Selfish Routing and the Price of Anarchy

Tim Roughgarden®
January 7, 2006

Abstract

Selfish routing is a classical mathematical model of how self-interested users might
route traffic through a congested network. The outcome of selfish routing is generally
inefficient, in that it fails to optimize natural objective functions. The price of anarchy
is a quantitative measure of this inefficiency.

We survey recent work that analyzes the price of anarchy of selfish routing. We
also describe related results on bounding the worst-possible severity of a phenomenon
called Braess’s Paradox, and on three techniques for reducing the price of anarchy of
selfish routing. This survey concentrates on the contributions of the author’s PhD
thesis, but also discusses several more recent results in the area.

1 Introduction

Over the past several years, there has been a tremendous surge of activity at the interface
of computer science and economics. This survey is a brief introduction to two intertwined
facets of this emerging research area, the price of anarchy and selfish routing. The price of
anarchy, first defined by Koutsoupias and Papadimitriou [59, 69], measures the extent to
which competition approximates cooperation. It is motivated by the well-known fact that
noncooperative equilibria can be inefficient, in that they need not optimize natural objective
functions [33, 75]. Selfish routing refers to a mathematical model of traffic in a congested
network. This model has a long history in the transportation science literature [8, 13, 72, 100]
and has also been widely studied by the computer networking community (see e.g. [11, 16,
42,43, 67, 73]). The price of anarchy has recently been extensively studied in this model.

This survey concentrates on the contributions of the author’s PhD thesis [82], but also
discusses several more recent results on the price of anarchy of selfish routing. In most cases,
we provide self-contained proofs. Many more details, results, and references can be found in
the recent book [86], which is an expanded and revised version of [82].
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CA 94305. Supported in part by ONR grant N00014-04-1-0725, DARPA grant W911NF-04-9-0001, and an
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(a) Pigou’s example (b) A nonlinear variant

Figure 1: Pigou’s example and a nonlinear variant. The cost function ¢(z) describes the cost
incurred by users of an edge, as a function of the amount of traffic routed on the edge.

1.1 Two Motivating Examples

We now introduce selfish routing and motivate the results described in this survey by infor-
mally exploring two important examples. Pigou discovered the first example in 1920 [72];
Braess found the second in 1968 [14].

Example 1.1 (Pigou’s example [72]) Consider the simple network shown in Figure 1(a).
Two disjoint edges connect a source vertex s to a sink vertex ¢. Each edge is labeled with a
cost function c(-), which describes the cost (e.g., travel time) incurred by users of the edge,
as a function of the amount of traffic routed on the edge. The upper edge has the constant
cost function ¢(xz) = 1, and thus represents a route that is relatively long but immune to
congestion. The cost of the lower edge, by contrast, is governed by the function ¢(z) = z
and thus increases as the edge gets more congested. In particular, the lower edge is cheaper
than the upper edge if and only if less than one unit of traffic uses it.

Suppose there is one unit of traffic, representing a very large population of network users,
and that each user chooses independently between the two routes from s to t. Assuming that
each network user aims to minimize its cost, we should expect all traffic to follow the lower
edge. Indeed, each network user should reason as follows: the lower route is never worse
than the upper one, even when it is fully congested, and it is superior whenever some of the
other users are foolish enough to take the upper route. In the “selfish routing outcome”, we
therefore expect all networks users to incur one unit of cost.

Now suppose that, by whatever means, we can choose how the traffic is routed. Can
we leverage this power to improve over the selfish routing outcome? To see that we can,
consider assigning half of the traffic to each of the two routes. The network users forced onto
the upper edge experience one unit of cost, and are thus no worse off than in the previous
outcome. On the other hand, users permitted on the lower edge now enjoy lighter traffic
conditions, and incur a mere 1/2 unit of cost. We have therefore lowered the cost of half of
the users while making no one worse off. Moreover, the average cost incurred by traffic has
decreased from 1 to 3/4.



Pigou’s example demonstrates that selfish routing need not produce an optimal outcome.
This phenomenon can be amplified with a seemingly minor modification to Example 1.1.
Suppose we replace the previously linear cost function ¢(x) = x with the highly nonlinear
one c¢(z) = z? for p large (Figure 1(b)). As in Example 1.1, selfish users will all travel on the
lower route, incurring a cost of 1. On the other hand, if we could force a small e fraction of
the traffic to travel along the upper route, then the average cost would drop to e+ (1 —¢)P*,
which approaches 0 as € tends to 0 and p tends to infinity.

In Section 2, we will define the price of anarchy of selfish routing as the average cost
of traffic in a selfish outcome divided by the minimum-possible average cost. If the price
of anarchy of a network is close to 1, then we conclude that the negative impact of selfish
routing is relatively small. The price of anarchy in Example 1.1 is at least 4/3, and it tends
to infinity with p in the nonlinear variant of Pigou’s example.

The price of anarchy of selfish routing can therefore be large if the network cost functions
are “sufficiently nonlinear”. Pigou’s example and its nonlinear variant motivate the following
questions, which are central to Section 2 of this survey. Can the price of anarchy be large
even when cost functions are “not too nonlinear”? Is the price of anarchy larger in bigger,
more complicated networks? Is it larger in multicommodity networks, where traffic emanates
from and terminates at multiple locations? In Section 2 we will prove that the answer to all
of these questions is “no” —in fact, Pigou’s example and simple variants are in some sense
universal bad examples for the price of anarchy of selfish routing.

While the price of anarchy in our next example is no larger than in Pigou’s example, it
is arguably a more startling and unintuitive display of the suboptimality of selfish routing.

Example 1.2 (Braess’s Paradox [14]) Consider the four-node network shown in Fig-
ure 2(a). There are two disjoint routes from s to ¢, each with combined cost 1+ z, where z is
the amount of traffic that uses the route. The routes are therefore identical, and selfish traffic
should split evenly between them. Assuming that there is one unit of traffic, all network
users experience 3/2 units of cost in the selfish routing outcome.

Now suppose that, in an effort to decrease the cost encountered by the traffic, we build
a short, high-capacity edge connecting the midpoints of the two existing routes. The new
network is shown in Figure 2(b), with the new edge (v, w) possessing the constant cost
function ¢(z) = 0. How will selfish traffic react?

We cannot expect the previous traffic pattern to persist in the new network. Asin Pigou’s
example, the cost of the new route s — v — w — ¢ is never worse than that along the two
original paths, and it is strictly less whenever some traffic fails to use it. We therefore expect
all network users to deviate to the new route. Because of the ensuing heavy congestion
on the edges (s,v) and (w,t), all of the traffic now experiences two units of cost. Braess’s
Paradox thus shows that the intuitively helpful action of adding a new zero-cost edge can
increase the cost experienced by all of the traffic!

Example 1.2 shows that adding a new edge to a network can increase the cost incurred by
selfish traffic. Equivalently, removing one edge from a network with linear cost functions can
decrease this cost by a factor of at least 4/3. Can removing edges from a network decrease
the cost incurred by selfish traffic by a larger factor in larger networks, or with nonlinear



C(x)=1

C(x) =x

C(x)=1

O

(a) Initial network (b) Augmented network

Figure 2: Braess’s Paradox. The addition of an intuitively helpful edge can adversely affect
all of the traffic.

cost functions, or with multiple commodities, or with multiple edge removals allowed? If so,
by how much? In Section 3 we give precise answers to all of these questions.

1.2 Overview

We begin in Section 2 by proving matching upper and lower bounds on the price of anarchy of
selfish routing. After defining the classical model of selfish routing that we study, we formalize
the lower bound on the price of anarchy provided by simple variants of Pigou’s example. As
suggested by Example 1.1 and the subsequent nonlinear variants, this lower bound will
depend on the set of allowable edge cost functions. We then show a matching upper bound
for essentially every set of allowable cost functions. For example, the price of anarchy in
every multicommodity network with linear cost functions—functions of the form ax + b with
a,b > 0—is at most 4/3. Thus the price of anarchy in such networks is maximized by
Pigou’s example (Example 1.1). Similarly, the price of anarchy of multicommodity networks
with cost functions that are polynomials with nonnegative coefficients and degree at most
p is maximized by the nonlinear variant of Pigou’s example shown in Figure 1(b). We also
explicitly compute the largest-possible price of anarchy with respect to several different types
of cost functions.

Section 3 studies the worst-possible severity of Braess’s Paradox. We show that Braess’s
Paradox can be arbitrarily severe, even in single-commodity networks, provided nonlinear
cost functions, large networks, and multiple edge removals are permitted. Precisely, for every
n > 2, there is a single-commodity, n-vertex network such that removing |n/2| — 1 edges
decreases the cost incurred by selfish traffic by an |n/2| factor. We also show that this
construction is optimal in several senses, discuss extensions to multicommodity networks,
and show that Braess’s Paradox is impossible to detect efficiently (assuming P # NP).

Section 4 tackles the problem of reducing the price of anarchy in networks where it is
unacceptably high. It surveys positive results for three distinct approaches: increasing the



network capacity, routing a small portion of the traffic centrally, and influencing network
users by taxing network edges.

Finally, Section 5 describes the broader research context for the results of this survey,
and discusses other recent work that quantifies the inefficiency of noncooperative equilibria.

2 Bounding the Price of Anarchy

This section formally defines selfish routing networks, equilibria, and the price of anarchy
(Subsection 2.1); introduces a simple lower bound on the price of anarchy that is based
on Pigou’s example (Subsection 2.2); and proves a matching upper bound on the price of
anarchy (Subsection 2.3).

2.1 Preliminaries
Selfish Routing Networks

We begin by reviewing the terminology of classical multicommodity flow networks. See [2],
for example, for more details and for historical notes on network flows. A multicommodity
flow network is described by a directed graph G = (V, E), with vertex set V and edge set
E, and a set (s1,%1),--., (sk, tx) of source-sink vertex pairs, also called commodities. Parallel
edges are allowed, and a vertex can participate in multiple source-sink pairs.

For a multicommodity network G, let P; denote the set of simple s;-t; paths and P the
union U¥_ P;. We always assume that P; # @) for every i. A flow in G is a nonnegative
vector, indexed by P. For a flow f and a path P € P;, we interpret fp as the amount of
traffic of commodity ¢ that chooses the path P to navigate from s; to ¢;. A flow f induces
a flow on edges {fc}eecr, Where f, = Y p.p..cp fp denotes the total amount of flow using
the edge e. Finally, we use r to denote a nonnegative vector of traffic rates, indexed by the
commodities of G. A flow f in G is feasible for r if it routes all of the prescribed traffic: for
each i € {1,2,...,k}, D pcp fr =i

To model the negative consequences of increasing congestion, we give each edge e of a
network G a nonnegative, continuous, and nondecreasing cost function c.. A cost function
ce(-) denotes the cost (e.g. travel time) incurred by traffic that traverses edge e, as a function
of the edge congestion f.. A selfish routing network is then given by a triple of the form
(G,r,c), where G is a multicommodity flow network, r is a vector of traffic rates, and c is a
vector of cost functions, indexed by the edges of G. We often call such a triple an instance.

Equilibria

We next discuss equilibria in selfish routing networks. Let f be a flow feasible for the instance
(G, r,c). The overall cost cp(f) incurred by traffic on the path P in the flow f is defined as
the sum of the costs of the constituent edges: cp(f) = > cpce(fe). Naturally, we expect
selfish traffic to attempt to minimize its cost. This leads to the following definition, which
was first formulated by Wardrop [100].



Definition 2.1 ([100]) Let f be a feasible flow for the instance (G,r,c). The flow f is a
Wardrop equilibrium if, for every commodity i € {1,2,...,k} and every pair P, P € P; of
s;-t; paths with fp > 0,

cp(f) < ep(f)-

In other words, all paths in use by a Wardrop equilibrium f have minimum-possible cost
(given their source, sink, and the congestion caused by f). In particular, all paths of a given
commodity used by a Wardrop equilibrium have equal cost. In the theoretical computer
science literature, Wardrop equilibria are also called Nash flows. Haurie and Marcotte [47]
formalized the precise correspondence between Wardrop equilibria and Nash equilibria of
finite normal-form games [66].

Remark 2.2 In Definition 2.1, we are implicitly assuming that every network user controls
a negligible portion of the overall traffic, so that the actions of an individual user have
essentially no effect on the network congestion. In the game theory literature, games with
this property are called nonatomic [91]. Several recent papers have analyzed the price of
anarchy in atomic variants of the selfish routing model studied in this survey; see Section 5
for references.

Beckmann, McGuire, and Winsten [8] resolved the important issues of existence and
uniqueness of Wardrop equilibria.

Proposition 2.3 ([8]) Let (G,r,c) be an instance.
(a) The instance (G,r,c) admits at least one Wardrop equilibrium.
(b) If f and f are Wardrop equilibria for (G,r,c), then c.(f.) = ce(f.) for every edge e.

The first part of Proposition 2.3 guarantees that a Wardrop equilibrium exists in every in-
stance. The second part states that every two Wardrop equilibria induce identical edge costs.
While two Wardrop equilibria need not induce identical flows on edges, Proposition 2.3(b)
is strong enough for our purposes.

The proof of Proposition 2.3 in [8] is remarkable. Beckmann, McGuire, and Winsten [§]
showed, by invoking the Karush-Kuhn-Tucker conditions (see e.g. [71]), that the Wardrop
equilibria of an instance (G, r, ¢) are precisely the flows that minimize the potential function

fe
o(f)=%" / co(z)dz (1)

eck

over all feasible flows for (G,r,¢). Since cost functions are continuous and the space of
all flows is compact, Weierstrass’s Theorem then implies Proposition 2.3(a). Since cost
functions are nondecreasing, the function ® is convex, and Proposition 2.3(b) then follows
without much difficulty. This use of a potential function has been influential in both game
theory and theoretical computer science. Led by the work of Rosenthal [77] and Monderer
and Shapley [65], potential functions have become a standard tool in noncooperative game
theory for proving the existence of pure-strategy Nash equilibria in certain classes of games.
In theoretical computer science, potential functions have been used to bound the price of



anarchy in several applications [3, 52, 88, 89]. Intuitively, if equilibria optimize a potential
function that is “close to” the objective function, then equilibria cannot be too inefficient.
Indeed, the proximity between the potential function ® in (1) and our objective function (3)
below implies near-optimal upper bounds on the price of anarchy of selfish routing [89]. In
this survey we focus only on optimal bounds, however, which follow from a different proof
approach.

Speaking of which, the following variational inequality characterization of Wardrop equi-
libria, due to Smith [93], will play a crucial role in our upper bound on the price of anarchy.

Proposition 2.4 ([93]) A flow f feasible for (G,r,c) is a Wardrop equilibrium if and only

if
D el fe)fe <D celf)fr

eckE eckE

for every flow f* feasible for (G,r,c).

Proposition 2.4 can easily be derived as an optimality condition for minimizers of the po-
tential function (1). For simplicity, we instead give a short direct proof.

Proof: Definition 2.1 easily implies that a flow f is a Wardrop equilibrium if and only if

Y er(Hfe <D er(H)fp (2)

PeP PeP

for every flow f* feasible for (G,r,c). Writing cp(f) = >_,cp ce(fe) and reversing the order
of summation on both sides of (2) then proves the proposition. B

The Price of Anarchy

We conclude the preliminaries by defining the price of anarchy. Since this definition aims to
quantify the inefficiency of an equilibrium, it requires an objective function. We adopt the
usual objective function from min-cost network flow, and define the cost C'(f) of a flow f in
(G,r,c) as
C(f) =Y cr(Hfr = celfe)fe- (3)
PeP eck

The first equality in (3) is a definition; the second follows from the same reversal of sums
as in the proof of Proposition 2.4. A flow feasible for an instance (G,r,c) is optimal if it
minimizes the cost over all feasible flows. Because cost functions are continuous and the
space of flows is compact, every instance admits an optimal flow.

We now define the price of anarchy as the ratio between the cost of a Wardrop equilibrium
and of an optimal flow.

Definition 2.5 ([59, 69]) The price of anarchy p(G,r,c) of an instance (G, r,c) is

p(G,r,c) =

where f is a Wardrop equilibrium and f* is an optimal flow for (G, r, ¢). The price of anarchy
p(Z) of a non-empty set Z of instances is sup (g, ez (G, T, €).
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Definition 2.1 and Proposition 2.3(b) easily imply that all Wardrop equilibria have equal
cost, and thus the price of anarchy of an instance is well defined unless there is a flow with
zero cost. In this case, all Wardrop equilibria also have zero cost, and we define the price of
anarchy of the instance to be 1.

2.2 The Pigou Bound
Definition of the Pigou Bound

Pigou’s example and its nonlinear variant (Subsection 1.1) show that the price of anarchy
of selfish routing depends, at the very least, on the type of cost functions allowed. We
will therefore aim for a bound on the price of anarchy that is parameterized by the set of
allowable cost functions, and that is optimal for each such set. Common examples of sets of
cost functions include linear functions, polynomials, and queueing delay functions.

For every set C of allowable cost functions, Pigou-like examples provide a natural lower
bound on the price of anarchy of instances with cost functions in C. Specifically, suppose C
contains all of the constant cost functions, and choose a cost function ¢y € C and a traffic
rate 7 > 0. Let ¢; € C denote the cost function everywhere equal to cy(r). Consider the
usual two-node, two-link network of Pigou’s example (Figure 1), give the upper and lower
edges the cost functions ¢; and co, respectively, and set the traffic rate to be r. Routing all
traffic on the lower edge yields a Wardrop equilibrium with cost co(r)r. The price of anarchy
in this instance is thus

- co(r)
max .
0<a<r - co(x) + (r — z)eo(r)

Definition 2.6 below uses this expression but does not constrain x from above by r; since ¢y
is nondecreasing, this modification does not affect the value of the maximum.

We can now obtain a lower bound on the price of anarchy by choosing the cost function
co and the traffic rate r in the most pernicious way possible.

Definition 2.6 ([27, 83]) Let C be a nonempty set of cost functions. The Pigou bound
a(C) for C is

a(C) = sup su r-clr)
©) ce? m,r§0 z-c(z) + (r—az)e(r)’ (4)

with the understanding that 0/0 = 1.

Examples

While the defining equation (4) of the Pigou bound may appear fearsome to evaluate, it
simplifies to a closed-form expression for many interesting sets of cost functions.

Example 2.7 ([83, 89]) If C = {ax +b : a,b > 0} is the set of linear cost functions, then
elementary calculations show that «(C) = 4/3.

Thus Example 1.1 determines the Pigou bound for linear cost functions.

Example 2.8 ([27]) Similarly, if C is the set of concave cost functions, then «(C) = 4/3.
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Example 2.9 ([83]) If C is the set of polynomials with nonnegative coefficients and degree
at most p, then

aC) =1 —p-(p+1)~PFL (5)
As p grows large, the right-hand side of (5) tends to infinity as p/Inp [83, 99].

The right-hand side of (5) is simply the price of anarchy in the nonlinear variant of Pigou’s
example discussed in Subsection 1.1. The Pigou bound for (nondecreasing) bounded-degree
polynomials with arbitrary coefficients is not well understood, though partial results have
recently been obtained by So [94].

Remark 2.10 One of the most popular types of cost functions in transportation science
applications is quartic functions with nonnegative coefficients (see e.g. Sheffi [92]). The
Pigou bound (5) for such functions is roughly 2.15.

Our final example is for the delay functions of M/M/1 queues—queues with Poisson
arrivals and exponentially distributed service times—which are common in computer network
applications (see e.g. [10, 11]). These delay functions correspond to cost functions of the form
c(x) = 1/(u — x), where u can be interpreted as an edge capacity or a queue service rate.
The value of such a function is defined to be +0o when z > wu. Allowing infinite costs
requires some technical modifications to the selfish routing model that we ignore in this
survey; see [82] for more details.

The Pigou bound for the set of M/M/1 delay functions is +oo [42]. Intuitively, this
follows from Example 2.9 because an M/M/1 delay function behaves like a polynomial with
arbitrarily large degree when it is nearly saturated. In analogy to restricting the polynomial
degree in Example 2.9, we impose a lower bound u,,;, on all queue service rates and an
upper bound R,,,, on the value that the traffic rate r can take on in (4).

Example 2.11 ([83]) Suppose Rz < Umin and let ¢ = {(u —x)™' : u > Upin} be the
set of M/M/1 delay functions with service rate at least w;,. Let a(C) denote the largest-
possible price of anarchy in Pigou-like networks with cost functions in C and traffic rate at
most Ryq.. (Formally, a(C) is given by (4) with the additional restriction that z,7 < Ryqz-)
Then
all)==(14+,/—————|. 6
( ) 2 ( Umin — Rmaz ( )
The right-hand side of (6) tends to infinity as R4z — Umin, but is bounded by a constant
if R,qz 18 at most a constant fraction of .

Simple Worst-Case Networks

The Pigou bound uses only simple networks to provide a lower bound on the price of anarchy.
Specifically, the next proposition follows immediately from the definition of the bound.

Proposition 2.12 ([83]) Let C be a set of cost functions that includes all of the constant
functions, and let T denote the single-commodity instances with a two-node, two-link network

and cost functions in C. Then
p(Z) > a(C).



0

Figure 3: Worst-case networks for inhomogeneous sets of cost functions. The number of
paths and the number of edges in each path can be arbitrarily large.

If the set C does not contain all of the constant cost functions, then we can obtain similar
results using modestly more complex networks. For example, suppose the set C of cost
functions is diverse in the sense that {c(0) : ¢ € C} = [0,00). Then an edge with the
constant cost function ¢(z) = a can, for all practical purposes, be “simulated” by a large
number of parallel edges that each have a cost function satisfying ¢(0) = a. This observation
means that a Pigou-like network with a constant cost function can be replaced by a network
with two nodes, (an unrestricted number of) parallel links, and cost functions in C without
affecting the price of anarchy.

Proposition 2.13 ([83]) Let C be a diverse set of cost functions, and let T denote the
single-commodity instances with a network of parallel links and cost functions in C. Then

p(Z) > a(C).

The set of cost functions in Example 2.11 is not diverse when u,,;, > 0, but it is nhomoge-
neous in the sense that it contains a function ¢ with ¢(0) > 0. As in Proposition 2.13, the
Pigou bound remains valid for such sets of cost functions provided we allow somewhat more
complex networks. Specifically, let a union of paths mean a network with one source, one
sink, and an arbitrarily large number of internally vertex-disjoint paths directed from the
source to the sink (Figure 3).

Proposition 2.14 ([83]) Let C be an inhomogeneous set of cost functions, and let T denote
the single-commodity instances with a network that is a union of paths and with cost functions
in C. Then

p(Z) > a(C).

The idea of the proof of Proposition 2.14 is to impose diversity by considering the closure C
of C under multiplication by positive scalars, apply Proposition 2.13, and use multiple copies
of edges with cost functions in C to simulate edges with cost functions in C.

Remark 2.15 The Pigou bound does not apply to homogeneous sets C of cost functions,
where ¢(0) = 0 for all ¢ € C. The price of anarchy of selfish routing is not completely
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understood for such sets; the upper bound in the next subsection holds for these sets, but
it is not optimal. See [28] for refined upper bounds on the price of anarchy with respect to
homogeneous sets of sufficiently low-degree polynomials.

2.3 Optimality of the Pigou Bound

With all the preliminaries in place, we can now easily prove an upper bound on the price of
anarchy of selfish routing that matches the Pigou bound. For convenience, we first state a
lemma that follows immediately from Definition 2.6.

Lemma 2.16 Let C be a set of cost functions and «(C) the Pigou bound for C. Forc € C
and x,r > 0,

z-c(x) > r + (z = 7r)c(r).

a(C)
We now use this lemma and the variational inequality of Proposition 2.4 to prove the
optimality of the Pigou bound.

Theorem 2.17 ([27, 83]) Let C be a set of cost functions and o(C) the Pigou bound for C.
If (G,r, ) is an instance with cost functions in C, then

p(G,r,c) < a(C).

Proof: Let f* and f be an optimal flow and a Wardrop equilibrium, respectively, for an
instance (G, r,¢) with cost functions in the set C. The theorem follows by writing

U = Y el

eEE

> ( )Zce fe fe"‘z Ce fe)

el

where for the first inequality we have applied Lemma 2.16 to each edge e with x = f; and
r = fe, and the second inequality follows from Proposition 2.4. B

Theorem 2.17 implies that the lower bounds on the price of anarchy in Examples 2.7—
2.11 are the best possible. Thus the price of anarchy of networks with linear (or concave)
cost functions is precisely 4/3; the price of anarchy of networks with cost functions that
are polynomials with nonnegative coefficients and degree at most p is precisely the right-
hand side of (5); and the price of anarchy of instances with sum of all traffic rates at most
Ripaz, cost functions that are M/M/1 delay functions, and service rates bounded below by
Umin > Rmas 1s precisely the right-hand side of (6).

Moreover, since the Pigou bound is based only on the simplest of instances, the matching
upper bound of Theorem 2.17 implies that simple networks always furnish worst-possible
examples of the inefficiency of selfish routing. Precisely, Propositions 2.12-2.14 and Theo-
rem 2.17 give the following corollary.
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Corollary 2.18 Let C be a set of cost functions.

(a) If C contains the constant functions, then the price of anarchy of instances with cost
functions in C is achieved, up to an arbitrarily small factor, by a single-commodity
instance with a two-node, two-link network.

(b) If C is diverse, then the price of anarchy of instances with cost functions in C is
achieved, up to an arbitrarily small factor, by a single-commodity instance with a net-
work of parallel links.

(c) If C is inhomogeneous, then the price of anarchy of instances with cost functions in C
15 achieved, up to an arbitrarily small factor, by a single-commodity instance with a
network that is a union of paths.

Informally, Corollary 2.18 states that the price of anarchy is controlled only by the set of
allowable cost functions, and is essentially independent of the number of commodities and
of the complexity of the allowable network topologies.

Remark 2.19 Theorem 2.17 has undergone several iterations in just a few short years. It
was first proved for the special case of linear cost functions in Roughgarden and Tardos [89].
Roughgarden [79] then proved Theorem 2.17 for bounded-degree polynomials with nonneg-
ative coefficients. The proof in [79] was fairly complex and did not explicitly take advantage
of the variational inequality given in Proposition 2.4. Roughgarden [81] extended this proof
and established Theorem 2.17 for all sets of cost functions that satisfy a weak technical con-
dition (met by essentially all cost functions that arise in applications). Ronen [76] pointed
out that Proposition 2.4 could be used to vastly simplify the proof of Theorem 2.17, under
the same technical condition. This revised analysis appears in [83]. Correa, Schulz, and Stier
Moses [27] then showed that, once the proof is based on Proposition 2.4, it can be modified
so that no technical conditions whatsoever are needed. The proof of Theorem 2.17 given
above is taken from [27]. More recently, two more proofs of Theorem 2.17 have been given
by Tardos [96] and Correa, Schulz, and Stier Moses [28].

3 Bounding Braess’s Paradox

This section studies the worst-possible severity of Braess’s Paradox. Subsection 3.1 gives a
construction that shows that the severity of Braess’s Paradox can grow with the network
size when nonlinear cost functions and multiple edge removals are permitted. Subsection 3.2
proves matching upper bounds for single-commodity networks. Subsection 3.3 gives a brief
overview of Braess’s Paradox in multicommodity networks. Finally, Subsection 3.4 presents
negative results for the computational problem of efficiently detecting Braess’s Paradox.

3.1 A Bigger Braess’s Paradox

The discovery of Braess’s Paradox [14] immediately intrigued researchers and catalyzed nu-
merous research directions (see [78] for a survey). However, nearly all of this work focused
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on Braess’s original four-node network (Figure 2) and variants thereof. We next show that
Braess’s original example is merely the tip of the iceberg: Braess’s Paradox can be arbitrarily
severe in large single-commodity networks.

We measure the severity of Braess’s Paradox with the Braess ratio—the factor by which
the cost of a Wardrop equilibrium exceeds that of an equilibrium in a subnetwork.

Definition 3.1 The Braess ratio (G, r,c) of a single-commodity instance (G, r,c) is

B(G,r,c) = max 00(5212) (7)

where H ranges over subnetworks of G that contain an s-t path, and f and f¥ denote
Wardrop equilibria for (G, r, ¢) and (H,r,c), respectively.

As with Definition 2.5, the Braess ratio of an instance (G, 7, ¢) is well defined unless it admits
a flow with zero cost, in which case we define 3(G,r,¢) to be 1.

Remark 3.2 For now, we only define the Braess ratio for single-commodity networks. There
are multiple ways to extend Definition 3.1 to multicommodity networks; see Subsection 3.3
for details.

The Braess ratio in Example 1.2 is 4/3. No larger Braess ratio is possible in single-
commodity networks with linear cost functions. This fact is a consequence of the following
close connection between the price of anarchy and the Braess ratio.

Proposition 3.3 If (G,r,c) is a single-commodity instance, then
B(G,r,c) < p(G,1,0).

Proof: For every subgraph H of G, a Wardrop equilibrium f# of (H,r,c) is a feasible flow
for (G, r,c); by the definition of the price of anarchy, the cost of f# is at most a p(G,r,c)
factor less than that of a Wardrop equilibrium for (G,r,c). B

As promised, Theorem 2.17 and Proposition 3.3 imply that every single-commodity in-
stance with linear cost functions has a Braess ratio of at most 4/3. The upper bound in
Proposition 3.3 is also tight, up to constant factors, for many other types of cost functions
(see Remark 3.6 below).

Exhibiting a family of instances with arbitrarily large Braess ratios requires a new, more
complicated construction than those we have seen so far. Proposition 3.3 implies that such a
family must make use of cost functions drawn from a sufficiently rich set (such as polynomials
with unbounded degree). We encountered one such family in the nonlinear variant of Pigou’s
example (Subsection 1.1), but it is easy to see that all of these instances have a Braess ratio
of 1. There is also an analogous nonlinear variant of Example 1.2, obtained by replacing the
linear cost functions on the edges (s,v) and (w,t) with the functions ¢(z) = 2P for p large.
The Braess ratios of these instances approach 2 as p — co. As we will see in Subsection 3.2,
a Braess ratio larger than 2 cannot arise without allowing larger networks and multiple edge
removals.

Our main result in this subsection is the following.
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Figure 4: The second and third Braess graphs. Edges are labeled with their types.

Theorem 3.4 ([78]) For every n > 2, there is a single-commodity instance (G, r,c) with n
vertices and

B(G,r,c) > {gJ

Proof: We can assume that n is even, since the odd case reduces to the even case by adding
an isolated vertex. We can also assume that n is at least 4. Write n = 2k + 2 for a positive
integer k.

We next define the kth Braess graph B*. Start with a set of 2k + 2 vertices V¥ =
{s,v1, -, Vg, W1, ..., wy,t}. The edge set E* is the union of the sets {(s,v;), (vi, w;), (w;, t) :
1 <i<k}, {(vi,wi1) : 2<i<k}, and {(v1,t)} U{(s,wg)} (see Figure 4). Call edges of
the form (v;,w;) the type A edges, edges of the form (v;,w; 1), (s,wy), and (v1,t) the type
B edges, and edges of the form (s,v;) and (w;,t) the type C edges (see Figure 4). Note that
B! is the graph in the original Braess’s Paradox (Figure 2(b)).

Define cost functions on the edges of B* as follows.

(A) Type A edges are given the cost function c¥(z) = 0.

e

(B) Type B edges are given the cost function c*(z) = 1.

e

(C) Foreachi € {1,2,...,k}, the type C edges (w;, t) and (s, vx_;41) are given a continuous,
nondecreasing cost function c#(x) with cf(k/(k+ 1)) = 0 and c¥(1) = i.

For i = 1,...,k, let P; denote the path s — v; — w; — t. For ¢ = 2,...,k, let ; denote
the path s — v; = w; 1 — t. Define @; to be the path s — v; — t and @y, the path
s — wg — t. On one hand, routing one unit of flow on each of Py, ..., P, yields a Wardrop
equilibrium f for (B*, k, c*) in which all traffic incurs cost k + 1 (Figure 5(a)). On the other
hand, if H is the subgraph obtained from B* by deleting the k& type A edges, then routing
k/(k+1) units of flow on each of Q1, ..., Qx1 yields a Wardrop equilibrium f# for (H, k, c¥)
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(a) Wardrop equilibrium in (B3, 3, ¢?) (b) Wardrop equilibrium in the optimal sub-
graph

Figure 5: Proof of Theorem 3.4, when £ = 3. Solid edges carry traffic in the Wardrop
equilibrium, dashed edges do not. Edge costs are with respect to the Wardrop equilibrium.

in which all traffic incurs only one unit of cost (Figure 5(b)). Thus
B(G,r,c) > C(f)/C(fH) =k+1=n/2,

completing the proof. B

Remark 3.5 In the proof of Theorem 3.4, the subgraph H was obtained from B* by re-
moving k edges. Thus, for every positive integer k, there is a single-commodity instance for
which removing k£ edges can decrease the cost of a Wardrop equilibrium by a factor of k + 1.

Remark 3.6 The construction in the proof of Theorem 3.4 can also be adapted to scenarios
where arbitrary cost functions are not allowed. For example, suppose cost functions are
restricted to be polynomials with nonnegative coefficients and degree at most p. Consider
the instance (B*, k, c), where k ~ p/Inp, and where the cost functions ¢ for B* are identical
to those in the proof of Theorem 3.4, except that a type C edge of the form (wj;,t) or
(s, vg—i+1) receives the cost function izP. Arguing as in the proof of Theorem 3.4 shows that
the Braess ratio of (B* k,c) is Q(k) = Q(p/Inp) as p — co. This Braess ratio matches,
up to a constant factor, the upper bound for this set of cost functions that follows from
Theorem 2.17 and Proposition 3.3. See [78] for more details and further examples.

3.2 A Matching Upper Bound

This subsection shows that, among single-commodity networks, the Braess ratio is maximized
by the networks constructed in the proof of Theorem 3.4.
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Theorem 3.7 ([78]) If (G,r,c) is a single-commodity instance with n vertices, then

B(G,r,c) < [gJ

Following Lin, Roughgarden, and Tardos [61], we will obtain Theorem 3.7 as a con-
sequence of a more general theorem. The statement of this more general result uses the
following definition.

Definition 3.8 Let (G,r,c) be a single-commodity instance and S a subset of the edges
of G. The set S is sparse if no two edges of S share an endpoint, and in addition no edge of
S is incident to s or t.

In other words, a set of edges is sparse if and only if they form an (undirected) matching of
VA {s,t}.

Our general bound on Braess’s Paradox states that the size of the largest sparse set
removed controls how much the cost of a Wardrop equilibrium can decrease.

Theorem 3.9 ([61]) Let (G,r,c) be a single-commodity instance, H a subgraph of G, and
f and f Wardrop equilibria for (G,r,c) and (H,r,c), respectively. Let S denote the edges in
G but not H. If every sparse subset of S contains at most k edges, then

Cc(f) < (k+1)-C(f).

Before proving Theorem 3.9, we show that it easily implies Theorem 3.7, as well as an
upper bound on the severity of Braess’s Paradox that is parameterized by the number of
edges removed.

Proof of Theorem 3.7: Since there are only n — 2 vertices of G that are not s or ¢, every
sparse set of edges has at most | (n — 2)/2| = |n/2| — 1 edges. Theorem 3.9 now implies the
theorem. H

The next corollary implies that the only way to achieve arbitrarily large Braess ratios is
to allow an unlimited number of edge removals, answering a question of Kameda [53].

Corollary 3.10 ([61]) Removing k edges from a single-commodity network decreases the
cost of a Wardrop equilibrium by at most a factor of k + 1.

Proof: Obvious from Definition 3.8 and Theorem 3.9. B

In particular, we noted earlier that simple nonlinear variants on Braess’s original example
achieve a Braess ratio arbitrarily close to 2; if only a single edge removal is allowed, then no
single-commodity instance has a larger Braess ratio. More generally, the construction in the
proof of Theorem 3.4 matches the bound of Corollary 3.10 for every k (see Remark 3.5).

We now turn toward the proof of Theorem 3.9. This proof will be more delicate than the
upper bounds on the price of anarchy given in Section 2. In particular, our proof must be
sensitive to the number of network vertices, whereas two-node networks typically determine
the price of anarchy (Corollary 2.18). Because of this, our techniques will have a much
stronger combinatorial flavor than those in Section 2.
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Because cost functions are arbitrary in Theorem 3.9, we take a modest approach to lower
bounding the cost of a Wardrop equilibrium f in the orlglnal network relative to that of a
Wardrop equilibrium f in a subnetwork. We will identify edges on which f routes at least
as much traffic as f. Since cost functions are nondecreasing, the cost incurred by f on these
edges is at least that incurred by f. The next definition is largely motivated by this idea.

Definition 3.11 Let f and f be feasible flows for the instance (G, c).

(a) An edge e of G is (f, f) light if f, < f. and f, > 0, (f, f)—heavy if f. > f., and
(f, f)-useless if f, = f.=0.

(b) An undirected path is (f, f)—alternating if it comprises only forward (f, f)—light edges
and backward (f, f)-heavy edges.

When the context is clear, we drop the dependence on f and f from the terms in Defini-
tion 3.11.

Example 3.12 Consider the Braess’s Paradox network (Figure 2(b)). Let f be the Wardrop
equilibrium and f the optimal flow, which splits the traffic evenly between the paths s —
v — tand s — w — t. Then, edges (s,v), (v,w), and (w,t) are (f, f)-heavy while edges
(s,w) and (v,t) are (f, f)-light. The unique (f, f)-alternating s-¢t path is s — w — v — t.

The next lemma states that, for every pair of feasible flows, an s-t alternating path exists.
It is an easy consequence of flow conservation arguments.

Lemma 3.13 Let f and f be flows feasible for the single-commodity instance (G,r,c). Then,
there is an (f, f)—alternating§—t path. Moreover, if f is directed acyclic, then every such path
begins and ends with an (f, f)-light edge.

Proof: Suppose for contradiction that there is no (f, f)-alternating s-t path and let S denote
the set of nodes reachable from s via such paths. The set S contains s and, by assumption,
does not contain ¢. Since S is an s-t cut, the net f-flow and f-flow exiting S is precisely r.

Since vertices in S can be reached from s via (f, f)-alternating paths and vertices outside
S cannot, edges that exit S cannot be (f, f)-light, and edges that enter S cannot be (f, f)-
heavy. Since the net flow across S is positive (assuming r > 0), some non-useless (and thus
(f, f)-heavy) edge exits S. Taken together, these facts imply that the net f-flow exiting S
is strictly greater than the net f—ﬂow exiting S, a contradiction.

Moreover, if f is directed acyclic, then it sends no flow into s or out of ¢. Thus, the first
and last edges of every (f, f)—alternating s-t path must be (f, f)—light. |

Our proof of Theorem 3.9 will proceed by induction along an alternating path, repeatedly
using the shortest-path structure of a Wardrop equilibrium. This structure is summarized
by the following characterization of such equilibria.

Lemma 3.14 Let f be a flow feasible for the single-commodity instance (G,r,c). For a
vertex v in G, let d(v) denote the length, with respect to edge lengths c.(f.), of a shortest s-v

path in G. Then
d(w) — d(’U) S Ce(fe)
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for every edge e = (v,w), and [ is a Wardrop equilibrium if and only if equality holds
whenever f. > 0.

Lemma 3.14 follows from Definition 2.1 and basic properties of shortest paths.
Lemma 3.14, or the fact that Wardrop equilibria minimize the potential function in (1),
easily implies the following strengthening of Proposition 2.3 for single-commodity instances.

Lemma 3.15 FEvery single-commodity instance admits a Wardrop equilibrium that is a di-
rected acyclic flow.

Details of the proofs of Lemmas 3.14 and 3.15 can be found in [78, 86]. We are finally
prepared to prove Theorem 3.9.

Proof of Theorem 3.9: Let f be a directed acyclic Wardrop equilibrium for (G, r, ¢) and fa
Wardrop equilibrium for (H, 7, ¢). We view f as a flow in the larger network G in the obvious
way. For a vertex v, let d(v) denote the shortest-path distance from s to v with respect to
edge lengths c.(f.) in G, and d(v) the s-v distance with respect to c.(f.) in H. Note that
Definition 2.1 and the definition of cost (3) imply that C(f) = r-d(t) and C(f) = r-d(t), so
the theorem reduces to proving that d(t) < (k + 1) - d(t), where k is the size of some sparse
set of edges present in G but not H.

Let P be an (f, f)-alternating s-t path, which exists by Lemma 3.13. A segment of P
is a maximal subpath of P that contains only (f, f)-light or only (f, f)-heavy edges. Edges
that are in G but not H are called absent. Since f. > 0 on (f, f)-light edges, absent edges

can only reside in (f, f)-heavy segments. The key claim is that if v is a vertex at the end of
a segment of P, and ¢ (heavy) segments of P between s and v contain an absent edge, then

d(v) < d(v) +i-d(t). (8)
This claim implies the theorem. To see why, first apply (8) to t to obtain
d(t) < d(t) + k-d(t) = (k+1) - d(t), (9)

where k is the number of segments of P that include an absent edge. Inequality (9) reduces
the proof of the theorem to exhibiting a sparse set of k absent edges. Since f is a directed
acyclic flow, Definition 3.11 and Lemma 3.13 imply that the (f, f)-heavy segments of P
are disjoint from each other and from s and ¢. Picking one absent edge from each of the &
(f, f)—heavy segments of P that contain one thus provides the desired sparse set.

We now prove (8) by induction on the segments of P. The inequality trivially holds when
v = s, so suppose it holds for a vertex v that is last on a segment of P, or is the source s.
We wish to prove (8) for w, defined as the last vertex on the next segment. Let i denote
the number of earlier segments of P that contain at least one absent edge. By the inductive
hypothesis, d(v) < d(v) + ¢ - d(?).

The inductive step has two cases. For the first case, suppose that the segment between
v and w contains at least one absent edge. As absent edges can only be (f, f)—heavy, this
segment comprises only (f, f)-heavy backward edges. Since there is a path of (heavy) edges
from w to v, each carrying f-flow, Lemma 3.14 implies that d(w) < d(v). Since the path P
begins with an (f, f)-light edge (Lemma 3.13), v # s and there is an (f, f)-light edge entering
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v. Since f routes flow into v, it must route flow from v to t. By Lemma 3.14, d(v) < d(t).
Combining what we know with the inductive hypothesis, the proof of the inductive step is
complete:

d(w) < d(v) <dw)+i-d(t) < (i+1)-d(t) < d(w)+ (i +1)-d(t).

For the second case of the inductive step for (8), suppose that the current segment Q C P
contains no absent edges. We will prove, by induction on the vertices of @), that

d(z) < d(z) +i-d(t) (10)

for all vertices x of Q. The base case (z = v) follows from the outer inductive hypothesis (8).
For the (inner) inductive step, suppose d(z) < d(z) + i - d(t) for a vertex z of Q and let y
denote the next vertex on the segment.

If the edge (z,y) € P is (f, f)-light, then c.(f.) < co(f.) and f, > 0. Since f and f are
Wardrop equilibria, Lemma 3.14 and the inductive hypothesis imply that

d(y) < d(x) + Ce(fe) < Ci(x) + ce(fe) +i- J(t) = Ci(y) +i- CZ(t),

which establishes (10) for the vertex y.
If the edge e = (y,z) € P is (f, f)-heavy, then

d(y) = C{(I) - Ce(~e) ~ (11)

< d(z) +1-d(t) — ce(fe) (12)

< d(y) +i-d(), (13)

where equation (11) follows from Proposition 3.14 and the fact that f. > 0, inequality (12)

follows from the inductive hypothesis and the fact that f. < f., and inequality (13) follows
from Proposition 3.14.

In either case, the inner inductive step (10) holds. This completes the proof of the outer
inductive step (8) and of the theorem. W

3.3 Multicommodity Networks

So far, this section has only studied Braess’s Paradox in single-commodity networks. We next
briefly survey very recent results of Lin et al. [62] on Braess’s Paradox in multicommodity
networks. We define the Braess ratio for such networks as follows. For a multicommodity
instance (G, 7, ¢) and a commodity i, let d;(G,r,c) denote the common cost incurred by all
traffic of commodity ¢ in a Wardrop equilibrium for (G, r, ¢). Note d;(G, r, ¢) is well defined
by Definition 2.1 and Proposition 2.3.

Definition 3.16 The Braess ratio (G, r,c) of a multicommodity instance (G, r,c) is

k dz(Ga ) C)

where H ranges over the subnetworks of G that contain an s;-t; path for each .
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Thus the Braess ratio of a multicommodity instance is large only if removing some set of
edges decreases the cost incurred by the traffic of every commodity by a large amount.
Definitions 3.1 and 3.16 coincide in single-commodity networks.

Remark 3.17 Since removing edges from a multicommodity network affects traffic from
different commodities in different ways, there are several possible measures for the severity
of Braess’s Paradox in such networks. For example, one natural measure is given by the
same defining equation (7) as in the definition of the Braess ratio for single-commodity
networks (Definition 3.1). Unfortunately, while Proposition 3.3 still holds for this measure,
no interesting bounds are possible for networks with arbitrary cost functions: even in two-
commodity, three-node networks, removing a single edge can decrease the cost of a Wardrop
equilibrium by an arbitrarily large factor.

The upper bound on the Braess ratio in Theorem 3.7 does not carry over to multicom-
modity networks: Lin et al. [62] showed that the Braess ratio can grow exponentially with
the network size, even in two-commodity networks.

Theorem 3.18 ([62]) There is a family of two-commodity networks {(G™,r™, c")}2 | such
that G, has O(n) vertices and edges and B(G™, 7", c") = 2™ a5 n — oco.

In fact, the construction in the proof of Theorem 3.18 shows the following: adding a single
edge to a two-commodity network (G™, 7™, ¢") with O(n) vertices and edges, d;(G",r",c") =
0, and do(G™, 7™, ¢™) = 1 can increase the common cost incurred by traffic of the two com-
modities to roughly the (n — 1)th and nth Fibonacci numbers, respectively.

On the other hand, the Braess ratio is always at most exponential in the network size.

Theorem 3.19 ([62]) There is a constant ¢ > 0 such that for every k,n > 1 and every
instance (G, r,c) with k commodities and n vertices, 8(G,r,c) < 2°n.

The proof of Theorem 3.19 actually shows the stronger statement that if f is a Wardrop
equilibrium for the k-commodity, n-vertex instance (G,r,c) and f is feasible for (G,r,c),
then the maximum cost max; d;(G, r, ¢) incurred by traffic in f is 2°*®) times the maximum
cost incurred by traffic in f . The question of whether or not the largest-possible Braess ratio
of multicommodity networks depends on the number of commodities is open.

3.4 Detecting Braess’s Paradox Is Hard

Previous results of this section were devoted to the analysis of the worst-case severity of
Braess’s Paradox. Braess’s Paradox also suggests a natural algorithmic question: given a
network, is it suffering from the paradox? If so, which edges should be removed to recover
the best-possible Wardrop equilibrium?

This innocuous question turns out to be extremely difficult to answer, in a sense we
make precise below. To keep things simple, we will initially consider only single-commodity
networks with linear cost functions. Detecting Braess’s Paradox can be phrased as an op-
timization problem as follows: given a single-commodity instance (G, r, ¢) with linear cost
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functions, find a subnetwork that minimizes the cost of a Wardrop equilibrium for (H,r, ¢)
over all subnetworks H C (G. We call this optimization problem LINEAR NETWORK DESIGN.

LiNEAR NETWORK DESIGN can be solved by enumerating all subgraphs H of G, comput-
ing a Wardrop equilibrium in each, and picking the best solution. (Since Wardrop equilibria
are the minima of the convex function in (1), one can be computed using convex program-
ming.) On the other hand, there may be an exponential number of candidate subnetworks
H. How well can we solve this optimization problem if we use only a reasonable amount of
computational resources?

We will use basic concepts of computational complexity theory as described in, for ex-
ample, Garey and Johnson [44]. Recall that a y-approzimation algorithm for a minimization
problem runs in polynomial time and returns a solution no more than v times as costly as
an optimal solution. The value + is the approrimation ratio or performance guarantee of the
algorithm.

While we would obviously like to solve LINEAR NETWORK DESIGN optimally in polyno-
mial time, a natural weaker goal is to design a y-approximation algorithm with = as close to 1
as possible. Of course, even the trivial algorithm, which always returns the entire network
G, can be viewed as an approximation algorithm for LINEAR NETWORK DESIGN. Because
the Braess ratio of every network with linear cost functions is at most 4/3 (Proposition 3.3),
we have the following guarantee on the trivial algorithm.

Proposition 3.20 The trivial algorithm is a %—approa:imation algorithm for LINEAR NET-
WORK DESIGN.

Needless to say, we should aspire to design better, more clever approximation algorithms.
Alas, none exist, assuming P # NP.

Theorem 3.21 ([78]) For every ¢ > 0, there is no (53 — €)-approzimation algorithm for
LINEAR NETWORK DESIGN (unless P = NP).

Proof: We give a polynomial-time “gap reduction” from the NP-complete problem 2 D1i-
RECTED DIsJOINT PATHS (2DDP) [40]: given a directed graph G = (V, E) and distinct
vertices si, S9, 11,12 € V, are there s;-t; paths P; for : = 1, 2, such that P; and P, are vertex-
disjoint? We can prove the theorem by showing how a (3 — €)-approximation algorithm for
LINEAR NETWORK DESIGN can be used to differentiate between “yes” and “no” instances
of 2DDP in polynomial time.

Consider an instance Z of 2DDP, as above. Augment the vertex set V by an additional
source s and sink ¢, and include the directed edges (s,s1), (s,s2), (t1,t), and (t2,t) (see
Figure 6). Denote the new network by G' = (V', E’) and endow the edges of E' with the
following linear cost functions c: edges of F are given the cost function c(z) = 0, edges (s, s2)
and (1, 1) are given the cost function ¢(x) = z, and edges (s, s1) and (o, t) are given the cost
function ¢(z) = 1. The instance (G', 1, ¢) can be constructed from Z in polynomial time.

We can complete the proof by establishing two statements: if 7 is a “yes” instance of
2DDP, then G' admits a subnetwork H such that a Wardrop equilibrium for (H, 1, ¢) has cost
3/2; and if 7 is a “no” instance, then for every subnetwork H of G', a Wardrop equilibrium
for (H,1,c) has cost at least 2.
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Figure 6: Proof of Theorem 3.21. In a “no” instance of 2DDP, the existence of s;-t; and
so-to paths implies the existence of an s,-t; path.

First suppose there are vertex-disjoint s;-f; and s9-t9 paths P; and P, in GG, respectively.
Obtain H by deleting all edges of G not contained in some P;,. Then, H is a subgraph of
G' with exactly two s-t paths, and routing half a unit of flow along each yields a Wardrop
equilibrium with cost 3/2 (cf., Figure 2(a)).

Now suppose Z is a “no” instance and consider a subgraph H of G’. We can assume
that H contains an s-t path. If H has an s-t path P containing an s,-t; path, then routing
all of the flow on P yields a Wardrop equilibrium with cost 2 (cf., Figure 2(b)). Otherwise,
since Z is a “no” instance of 2DDP, two sole possibilities remain (see Figure 6): either for
precisely one i € {1,2}, H has an s-t path P containing an s;-t; path, or all s-t paths P in
H contain an s;-t, path of G. In either case, routing one unit of flow along such a path P
provides a Wardrop equilibrium with cost 2.

Thus, no polynomial-time algorithm for LINEAR NETWORK DESIGN has an approxima-
tion ratio superior to that of the trivial algorithm. Equivalently, it is NP-hard to distinguish
between “paradox-free” instances (with Braess ratio 1) and instances suffering from the most
severe manifestations of the paradox (with Braess ratio 4/3).

While we have only established the optimality of the trivial algorithm for networks with
linear cost functions, similar results hold with other sets of allowable edge cost functions. For
example, let GENERAL NETWORK DESIGN be the analogous optimization problem for single-
commodity networks with arbitrary cost functions. Theorem 3.7 implies that the trivial
algorithm is a |n/2|-approximation algorithm for GENERAL NETWORK DESIGN, where 7 is
the number of network vertices. On the other hand, the following inapproximability result
holds.

Theorem 3.22 ([78]) Assuming P # NP, for every ¢ > 0 there is no (|[n/2] — e)-
approzimation algorithm for GENERAL NETWORK DESIGN.

The proof of Theorem 3.22 is somewhat involved and makes use of the Braess graphs that
were introduced in the proof of Theorem 3.4. For the proof, and similar results for other sets
of allowable cost functions, see [78]. For analogous intractability results for multicommodity
networks, which build on the two-commodity networks alluded to in Theorem 3.19, see Lin
et al. [62].
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4 Coping with Selfishness: How To Reduce the Price
of Anarchy

We have seen that the price of anarchy of selfish routing can be large in networks with
highly nonlinear cost functions, including with functions that are common in applications,
such as M/M/1 delay functions. This final technical section asks: other than somehow
enforcing optimal routing, what can we do about it? Can modest intervention, when feasible,
significantly reduce the price of anarchy? We briefly discuss three techniques for mitigating
the inefficiency of selfish routing: increasing the capacity of the network (Subsection 4.1),
routing a small amount of traffic centrally (Subsection 4.2), and influencing traffic with edge
taxes (Subsection 4.3).

4.1 Capacity Augmentation

For the rest of this survey we study networks with arbitrary cost functions, where the price
of anarchy is unbounded. We next show that a bound on the inefficiency of selfish routing
in such networks is nonetheless possible, via a so-called bicriteria approach. Specifically, our
next result is that the cost of a Wardrop equilibrium is at most that of an optimal flow
that is forced to route twice as much traffic between each source-sink pair. We will see that
this result has the following alternative interpretation: in lieu of centralized control, the
inefficiency of selfish routing can be offset by a moderate increase in link speed.

Example 4.1 Consider the nonlinear variant of Pigou’s example (Figure 1(b)): a two-node,
two-link network with cost functions ¢(z) = 1 and ¢(x) = 2P for p large. Recall that with one
unit of traffic, the Wardrop equilibrium routes all flow on the lower edge, while the optimal
flow routes € units of flow on the upper edge and the rest on the lower edge (where ¢ — 0
as p — o0). When the traffic rate r exceeds one, an optimal flow assigns the additional
r — 1 units of traffic to the upper link, incurring a cost that tends to r — 1 as p = oo. In
particular, for every p an optimal flow feasible for twice the original traffic rate (r = 2) has
cost at least 1, which equals the cost of the Wardrop equilibrium in the original instance.

We now show that the bound stated in Example 4.1 holds for all instances.

Theorem 4.2 ([89]) If f is a Wardrop equilibrium for (G,r,c) and f* is feasible for (G, 2r, c),
then
C(f) <Cf).

Proof: Let f and f* denote a Wardrop equilibrium for (G,r,¢) and a feasible flow for
(G, 2r, ¢), respectively. For each commodity 3, let d;(G, 7, ¢) denote the common cost incurred
by the traffic of commodity i in the flow f (see Definition 3.16). Definition 2.1 and the
definition of cost (3) imply that C(f) = >, r:di(G, 1, ¢).

The key idea is to define a set of cost functions ¢ that satisfies two properties: lower
bounding the cost of f* relative to that of f is easy with respect to ¢; and the new cost
functions ¢ approximate the original ones c, in the sense that the cost of f* with respect to
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Figure 7: Construction in the proof of Theorem 4.2 of the modified cost function ¢, given
the original cost function ¢, and the Wardrop equilibrium value f.. Solid lines denote graphs
of functions.

c is close to its original cost. Specifically, we define the cost function ¢, for each edge e as

follows: () ife</
_ clfe) fx<f,
Ce(r) = { ce(x) ifx> fe.

Figure 7 illustrates this construction. Let C(-) denote the cost of a flow in the instance
(G,r,2). Note that C(f*) > C(f*) while C(f) = C(f).

We first upper bound the amount by which the new cost C(f*) of f* can exceed its
original cost C'(f*). For every edge e, ¢.(z) — c.(x) is zero for z > f. and bounded above by
Ce(fe) for x < fe, so

.’L‘((_je(.’L‘) - Ce(ﬂi)) S ce(fe)fe (14)

for all x > 0. The left-hand side of (14)—the discrepancy between z¢.(z) and zc.(z)—is
maximized when z is slightly smaller than f. and when c.(x) = 0. In this case, the value of
the left-hand side of (14) is essentially the area of the rectangle enclosed by dashed lines in
Figure 7(a), which in turn is the cost incurred by the Wardrop equilibrium f on the edge e.
Thus

Cf)=CU) =D fr@(f) = ce(£2) <D celfe) fo = C(f). (15)

eckE eckE

In other words, evaluating f* with cost functions ¢, rather than c, increases its cost by at
most an additive C'(f) factor.

Now we lower bound C(f*). By construction, the modified cost ¢,(-) of an edge e is
always at least c.(f.), so the modified cost ¢p(-) of a path P € P; is always at least cp(f),
which in turn is at least d;(G,r,c). Therefore,

CUY =2 e 23 ) dilGro)fp =) 2ridi(G,r,c) = 2C(f).  (16)

PeP i=1 PeP;
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The theorem now follows immediately from inequalities (15) and (16). B

Remark 4.3 Example 4.1 shows that the bound in Theorem 4.2 is the best possible.

Another interpretation of Theorem 4.2 is that the benefit of centralized control is equaled
or exceeded by the benefit of a sufficient improvement in link technology.

Corollary 4.4 ([82]) Let (G,r,c) be an instance and define the modified cost function &,
by Ce(w) = ce(2/2)/2 for each edge e. Let f be a Wardrop equilibrium for (G,r,¢) with cost
C(f), and f* a feasible flow for (G,r,c) with cost C(f*). Then C(f) < C(f*).

Simple calculations show that Theorem 4.2 and Corollary 4.4 are equivalent; for details,
see [82] or [86].

Corollary 4.4 takes on a particularly nice form in instances in which all cost functions
are M/M/1 delay functions (Example 2.11). In this case, if the cost function c, of edge e is
ce(z) = (ue — z)7 1, then the modified function ¢, is ¢.(z) = 1/2(ue — 2/2) = 1/(2ue — ).
Corollary 4.4 thus offers the following advice for networks where cost functions are M/M/1
delay functions and capacity is cheap: to outperform optimal routing, just double the capacity
of every edge.

4.2 Stackelberg Routing

A second approach to reducing the price of anarchy, also explored in [82], is to allow a
small portion of the network traffic to be routed centrally. We will call this Stackelberg
routing, after a concept from noncooperative game theory called Stackelberg games [98]. In
the interest of space, we only describe our model of Stackelberg routing informally, via two
examples.

Example 4.5 To understand the potential power of Stackelberg routing, consider the non-
linear variant of Pigou’s example (Figure 1(b)) with p large. Suppose we are granted the
ability to route a v € [0, 1] fraction of the traffic as we wish, knowing that the other (1 — )
fraction of the traffic will then choose routes selfishly, as usual. (Definition 2.1 thus governs
the routes chosen by selfish traffic, but not by the centrally routed traffic.) We will call
a routing of the centrally controlled traffic a Stackelberg strategy. Observe that for every
Stackelberg strategy, the selfish traffic will use the lower edge—the upper route is never
attractive to selfish users, even if the lower one is fully congested. On the other hand, if we
route some traffic on the upper edge ourselves, the cost of the overall solution decreases. In
particular, if y is sufficiently large, we can mimic the optimal flow on the upper edge (routing
excess traffic on the lower edge) and induce the optimal flow. Thus Stackelberg routing can
decrease, or even eradicate, the inefficiency of selfish routing in this example.

Example 4.6 Stackelberg routing also has its limitations. Suppose we modify Example 4.5
by replacing the cost function ¢(z) = z? of the lower edge in Figure 1(b) by the cost function
c(x) = 2P /(1 —~)P, where 7 is the fraction of traffic that we are permitted to route centrally.
The key observation is that no matter how the centrally controlled traffic is routed, there is
enough selfish traffic to fully congest the lower edge. Therefore, Stackelberg strategies that

25



route at most y units of traffic cannot produce a flow with cost less than 1. On the other
hand, the optimal flow, which routes v 4 ¢ units of flow on the upper edge and the rest on
the lower edge, has cost approaching v as p — oo and € — 0.

Stackelberg routing was first proposed by Korilis, Lazar, and Orda [58], who were motivated
by so-called virtual private networks (see e.g. Birman [12] for a discussion of VPNs). The
main goal in [58] was to characterize the instances in which some Stackelberg strategy induces
an optimal flow (as in Example 4.5). This problem has also been studied more recently by
Kaporis, Politopoulou, and Spirakis [54]. Here we follow Roughgarden [85] and seek worst-
case bounds on the ratio between the cost of the best flow possible with Stackelberg routing
and that of an optimal flow. Example 4.6 shows that, for each v € (0, 1], this ratio can be
arbitrarily close to 1/, even in two-node, two-link networks. One of the main results of [85]
is a matching upper bound for networks of parallel links.

Theorem 4.7 ([85]) For every instance (G, r,c) with a network of parallel links and every
v € (0, 1], there is a Stackelberg strategy that routes yr units of traffic and yields a flow with
cost at most 1/~ times the cost of an optimal flow for (G,r,c).

Theorem 4.7 provides a smooth trade-off between optimal flows and Wardrop equilibria, as
a function of the fraction of centrally controlled traffic. When v = 0, we are stuck with
a Wardrop equilibrium, which can cost arbitrarily more than an optimal flow in a network
with arbitrary cost functions. When v =1 and we control all of the traffic, we can of course
route the traffic optimally. Example 4.6 and Theorem 4.7 precisely quantify the inefficiency
of selfish routing for all intermediate values of v (in networks of parallel links).

Remark 4.8 The proof of Theorem 4.7 is constructive, and uses a simple iterative algorithm
to compute a good Stackelberg strategy. This algorithm runs in polynomial time as long as
the network cost functions satisfy a mild convexity condition (see [85] for details). While this
algorithm is sufficient to obtain the best-possible worst-case guarantee in Theorem 4.7, it does
not compute the optimal Stackelberg strategy in every instance. Indeed, the optimization
problem of computing an optimal Stackelberg strategy is NP-hard [85], though it can be
closely approximated in polynomial time [60].

Theorem 4.7 applies only to networks of parallel links, and the power of Stackelberg rout-
ing in more general networks is not fully understood. The 1/ upper bound of Theorem 4.7
does not hold in general single-commodity networks, and no interesting bounds are possi-
ble in multicommodity networks [86]. Very recently, Fleischer and Swamy [39] proved an
analogue of Theorem 4.7, with 1/ replaced by a somewhat larger function of v, for a wide
class of networks, including series-parallel networks and the Braess graphs of Subsection 3.1.
The question of whether or not such a result holds for general single-commodity networks is
open.

4.3 Pricing Network Edges

We conclude with a third, very natural approach to reducing the price of anarchy of selfish
routing: influencing selfish behavior with edge taxes. While not discussed in [82], this idea
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has been extensively studied since the earliest papers on selfish routing. The literature on
pricing selfish routing networks is vast, and we will confine our attention to only one classical
result and two currently active research directions. See Yang and Huang [103], for example,
for an introduction to this research area.

Pigou [72] suggested what are often called marginal cost taxes or Pigouvian taxzes. The
idea of marginal cost pricing is to charge each network user on each edge for the additional
cost its presence causes for the other users of the edge. To discuss this idea formally, we now
allow each edge e of a selfish routing network to possess a nonnegative tax 7.. We denote a
selfish routing instance (G, r, c¢) with edge taxes 7 by (G,r,c¢+ 7). A Wardrop equilibrium
for such an instance (G,r,c+ 7) is defined as in Definition 2.1, with all traffic traveling on
routes that minimize the sum of the edge costs and edge taxes. Equivalently, it is a Wardrop
equilibrium for the instance (G, 7, c"), where the cost function ¢’ is a shifted version of the
original cost function c.: ¢l (z) = c.(z) + 7 for all z > 0.

Mathematically, the principle of marginal cost pricing asserts that for a flow f feasible
for an instance (G, r,c), the tax 7. assigned to the edge e should be 7, = f, - c.(f.), where ¢,
denotes the derivative of c.. (Assume for simplicity that the cost functions are differentiable.)
The term c,(f.) corresponds to the marginal increase in cost caused by one user of the edge,
and the term f, is the amount of traffic that suffers from this increase. Pigou [72] suggested
that these taxes should eliminate all of the inefficiency of selfish routing, and Beckmann,
McGuire, and Winsten [8] made this idea rigorous.

Proposition 4.9 ([8, 72]) Let (G,r,c) be an instance with differentiable cost functions,
admitting an optimal flow f*. Let 7. = f¥ - cL(fZ) denote the marginal cost tazx for edge e
with respect f*. Then f* is a Wardrop equilibrium for (G,r,c+ 7).

In words, marginal cost taxes induce an optimal flow as a Wardrop equilibrium.

While Proposition 4.9 may appear to be a complete solution to the problem of reducing
the price of anarchy of selfish routing, it possesses several drawbacks. Two of these have
recently motivated much research in the theoretical computer science and mathematical
programming communities.

First, the definition of a Wardrop equilibrium in Proposition 4.9 implicitly assumes that
all network users trade off cost and taxes in an identical way. For example, if edge costs
represent travel time, some users might be more sensitive to time delays, while others are
concerned primarily with monetary expenses. Several papers have considered the following
model of heterogeneous traffic: each network user chooses a path that minimizes a weighted
sum of the edge costs and the edge taxes. In other words, the preferences of a network user
are summarized by a single scalar—the monetary value to the user of one unit of cost. This
model was first proposed and studied in the transportation science literature [30, 32, 74],
but analogues of Proposition 4.9 were only recently given for heterogeneous traffic. Cole,
Dodis, and Roughgarden [22] proved that, in single-commodity networks with heterogeneous
traffic, there is always a set of taxes that induces the optimal flow as a Wardrop equilibrium.
This result was extended to multicommodity networks independently by Fleischer, Jain, and
Mahdian [38], Karakostas and Kolliopoulos [56], and Yang and Huang [102].

Second, in networks where cost functions can have large derivatives, the marginal cost
taxes of Proposition 4.9 can be extremely large. Several solutions have recently been proposed
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for this problem, including computing a tax that induces an optimal flow but also minimizes
the taxes paid [9, 48]; incorporating the taxes paid into the objective function [22, 24]; and
proving worst-case bounds on the largest tax needed to induce an optimal flow [22, 37, 38|.

5 Recent Related Work

This survey describes the basic results on the price of anarchy of selfish routing. However,
we have only scratched the surface of a broader issue: quantifying the inefficiency of nonco-
operative equilibria in applications with selfish users. This fundamental problem has only
recently been systematically studied, but there is already a large literature addressing many
aspects of it. We conclude this survey by briefly discussing some of the recent work in this
lively research area.

First, the price of anarchy has been analyzed in numerous variants and generalizations of
the basic selfish routing model studied in this survey. Several recent papers have extended
Theorem 2.17 to more general classes of games [17, 70, 90]. The price of anarchy of selfish
routing has also been studied with objective functions other than (3) [26, 62, 80, 84, 101];
with edge capacities and other types of “side constraints” [27, 49, 55]; when the traffic rates
can vary with the network congestion [17, 23]; when network users can have non-negligible
size [3, 6, 7, 21, 25, 28, 41, 57, 87, 89, 95]; and with definitions of path cost cp(f) other than
the sum of all edge costs [7, 23].

Second, the price of anarchy is a very general concept—applicable to every noncooperative
game with a notion of equilibrium and a nonnegative objective function. In games where
different equilibria can have different objective function values, the price of anarchy is usually
defined as the ratio between the objective function value of the worst equilibrium and that of
an optimal solution [59]. The related concept of the price of stability [3] instead considers the
objective function value of the best equilibrium. The price of anarchy and price of stability
have been successfully analyzed in a diverse array of applications with selfish users over the
past few years. These include scheduling (see [29, 35] and the references therein), facility
location [31, 45, 64, 97], network design [3, 4, 18, 34, 36], resource allocation [50, 52, 104],
and other networking games [1, 5, 46, 51].

Third, researchers have begun to study the inefficiency of different notions of a selfish
outcome. For example, Goemans, Mirrokni, and Vetta [45, 64] have extended the concept
of the price of anarchy to games in which equilibria need not exist. The work in [45, 64] is
also motivated by the important problem of understanding when a small price of anarchy
implies that selfish users can “learn”, by independent and repeated experimentation from
an arbitrary initial state, an approximately optimal outcome. Another example is given by
Christodoulou and Koutsoupias [20], who studied the inefficiency of correlated equilibria in
scheduling games.

Finally, an emerging research direction is to use the price of anarchy as a measure for the
performance of a network protocol that interacts with selfish users. This idea connects the
analysis of the inefficiency of game-theoretic equilibria with mechanism design, a classical
subfield of microeconomics that studies how to design games that possess equilibria with
good properties (see e.g. [63, Chapter 23] or [68, Chapter 10]). For example, Johari [50,
Chapter 5] considers a class of network resource allocation protocols, each of which can be
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viewed as a game with selfish users, and proves that a natural “proportional sharing” protocol
minimizes the (worst-case) inefficiency of equilibria. A second example is the recent work
by Chen, Roughgarden, and Valiant [19] that analyzes how the price of stability in a class
of network design games [3] depends on the choice of an underlying cost-sharing protocol.
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