to quantization error. For example, if R=2

km and ∆x=100m, then %28),( ≈σδ p
R

. In other words, the

quantization noise accounts for an additional 21% (=28-7) error
in the cell radius estimate.
Let ),( σpK  be the component of the cell radius error that is

solely due to drive testing only p% of the cell area, where

)5000(
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Figure 4. Quantization noise effects of various bin sizes.
The effect of bin size (the parameter associated with each
curve) in terms of the error of the cell radius estimate (ordinate)
as a function of cell radius (abscissa).

The error of the cell radius estimate can be expressed as

),( σδδ pKQR +=                                                   (6)

where Qδ  is the component due to quantization noise.

For the example given in Figure 4, ),( σpK ≈  7%, p=10% and

8=σ  dB.

Provided 5.0 <
R

δ , the quantization noise component can be

written as
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where Qδ  can be interpreted as a percentage increase in cell

radius error that is due to quantization noise.
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∆x=R/40

Circle
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No Quantization Error

∆x=R/10

∆x=R/20
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(d)
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Figure 5. Quantization along the perimeter of a circle for
several bin sizes, ∆x. (a) No quantization noise, continuous
case; (b) quantization noise for the recommended sampling
resolution (∆x=R/40);  (c) moderate quantization error
(∆x=R/20); (d) severe quantization error (∆x=R/10). The
accuracy of RF coverage prediction for the resolutions in (c)
and (d) is limited by quantization error.

Thus, if R<40∆x, the quantization noise is the product of two
independent components. The first term, ),( σpK , describes

the completeness of the drive test sampling process. The second
term describes the effect of changing the post processing
resolution. The latter term grows inversely with the square of
the radius and directly with the square of the resolution bin size.
This term demonstrates the ubiquitous degradation due to
coarse binning. Notice that if the post processing resolution is
too coarse, no amount of additional drive testing will improve
the cell radius estimate.

Figure 5 shows the perimeter of a circle quantized at three
different resolutions. Figure 5(a) is the original circle. In Figure
5(b) the circle is quantized at the recommended resolution
(∆x=R/40). There is little improvement in the accuracy of
coverage prediction and validation at higher resolutions.
However, the accuracy of RF prediction and validation for both
of the cases in Figure 5(c) and Figure 5(d) will be significantly
limited by quantization noise.

The effect of processing the drive test of a typical cell at
different resolutions is shown in Figure 6. The cell radius is
R=4 km and the roads cover about 8.5% of the total area of the
cell.  Figure 6(a) shows the roads at full resolution (no
quantization). In Figure 6(b) the drive route is quantized at the
recommended resolution (∆x=R/40). There is little
improvement in the accuracy of coverage prediction and
validation at resolutions higher than R/40. However, the
accuracy of RF prediction and validation for both of the cases
in Figure 6(c) and Figure 6(d) will be significantly limited by
quantization noise. Many RF prediction tools provide floating-
point estimates of signal strength. This level of accuracy is
clearly unnecessary for the post-processing resolutions shown
in Figure 6(c) and Figure 6(d).

V.  DISCUSSION

The high data rates of 3G wireless networks, such as UMTS,
require RF links that are significantly more reliable than the
first and second generation voice-centric networks. One of the
most important steps in ensuring this reliability is selecting the
proper drive test resolution. We have shown that this
resolution should be no coarser than one fortieth of the cell
radius.

We have approximated the quantization noise due to coarse
binning as a degradation in the estimate of the cell radius. Our
main focus has been on how to avoid the quantization, rather
than model it exactly.

Many complex adaptive interference control schemes have
been proposed to reduce cochannel interference in cellular
systems. We contend that precision design of static RF
coverage is the most practical first step in improving the
quality of service in today’s wireless networks.

Numerous RF prediction planning tools are available that
generate signal strength estimates at almost arbitrary
resolution. However, even perfectly tuned prediction models
are only correct in a "statistical" sense. That is, although these
tools and models will predict the signal strength at a given
position, if one actually drives to that position and makes
measurements, they will most likely get a different value.

The measured value should be within the confidence interval
of the statistical test (e.g., standard deviation of about ± 8 dB).
Moreover, the accuracy of such tools is not necessarily
improved by simply purchasing higher resolution terrain and
clutter databases.
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No
Quantization
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(d)(c)
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Figure 6. Drive test routes sampled at different post-processing resolutions (a) continuous case; (b) the recommended post-
processing sampling resolution (∆x=R/40);  (c) moderate post-processing quantization error (∆x=R/20); (d) severe post-processing
quantization error (∆x=R/10). The accuracy of RF coverage validation and prediction for the resolutions in (c) and (d) is greatly
limited by quantization.

In current wireless networks it is the root mean square (RMS)
value, σ, of the terrain and clutter shadowing that is important,
not the knowledge of the exact positions of the outages. This
value (σ) determines the fade margin and the reliability of
service. This is because knowing the exact location of the
outages obviously still does not mean they can be easily
eliminated. With current antenna technology, the RF engineer
has limited options in servicing areas of poor coverage. He is
often forced to compromise to static adjustments of the power
transmitted over a wide coverage area (entire cell or sector).
The exact position of individual outages will become more
important when the base stations can actively track mobile
users and adaptively focus more or less energy in their
direction.

Thus, RF coverage estimation for accurate wireless network
design is not synonymous with, and does not require “pico-
resolution.” The benefits of high resolution must always be
evaluated in terms of the additional system benefit and actual
improvement in design accuracy. This is especially true since
each factor of two increase in resolution increases the memory
and processing requirements by about a factor of
four. We have chosen the concepts of “effective cell radius”
and spatial quantization noise to help determine the point of
diminishing return in the resolution required for accurate RF
coverage estimation.
Typically the RF signal strength variation at cellular
frequencies within a bin of resolution size R/40 is less than 4
dB, which is small compared to the standard deviation of the
lognormal shadowing which is typically 8 dB. Thus the RMS
error introduced by this variation has little effect on the path
loss mode, the cell radius and the area reliability estimate.
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VI.  CONCLUSIONS

The quantization noise requirements of RF prediction and
coverage validation were analyzed based on the assumption of
uncorrelated lognormal shadowing (worst case shadowing).
The quantization error was represented as an equivalent error
in the cell radius estimate. The minimum required quantization
resolution is approximately ∆x=R/40, where R is the cell
radius. For coverage validation, this resolution can be
interpreted as the point at which spatial sampling makes best
use of the cellular drive test. Effectively, this is the point at
which no drive test information is lost, no computer memory is
wasted and no unnecessary prediction computations are
executed.  It should also be emphasized that the quantization
resolution requirement for accurate prediction and validation is
almost completely independent of the resolution of the terrain
(and building) data base, and these resolutions should only
rarely be equal. The results of this analysis indicate that the
resolution requirements for accurate RF prediction and
validation should primarily be determined by the size of the
cell radius (which in turn determines the acceptable level of
spatial quantization noise), rather than by the terrain or
building data base resolutions.
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