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a b s t r a c t

Previous research revealed that the basal ganglia play a critical role in category learning [Ell, S. W.,
Marchant, N. L., & Ivry, R. B. (2006). Focal putamen lesions impair learning in rule-based, but not
information-integration categorization tasks. Neuropsychologia, 44(10), 1737–1751; Maddox, W. T. & Filo-
teo, J. V. (2007). Modeling visual attention and category learning in amnesiacs, striatal-damaged patients
and normal aging. In Advances in Clinical-cognitive science: formal modeling and assessment of pro-
cesses and symptoms (pp. 113–146). Washington DC: American Psychological Association] but less is
known about the specific role of prefrontal cortical (PFC) regions in category learning. The current study
examined rule-based (RB) and information-integration (II) category learning in 13 patients with damage
primarily to ventral PFC regions. After 600 learning trials with feedback, patients were significantly less
accurate than matched controls on both RB and II learning. Model-based analysis identified subgroups of

patients whose impaired performance in each task was due to the use of sub-optimal learning strategies.
Those patients impaired at either II or RB learning, performed significantly worse on the Wisconsin Card
Sorting Test, a test of abstract rule formation and the ability to shift and maintain rules. Lesion analysis
pointed to damage in a fairly circumscribed region of ventral medial prefrontal cortex as common to the
impaired group of patients and those patients without ventral PFC damage mostly performed normally.
These results provide further evidence that the ventromedial prefrontal cortex is critically important for

inte
the ability to monitor and

. Introduction

Category learning is a critical cognitive skill that allows us
o respond differently to objects and events in different groups
or categories). Cognitive neuroscience has extensively examined
he neural substrates of classification learning with computational

odeling (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Brown,
ullock, & Grossberg, 1999; Frank, 2005), functional neuroimaging
Filoteo et al., 2005b; Nomura et al., 2007; Poldrack, Prabhakaran, &
abrieli, 1999; Seger & Cincotta, 2005, 2006), and studies with neu-
ologically damaged patients (Knowlton, Mangels, & Squire, 1996;
addox & Filoteo, 2005, 2007; Price, 2005). Many of these studies

ave focused on the contribution of the basal ganglia (BG, e.g., Ashby
Ennis, 2006) to category learning and despite its demonstrated

mportance, it is clear that the BG is functionally linked to a number

∗ Corresponding author.
E-mail address: schnyer@psy.utexas.edu (D.M. Schnyer).

028-3932/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.neuropsychologia.2009.07.011
grate feedback in order to select and maintain optimal learning strategies.
© 2009 Elsevier Ltd. All rights reserved.

of important cortical regions, in particular prefrontal cortex (PFC),
that also play important roles (Seger, 2008).

One of the most popular neurobiologically inspired models of
category learning is the Competition between Verbal and Implicit
Systems model (COVIS; Ashby et al., 1998). COVIS asserts that the
long-term learning of different types of category structures is medi-
ated by different systems that have unique neural substrates (Ashby
& Ell, 2001; Ashby & Maddox, 2005; Maddox & Ashby, 2004). Two
types of category structures that have been studied extensively
include rule-based (RB) and information-integration (II) category
structures. Rule-based tasks are those in which learning is thought
to rely on a frontally mediated hypothesis-testing system interact-
ing with portions of the BG, namely the anterior caudate. In general,
the rule that maximizes accuracy can be verbally described. One
classic rule-based categorization task, the Wisconsin Card Sorting

Test (WCST; Milner, 1963), has been shown to be highly dependent
on the PFC (Lombardi et al., 1999; Monchi, Petrides, Petre, Worsley,
& Dagher, 2001) and it is commonly used in neuropsychological
assessment to test for PFC damage or dysfunction (Milner, 1963). In
addition to neuropsychological evidence, neuroimaging work has

http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
mailto:schnyer@psy.utexas.edu
dx.doi.org/10.1016/j.neuropsychologia.2009.07.011
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lso supports the role of PFC in RB category learning (Aron et al.,
004; Filoteo et al., 2005b; Monchi et al., 2001; Rao et al., 1997;
eger & Cincotta, 2006).

In contrast to RB tasks, II tasks are those in which accuracy is
aximized when information from two or more stimulus dimen-

ions is integrated at some pre-decisional stage. With II categories,
he rule that maximizes accuracy cannot be described verbally,
nd learning involves incremental acquisition of stimulus–response
ssociations (Ashby & Waldron, 1999). It has been proposed that
earning of II categories is mediated by a procedural learning system
nvolving the BG in interaction with posterior perceptual regions
nd recent fMRI evidence supports this characterization (Nomura
t al., 2007; Seger & Cincotta, 2002, 2005). Unlike RB learning, II
earning is assumed not to rely on the PFC; experimental evidence
ppears to support this as II learning is unaffected by dual task con-
itions that put increased burden on executive processes, thought
o be mediated by PFC (Maddox, Ashby, Ing, & Pickering, 2004a).
n contrast, RB learning is affected by dual task conditions. More
ecent evidence indicates that decreasing the influence of executive
rocesses can actually increase the type of implicit learning that is

ikely engaged in II categorization (Filoteo, Lauritzen, & Maddox, in
ress). These findings support the proposition that II learning is less
ependent on processes mediated by PFC than is RB learning.

Given that the COVIS framework clearly specifies that RB learn-
ng relies on a frontally mediated hypothesis-testing system and in
his way differs from II learning in the need for direct PFC engage-

ent, a straightforward prediction might be that damage to PFC
ould impair RB learning but leave II learning intact. To date, evi-
ence for such a neurological dissociation is sparse. One of the
easons for this may be that despite the differences between the
eurobiology of the II and RB category learning systems, both types
f learning rely on effective feedback processing (Maddox & Ashby,
004). Research clearly indicates that response to feedback relies,
t least in part, on specific regions of the PFC. One of the regions
hat has been critically implicated in feedback-based learning is the
entral PFC (vPFC; Cools, Clark, Owen, & Robbins, 2002; Fellows &
arah, 2003; Haber, Kim, Mailly, & Calzavara, 2006). Ventral PFC
as been tied to learning both when feedback reflects information
bout expected outcomes (Takahashi et al., 2009) and when expec-
ations are violated (Monchi et al., 2001; Takahashi et al., 2009)
nd it has been shown to be critical to induce strategy shifts in
rder to optimize performance (Ghods-Sharifi, Haluk, & Floresco,
008). Given the critical role of vPFC in feedback learning, it would
e reasonable to hypothesize a general role of vPFC in both RB and

I category learning.
Feedback in category learning serves at least two basic

urposes. First, it serves to facilitate dopamine-mediated rein-
orcement learning in the corticostriatal circuits (Ashby, Ennis,

Spiering, 2007) where unexpected rewards trigger dopamine
elease (Schultz, 1998) and thereby strengthen the synaptic connec-
ions that support visuomotor learning. Second, feedback provides
signal (particularly following negative feedback) that helps guide

ule selection and strategy shifting (Monchi et al., 2004; Seger,
008). It is likely that strategy shifting that results from feedback

s one common component in both RB and II category learning. For
nstance, within rule-based learning, optimal performance requires
rying different types of rule structures (i.e. unidimensional versus
onjunctive rules) and dropping ineffective approaches in response
o feedback (Lawrence, 2000). This type of strategy shifting is sim-
lar to what is involved in the Wisconsin Card Sorting Test (WCST),

here surprising negative feedback forces a person to drop the pre-

iously learned categorization rule (e.g., on shape) and to shift to
rying new ones (e.g., on color). By contrast, in II learning, optimiz-
ng performance requires a general shift from a rule-based approach
o the more automatic information-integration strategy (Ashby et
l., 1998).
logia 47 (2009) 2995–3006

It is currently unknown whether these two types of strategy
shifts in response to feedback, one within the class of RB strategies
and one involving a shift from RB to II strategies, will depend on the
same region of vPFC. More generally, it is also currently unknown
whether RB and II category learning both rely on a common region
of the PFC, despite the emphasis on greater PFC reliance for RB
learning relative to II learning. To examine this question, the cur-
rent study examined category learning in individuals with lesions
primarily to ventral PFC regions. Both RB and II category struc-
tures were examined to assess whether the vPFC plays a similar
role in feedback learning across different types of category learn-
ing. Given the role of ventral PFC in altering strategy in response
to feedback, it was predicted that persons with vPFC lesions would
have difficulty shifting between different classes of strategy (shift-
ing from RB to II) as well as shifting within a single class of strategies
(RB) in response to feedback. Despite the extensive literature on
reinforcement learning, we are unaware of any studies that have
directly examined this issue, comparing RB and II category learning
in patients with frontal lesions.

2. Experiment

The stimuli were lines that varied in length and orientation,
assigned to one of four categories. A scatterplot of the stimuli along
with the optimal decision bounds are displayed in Fig. 1. Because the
rule-based and information-integration tasks are related via a sim-
ple rotation, the two tasks are equated on task difficulty, optimal
accuracy, and the number of relevant dimensions (Ell, Marchant,
& Ivry, 2006; Maddox, Filoteo, Hejl, & Ing, 2004b). Importantly, in
both tasks participants must attend equally to both length and ori-
entation to maximize accuracy. In the rule-based task, accuracy is
maximized when the participant adopts a conjunctive strategy that
involves deciding if the line is long or short and if the angle is steep
or shallow, and then combining those decisions. The optimal strat-
egy is to respond “A” to short, shallow angle lines, “B” to short, steep
angle lines, “C” to long, shallow angle lines, and “D” to long, steep
angle lines. Thus, the dimensional integration is post-decisional,
verbalizable, and involves a rule-based strategy because partici-
pants must first make a decision about each dimension (e.g. length:
short and orientation: shallow) and then combine those two deci-
sions to form a conjunction (i.e. short and shallow implies category
A; Ashby & Gott, 1988; Shaw, 1982).

For the information-integration task, the categories were cre-
ated by rotating the rule-based categories 45◦ counterclockwise.
Accuracy maximization again involves the integration of length
and orientation information, but in this case the integration is pre-
decisional. It is important to note that reasonable performance
levels can be achieved by applying verbal rule-based strategies
in the information-integration task. In fact, rule-based strategies
are often used early in training with information-integration tasks.
We applied quantitative modeling techniques at the individual
participant level to determine the type of strategy (rule-based or
information-integration) used by each participant in each condition
(details presented below).

3. Methods

3.1. Participants

Thirteen patients with damage to frontal cortex (9 females and 4 males) who
were native speakers of English completed the task (age range 49–78 years). Patients
were referred to the Memory Disorders Research Center for evaluation as a result of

complaints about cognitive functioning. The frontal patients all had focal lesions
secondary to stroke, aneurysm, or trauma and were in stable neurological con-
dition at the time of testing (see Table 1a for demographic information, damage
etiology and lesion location descriptions). None of the patients showed signifi-
cant language impairment that would have interfered with task performance. CT
and/or MRI were available for all patients. Using these scans, the site of lesion
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ig. 1. The category structures for both the RB and II tasks. Scatterplot of the stim
right panels). Each point in the scatterplot represents a single stimulus. Category 1 e
s diamonds, and Category 4 as symbol ‘×’. The solid lines are the optimal decisio
2006).
as identified by projection on a standard brain oriented in MNI space. Deter-
ination of whether a patient had damage to regions of the BG was performed

y a neurologist. Only one patient had damage extending outside the frontal
ortex.

able 1a
emographic, etiology and lesion location information for each of the 13 PFC patients and

Gender Age at testing Verbal IQ (scaled) Etiol

L 01 f 49 101 Infar
L 02 f 60 124 Aneu
L 03 f 73 88 Infar
L 04 m 55 117 Infar
L 05 f 68 103 Infar
L 06 f 60 105 Aneu
L 07 m 63 137 Hem
L 08 f 63 114 Hem
L 09 f 78 98 Infar
L 10 f 65 93 Infar
L 11 m 77 82 Hem
L 12 f 64 93 Infar
L 13 m 62 99 Infar

atients 4 male; 9 female 64.4 104.2
ontrols 4 male; 7 female 62.7 109.8

C = corpus callosum; DL = dorsal lateral; DM = dorsal medial; WM = white matter; VM = v
ength-orientation space in the two tasks (left panels) along with example stimuli
lars are plotted as plus signs, Category 2 exemplars as circles, Category 3 exemplars

ndaries. Copyright © 2006 by Elsevier. Reproduced with permission from Ell et al.
Control participants consisted of 7 females and 4 males who were matched
to patients in age and WAIS-III verbal IQ (see Table 1, F’s < 1). These individuals
underwent appropriate health screening, had normal or corrected to normal vision,
and were free of past or current neurological disorders or psychiatric disability.

the mean values for controls.

ogy Lesion location

Overall Basal ganglia

ct Left-DL and VM frontal WM; right-DM No
rysm clip Right-VM No
ct Bilateral-VM No
ct Right-caudate, VM, right polar frontal BG (rt)
ct Bilateral-VM and DM No
rysm clip Right-DM, polar frontal No
atoma/contusion Right-ventral frontal/temporal No
orrhage Left-DL No
ct Bilateral-VM; left-DM No
ct Bilateral-VM No
orrhage Left-DL, putamen BG (lft)
ct Bilateral-VM, CC; right-caudate BG (rt)
ct Bilateral-VM; left-caudate BG (lft)

entral medial; lft = left, rt = right.
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Fig. 2. Patient lesions displayed on a common atlas template (MNI151). Lesions were hand drawn from clinical or experimental MRI scans or clinical CT. They represent an
approximation of the region of brain damage and often “overestimate” the extent of this damage. The final row shows the lesion overlap across all 13 patients and a color
scale indicating the extent of lesion overlap. Scans are in neurological format, right = right.
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ritten informed consent was obtained from each volunteer prior to the session.
he Human Subjects Committees of Boston University School of Medicine, the
epartment of Veteran Affairs Medical Center and the University of Texas approved
ll procedures and all participants were remunerated $20 for their participation.

.2. Standardized neuropsychological testing

For the purpose of matching general verbal intelligence across controls and
atients, each participant completed the Vocabulary subtest of the Wechsler Adult

ntelligence Scale, Third Edition (WAIS-III, Wechsler, 1997). This subtest is accepted
o be a good measure of both verbal and general mental ability (Lezak, 1995). In
rder to investigate the relationship between the experimental measures of category

earning and measures of memory and executive functioning, frontal patients were
dministered a selection of standardized neuropsychological tests. Memory perfor-
ance was evaluated using the Wechsler Memory Scale, Third Edition (WMS-III;
echsler, 1997) and the Warrington Recognition Memory Test (WRMT) for words

Warrington, 1984). In the case of the WMS-III, the General Memory (GM) score was
sed as a composite measure of new episodic learning ability. This is comprised of the
elayed subtest scores from Logical Memory, Verbal Paired Associates, Facial recog-
ition, and Family Pictures. The WRMT for words provides a measure of recognition
emory in the verbal domain while the GM of the WMS-III provides a measure of

ecognition across multiple memory domains. Both of these measures are sensitive
o the types of memory dysfunction often seen in patients with damage to frontal
ortex.

For assessment of executive functions, frontal patients completed tests of word
eneration (FAS; Stuss & Benson, 1986), complex visual scanning and tracking (Trails
; Partington & Leiter, 1949), category formation and set shifting (WCST; Nelson,
976), and salient response inhibition (Stroop Color–Word Test; Stroop, 1935). In the
ontrolled Oral Word Association (FAS) Test, subjects are asked to generate as many
ifferent words as possible that begin with a particular letter during a 1 min period
nd the total number of words generated for all three letters comprises the verbal
uency score. The Trail Making Test–Part B is a visual conceptual and visuomotor
racking task that requires connecting consecutively numbered and lettered circles
n a paper work sheet by alternating between the two sequences. Trails B is sensitive
o frontal-lobe dysfunction, and it has been proposed that performance is indicative
f the subject’s ability to shift set and process concurrent stimuli (Lezak, 1995). The
isconsin Card Sorting Test assesses a person’s ability to form abstract concepts,

tilize feedback, and to shift and maintain set. Scores reflect both the ability to move
hrough cards in an effective manner (total concepts obtained) as well as the ability
o disengage from previous concepts (perseverative errors). The Stroop Color–Word
est (Stroop, 1935) measures the ability to inhibit inappropriate responses in the
resence of interfering stimuli (Lezak, 1995).

.3. Lesion analysis

To examine the relationship of lesion site to RB and II category learning in
he frontal patients, lesion information was extracted from clinical CT or T1 MRI
cans and drawn on a brain oriented in standard MNI305 space using MRIcro
www.mricro.com). Convergence of lesions was observed by retaining overlapping
oxels and projecting them onto a “generic” brain oriented in the standardized MNI
pace. Lesion location templates for all frontal patients are illustrated on axially ori-
nted slices (Fig. 2). Examination of function–lesion relationships was accomplished
y characterization of the lesion overlap in patients whose performance in both of
he two category learning tasks was impaired.

.4. Stimuli and stimulus generation

The 100 stimuli used in the RB task (25 from each category) and 100 stimuli used
n the II task (25 from each category) were generated in a manner identical to those
sed by Ell et al. (2006), Maddox, Ashby, et al. (2004) and Maddox, Filoteo, et al.
2004) (see Fig. 1). The category distribution parameters used to generate the stim-
li were taken from Maddox, Ashby, et al. (2004) and Maddox, Filoteo, et al. (2004)
here each category was defined as a bivariate normal distribution with a mean

nd a variance on each dimension, and by a covariance between dimensions. For the
ule-based task, twenty-five random samples (x, y) were drawn from each category
istribution, and each sample was used to construct a single line with some length
in pixels) and orientation that was converted to radians by multiplying the sample
alue by �/500. The scale factor (�/500) was selected based upon past research in
n effort to equate the discriminability of changes in perceived length to changes
n perceived orientation. A linear transformation was performed to ensure that the
ample and population means, variances, and covariances were identical. The stim-
li used in the information-integration task were generated by rotating each of the
ule-based stimuli 45◦ clockwise around a central point located at 150 pixels in
ength (4◦ of visual angle) and 150 orientation units (i.e., 54◦ from horizontal). The

rder of the 100 stimuli was randomized separately for each block and each partic-

pant. Each stimulus was presented on a black background and subtended a visual
ngle ranging from 0.7◦ to 7.3◦ at a viewing distance of approximately 60 cm. The
timuli were generated and presented using the Psychophysics Toolbox extensions
or MATLAB (Brainard, 1997; Pelli, 1997). The stimuli were displayed on a laptop LCD

ith 1024 pixel × 768 pixel resolution.
logia 47 (2009) 2995–3006 2999

4. Procedure

Participants were tested in two sessions separated by at least
one week. Assignment of task (RB or II learning) to session was
counterbalanced between subjects. Sessions began with a short
introduction to the task in which the participant was told that
he/she would see a single stimulus on each trial and was to make
a category assignment by pressing one of four response keys with
either index finger. After responding, feedback regarding the cor-
rectness of the response (correct: green cross; incorrect: red cross)
along with the correct category label was presented in the center
of the screen for 1 s. The screen was then blanked for 500 ms prior
to the appearance of the next stimulus. In addition to trial-by-trial
feedback, feedback was given at the end of each block of 100 trials
regarding the participant’s accuracy during that block. The partic-
ipant was told that there were four equally likely categories and
was informed that the best possible accuracy was 95% (i.e., optimal
accuracy). In addition, he/she was told that there was no response
time limit. The laptop keyboard was used to collect responses with
the characters ‘z’, ‘w’, ‘/’, and ‘p’ assigned to categories 1–4, respec-
tively. Following Maddox, Ashby, et al. (2004) and Maddox, Filoteo,
et al. (2004), the category numbers did not appear on the response
keys and the response mappings were fixed across participants,
however, great care was taken to instruct the participants as to the
category–response key mappings.

Each participant completed six test blocks of 100 trials for
each task. Within each block, the ordering of the 100 stimuli was
randomized between subjects and throughout the first block the
experimenter repeated the instructions as needed and provided
encouragement. When necessary, the experimenter reminded the
participants of the category–response key mappings during the first
block. After the first block, there were only brief breaks between the
remaining blocks.

5. Results

5.1. Category learning accuracy

For both category learning structures, mean accuracy was calcu-
lated for each block on a participant by participant basis. Graphs of
the group averages across the six blocks are presented in Fig. 3a
and b for RB and II structures, respectively. These accuracy val-
ues across both types of category learning were examined in a
2 × 2 × 6 repeated measures ANOVA with group (patients, controls)
as a between subjects factor and category structure (RB, II) and
block (1–6) as within subjects factors. There was a main effect
of group, indicating that patients were less accurate overall than
controls (F[1,22] = 5.42, p < 0.05). There was also a main effect of
category structure (F[1,22] = 15.04, p < 0.01) that did not interact
with group or block indicating that participants were more accu-
rate at II structures (mean = 0.622, SE = 0.032) than they were at RB
structures (mean = 0.512, SE = 0.031). A main effect of block indi-
cated the expected learning curve with repeated learning trials
(F[5,110] = 57.60, p < 0.001). This effect did not differ between cate-
gory structures or groups. Interactions between task and block as
well as task, block and group were non-significant (F[5,110] < 1.7).
In short, patients with lesions to PFC demonstrated both a RB and II
learning deficit and this was consistent across all six learning blocks.

5.2. Demographic and neuropsychological predictors of patient

learning

To examine the relationship between category learning and
demographic and neuropsychological measures, correlations were
calculated with the scores in the final block for both II and RB

http://www.mricro.com/
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ig. 3. Task accuracy for RB (panel a) and II (panel b) category structures for both
ean.

tructures (see Table 1b for neuropsychological measures and final
lock performance for each patient). Correlations with age and VIQ
ere examined across the entire group of patients and controls.
ge was not significantly correlated with either RB (r = −0.18)
r II (r = −0.19) block 6 performances, whereas Verbal IQ was
ignificantly correlated with both RB (r = 0.66, p < 0.01) and with II
erformance (r = 0.47, p < 0.05).

Correlations with neuropsychological measures were restricted
o the patient group and used age-corrected scaled scores (GM)
r Z scores. A single composite score was created for the WCST
rom three performance measures (total categories, total errors and
erseverative errors) and for the Stroop task from two measures
total time to read the printed color of color words and a read-
ng/naming normalized score reflecting resistance to interference).
n the domain of memory, there was a trend towards significant
orrelations between both RB and II performance and the Gen-
ral Memory scores (RB, r = 0.53, p < 0.10; II, r = 0.54, p < 0.09). There
as also a nearly significant relationship between RB performance

nd verbal recognition memory scores (WRMT, r = 0.52, p < 0.06)
ut no significant relationship between II performance and WRMT
r = 0.36, p > 0.20).

Within the domain of executive function, the WCST composite
core was significantly correlated with the last block of RB perfor-

ance (r = 0.72, p < 0.001), but not with II performance (r = 0.44,
< 0.14). The opposite pattern was seen for correlations with the
troop composite: a non-significant relationship with RB per-
ormance (r = 0.50, p < 0.13) and a significant correlation with II
erformance (r = 0.60, p < 0.05). Of the remaining executive mea-

able 1b
ask performance and neuropsychological measures for the 13 patients.

Block 6
model fits

Block 6 proportion
correct

WMS General
Memory (scaled)

Warrington w
(Z-score)

RB II RB II

L 01 RR NO 0.26 0.5 107 1.38
L 02 RB RR 0.62 0.27 82 −0.22
L 03 NO NO 0.49 0.45 67 −2.44
L 04 RB II 0.74 0.76 – 1.11
L 05 NO NO 0.53 0.72 111 −0.22
L 06 RB II 0.75 0.86 86 0.89
L 07 RB II 0.88 0.9 114 1.56
L 08 RB II 0.68 0.81 104 1.11
L 09 NO NO 0.49 0.73 73 −2.89
L 10 RR NO 0.32 0.42 60 −0.22
L 11 NO II 0.36 0.56 – −4.44
L 12 RR NO 0.25 0.51 54 −2.44
L 13 NO II 0.49 0.61 77 0.67

atients 0.53 0.62
ontrols RB II 0.63 0.77

R = random response; NO = non-optimal; II = information-integration; RB = rule-based.
ts and controls across the six learning blocks. Error bars are standard error of the

sures (FAS, and Trails B) there was only a trend towards a correlation
between FAS and RB performance (r = 0.49, p < 0.09).

5.3. Model-based analysis

The accuracy-based analyses suggest that frontal patients were
impaired at II and RB category learning. In this section, we gain a
more detailed understanding of the locus of the RB and II deficit
by applying a series of decision bound models to the data (Ashby &
Maddox, 1993; Maddox & Ashby, 1993). Because of concerns with
modeling aggregate data, all models were fit separately to the final
block of data from each participant (e.g., Estes, 1956; Maddox, 1999;
Smith & Minda, 1998). Every model consists of a set of decision
bounds that partition the stimulus space into separate response
regions. For example, one rule-based model might classify lines as
short or long depending upon whether they are less than or greater
than 150 pixels, and might assign lines as shallow or steep depend-
ing upon whether they are less than or greater than 45◦. These
decisions are then combined to generate categorization responses
with short, shallow lines being assigned to category A, short, steep
lines to category B, long, shallow lines to category C, and long, steep
lines to category D. This model would be applied to a set of data and
a measure of “fit” is computed. Although somewhat more complex,

the measure of fit is similar to computing the proportion of the
participant’s responses that match with the model’s response. The
model fitting algorithm would then adjust the pixel value used to
separate short from long lines, and would adjust the orientation
value used to separate shallow from steep lines until the pixel value

ords WCST composite
(Z-score)

Stroop composite
(Z-score)

FAS (Z-score) Trails B
(Z-score)

−0.05 −0.05 −0.13 0.58
0.22 – 1.14 −0.89

−1.07 −1.07 −0.03 2.61
0.59 0.59 1.79 −1.16

−0.78 −0.78 2.50 0.46
0.84 0.84 1.14 −0.37
1.12 1.12 1.86 0.33
1.08 1.08 −0.03 1.53

−0.65 −0.65 1.41 −0.84
−0.12 – 0.78 1.27
−0.81 −0.81 −2.19 2.48
−3.73 −3.73 0.33 0.41
−0.51 −0.51 1.86 0.05
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nd orientation value that maximize the correspondence between
he participant’s and the model’s responses was achieved.

Different models make different assumptions about the type
f strategy that the participant is using. The models allow us to
etermine whether each participant is using the task-appropriate
trategy or a non-optimal strategy to solve the task. One class
f models is compatible with the assumption that participants
sed an explicit hypothesis-testing strategy (RB), a second class is
onsistent with the assumption that participants used an implicit
rocedural-based learning strategy (II), and a third class of models

s consistent with the assumption that participants were guessing
i.e., responded randomly, RR). When a participant’s approach to a
ask was best fit by the strategy that did not match the task (i.e.
sing an RB approach in an II task or vice versa), then this is termed
non-optimal strategy. The details of each model and the model
tting procedure are outlined in Appendix A.

By the final block of trials all control subjects had adopted the
ppropriate strategy—that is an RB strategy in the RB task, and an II
trategy in the II task. By contrast, in the RB task, five patients had
dopted a RB approach, five a non-optimal approach (i.e., II) and
hree were responding randomly (RR). In the II task, six patients
dopted an II strategy, six a non-optimal strategy (i.e., RB) and one
esponded randomly. The strategy adopted by the 6th block for each
atient as well as performance levels for this block can be seen in
he first columns of Table 1b.

Sixth block accuracy was examined as a function of the par-
icular strategy that was adopted. Patients responding randomly
nd those using a non-optimal strategy were classified together
nd contrasted against those patients who adopted the optimal
trategy for each task. For both category structures, accuracy was
ignificantly higher for patients who adopted the task appropriate
trategy (i.e., RB in the RB task and II in the II task) than for patients
ho adopted a non-optimal strategy or responded randomly (RB,

[1,12] = 29.53, p < 0.001; II, F[1,12] = 7.72, p < 0.02, see Fig. 4). Inter-
stingly, even when the random responders are excluded and only
hose using a non-optimal strategy are compared to patients using
n optimal strategy, the results are the same (RB, F[1,9] = 25.24,
< 0.01; II, F[1,11] = 6.13, p < 0.03). Furthermore, when the perfor-
ance of patients who adopted the task appropriate strategy was

ompared directly with that of controls (who all adopted the task
ppropriate strategy), there were no group differences in either task
RB, F[1,16] = 0.071, ns; II, F[1,15] = 1.69, ns, see Fig. 4).

Finally, when neuropsychological test performance was exam-
ned as a function of strategy employed by patients in each

ask, it was primarily the WCST performance that differentiated
he two subgroups across both RB and II tasks. Using one-way
NOVAs to examine neuropsychological performance differences
etween the optimal and non-optimal plus random responder sub-

ig. 4. Task accuracy for both RB and II category structures with patients divided
n the use of optimal or non-optimal strategies for the task. Error bars are standard
rrors of the mean.
logia 47 (2009) 2995–3006 3001

groups, there was a significant difference in WCST performance
(F[1,12] = 10.05, p < .01) for the RB task as well as a trend for the
II task (F[1,12] = 4.02, p < 0.07). Again, when random responders are
excluded the WCST separates the two groups even more clearly
(F[1,9] = 64.67, p < 0.001) for the RB task as well as for the II task
(F[1,11] = 4.95, p < 0.05). No other frontal measures revealed sig-
nificant differences between groups in either the RB or II task
(p > 0.16). One measure of verbal memory (WRMT) and verbal IQ
(VIQ) differentiated patients who learned the optimal strategy
versus non-optimal and random responders in the RB task only
(WRMT, F[1,12] = 5.51, p < 0.05; VIQ, F[1,12] = 29.53, p < 0.001).

The model-based analysis demonstrated that those patients
who adopted a non-optimal strategy regardless of the category
structure and those who were responding randomly accounted
for the patient group’s impaired performance relative to matched
controls. In addition, the group of impaired patients also per-
formed significantly worse on the WCST. Finally, the only apparent
difference in neuropsychological performance between the two
categorization tasks revealed through the model-based analysis
was a relationship between impairment on the RB task and verbal
learning and verbal IQ—with impaired patients showing a signifi-
cantly lower level of performance on the WRMT and the VIQ.

5.4. Lesion-based analysis

The relationship between specific cortical damage and impaired
category learning was examined by creating a lesion overlap image
for the patients who adopted either a random response or non-
optimal strategy for both tasks, since these were the only patients to
yield impaired performance. Three patients were impaired on only
one task and not the other (FL 02, FL 11 and FL 13) so they were
initially excluded from the lesion analysis. The group impaired at
both tasks included six patients (FL 01, FL 03, FL 05, FL 09, FL 10,
and FL 12). For this group, the common region of lesion overlap
was a fairly circumscribed region of ventral medial prefrontal cor-
tex (VMPFC; see Fig. 5), where all six patients had damage. Of the
three patients who were only impaired on one of the tasks, FL 02
and FL 13 were impaired at II learning and both had small lesions
in VMPFC, while FL 11 was impaired only at RB and had a lesion
in left dorsal lateral PFC (DLPFC). Therefore, of the patients who
were impaired at one or both category learning tasks, nine had
lesions to VMPFC and one had a lesion to left DLPFC. Consistent with
the neuropsychological results, the lesion analysis points to a com-
mon lesion site associated with the inability to adopt the optimal
strategy for the specific category structure.

With only a small group of patients without vPFC damage, it
is difficult to draw definitive conclusions about the specificity of
the lesion-site/impairment results. However, the performance of
patients FL 4, FL 8, and FL 11, all of whom lack damage to vPFC,
is suggestive. Two of these patients adopted the appropriate strat-
egy by block 6 for both the RB and II task (FL 4 and FL 8), while
patient FL 11 was impaired only for the RB task, having adopted the
appropriate strategy for the II task. Finally, one patient who adopted
appropriate strategies for both tasks had a lesion that included
damage to vPFC, but it was unilateral in the right hemisphere (FL 6).

Four (31%) of the 13 frontal patients in this study had some
damage to portions of the basal ganglia in addition to their corti-
cal damage as determined by clinical radiological assessment (see
Table 1). Given the demonstrated role of the BG in category learn-
ing, it would be important to understand whether the BG damage
contributed to impaired task performance. In this regard, the BG

damage did not appear to be specific to the identified impairments
in category learning. Of the four clearly unimpaired patients, one
had BG damage (25%). Moreover, of the six patients impaired at
both tasks, only one had BG damage (17%). Finally, of the three
patients impaired at only one task, two had BG damage (66%) and
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ig. 5. Lesion overlap projected on a standard brain atlas (MNI151) for the six patien
n red represents the overlap of the six patients and all impaired patients had dama
s referred to the web version of the article.)

hese two were both impaired at RB learning. While not conclusive,
hese results indicate that BG damage was likely orthogonal to the
mpairment captured in the model-based analysis.

.5. General discussion

The current study examined category learning utilizing two dif-
erent category structures, rule-based and information-integration,
n a group of patients with a heterogeneous distribution of dam-
ge to frontal cortex. For both category structures, overall learning
as impaired relative to age and VIQ matched controls. Model-

ased analysis identified a subgroup of patients in each learning
ask who were responsible for the group impairment. These were
atients who by the last 100 trials of a 600 trial learning session
ere unable to adopt and/or maintain the task appropriate strategy.
oreover, patients impaired at either task also performed signifi-

antly worse on the WCST than their non-impaired counterparts.
inally, examining the lesion overlap of the impaired patients indi-
ated a common region of VMPFC that was damaged for both those
atients impaired at II learning and those impaired at RB learning.

Rule-based and II learning have been postulated to involve two
ifferent learning systems mediated by separate neural circuits
Ashby et al., 1998). The system implemented in rule-based learn-
ng utilizes explicit, verbally describable rules. It has been proposed
hat regions of PFC interacting with the anterior caudate mediate
his system. By contrast, the II system is an implicit learning sys-
em mediated primarily by the posterior caudate in conjunction
ith posterior perceptual regions. COVIS (Ashby et al., 1998) pre-

icts that depending on the category structure of the task, one or
he other will eventually come to dominate performance. While

his framework predicts a dissociation with respect to the effects
f PFC lesions on performance, both tasks rely on the effective use
f feedback and we predicted that both would be susceptible to
amage in regions of vPFC that have been shown to be critical to

eedback-based learning (Cools et al., 2002; Fellows & Farah, 2003;

able 2
lock by block performance for patients adopting non-optimal strategies (impaired) and

Mean (SD)

Block 1 Block 2 Bloc

I task
Impaired 0.39 (0.17) 0.43 (0.13) 0.46
Non-impaired 0.45 (0.18) 0.64 (0.11) 0.64
p value 0.564 0.017 0.04

B task
Impaired 0.34 (0.11) 0.44 (0.10) 0.49
Non-impaired 0.37 (0.14) 0.52 (0.18) 0.56
p value 0.73 0.448 0.47
pting non-optimal or random response strategies in both RB and II tasks. The region
MPFC.(For interpretation of the references to color in this figure legend, the reader

Haber et al., 2006). As predicted, patients with damage to VMPFC
were equivalently impaired in both II and RB across all six learning
blocks. Finally, although both RB and II learning involve some por-
tion of the BG, BG damage in a subgroup of the patients tested here
could not account for the deficits in performance.

Effective processing of feedback in category learning is essen-
tial for testing different verbal rules (as in a rule-based task), and
for knowing when or whether to switch strategies to improve per-
formance (as in an information-integration task). We address each
of these in turn. The rule-based task used in the current study is
complex and involves learning the verbal rules that determine cat-
egory assignment for four separate categories. Feedback processing
is critical in this case and a deficit in this ability may lead to the
use of a non-optimal strategy, where only a subset of the cate-
gories is actually learned. Interestingly, a careful examination of the
response patterns for the patients who used non-optimal strategies
in the rule-based task suggests that in all cases, impaired patients
were unable to learn all four categories with a reasonable mea-
sure of success. Of the five impaired patients, two performed below
25% accuracy for one of the four categories, one performed below
25% accuracy for two of the four categories, and two were below
40% for two of the four categories. None of these extreme cases
held for any of the unimpaired patients, whose accuracy rates were
higher and were distributed equally across categories. Additionally,
when comparing performance between impaired and unimpaired
patients across all six learning blocks, these patients only differed
in the last two blocks (see Table 2)—a pattern consistent with the
non-impaired patients eventually obtaining and maintaining all
four categories. By contrast, the same block by impairment analysis
for the patients using non-optimal strategies in the II task showed

differences between the impaired and unimpaired frontal patients
distributed across early and later blocks (Table 2).

With respect to information-integration classification, a frame-
work proposed by Seger (2008) is relevant. Seger suggests that
the link between ventral striatum and the medial PFC (orbital PFC

optimal strategies (non-impaired) for both category structures.

k 3 Block 4 Block 5 Block 6

(0.14) 0.48 (0.14) 0.54 (0.17) 0.56 (0.14)
(0.14) 0.69 (0.10) 0.69 (0.15) 0.75 (0.14)

9 0.014 0.158 0.033

(0.06) 0.50 (0.05) 0.48 (0.07) 0.47 (0.06)
(0.19) 0.63 (0.17) 0.70 (0.11) 0.70 (0.11)

8 0.128 0.006 0.001
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nd anterior cingulate) forms an important “motivational” loop
nvolved in information-integration category learning. Actor–critic

odels of reward processing have postulated that the ventral
triatum provides a “critical” evaluation of whether the expected
eward was received after an action (Joel, Niv, & Ruppin, 2002).

ith regards to the PFC, functional imaging work has supported
he involvement of the medial PFC, in interaction with regions
f the striatum, in feedback relative to observation-based learn-

ng (Cincotta & Seger, 2007). Furthermore, research demonstrates
hat patients with damage to medial and orbital PFC have difficulty

onitoring feedback and altering strategies in visual association
earning (Hornak et al., 2004) and economic (Koenigs & Tranel,
007) and social (Bechara, Tranel, Damasio, & Damasio, 1996;
oretti, Dragone, & di Pellegrino, 2009) decision-making. In the

ealm of social decision-making, considerable work in patients with
rbital frontal lesions led to the formulation of the somatic marker
ypothesis (Bechara, Damasio, & Damasio, 2000), which proposes
hat regions of orbital PFC are critical for the integration of signals
rising from the “body” with the cognitive aspects of decision-
aking. More recently, Fellows (2007) has argued that many of the

eficits seen in vPFC patients with respect to social and economic
ecision making can be attributed to a deficit in “reversal learning”
r the ability to respond to negative feedback by shifting away from
ub-optimal, but previously learned, responses. There is some over-
ap in the framework proposed by Joel et al. (2002) and by Fellows
2007), namely that vPFC is critically involved in the interpretation
f feedback signals resulting from actions taken and then moti-
ating changes in the task strategy. In a broader context, multiple
ources of converging evidence point to vPFC as critically engaged
n integrating internal and external information (in the case of cat-
gory learning—feedback signals) with goal directed behaviors. In
he case of II category learning these signals arise from the ven-
ral striatum and appropriate interpretation of negative feedback
ould lead to a shift of strategy in order to improve performance.

t is this latter ability that we hypothesize may be impaired in our
atients with VMPFC damage, who failed to achieve and/or main-
ain the optimal strategy regardless of category structure after six
locks of performing the task. Clearly, further work will be needed
o continue to test this hypothesis.

In addition to the common region of lesion overlap, there
ere common neuropsychological performance measures in the

mpaired patients that also did not dissociate the two category
earning structures. Patients impaired at II and patients impaired
t RB both demonstrated significantly lower levels of performance
n the WCST. Given previous formulations of the WCST as a task
hat requires the explicit use of rules (Eling, Derckx, & Maes, 2008)
t is puzzling why the patients’ performance on this task did not
issociate across the two category structures, only one of which
equires the explicit use of rules. While the ability to generate
r maintain rules is part of what is required in the WCST, more
ecent studies have begun to examine other important components
uch as response perserveration and learned irrelevance (Maes,
amen, & Eling, 2004; Maes, Vich, & Eling, 2006). In the current
ase, patients with impaired performance were either unable to
dopt, or adopted and could not maintain, the optimal strategy for
given category structure. What makes it particularly difficult for

hese patients is that a non-optimal strategy often produces a sig-
ificant amount of positive feedback, so that in the face of such
ositive reinforcement they would still need to abandon their cur-
ent approach in order to improve performance. In other words, the
urrent learning strategy, while somewhat effective, nevertheless

ust be discarded as no longer relevant. The inability to let go of

n ineffective strategy would be reflected in response perserver-
tions. Evidence consistent with this notion comes from a closer
xamination of performance on the WCST. The mean number of
ategories reached by the impaired group was 3.2, suggesting that
logia 47 (2009) 2995–3006 3003

these patients were able to master the 3 rules critical to the WCST
– color, number and form – but were unable to drop those previ-
ously learned categories in the face of negative feedback. Finding
the optimal category learning strategy would be dependent on the
ability to abandon previous learning in order to achieve a maximal
level of performance.

While performance on the WCST showed a relationship with
impairment on both II and RB tasks, other neuropsychological mea-
sures revealed differences. For instance, only impairment on RB
performance showed a significant relationship with VIQ and new
verbal learning, as indexed by the Warrington Recognition Memory
Test for words. This finding is consistent with formulations of the RB
task as involving the explicit learning and implementation of verbal
rules (Ashby et al., 1998). Additionally, functional imaging research
of RB category learning tasks demonstrates clear involvement of
the medial temporal lobe during RB classification (Nomura et al.,
2007) and the MTL has been demonstrated to be critical for per-
forming well on tests of explicit memory (Squire, 1992; Moscovitch,
Nadel, Winocur, Gilboa, & Rosenbaum, 2006). While none of the
frontal patients in this study had additional damage to the MTL,
the common lesion location of VMPFC – which has direct connec-
tions with MTL through the basal forebrain (Dere, Easton, Nadel,
& Huston, 2008) – has been shown to play an important role in
episodic recollection (Farovik, Dupont, Arce, & Eichenbaum, 2008)
and the ability to make accurate judgments about the accessibil-
ity of episodic memories (Schnyer et al., 2004). The latter ability
has been postulated to involve a similar mechanism of integrating
internally available information in order to guide behavior (Schnyer,
Nicholls, & Verfaellie, 2005).

Interestingly, the one patient without VMPFC damage (FL 11)
who was impaired on the RB task only, had damage to the left
DLPFC and demonstrated the lowest verbal learning ability of all
patients. Therefore, the mechanism of impairment of this single
patient may have been different than that of the remaining patients
who all had VMPFC damage. While only suggestive, the results from
the one patient impaired at only the RB task points to the critical
role of DLPFC in RB learning, a result consistent with the COVIS
model as well as literature pointing to the DLPFC as involved in the
implementation of explicit rules (Filoteo et al., 2005a; Muhammad,
Wallis, & Miller, 2006). For instance, previous fMRI research impli-
cates regions of DLPFC as responsible for hypothesis testing in
category learning (Seger & Cincotta, 2006) and this is consistent
with theories that postulate a more general role of DLPFC in rule
implementation (Rougier, Noelle, Braver, Cohen, & O’, 2005). In
addition to patient FL 11, only two other patients in the current
study had clear DLPFC lesions (one on the left side and one on the
right). A more through examination of the role of DLPFC in RB cate-
gory learning will require a greater number of patients with damage
to this region.

6. Conclusions

The current study examined category learning utilizing two dif-
ferent category structures—one that requires the use of explicit
rules and one that involves information-integration, in a group of
patients with lesions to prefrontal cortex. Utilizing model-based
analysis, a subset of patients was found responsible for the impair-
ment in both RB and II tasks. All had lesions involving regions of
VMPFC and were impaired at the WCST. For both category learn-
ing structures, the ability to monitor feedback and adjust strategy

is critical to learning and this ability is what appears impaired
by lesions to VMPFC. However, there were also differences. Those
patients impaired at RB learning failed to utilize all categories effec-
tively and this difficulty achieving optimal performance was related
to their verbal IQ and new verbal learning ability. By contrast,
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atients impaired at II appeared unable to shift and/or maintain
heir approach to the task and “engage” the procedural learning sys-
em that is mediated by the striatum. These results are consistent
ith a common mechanism that is critical for learning of either cat-

gory structure and irrespective of whether an explicit, rule-based
ystem or a procedural system is engaged.
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ppendix A.

Three different classes of decision bound models were fit to
he final block of data from each participant. In this Appendix, we
escribe the models that were fit to each participant’s responses.
e organize this section around the two category structures since

very model was not applied to data from every condition.

.1. Rule-based condition

Hypothesis-testing models. Four models were compatible with
he assumption that observers used an explicit hypothesis-testing
trategy. The optimal model assumes that the observer sets a cri-
erion on the length dimension, sets a criterion on the orientation
imension, and integrates that information post-decisionally. The
odel assumes that these decision criteria are those that maximize

ccuracy (i.e., the decision bounds shown in Fig. 1). The optimal
odel uses the following decision rule: Respond A if the line length

s short and the orientation is shallow, Respond B if the line length is
hort and the orientation is steep, Respond C if the line length is long
nd the orientation is shallow, Respond D if the line length is long
nd the orientation is steep. This model has one free parameter: the
ariance of internal (perceptual and criterial) noise (i.e., �2). Three
dditional hypothesis-testing models that used the same decision
ule were tested. The sub-optimal-length model assumes that the
bserver used the optimal decision criterion along the orienta-
ion dimension, but used a sub-optimal decision criterion along the
ength dimension. The sub-optimal-orientation model assumes that
he observer used the optimal decision criterion along the length
imension, but used a sub-optimal decision criterion along the ori-
ntation dimension. These two models contain two free parameters
i.e., one criterion and the noise variance). The sub-optimal-length-
rientation model assumes that the observer used a sub-optimal
ecision criterion along the length dimension and a sub-optimal
ecision criterion along the orientation dimension. This model con-
ains three free parameters (i.e., two decision criteria and the noise
ariance).

Information-integration models. One information-integration
odel was fit to the data. The Striatal Pattern Classifier (SPC; Ashby
Waldron, 1999) assumes that there are four “units” in the length-
rientation space. On each trial the observer determines which unit
s closest to the perceptual effect and gives the associated response.

hen fitting the SPC to the rule-based condition data, we assume
hat each category has one associated unit. This model results
n four “minimum-distance-based” decision bounds. Because the
logia 47 (2009) 2995–3006

location of one of the units can be fixed and since a uniform expan-
sion of contraction of the space will not affect the location of the
resulting (minimum distance) decision bounds, the model contains
six free parameters (i.e., five that determine the location of the
units, and one noise variance). This model has been found to pro-
vide a good computational model of observers response regions
in previous information-integration category learning studies (e.g.,
Ashby & Waldron, 1999; Ashby, Waldron, Lee, & Berkman, 2001;
Maddox, 2001, 2002; Maddox, Ashby, et al., 2004; Maddox, Filoteo,
et al., 2004). In addition, the assumptions of this model have strong
neurobiological plausibility.

Random-responder models. One model assumes that the partici-
pant responds A, B, C, or D with probability 0.25 for each stimulus.
This model has no free parameters. A second model estimates the
probability of responding A, B, C, and D from the data with the con-
straint that these probabilities sum to one. This model has three
free parameters.

A.2. Information-integration condition

Hypothesis-testing models. Three models were compatible with
the assumption that observers used an explicit hypothesis-testing
strategy to solve the information-integration category learning
problem. The assumptions of the hypothesis-testing(1) model are
identical to those from the sub-optimal-length-orientation model
(described above) and assume that the observer sets a decision
criterion along the length dimension, a decision criterion along
the orientation dimension, and uses the same post-decisional
integration rule outlined above. The hypothesis-testing(2) model
instantiates an “extreme values” type of decision rule. This model
assumes that the observer sets two criteria along the length dimen-
sion that partitions the length dimension into short, medium and
long line lengths. The model assumes that the observer responds A
if the length is short, B if the length is intermediate and the orien-
tation is steep, C if the length intermediate and the orientation is
shallow, and D if the length is long. The hypothesis-testing(3) model
is similar, but it assumes that the observer sets two criteria along
the orientation dimension that partitions the orientation dimen-
sion into shallow, intermediate, and steep line orientations. The
model assumes that the observer responds A if the orientation is
intermediate and the length is short, B if the orientation is steep, C
if the orientation is shallow, and D if the orientation is intermedi-
ate and the length is long. Both of these models contain three free
parameters (two criteria and one noise).

Information-integration models. The optimal model assumes that
the observer used the optimal decision bounds (see Fig. 1) and con-
tains the single noise parameter. The SPC was also applied to the
data under the same assumptions used when applying the model
to the rule-based condition.

Random-responder models. The same models outlined above
were applied.

A.3. Model fits

The relevant models were fit separately to the final block of
data for each participant. The model parameters were estimated
using maximum likelihood (Ashby, 1992; Wickens, 1982) and the
goodness-of-fit statistic was

BIC = r ln(N) − 2 lnL,
where r is the number of free parameters, N is the number of tri-
als being fit (100) and L is the likelihood of the model given the
data (Akaike, 1974; Takane & Shibayama, 1992). The BIC statistic
penalizes a model for extra free parameters in such a way that the
smaller the BIC, the closer a model is to the “true model,” regard-
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ess of the number of free parameters. Thus, to find the best model
mong a given set of competitors, one simply computes a BIC value
or each model, and chooses the model associated with the smallest
IC value.
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