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Abstract 
The Monte Carlo method is useful for modeling the physics of scanning electron microscopes 

but is limited in interactive applications because it can take hours or days to simulate a single 
SEM image. We have developed an alternative approach to simulating SEM images that mimics 
the behavior of Monte Carlo simulations and real SEM images but is several orders of magnitude 
faster to compute, simulating an image in a fraction of a second. Furthermore, this approach 
enables one to solve the inverse problem of reconstructing surface topography from SEM images 
within minutes to hours. Our method is limited to surfaces that are height fields and that are 
composed of only a single material. Also, we assume there are no charging affects and that the 
shading of the surface is rotation invariant (no detector asymmetry). 

We represent the input surface to our simulator as a height image with the same resolution as 
the desired SEM image. An SEM image is simulated from the height image by first convolving it 
with each of a set of separable filter kernels. Each of these filters kernels is designed to extract 
local information about slope and curvature at different scales. After these convolutions, the 
resulting filtered images are added together with different weighting factors to produce the 
simulated image.  

The weighting factors are found by a fitting procedure. We take examples of height images 
and corresponding SEM images either generated synthetically using the Monte Carlo method or 
acquired from an actual SEM. In the case of real SEM images, the corresponding height image 
must be known either from design data or measured independently (for example, using an AFM). 
These example pairs of height and SEM images are used to determine the weighting factors 
which may then be used to simulate an SEM image from any other height image. 

 
Keywords: Shape-from-shading, surface reconstruction, SEM, Monte Carlo, image simulation 

Introduction 
Jones and Taylor10 describe a method for reconstructing surfaces from SEM images using a 

shape-from-shading approach where the intensity in the SEM image is assumed to be a function 
of height gradient magnitude or slope of the surface. At sub-micrometer scale this approximation 
breaks down as the finite size of the electron-specimen interaction volume becomes significant. 
This paper describes a way to extend this approach to smaller scales by taking into account both 
the slope and curvature of the surface computed at multiple scales. 

The optimization approach used by Jones and Taylor10 could in theory be adapted to use 
Monte Carlo simulation but such an algorithm would be impractical because it would require the 
simulation of thousands of SEM images and thousands of hours of computation. In an effort to 



bridge the gap in performance/accuracy between the Monte Carlo model and slope-based models 
of SEM intensity, we developed a generalization of the slope-based approach that uses 
combinations of additional convolution-based filters (besides those computing slope) to improve 
accuracy. This approach provides a more powerful phenomenological model that more closely 
mimics the output of Monte Carlo simulation for nanometer-scale topography but is fast enough 
to be part of an iterative optimization algorithm similar to what has been used for shape-from-
shading. In the next section we explain some of the inspiration for this approach by giving an 
intuitive description of what is measured by an SEM and how it relates to surface shape. Next we 
describe the new simulation method and provide performance measurements and simulation 
examples. After this, we describe how this model can be used for surface reconstruction and 
provide some examples. 

SEM Signal Components and Rationale for Our Approach 
For each pixel in an SEM image, the electron beam is focused at a corresponding point on the 

specimen surface. Electrons from the beam are scattered within the volume of the specimen and 
some escape to hit a detector where they contribute to the measured signal that determines the 
brightness of the pixel. The electrons detected in an SEM can be roughly divided into two groups 
by energy because there is a distinct division in the energy spectrum between high energy 
backscattered electrons (BSE) and low energy secondary electrons (SE). The SE component can 
be considered as having three subcomponents labeled SE-I, SE-II, SE-III 6. Because secondary 
electrons (SE) have much lower energy they can only travel a short distance before being 
stopped and as a result only escape the specimen if they are generated within a few nanometers 
of the surface. BSE on the other hand can travel much farther before escaping. The distance an 
electron travels in the specimen before it escapes determines in some sense the resolution of 
shape information carried by that electron. The SE-I signal represents SE escaping very near the 
point where the electron beam enters the specimen surface and is considered to carry the highest 
resolution information. The BSE signal represents high energy back-scattered electrons that have 
traveled much farther in the specimen and escape from a much larger region of the surface. The 
SE-II signal represents low energy secondary electrons produced near the surface by escaping 
BSE and therefore provides a sort of amplifying effect that depends on the topography near the 
point of escape in the same way that the SE-I signal depends on the topography near the point of 
beam entry. The SE-III signal represents secondary electrons produced when BSE strike various 
parts of the SEM other than the specimen. The SE-III signal provides an amplifying effect for 
BSE that depends on the shape and materials of the SEM specimen chamber. 

In the shape-from-shading literature, the models for SEM are all based on the slope of the 
surface with no notion of the scale for measuring slope10. If the SEM signal is modeled as a 
function of slope, then the slope should be measured at a scale (or scales) comparable to the 
electron-specimen interaction volume. This concept is illustrated in Figure 1 showing constant 
slope approximations to a surface about a point where electrons hit the surface. The 
approximating surfaces are fit only to an area comparable to the area from which electrons 
escape the specimen.  

The SEM signal consists of multiple components, each representing interaction with the 
specimen at different scales so we use estimates of the slope at multiple scales to predict the 
SEM signal. Although slopes at multiple scales would certainly be better than a single slope 
measurement for estimating the SEM signal, slope by itself is insufficient for modeling the 



appearance of sharp bumps, corners and pits on the surface so we also make use of local 
curvature estimated at multiple scales. We call this SEM model based on slope and curvature the 
filter bank model because it is expressed in terms of the outputs of a set of intermediate filters 
(the filter bank). Each filter computes either a slope or curvature value at a particular scale. 
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Figure 1: Taking into account the scale of the interaction volume when modeling the 
number of escaped electrons as a function of the local slope. When the interaction volume is 
large (left) the slope should represent the surface over a large neighborhood. When the 
interaction volume is small (right) the slope should represent the surface over a small 
neighborhood. 

 

SEM Modeling Overview 
The filter bank model consists of a set of filters (each computing either a slope or curvature 

value) and a function that maps the slope and curvature values to SEM intensity. A schematic of 
how the filter bank model computes an SEM image from a height image is illustrated in Figure 2. 
The mapping from slope and curvature values to SEM intensity is determined automatically by 
fitting to example Monte Carlo simulated images and real SEM images. Synthetic surfaces and 
corresponding Monte Carlo simulated images were used to determine a pair of filter bank models 
that mimic the BSE and SE outputs of the Monte Carlo model. Experimental AFM and SEM 
data were then used to determine how to combine the BSE and SE images to best match the real 
SEM image. An outline of the method including the fitting procedure is illustrated in Figure 3.  
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Figure 2: Filter bank model applied to simulating the SEM signal. Surface height (left) is 
filtered by each of a set of slope and curvature convolution filters to generate corresponding 
intermediate images that are summed to compute the simulated SEM signal (right). 
Parameters of the model control weighting of the intermediate images in the sum. 
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Figure 3: SEM model-fitting framework for filter bank model. A surface reconstruction from AFM (a) along 
with Monte Carlo simulated BSE (b) and SE (c) images made from this reconstruction are used to determine 
models that mimic the Monte Carlo simulation (BSE/SE filter bank models). The same AFM-based surface 
(a) and a real SEM image of that surface (g) are used to determine how the BSE and SE images (e) and (f) 
should be combined to best match the real SEM image. Given an input surface (d) (in this case a larger area 
of the same surface used to construct the filter bank model but in general a novel surface), the filter bank 
model computes an output (h) that is comparable to a real SEM image of that surface (i). 

Estimating First and Second Derivatives of Height Using the 
Cubic Facet Model 

A facet model is used to estimate slope and curvature as described by Haralick and Watson7. 
For the facet model, a facet is not just a planar face (as in the common definition) but can be any 



approximating function over a subregion of an image. One common choice for the 
approximating function, and the one used here, is a two-dimensional cubic polynomial fit to a 
local neighborhood at each pixel in the image. Each pixel has a different facet represented by the 
cubic polynomial fit about the pixel. A local neighborhood for a pixel (x,y) in an image H is 
approximated by a two-dimensional cubic polynomial 
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where yt Y∈  and xt X∈  represent row and column indices for a rectangular-shaped 
neighborhood with center at (0,0). For example, for a 5x5 neighborhood, X = Y = {-2, 1, 0, 1, 2}. 
K1, K2, K3... K10 are functions of H (the image being fit) and the pixel location (x,y). The first and 
second derivatives of H are estimated as 
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A detailed description of how the cubic polynomial coefficients (K1, K2, K3... K10) are computed 
is described in a previous publication13. First and second derivatives are computed for 10 
different neighborhoods centered about each pixel with sizes (in pixels) 5x5, 7x7, 9x9, 11x11, 
15x15, 21x21, 29x29, 41x41, 59x59, and 83x83. 

Estimating the SEM Signal from First and Second Derivatives 
of the Height 

After computing the first and second derivatives of the height for all the neighborhood sizes, 
the set of derivative values for each pixel is transformed to two different values: the estimated 
BSE and SE yields (ratio of BSE and SE emitted to the number of incident electrons). Given 
examples of height field images and corresponding BSE and SE yield images computed by 
Monte Carlo simulation, we optimize a pair of functions that estimate the BSE and SE yields 
from the derivatives of the height field at each pixel. The BSE and SE yields computed by our 
Monte Carlo simulation are (in the limit as the number of simulated electrons goes to infinity) 
circularly symmetric. This means that the first derivatives can be first transformed to the gradient 
magnitude without loss of information needed to predict the BSE or SE yield. We also convert 
the second derivatives into a rotationally invariant form: the minimum and maximum principal 
curvatures. For each pixel (x,y) in the height field and each neighborhood size n, we compute 
gradient magnitude ( ( ),nG x y ) and two principal curvatures ( ( ) ( ), ,, , ,n nx y x yκ κ+ − ) as 
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We used 10 neighborhoods with sizes (in pixels) (5x5, 7x7, 9x9, 11x11, 15x15, 21x21, 29x29, 
41x41, 59x59, 83x83) and standard deviations for the weighting function (in pixels) (0.6, 0.8485, 
1.2, 1.697, 2.4, 3.394, 4.8, 6.788, 9.6, 13.58) so the BSE and SE yields for each pixel were each 
represented by functions of 10x3=30 different values. We chose to use linear functions to 
combine the gradient and curvature values into a BSE yield ( BSEFB ) and SE yield ( SEFB ): 
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Equation 1: Filter bank models for simulating BSE and SE images 

where N is the number of neighborhood sizes, and ( ) ( ) ( ), ,, , , , ,n n nG x y x y x yκ κ+ −  are the 
gradient magnitude, maximum principal curvature and minimum principal curvature for 
neighborhood size n computed from the cubic fit at each pixel in the height field image. Using 
the method described in the next section, the parameters dBSE, aBSE,n, bBSE,n, cBSE,n and dSE, aSE,n, 
bSE,n, cSE,n (n=1..N) are determined automatically from training examples generated using Monte 
Carlo SEM simulation. These parameters will vary depending on the physical dimension of the 
pixels, accelerating voltage, and the beam shape. 

Optimizing the Parameters of a Filter Bank Model 
This section describes the fitting procedure used to find the parameters of the filter bank model 

from example input/output images computed by Monte Carlo simulation. The procedure takes as 
input a height image (Htrain) and a corresponding simulated image (Itrain) computed by Monte 
Carlo simulation12. First the Htrain image is filtered by the filter bank to generate a set of filter 
bank output images {Fi, i=1..Nf}. Next, a principal component analysis (PCA) of the output 
images is used to eliminate redundant dimensions in the filter basis9. The principal components 
are computed as the eigenvectors of the NfxNf correlation matrix of filter bank outputs. The 
eigenvalues of the correlation matrix measure the amount of variation in the filter bank outputs 
explained by the corresponding principal components. It is common to ignore those principal 
components with eigenvalues less than 1.0 but to provide sufficient accuracy we had to use 
components with eigenvalues down to 0.1. The risk in including components with small 
eigenvalues is that the problem of determining the optimal combination of these components can 
become poorly conditioned and accuracy may suffer due to numerical errors. The result of the 
PCA is a smaller set of linear transformations of the outputs of the filter bank: 
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where PCi[j] is the jth element of the ith principal component and M is the number of principal 
components with eigenvalues greater than 0.1 (M � Nf).  



The next step is to find parameters D and {Bi, i=1..M} such that 
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To do this we solve the linear least squares problem  
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Finally, we transform the Bi into the Ai as 
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The offset D and the filter bank coefficients Ai are then used in Equation 1. 

For example, for the BSE filter bank model in Equation 1 the training input would be a height 
field and the training output would be the BSE image output from the Monte Carlo simulation 
with that height field. In practice, one must choose a particular order for the filter bank outputs 

( ) ( ) ( ), ,, , , , ,n n nG x y x y x yκ κ+ −  so we assume the order 
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With this order, the parameters in Equation 1 would be given by 
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Calibrating an SEM Model to a Real SEM Image 
The Monte Carlo simulation image does not quantitatively match experimental data so an 

additional transformation is applied to the simulated signal to make it match the experimental 
data. We first review a previously described approach and then describe our approach for 
matching Monte Carlo simulation image to experimental images. Because the filter bank model 
is constructed to mimic the Monte Carlo simulation, the same calibration procedure is used to 
match this model to experimental images. 

Calibrating Monte Carlo Simulation to Experimental Data 
Differences between Monte Carlo simulation and experimental data have previously been 

handled by only comparing the simulation to the experimental data up to a slowly varying 
multiplicative factor2: 



( ) ( ) ( ) ( )E x MC x F x xε= ⋅ +  

where E is the experimental data, MC is the Monte Carlo simulation data, ε  represents the 
residual error between the simulation and experimental data, and F is a slowly varying function 
defined by 
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where R is an arbitrary range parameter. If one wishes to optimize a surface, minimizing ε , this 
approach could easily generate additional local minima that would make local optimization 
methods fail. For example, a simulated image that matches the experimental data up to 
multiplication by 0.5 would be scored the same as a simulated image that matches up to 
multiplication by 1.0. This approach makes sense for the exhaustive search used previously2 but 
because it creates multiple local minima it does not make sense for local optimization. 

We scale and offset the simulated image to match it to a real image. We model the 
experimental image as 

( ) ( ) ( )gain offsetE x MC x xε= ⋅ + +  

where the gain and offset are constants for an image. This makes sense given the fact that the 
real signal undergoes such a transformation that is set when the SEM user adjusts brightness and 
contrast controls. The lack of variation in the gain and offset across the image means that this 
approach cannot take into account non-uniformities (making one part of the image look brighter 
than another part) due to the SEM detector geometry, charging or surface contamination but we 
assume that such non-uniformities are not significant in our experimental data. The Monte Carlo 
simulation that we use actually gives two different signals, one for BSE and one for SE and we 
combine these to approximate the experimental signal using two different gain parameters: 

( ) ( ) ( ) ( )BSE BSE SE SEgain gain offsetE x MC x MC x xε= ⋅ + ⋅ + +  

where BSEMC  is the simulated BSE signal and SEMC  is the simulated SE signal. 

We assume that BSEgain , SEgain  and offset  are constants that can be determined for a 
particular SEM and operating conditions including the brightness/contrast setting. One of the 
difficulties in using an SEM for quantitative analysis is that the amplifier gain and offset set by 
brightness/contrast settings are not typically stored or even accessible to the user except 
indirectly by visual inspection of the position of analog knobs. However, given an experimental 
SEM image of a specimen with known shape and materials, one could estimate the BSEgain , 

SEgain  and offset  parameters by simulating BSE and SE images ( BSEMC  and SEMC ) and 
minimizing the cost function 
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Equation 2: cost function minimized to find calibration gain and offset parameters 



We use this approach except instead of using a specimen with known shape we estimate the 
shape from an AFM image. Consequently, BSEMC  and SEMC  are only estimates of the simulated 
images for the actual specimen. We minimize Equation 2 using the least squares solver DGELS 
in the LAPACK library1. 

Calibrating the Filter Bank Model to Experimental Data 
To calibrate the filter bank model we followed the same procedure from the end of the 

previous section but replaced BSEMC  with BSEFB  and SEMC  with SEFB . The formula for the 
final simulated image (that quantitatively approximates the experimental SEM image) is also just 
a linear combination of the same filter bank outputs 
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Equation 3: Calibrated filter bank model 
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This calibrated filter bank model can be used to estimate the experimental SEM image for an 
arbitrary surface and this is the model that we used later for surface reconstruction. 

Acceleration Methods and Performance Measurements 

Sharing the Filter Bank between SE and BSE 
The same filter bank is used to estimate both the SE and BSE outputs of the Monte Carlo 

simulation. While the SE signal tends to have higher spatial frequencies than the BSE signal, 
there is a significant amount of overlap because the SE-II component is approximately half of the 
total SE signal and the SE-II component is a sort of amplification of the BSE signal. Because 
almost all of the running time for the filter bank model is in the convolutions and square roots 
required to compute the slope and curvature estimates, by sharing this computation we can 
compute both the BSE and SE images in nearly the same time as it takes to compute either one, 
yielding a nearly 2x speedup. 

Separability 
For a 300x300 pixel input image and a variety of filter sizes ranging from 5x5 to 83x83, 

separating the coefficient filters into 1D convolutions in x and y gave a speedup of 12x over an 
implementation that did not take advantage of separability. The filters for K4, K5, and K6 are 
directly separable and K2 and K3 can be decomposed into a sum of two parts and each part is then 
separable13.  



Vector Acceleration 
The most time consuming operation is the 1D convolution required to compute the separable 

filter outputs. An additional speedup of 5x was achieved by using SIMD CPU instructions 
(MMX on Intel Pentium M, 1.5 GHz) that help to parallelize 1D convolutions and were accessed 
through the Intel Performance Primitives library. 

Multi-resolution Gaussian-weighted Facet Model 
Cubic fits over large neighborhood sizes require large filter kernels and convolution with these 

kernels becomes the main performance bottleneck. A subsampling scheme was developed to 
help speed up the calculation of cubic fits over large neighborhoods. For example, the cubic fit 
over a large neighborhood with a Gaussian weighting function with standard deviation 13.58 
pixels may be approximated by subsampling the input height field by a factor of 16, computing 
the cubic fit with a Gaussian weighting function with a standard deviation of 13.58/16=0.84375 
and then upsampling the result by a factor of 16. Subsampling was implemented efficiently by 
recursively subsampling by a factor of 2. The subsampling version of a cubic fit is in general not 
the same as the non-subsampling version because it is only an approximation based on a 
subsampled image. These differences are somewhat compensated by the optimization procedure 
used to find the parameters of the filter bank model. We did not use this optimization in practice 
because among all the optimizations this is the only one that significantly affected accuracy and 
the additional speedup was not critical for our purpose. 

Summary of Performance Gains 
Here we compare the performance benefits of the various optimizations. The test input image 

(Figure 4) has 300x300 pixels. The output (Figure 5) is an SE and a BSE image both with 
300x300 pixels. The filter bank consists of 3 filters for each neighborhood: gradient and the two 
principal curvatures. These are computed from the 5 linear and quadratic coefficients of the 
cubic polynomial fit for each neighborhood. There are 10 neighborhood sizes: 5x5, 7x7, 9x9, 
11x11, 15x15, 21x21, 29x29, 41x41, 59x59, and 83x83. Thus, in total there are 50 2D 
convolutions for the coefficient filters and the output of these convolutions gets converted to 30 
slope/curvature basis images. The initial implementation with no optimization took 110 seconds 
to run. After all optimizations were implemented, the running time was 0.12 seconds giving a 
speedup of about 912x. Compared with Monte Carlo simulation using 1000 electrons per pixel, 
this represents a speedup of about 150,000x. The performance gains and running time after each 
optimization technique was implemented are summarized in Table 1 in the order they were 
added. 



acceleration technique incremental speedup cumulative speedup running time 
sharing filter bank 
between SE and BSE 
images 

1.9x 1.9 58 seconds 

separability of filters 12x 22.8 4.83 seconds 
SIMD hardware 5x 114 0.97 second 
miscellaneous 
optimization using 
profiler (Intel VTune) 

2x 228 0.48 seconds 

subsampled filtering 4x 912 0.12 seconds 

Table 1: Summary of performance gains. The incremental speedup refers to the speedup when using an 
acceleration technique compared with not using that acceleration technique but keeping the rest of the 
implementation the same. 

Simulation Results 

Comparison with slope function 
Both the filter bank model and a slope function described previously13 were used to simulate 

SEM images from the input height field shown in Figure 4. 

 

 
Figure 4: Test input height field 

Figure 5 shows BSE and SE SEM images predicted by Monte Carlo simulation, the piecewise 
linear function of slope constructed by fitting to the Monte Carlo simulation using the two-plane 
method described in the appendix, and filter bank models fit to the Monte Carlo simulation.  



 
Figure 5: Comparison of simulated SEM images output by Monte Carlo model, a function of slope (two-
plane slope model - see the appendix), and the filter bank model. A single intensity scale is used for all the 
BSE images and another intensity scale is used for all the SE images. Note especially the darkening in 
crevices and the bright high-curvature bumps present in the filter bank and MC simulations that are 
missing in the slope model. 

Figure 6 shows the difference in error between the slope function and the filter bank model. 
Large errors for the slope function in areas of high curvature are significantly reduced for the 
filter bank model. The differences shown in Figure 6 are described more quantitatively in Table 
2. The errors listed in Table 2 are relative errors in units of the true signal value as estimated by 
the Monte Carlo simulation. The signal values are SE or BSE yield which refers to the ratio 
between the number of SE or BSE and the number of incident electrons. When averaged over the 
whole image, the relative errors for the filter bank model are about half those for the slope 
function but because the error is concentrated in a relatively small area where the surface is 
highly concave or convex (as can be seen in Figure 6), the difference must be significantly larger 
in these parts of the image. 

Monte Carlo simulation slope function filter bank  model 

SE 

BSE 



 
Figure 6: Estimates of absolute value of relative error in 
intensity from slope function (left) and for the filter bank 
model (right). The intensity scales are identical between the 
two BSE images and between the two SE images. The relative 
error is with respect to the Monte Carlo images. 

 mean max median std. dev. 

( )slope MC MCBSE BSE BSE−  0.0986 2.89 0.0731 0.104 

( )FB MC MCBSE BSE BSE−  0.0545 0.480 0.0446 0.0440 

( )slope MC MCSE SE SE−  0.110 2.32 0.0872 0.109 

( )FB MC MCSE SE SE−  0.0714 1.22 0.0589 0.0569 

Table 2: Some statistics from the images shown in Figure 6. The slope subscript signifies the image 
computed using the function of slope, the FB subscript signifies the image computed using the filter bank 
model, and the MC subscript signifies the image computed by Monte Carlo simulation. 

The superior ability of the filter bank model to emulate Monte Carlo simulation compared with 
a function of slope becomes more evident as the structures get smaller. This was tested using two 
synthetic surfaces shown as the “input” grayscale height images in Figure 9 and Figure 10. 
Before doing this test, the filter bank model had to be trained using images with the same pixel 
size as the images to which it would be applied. The training images for the two pixel sizes are 
shown in Figure 7 and Figure 8. The results from applying the filter bank models to the test 
structures are shown along with the slope function and Monte Carlo output in Figure 9 and 
Figure 10. These results demonstrate that the filter bank captures qualitative aspects of the Monte 

slope function filter bank model 
BSE 

SE 

BSE 

SE 



Carlo simulation that the slope function cannot. For example, there is no way for the slope 
function to predict a lower intensity for highly concave parts of the surface than for flat parts of 
the surface as the filter bank model does. 

 
Figure 7: Filter bank model training data for 3nm/pixel resolution. Images are 150x150 pixels. 250 
electrons/pixel were used to generate the training output. The input structure is 20nm high. 

 

 
Figure 8: Filter bank model training data for 1nm/pixel resolution. Images are 150x150 pixels. 500 
electrons/pixel were used to generate the training output. The input structure is 20nm high. 
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Figure 9: Monte Carlo simulation compared with a function of slope and the filter bank model on a 
20nm high raised square 45nm wide at the top. Images are 64x64 pixels and 3nm/pixel. 

 
Figure 10: Monte Carlo simulation compared with a function of slope and the filter bank model on a 
20nm high raised square 15nm wide at the top. Images are 64x64 pixels and 1nm/pixel. 

 

Surface Optimization 

Surface Model and Scale Space Reconstruction 
Jones and Taylor introduced an approach called scale-space reconstruction in which a surface 

is represented by Gaussian basis functions and is constructed in a coarse to fine sequence. They 
also computed the SEM objective function gradient using convolution. Though the basic 
framework for our approach closely follows that described by Jones and Taylor 10, we generalize 
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the SEM shading function from one that depends only on slope with no notion of the scale of 
measurement to one that depends on slope and curvature at multiple scales.  

The scale space representation of a surface, ( ), ;H x y σ , gives the height of the surface as a 

function of a position in the plane (x,y) for x=1..Nx and y=1..Ny and a scale parameter σ . The 
scale-space reconstruction algorithm computes the surface at each of a set of discrete scales in 
decreasing order 1 2 0, ,N Nσ σ σ− − �  from the largest scale to the smallest scale. At any scale kσ  
(k<N) the reconstruction is computed as the sum of the reconstruction at the next larger scale and 
an incremental update ( ), ; kh x y σ  such that 

( ) ( )
..

, ; , ;k i
i k N

H x y h x yσ σ
=

= �  

In the following descriptions, we abbreviate ( ), ; kh x y σ  as kh  or ( ),kh x y  and ( ), ; kH x y σ  as 

kH  or ( ),kH x y . 

Building the surface up from large scale to small scale ensures that a smooth surface is 
constructed that explains the observed data. Although the solution found by this algorithm is not 
necessarily the smoothest among all surfaces that optimally explains the data, an upper bound for 
a lack-of-smoothness measure given by Jones and Taylor 10 suggests that the solution is nearly as 
smooth as possible.  

Each function kh  is the convolution of a coefficient image kC  with a Gaussian basis function 
F
kG  and is defined as 

( ) ( )
1 1

, ,
NN yx

F F
k k k k k

i j

h C G C i j G x i y j
= =

= ⊗ = ⋅ − −��  

where ( ) ( )2 2 2( ) 2

2

1
,

2
kx yF

k
k

G x y e
σ

πσ
− +=  

We define ( ),kH x y  in terms of the same (x,y) coordinates as the SEM image.  

Objective Function and Its Gradient 
Previously, the sum of squared differences between the SEM intensity and the intensity 

predicted by the candidate surface reconstruction was used as the objective function10. Assuming 
identical and independent Gaussian noise at each pixel in the SEM image, the surface that 
minimizes this objective function is equivalent to the maximum likelihood surface. We adopt this 
approach and define our objective function as 

( ) ( ) ( )( )2
FB

1 1

1
, ,

2

NN yx

k
x y

f H S x y S x y
= =

� �= −� �� ���  

Because we use a gradient-based optimization method, it is necessary to calculate the gradient 
of the objective function in addition to the value of the objective function. The gradient of the 



objective function ( f∇ ) is the direction in parameter space in which the objective function 
increases the most. It is defined as 

( ) ( )
( ), ,

k

i j
k

f H
f

C i j

∂
∇ =

∂
 

where (i,j) i=1..Nx, j=1..Ny index over the components of the gradient vector. Intuitively, this tells 
which Gaussian coefficients should go up, and which should go down (and by how much) to 
most quickly increase the likelihood of the surface estimate. 

The method used to compute the gradient of the objective function relies on the fact that the 
facet model coefficients can be computed by a convolution7. We first give a mathematical 
derivation of a formula for the gradient. After this we describe the algorithm used to compute 
this formula. Throughout these descriptions we use ,

F
m nK  to represent the convolution kernel used 

to compute a facet model coefficient at each pixel and ( ), ,m nK x y  to represent the actual 

coefficient computed at (x,y) by the convolution. F
kG  represents the normalized 2-dimensional 

Gaussian kernel centered at 0 with width the same as that used for the surface basis functions at 
scale k (the superscript F in F

kG  is to avoid confusion with the gradient magnitude image nG  
representing the gradient magnitude estimated for neighborhood size n). 

Optimization of Surface at Each Scale 
At each scale indexed by k, we minimize ( )( ),kf H x y  using the non-linear Polak-Ribière 

conjugate gradient method as implemented in a program called CG+ 5,11. Before the optimization, 
the Gaussian basis function coefficients for scale k are all initialized to 0. 

Reconstruction Results 
We tested the reconstruction algorithm using both synthetic and real SEM images. Example 

images from a reconstruction using a synthetic SEM image are shown in Figure 11. Images from 
the test using a real image are shown in Figure 12. The experimental SEM image, taken using a 
landing energy of 3keV, is of a specimen constructed of silicon by dip-pen lithography described 
previously3. It is difficult to evaluate the accuracy of the method in the case of real data because 
of the lack of ground truth but comparison with AFM data shows that the result is qualitatively 
correct. As shown in Figure 13, the reconstruction provides a much more accurate measurement 
within the plane of the SEM image than in the depth dimension. 
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Figure 11: Example showing sequence of intermediate solutions for a test using synthetic data. 
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Figure 12: Reconstruction from a real SEM image 
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Figure 13: Cross section of reconstruction from SEM, reconstruction from AFM, and SEM data 

Discussion 
 

In our reconstruction method, the surface must be representable as a height field and this 
means that in general, surfaces with undercuts cannot be reconstructed. The SEM can sample 
below the surface of a specimen because electrons penetrate some distance before escaping and 
being detected. Also, electrons escaping from one surface may interact with other surfaces that 
are hidden from the incident electron beam. Thus there may be some information in an SEM 
image that is representative of such hidden surfaces. Allowing hidden surfaces is likely to make 
the reconstruction problem severely under-constrained. However, if it is known that hidden parts 
of the surface are constrained such that they are predictable from the visible surface, then the 
actual surface might be deduced from the reconstructed visible surface. For example, the profile 
of undercut edges might be the same everywhere, a reasonable assumption for surfaces generated 
by some etching processes. 

The algorithm as implemented for this project is limited to specimens composed of a single 
material. This limitation simplifies the problem of modeling the SEM images because different 
materials will in general appear differently in the SEM and one would need to either be given or 
determine as part of the reconstruction the distribution of the different materials in the specimen. 
This algorithm could be extended to handle specimens composed of multiple materials by 



extending the filter bank model to include filters that respond differently to different material 
types. A material map could be provided by an x-ray detector or considered as a free parameter 
of the specimen model. For manufactured samples consisting of multiple materials it is common 
for the different materials to be arranged in layers where each layer is contained in a unique 
range of heights. In reconstructing such a sample, one could use the height as a stand-in for 
knowing the material. The height of the surface model would automatically translate into a 
different material and this would essentially switch the behavior of the SEM model. Accurate 
simulation of the SEM image at material boundaries could still be a challenge but this may not 
be critical or there may be a simple interpolation scheme that would work. 

Determining the height of the surface from an SEM image alone is expected to be an under-
constrained problem. Even in the simpler case of shape-from-shading it has been proven that the 
height of certain critical points (local minima and maxima) on the surface must be known in 
order to sufficiently constrain the problem. We have not determined what would be a sufficient 
set of constraints but it is reasonable to expect similar requirements to those for shape-from-
shading. For applications involving manufactured surfaces, there is usually some prior 
knowledge (such as CAD data) that could be incorporated into the algorithm to improve 
accuracy. Knowledge of the manufacturing process, including etching and deposition processes, 
could also be helpful in constraining the reconstructed surface.  

We assume no charging effects in the SEM images but specimen charging typically occurs for 
specimens composed of an insulating material. Some SEMs reduce charging effects by 
introducing a gas into the specimen chamber or by placing a conducting grid just above the 
specimen but these are not commonly available. The charging results in electric fields that 
modify the trajectories of electrons and can create complicated variations in intensity. In order to 
overcome this limitation, it would be necessary to model the charging in an efficient way. Some 
subtle variations in intensity due to charging can be compensated for by the calibration procedure 
(determining the best fit combination of simulated SE and BSE images to match the real SEM 
image) and previous work describes a more flexible calibration method that might be used to 
reduce sensitivity to charging effects but this method is also restricted to subtle charging effects2. 
Existing methods for simulating charging effects require an impractical amount of time so, 
unless a fast approximation can be developed, it is difficult to see how our reconstruction 
approach could work in the case of severe charging. 

The SEM shading is assumed to be rotation invariant. This is not a strict requirement of the 
method but in the described implementation, the SEM intensity is assumed to be a function of 
rotation invariant shape characteristics: gradient magnitude and the two principal curvatures 
estimated over a number of local neighborhood sizes. The assumption of rotation invariance is 
reasonable given the lack of any information about the specific detector geometry in the SEM. A 
secondary electron detector approximately measures SE escaping directly from the surface in all 
directions and BSE escaping in all directions that have generated additional SE through 
interactions with the walls of the specimen chamber. The detector may be more sensitive to 
electrons escaping in a particular direction due to asymmetry in the detector geometry, specimen 
chamber or electric field geometry but this information was not readily available. If a specimen 
with a known shape were available, it could be used to characterize the asymmetry in the SEM 
shading. Instead of training the filter bank model from a Monte Carlo simulation, the model 
could be trained from an actual SEM image of the known shape. 



In our opinion, the most important obstacle to making this approach practical is that SEMs are 
not designed to make quantitative measurements of intensity. This is reflected in the fact that 
while the SEM detector amplifier settings may be manually set to adjust brightness and contrast, 
the actual values are not output by the control software making it very difficult to convert images 
from an SEM into meaningful physical units for later analysis. Images taken at different times 
typically will usually have different amplifier settings but without knowing these parameters it is 
difficult to compare them. Also, characterization of the detector sensitivity to electrons escaping 
in different directions with different energies is not typically available making it difficult to 
relate the output of a Monte Carlo simulation to a real image. This is only a technical problem 
and one could probably solve it by modifying an SEM to read out the amplifier settings and by 
doing many careful measurements of calibration specimens to characterize the detector. It may 
be useful to develop a calibration procedure that would work on multiple SEMs enabling 
quantitative analysis of image contrast and comparison of images across different tools. 
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