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Abstract

Most information extraction (IE) sys-
tems treat separate potential extractions
as independent. However, in many
cases, considering influencesbetween
different potential extractions could im-
prove overall accuracy. Statistical meth-
ods based onundirectedgraphical mod-
els, such asconditional random fields
(CRFs), have been shown to be an ef-
fective approach to learning accurate IE
systems. We present a new IE method
that employs Relational Markov Net-
works (a generalization of CRFs), which
can represent arbitrary dependencies be-
tween extractions. This allows for
“collective information extraction” that
exploits the mutual influence between
possible extractions. Experiments on
learning to extract protein names from
biomedical text demonstrate the advan-
tages of this approach.

1 Introduction

Information extraction (IE), locating references to
specific types of items in natural-language doc-
uments, is an important task with many prac-
tical applications. Since IE systems are diffi-
cult and time-consuming to construct, most re-
cent research has focused on empirical techniques
that automatically construct information extrac-
tors by training on supervised corpora (Cardie,

1997; Califf, 1999). One of the current best empir-
ical approaches to IE isconditional random fields
(CRF’s) (Lafferty et al., 2001). CRF’s are a re-
stricted class ofundirected graphical models(Jor-
dan, 1999) designed for sequence segmentation
tasks such as IE, part-of-speech (POS) tagging
(Lafferty et al., 2001), and shallow parsing (Sha
and Pereira, 2003). In a recent follow-up to pre-
viously published experiments comparing a large
variety of IE-learning methods (including HMM,
SVM, MaxEnt, and rule-based methods) on the
task of tagging references to human proteins in
Medline abstracts (Bunescu et al., 2004), CRF’s
were found to significantly out-perform compet-
ing techniques.

As typically applied, CRF’s, like almost all IE
methods, assume separate extractions are indepen-
dent and treat each potential extraction in isola-
tion. However, in many cases, considering influ-
encesbetweenextractions can be very useful. For
example, in our protein-tagging task, repeated ref-
erences to the same protein are common. If the
context surrounding one occurrence of a phrase
is very indicative of it being a protein, then this
should also influence the tagging of another oc-
currence of the same phrase in a different context
which is not indicative of protein references.

Relational Markov Networks (RMN’s) (Taskar
et al., 2002) are a generalization of CRF’s that al-
low for collective classificationof a set of related
entities by integrating information from features
of individual entities as well as the relations be-
tween them. Results on classifying connected sets
of web pages have verified the advantage of this



approach (Taskar et al., 2002). In this paper, we
present an approach tocollective information ex-
tractionusing RMN’s that simultaneously extracts
all of the information from a document by exploit-
ing the textual content and context of each relevant
substring as well as the document relationships be-
tween them. Experiments on human protein tag-
ging demonstrate the advantages of collective ex-
traction on several annotated corpora of Medline
abstracts.

2 The RMN Framework for Entity
Recognition

Assume we are given a collection of training docu-
mentsD where all named entities have been man-
ually annotated. We associate with each document
d 2 D a set of candidate entitiesd:E, in our case
a restricted set of token sequences from the docu-
ment. Each entitye 2 d:E is characterized by a
set of boolean featurese:F . This set of features is
the same for all candidate entities, and it can be as-
similated with the relational database definition of
a table. One particular feature ise:label which is
set to 1 ife is considered a valid extraction, and 0
otherwise. In our document model, labels are the
only hidden features, and the inference procedure
will try to find a most probable assignment of val-
ues to labels, given the current model parameters.

Each document is associated with an undirected
graphical model, with nodes corresponding di-
rectly to entity features, one node for each feature
of each candidate entity in the document. The set
of edges is created by matching clique templates
against the entire set of entitiesd:E. A clique tem-
plate is used to find all subsets of entities satisfying
a given constraint and then the graph is modified
to connect the feature nodes associated with the
entities in each subset so that they form a clique.

Formally, there are a set of clique templatesC,
with each templatec 2 C specified by:

1. A matching operatorMc for selecting subsets
of entities.

2. A selected set of featuresSc = hXc; Yci for
entities returned by the matching operator.
Xc denotes the observed features, whileYc
refers to the hidden labels.

3. A clique potential�c that gives the compati-
bility of each possible configuration of values

for the features inSc, s.t.�c(s) � 0;8s 2 Sc.

Given a set,E, of nodes,Mc(E) � 2E consists
of subsets of entities whose feature nodesSc are to
be connected. In previous applications of RMNs,
the selected subsets of entities for a given template
have the same size; however, our clique templates
may match a variable number of entities. The set
Sc may contain the same feature from different en-
tities. Usually, for each entity in the matching set,
its label is included inSc. The nodes correspond-
ing to these features are then connected in a clique.
Depending on the number of hidden labels inYc,
we define two categories of clique templates:

� Local Templatesare all templatesc 2 C for
which jYcj = 1. They model the correlations
between an entity’s observed features and its
label.

� Global Templates are all templatesc 2 C

for which jYcj > 1. They capture influences
between multiple entities from the same doc-
ument.

After the graph model for a documentd has
been completed with cliques from all templates,
the probability distribution over the random field
of hidden entity labelsd:Y given the observed fea-
turesd:X is computed as:

P (d:Y jd:X) =
1

Z(d:X)

Y

c2C

Y

G2Mc(d:E)

�C(G:Xc; G:Yc)

(1)
whereZ(d:X) is the normalizing partition func-

tion:

Z(d:X) =
X

Y

Y

c2C

Y

G2Mc(d:E)

�C(G:Xc; G:Yc) (2)

3 Candidate Entities and Entity Features

Like most entity names, almost all proteins in our
data are base noun phrases or parts of them. There-
fore, such substrings are used to determine candi-
date entities. To avoid missing options, we adopt
a very broad definition of base noun phrase.

Definition 1: A base noun phraseis a max-
imal contiguous sequence of tokens whose POS
tags are fromf”JJ”, ”VBN”, ”VBG”, ”POS”,
”NN”, ”NNS”, ”NNP”, ”NNPS”, ”CD”, ”–” g,
and whose last word (the head) is tagged either as
a noun, or a number.



Candidate extractions consist of base NPs, aug-
mented with all their contiguous subsequences
headed by a noun or number.

The set of features associated with each candi-
date is based on the feature templates introduced
in (Collins, 2002), used there for training a rank-
ing algorithm on the extractions returned by a
maximum-entropy tagger. Many of these features
use the concept ofword type, which allows a dif-
ferent form of token generalization than POS tags.
The short typeof a word is created by replacing
any maximal contiguous sequences of capital let-
ters with ’A’, of lower-case letters with ’a’, and
of digits with ’0’. For example, the wordTGF-1
would be mapped to typeA-0.

Consequently, each token positioni in a can-
didate extraction provides three types of informa-
tion: the word itselfwi, its POS tagti, and its short
type si. The full set of features types is listed in
Table 1, where we consider a generic candidate ex-
traction as a sequence ofn+ 1 wordsw0w1:::wn.

Description Feature Template

Head Word w(n)

Short Type s(0) s(1) ::: s(n)
Bigram Left w(�1) w(0) w(�1) s(0)
(4 bigrams) s(�1) w(0) s(�1) s(0)
Bigram Right w(n) w(n+1) w(n) s(n+1)

(4 bigrams) s(n) w(n+1) s(n) s(n+1)

Trigram Left w(�2) w(�1) w(0) :::

(8 trigrams) s(�2) s(�1) s(0)
Trigram Right w(n) w(n+1) w(n+2) :::

(8 trigrams) s(n) s(n+1) s(n+2)

POS Left t(�1)
POS Right t(n+1)

Prefix s(0) s(0) s(1) :::

(n+1 prefixes) s(0) s(1) ::: s(n+1)

Suffix s(n) s(n�1) s(n) :::

(n+1 suffixes) s(0) s(1) ::: s(n+1)

Table 1: Feature Templates.

4 Local Clique Templates

Each feature template instantiates numerous fea-
tures. For example, the candidate extraction
HDAC1 enzymehas the head wordHD=enzyme,
the short typeST=A0a, the prefixesPF=A0 and

PF=A0 a, and the suffixesSF=a and SF=A0 a.
All other features depend on the left or right con-
text of the entity. Feature values that occur less
than three times are filtered out. If, after fil-
tering, we are left withh distinct boolean fea-
tures (fi=vj), we createh local (clique) templates
LT1; LT2; :::; LTh. Each template’s matching op-
erator is set to match any single-entity set. The
collection of featuresSi corresponding to template
LTi applied to the singleton entity setfeg is Si =
hXi, Yii = hf e.fi=vjg, fe.labelgi. The 2-node
cliques created by allh templates around one en-
tity are illustrated in Figure 1.

...
ee

e label

ef  =v1 f  =v f  =v2 hi 1 2i hi

Figure 1: RMN generated by local templates.

Each entity has a label node connected to its
own set ofh binary feature nodes. This leads
to an excessive number of nodes in the model,
most of which have the value zero. To reduce
the number of feature nodes, we transform the re-
lational Markov network into its equivalentfac-
tor graph representation. Factor graphs (Kschis-
chang et al., 2001) are bipartite graphs that ex-
press how a global function of many variables (the
probability P (d:Y jd:X) in Equation 1) factors
into a product of local functions (the potentials
�C(G:Xc; G:Yc) in Equation 1). Factor graphs
subsume many different types of graphical mod-
els, including Bayesian networks and Markov ran-
dom fields. The sum-product algorithm used for
inference in factor graphs generalizes a wide vari-
ety of algorithms including the forward/backward
algorithm, the Viterbi algorithm, and Pearl’s belief
propagation algorithm (Pearl, 1988). To obtain the
factor graph for a given Markov random field, we
copy all nodes from the MRF, and create a new
node for each instantiated clique potential. Each
potential node is then linked to all nodes from the
associated clique. However in this case, instead
of creating a potential node for each feature-value
pair as in the MRF model, we create a potential
node only for the binary features that are 1 for the



given entity. Correspondingly, the table associated
with the potential will be reduced from 4 to 2 val-
ues. As an example, Figure 2 shows that part of the
factor graph which is generated around the entity
label forHDAC1 enzyme.

e label

1
φHD=enzyme

φPF=A0

φPF=A0_a

φSF=a

φSF=A0_a

...

Figure 2: Factor Graph for local templates.

Note that the factor graph above has an equiv-
alent RMN graph consisting of a one-node clique
only, on which it’s hard to visualize the various
potentials involved. There are cases where differ-
ent factor graphs may yield the same underlying
RMN graph, which makes the factor graph repre-
sentation preferable.

5 Global Clique Templates

Global clique templates enable us to model hy-
pothesized influences between entities from the
same document. They connect the label nodes of
two or more entities, which, in the factor graph,
translates into potential nodes connected to at least
two label nodes. In our experiments we have used
three global templates:

Overlap Template (OT): No two protein
names overlap in the text i.e if the span of one pro-
tein is [s1; e1] and the span of another protein is
[s2; e2], ands1 � s2, thene1 < s2.

Repeat Template (RT): If multiple entities in
the same document are repetitions of the same
name, their labels tend to have the same value (i.e.
most of them are protein names, or most of them
are not protein names). Later we discuss situations
in which repetitions of the same protein name are
not tagged as proteins, and design an approach to
handle this.

Acronym Template (AT): It is common con-
vention that a protein is first introduced by its
long name, immediately followed by its short-
form (acronym) in parentheses.

The overlap template matches any two over-
lapping candidate entities and connects their label
nodes through a potential node that requires them
to have different values, as illustrated in Table 2.

�OT e1:label = 0 e1:label = 1

e2:label = 0 0 1
e2:label = 1 1 0

Table 2: Overlap Potential.

5.1 The Repeat Template

We could specify the potential for the repeat tem-
plate in a similar 2-by-2 table, this time leaving
the table entries to be learned, given that it is not
a hard constraint. However we can do better by
noting that the vast majority of cases where a re-
peated protein name is not also tagged as a protein
happens when it is part of a larger phrase thatis
tagged. For example,HDAC1 enzymeis a pro-
tein name, thereforeHDAC1is not tagged in this
phrase, even though it was tagged previously in the
abstract where it was not followed byenzyme .
We need a potential that allows two entities with
the same text to have different labels if the en-
tity with label-value 0 is inside another entity with
label-value 1. But a candidate entity may be inside
more than one “including” entity, and the num-
ber of including entities may vary from one candi-
date extraction to another. We solve this problem,
by introducing a logical OR clique template that
matches a variable number of entities. When this
template matches a subset of entitiese1; e2; :::; en,
it will create an auxiliary OR entityeor, with a sin-
gle featureeor:label. The potential function is set
so that it assigns a non-zero potential only when
eor:label = e1:label _ e2:label _ ::: _ en:label.
The cliques are only created as needed, e.g. when
the auxiliary OR variable is required by repeat and
acronym clique templates.

Figure 3 shows the factor graph for a sample
instantiation of the repeat template using the OR
template. Here,u andv represent two same-text
entities, u1, u2, ... un are all entities that in-
cludeu, andv1, v2, ...,vm are entities that include
v. To avoid clutter, all entities in this and subse-
quent factor graphs stand for their corresponding
label features. The potential function can either



be preset to prohibit unlikely label configurations,
or it can be learned to represent an appropriate
soft constraint. In our experiments, it was learned
since this gave slightly better performance.

1 u2u v1 2v

φ φ
u u v v

or or

or or

RT
φ

un vm
... ...

Figure 3: Repeat Factor Graph.

5.2 The Acronym Template

One approach to the acronym template would
be to use an extant algorithm for identifying
acronyms and their long forms in a document, and
then define a potential function that would favor
label configurations in which both the acronym
and its definition have the same label. One such
algorithm is described in (Schwartz and Hearst,
2003), achieving a precision of96% at a recall
rate of 82%. However, because this algorithm
would miss a significant number of acronyms,
we have decided to implement a softer version
as follows: detect all situations in which a single
word is enclosed between parentheses, such that
the word length is at least 2 and it begins with
a letter. Letv denote the corresponding entity.
Let u1, u2, ..., un be all entities that end exactly
before the open parenthesis. If this is a situation
in which v is an acronym, then one of the entities
ui is its corresponding long form. Consequently,
we use a logical OR template to introduce the
auxiliary variableuor, and connect it tov’s node
label through an acronym potential, as illustrated
in Figure 4. For example, consider the phrasethe
antioxidant superoxide dismutase
- 1 ( SOD1 ) , where both superoxide
dismutase - 1 and SOD1 are tagged as
proteins.SOD1satisfies our criteria for acronyms,
thus it will be associated with the entityv in
Figure 4. The candidate long forms areu1 =
antioxidant superoxide dismutase

- 1 , u2 = superoxide dismutase - 1 ,
andu3 = dismutase - 1 .

1 u2u

φ
u v

or

or

un

...

φAT

Figure 4: Acronym Factor Graph.

6 Inference in Factor Graphs

Given the clique potentials, the inference step for
the factor graph associated with a document in-
volves computing the most probable assignment
of values to the hidden labels of all candidate enti-
ties:

Y � = argmax
Y

P (d:Y jd:X) (3)

whereP (d:Y jd:X) is defined as in Equation 1. A
brute-force approach is excluded, since the num-
ber of possible label configurations is exponen-
tial in the number of candidate entities. The sum-
product algorithm (Kschischang et al., 2001) is a
message-passing algorithm that can be used for
computing the marginal distribution over the label
variables in factor graphs without cycles, and with
a minor change (replacing the sum operator used
for marginalization with a max operator) it can
also be used for deriving the most probable label
assignment. In our case, in order to get an acyclic
graph, we would have to use local templates only.
However, it has been observed that the algorithm
often converges in general factor graphs, and when
it converges, it gives a good approximation to the
correct marginals. The algorithm works by alter-
ing the belief at each label node by repeatedly
passing messages between the node and all po-
tential nodes connected to it (Kschischang et al.,
2001).

The time complexity of computing messages
from a potential node to a label node is expo-
nential in the number of label nodes attached to
the potential. Since this “fan-in” can be large for



OR potential nodes, this step required optimiza-
tion. Fortunately, due to the special form of the
OR potential, and the normalization before each
message-passing step, we were able to develop a
linear-time algorithm for this special case. It can
also be shown that the same linear time complex-
ity holds for computing OR messages in the max-
product algorithm, used to compute the most prob-
able configuration of labels. Details are omitted
due to limited space.

7 Learning Potentials in Factor Graphs
Following a maximum likelihood estimation, we
shall use the log-linear representation of poten-
tials:

�C(G:Xc; G:Yc) = expfwcfc(G:Xc; G:Yc)g

and define the empirical counts:

fc(d:Xc; d:Yc) =
X

G2Mc(d:E)

fc(G:Xc; G:Yc)

Then each clique templatec 2 C will contribute
to the log-likelihood objective function with a term
L(wc; d) that can be written as:

L(wc; d) =
X

G2Mc(d:E)

wcfc(G:Xc; G:Yc)� logZ(d:X)

= wcfc(d:Xc; d:Yc)� logZ(d:X)

This function is concave, and assuming that we
use a gradient-based method for finding its max-
imum, we need to compute its gradient:

rL(wc; d) = fc(d:Xc; d:Yc)�X

d:Y
0

c

fc(d:Xc; d:Yc)Pw(d:Y
0

c jd:Xc)

wherew is the concatenated vector of all poten-
tial parameterswc. Thus, the gradient of the log-
likelihood with respect to potential parameterswc

is the difference between the empirical counts of
fc and their expectation under the current set of
parametersw. This expectation is expensive to
compute, since it requires summing over all possi-
ble configurations of candidate-entity labels from
a given document. To circumvent this complex-
ity, we use the perceptron based approach from
(Collins, 2002), which approximates the full ex-
pectation offc (corresponding to the second term
in the gradient) with thefc counts for the most
likely labeling under the current parameters,w. In
all our experiments, the perceptron was run for 50
epochs, with a learning rate set at 0.01.

8 Experimental Results

We have tested the RMN approach on two datasets
that have been hand-tagged for human protein
names. The first dataset is Yapex1 which con-
sists of 200 Medline abstracts. Of these, 147 have
been randomly selected by posing a query con-
taining the (Mesh) termsprotein binding, inter-
action, andmolecular to Medline, while the rest
of 53 have been extracted randomly from the GE-
NIA corpus (Collier et al., 1999). The second
dataset is Aimed2 which has been previously used
for training the protein interaction extraction sys-
tems in (Bunescu et al., 2004). It contains 225
Medline abstracts, of which 200 are known to de-
scribe interactions between human proteins, while
the other 25 do not refer to any interaction. We
compared the performance of three systems:LT-
RMN is the RMN approach using local templates
and the overlap template,GLT-RMN is the full
RMN approach, using both local and global tem-
plates, andCRF, which uses a CRF for labeling
token sequences. We used the CRF implementa-
tion from (McCallum, 2002) with the set of tags
and features used by the Maximum-Entropy tag-
ger described in (Bunescu et al., 2004). All Med-
line abstracts were tokenized and then POS tagged
using Brill’s tagger (Brill, 1995). Each extracted
protein name in the test data was compared to the
human-tagged data, with the positions taken into
account. Two extractions are considered a match
if they consist of the same character sequence in
the same position in the text. Results are shown in
Tables 3 and 4 which give average precision, re-
call, and F-measure using 10-fold cross validation.

Method Precision Recall F-measure

LT-RMN 70.42 50.41 58.76
GLT-RMN 70.58 62.96 66.55

CRF 72.45 58.64 64.81

Table 3: Extraction Performance on Yapex.

These tables show that the use of global tem-
plates for modeling influences between possible
entities from the same document significantly im-

1URL: www.sics.se/humle/projects/prothalt/
2URL: ftp.cs.utexas.edu/mooney/bio-data/



Method Precision Recall F-measure

LT-RMN 78.46 73.28 75.78
GLT-RMN 79.80 82.63 81.19

CRF 85.37 75.90 80.36

Table 4: Extraction Performance on Aimed.

proves extraction performance. There is also a
small improvement over CRF’s. We hypothe-
size that further improvements to the LT-RMN ap-
proach would push the GLT-RMN performance
even higher. The tagging scheme used by CRFs, in
which each token is assigned a tag, is essentially
different from the RMN approach, where candi-
date extractions are either rejected or accepted. In
the tagging approach used by CRFs, extracted en-
tities are available only after tagging is complete,
thereby making it difficult to account for influ-
ences between them during tagging.

Figures 5 and 6 show the precision-recall
curves for the two datasets. These were obtained
by varying a threshold on the extraction confi-
dence, which is the posterior probability that its
label is 1 as computed by the sum-product algo-
rithm. For the Aimed dataset, varying this thresh-
old did not help, resulting in an almost flat curve.
However, adding global templates helped, allow-
ing for increased precision at lower levels of re-
call.
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Figure 5: Precision Recall Curves on Yapex.

We also explored using a global template that
captured the tendency for candidate entities whose
phrases are coordinated to have the same label.
This technique did not improve performance since
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Figure 6: Precision Recall Curves on Aimed.

detecting whether two NPs are coordinated is dif-
ficult, and the methods we tried introduced too
many false coordinations.

9 Related Work

There have been some previous attempts to use
global information from repetitions, acronyms,
and abreviations during extraction. In (Chieu and
Ng, 2003), a set of global features are used to im-
prove a Maximum-Entropy tagger; however, these
features do not fully capture the mutual influence
between the labels of acronyms and their long
forms, or between entity repetitions. In particu-
lar, they only allow earlier extractions in a doc-
ument to influence later ones and not vice-versa.
The RMN approach handles these and potentially
other mutual influences between entities in a more
complete, probabilistically sound manner.

10 Conclusions and Future Work

We have presented an approach to collective in-
formation extraction that uses Relational Markov
Networks to reason about the mutual influences
between multiple extractions. A new type of
clique template – the logical OR template – was
introduced, allowing a variable number of relevant
entities to be used by other clique templates. Soft
correlations between repetitions and acronyms and
their long form in the same document have been
captured by global clique templates, allowing for
local extraction decisions to propagate and mu-
tually influence each other. Experimental results
showed that a collective approach to extraction
significantly improves performance.



Regarding future work, a richer set of features
for the local templates would likely improve per-
formance. Currently, LT-RMN’s accuracy is still
significantly less than CRF’s, which limits the per-
formance of the full system. Another limitation
is the approximate inference used by both RMN
methods. The number of factor graphs for which
the sum-product algorithm did not converge was
non-negligible, and our approach stopped after a
fix number of iterations. Besides exploring im-
provements to loopy belief propagation that in-
crease computational cost (Yedidia et al., 2000),
we intend to examine alternative approximate-
inference methods such as Gibbs sampling, and
other Monte Carlo algorithms.

A natural next step is to integrate IE subtasks
like named entity recognition and coreference res-
olution, such that decisions made in one subtask
influence decisions made in the other. The con-
text of a pronoun referring to an entity can help in
disambiguating the class of that entity through the
use of a general repeat template. Recent work in
anaphora resolution using RMNs (McCallum and
Wellner, 2003) and the joint solving of two differ-
ent NLP tasks using dynamic CRFs (McCallum et
al., 2003) show the benefit of an integrated, col-
lective approach.
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