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Abstract

Most information extraction (IE) sys-
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1997; Califf, 1999). One of the current best empir-
ical approaches to IE isonditional random fields
(CRF’s) (Lafferty et al., 2001). CRF’s are a re-

stricted class ofindirected graphical modeldor-
dan, 1999) designed for sequence segmentation
tasks such as IE, part-of-speech (POS) tagging
(Lafferty et al., 2001), and shallow parsing (Sha
and Pereira, 2003). In a recent follow-up to pre-
viously published experiments comparing a large
variety of IE-learning methods (including HMM,
SVM, MaxEnt, and rule-based methods) on the
task of tagging references to human proteins in
Medline abstracts (Bunescu et al., 2004), CRF's
were found to significantly out-perform compet-
ing techniques.

tems treat separate potential extractions
as independent. However, in many
cases, considering influencéstween
different potential extractions could im-
prove overall accuracy. Statistical meth-
ods based onndirectedgraphical mod-
els, such agonditional random fields
(CRFs), have been shown to be an ef-
fective approach to learning accurate IE
systems. We present a new |IE method
that employs Relational Markov Net-
works (a generalization of CRFs), which
can represent arbitrary dependencies be-
tween extractions. This allows for
“collective information extraction” that
exploits the mutual influence between
possible extractions. Experiments on
learning to extract protein names from
biomedical text demonstrate the advan-
tages of this approach.

As typically applied, CRF's, like almost all IE
methods, assume separate extractions are indepen-
dent and treat each potential extraction in isola-
tion. However, in many cases, considering influ-
enceshetweerextractions can be very useful. For
example, in our protein-tagging task, repeated ref-
erences to the same protein are common. If the
context surrounding one occurrence of a phrase
is very indicative of it being a protein, then this
should also influence the tagging of another oc-
currence of the same phrase in a different context
which is not indicative of protein references.

1 Introduction

Information extraction (IE), locating references to
specific types of items in natural-language doc- Relational Markov Networks (RMN's) (Taskar
uments, is an important task with many prac-et al., 2002) are a generalization of CRF’s that al-
tical applications. Since IE systems are diffi-low for collective classificatiorof a set of related
cult and time-consuming to construct, most re-entities by integrating information from features
cent research has focused on empirical techniques individual entities as well as the relations be-
that automatically construct information extrac-tween them. Results on classifying connected sets
tors by training on supervised corpora (Cardieof web pages have verified the advantage of this



approach (Taskar et al., 2002). In this paper, we forthe features it$,, s.t. ¢.(s) > 0,Vs € S..

present an approach tmllective information ex- Given a setf, of nodesM,(E) C 2F consists
. . , . ’ c =
traction using RMN's that simultaneously extracts of subsets of entities whose feature nodesre to

gll of the information from a document by exploit- be connected. In previous applications of RMNSs,
ing the textual content and context of each relevanf,e selected subsets of entities for a given template
substring as well as Fhe document relatlonsh_lps behave the same size; however, our clique templates
tween them. EXperiments on human protein tagq, v match a variable number of entities. The set
ging demonstrate the advantages of collective exg may contain the same feature from different en-

traction on several annotated corpora of Med“netities. Usually, for each entity in the matching set,

abstracts. its label is included inS.. The nodes correspond-
2 The RMN Framework for Entity ing to these features are then connected in a clique.
Recognition Depending on the number of hidden labelstin

we define two categories of clique templates:
Assume we are given a collection of training docu-

mentsD where all named entities have been man-
ually annotated. We associate with each document
d € D a set of candidate entitiesE, in our case

a restricted set of token sequences from the docu-
ment. Each entitg € d.E is characterized by a  ® Global Templatesare all templateg € C
set of boolean featuresF. This set of features is for which [Y;| > 1. They capture influences
the same for all candidate entities, and it can be as-  between multiple entities from the same doc-
similated with the relational database definition of ument.

a table. One patrticular featureddabel which is After the graph model for a documenthas

set to 1 ife is considered a valid extraction, and 0 been completed with cliques from all templates,

; he probability distribution over the random field
otherwise. In our document model, labels are th f hidden ent%y labels.Y" given the observed fea-

only hidden features, and the inference procedurgiresd. X is computed as:

will try to find a most probable assignment of val-

ues to labels, given the current model parameters.p(d.y|d.x) = _ 1 H H bc(G.X.,G.Y,)
Each document is associated with an undirected 2(d-X) c€C GEM, (d.E)

graphical mpdel, with nodes corresponding di- whereZ(d.X) is the normalizing partition flSJI:])C-

rectly to entity features, one node for each featurgjgp,-

of each candidate entity in the document. The set

of edges is created by matching clique templates z(d.x)=> [[ [ ¢c(GX.,.GYo) (2

against the entire set of entitiédsE'. A clique tem- Y c€C GEM.(d.E)

plate is used to find all subsets of entities satisfying

a given constraint and then the graph is modifieq3

to connect the feature nodes associated with the

entities in each subset so that they form a clique. Like most entity names, almost all proteins in our
Formally, there are a set of clique templat@s data are base noun phrases or parts of them. There-

e Local Templatesare all templateg € C for
which |Y;| = 1. They model the correlations
between an entity’s observed features and its
label.

Candidate Entities and Entity Features

with each template € C specified by: fore, such substrings are used to determine candi-
1. A matching operatak/, for selecting subsets date entities. To avoid missing options, we adopt
of entities. a very broad definition of base noun phrase.
2. A selected set of feature®s = (X,,Y;) for Definition 1: A base noun phrasés a max-

entities returned by the matching operatorimal contiguous sequence of tokens whose POS
X, denotes the observed features, while tags are from{"JJ", "VBN", "VBG”, "POS”",
refers to the hidden labels. "NN”, "NNS”, "NNP”, "NNPS”, "CD”, "="  },

3. A clique potentiakp. that gives the compati- and whose last word (the head) is tagged either as
bility of each possible configuration of values a noun, or a number.



Candidate extractions consist of base NPs, aud?F=A0_a, and the suffixesSF=a and SF=AQa.
mented with all their contiguous subsequence®\ll other features depend on the left or right con-
headed by a noun or number. text of the entity. Feature values that occur less

The set of features associated with each candihan three times are filtered out. |If, after fil-
date is based on the feature templates introducel@ring, we are left withh distinct boolean fea-
in (Collins, 2002), used there for training a rank-tures (f;=v;), we creaté: local (clique) templates
ing algorithm on the extractions returned by aLTi, LT, ..., LT,. Each template’s matching op-
maximum-entropy tagger. Many of these featuresrator is set to match any single-entity set. The
use the concept afiord type which allows a dif-  collection of features; corresponding to template
ferent form of token generalization than POS tagsLT; applied to the singleton entity sé¢} is .S; =
The short typeof a word is created by replacing (X;, Y;) = ({ e.fi=v;}, {e.labe}). The 2-node
any maximal contiguous sequences of capital leteliques created by ah templates around one en-
ters with 'A, of lower-case letters with 'a’, and tity are illustrated in Figure 1.
of digits with '0’. For example, the wordGF-1 e
would be mapped to typa-0. Iabel

Consequently, each token positiorin a can-
didate extraction provides three types of informa-

tion: the word itselfw;, its POS tag;, and its short O
T . ef =v. ef =V ef =V
type s;. The full set of features types is listed in 1™V 27Vi, hViy,
Table 1, where we consider a generic candidate ex-
traction as a sequence of+ 1 wordswowy ...w, . Figure 1: RMN generated by local templates.

Each entity has a label node connected to its
own set ofh binary feature nodes. This leads

Description | Feature Template \

Head Word | w(y,) to an excessive number of nodes in the model,
Short Type 5(0)-8(1)—+--8(n) most of which have the value zero. To reduce
Bigram Left | w(_1)-w(q) W(—1)-5(0) the number of feature nodes, we transform the re-
(4 bigrams) 5(—1)-W(0) 5(=1)-5(0) lational Markov network into its equivaleriaic-
Bigram Right | w(p)-W(ni1)  Wn)-Sn+1) tor graph representation. Factor graphs (Kschis-
(4 bigrams) 5(n)W(nt1)  S(n)-S(n+1) chang et al., 2001) are bipartite graphs that ex-
Trigram Left | w_q)-w_1)-we) .. press how a global function of many variables (the
(8 trigrams) | s(_9)-5(—1)-5(0) probability P(d.Y|d.X) in Equation 1) factors
Trigram Right W) Wint1)W(nt2) - into a product of local functions (the potentials
(8 trigrams) S(n)-S(n+1)-8(n+2) oc(G.X.,G.Y.) in Equation 1). Factor graphs
POS Left t 1) subsume many different types of graphical mod-
POS Right tHnt1) els, including Bayesian networks and Markov ran-
Prefix 50) S(0)-5(1) dom fields. The sum-product algorithm used for
(n+1 prefixes)| s(o)-8(1)—--8(n41) inference ir! factor graphs generalizes a wide vari-
Suffix ) S(m1)-S(m) ety of algorithms including the forward/backward
(n+1 suffixes) | s(0)-5(1) - S(n41) algorithm, the Viterbi algorithm, and Pearl’s belief
propagation algorithm (Pearl, 1988). To obtain the
Table 1: Feature Templates. factor graph for a given Markov random field, we
copy all nodes from the MRF, and create a new
4 Local Clique Templates node for each instantiated clique potential. Each

potential node is then linked to all nodes from the
Each feature template instantiates numerous feassociated clique. However in this case, instead
tures. For example, the candidate extractiorof creating a potential node for each feature-value
HDAC1 enzymehas the head worddD=enzyme pair as in the MRF model, we create a potential
the short typeST=AQa, the prefixePF=A0and node only for the binary features that are 1 for the



given entity. Correspondingly, the table associated The overlap template matches any two over-
with the potential will be reduced from 4 to 2 val- lapping candidate entities and connects their label
ues. As an example, Figure 2 shows that part of theodes through a potential node that requires them
factor graph which is generated around the entityo have different values, as illustrated in Table 2.

label forHDAC1 enzyme

‘ por H e1.label =0 ‘ er.label =1 ‘
€\abel es.label =0 0 1

es.label =1 1 0
./ Table 2: Overlap Potential.

Prip=enzyme / Prr=a0 a\ Psr=n0.a

5.1 The Repeat Template
Por=no Psr=a , -
We could specify the potential for the repeat tem-
Figure 2: Factor Graph for local templates. ~ Plate in a similar 2-by-2 table, this time leaving
the table entries to be learned, given that it is not
Note that the factor graph above has an equiva hard constraint. However we can do better by
alent RMN graph consisting of a one-node cliquenoting that the vast majority of cases where a re-
only, on which it's hard to visualize the various peated protein name is not also tagged as a protein
potentials involved. There are cases where differhappens when it is part of a larger phrase tbat
ent factor graphs may yield the same underlyingagged. For examplé4DAC1 enzymeis a pro-
RMN graph, which makes the factor graph repretein name, thereforelDACis not tagged in this

sentation preferable. phrase, even though it was tagged previously in the
abstract where it was not followed gnzyme.
5 Global Clique Templates We need a potential that allows two entities with

_ the same text to have different labels if the en-

Global clique templates enable us to model hysjry with label-value 0 is inside another entity with
pothesized influences between entities from the;pel-value 1. But a candidate entity may be inside
same document. They connect the label nodes ¢f,ore than one “including” entity, and the num-
two or more entities, which, in the factor graph, ey of including entities may vary from one candi-
translates into potential nodes connected to atleaghte extraction to another. We solve this problem,
two label nodes. In our experiments we have usegy introducing a logical OR clique template that
three global templates: matches a variable number of entities. When this

Overlap Template (OT): No two protein template matches a subset of entitigses, ..., e,
names overlap in the text i.e if the span of one proit will create an auxiliary OR entity,,, with a sin-
tein is [s1, e1] and the span of another protein is gle featuree,,.label. The potential function is set
82, 2], ands; < sz, thene; < sa. so that it assigns a non-zero potential only when

Repeat Template (RT):If multiple entities in  ¢,,..label = e;.label V es.label V ...V ey, .label.
the same document are repetitions of the sam®he cliques are only created as needed, e.g. when
name, their labels tend to have the same value (i.ehe auxiliary OR variable is required by repeat and
most of them are protein names, or most of themacronym clique templates.
are not protein names). Later we discuss situations Figure 3 shows the factor graph for a sample
in which repetitions of the same protein name arénstantiation of the repeat template using the OR
not tagged as proteins, and design an approach template. Herey andv represent two same-text
handle this. entities, uy, uo, ... u, are all entities that in-

Acronym Template (AT): It is common con- cludew, andvy, vs, ..., v, are entities that include
vention that a protein is first introduced by itsv. To avoid clutter, all entities in this and subse-
long name, immediately followed by its short- quent factor graphs stand for their corresponding
form (acronym) in parentheses. label features. The potential function can either



be preset to prohibit unlikely label configurations,- 1, us = superoxide dismutase - 1 :
or it can be learned to represent an appropriatandus = dismutase - 1
soft constraint. In our experiments, it was learned

since this gave slightly better performance. Qat
(pRT
VI v
Por
“u u v
or \{)r O
@or Qo u, u, u,
o o Figure 4: Acronym Factor Graph.
up U, 7oUy vy vy T vy,

_ 6 Inference in Factor Graphs
Figure 3: Repeat Factor Graph.

Given the cligue potentials, the inference step for
5.2 The Acronym Template the factor graph associated with a document in-
One approach to the acronym template would/olves computing the most probable assignment
be to use an extant algorithm for identifying of values to the hidden labels of all candidate enti-
acronyms and their long forms in a document, andi€s:
then define a potential function that would favor Y* =argmax P(d.Y|d.X) 3
label configurations in which both the acronym Y
and its definition have the same label. One sucwhereP(d.Y|d.X) is defined as in Equation 1. A
algorithm is described in (Schwartz and Hearstprute-force approach is excluded, since the num-
2003), achieving a precision &6% at a recall ber of possible label configurations is exponen-
rate of 82%. However, because this algorithm tial in the number of candidate entities. The sum-
would miss a significant number of acronyms,product algorithm (Kschischang et al., 2001) is a
we have decided to implement a softer versiormessage-passing algorithm that can be used for
as follows: detect all situations in which a single computing the marginal distribution over the label
word is enclosed between parentheses, such thetriables in factor graphs without cycles, and with
the word length is at least 2 and it begins witha minor change (replacing the sum operator used
a letter. Letv denote the corresponding entity. for marginalization with a max operator) it can
Let uq, us, ..., u, be all entities that end exactly also be used for deriving the most probable label
before the open parenthesis. If this is a situatiorassignment. In our case, in order to get an acyclic
in which v is an acronym, then one of the entitiesgraph, we would have to use local templates only.
u; is its corresponding long form. Consequently,However, it has been observed that the algorithm
we use a logical OR template to introduce theoften converges in general factor graphs, and when
auxiliary variableu,,, and connect it ta’'s node it converges, it gives a good approximation to the
label through an acronym potential, as illustratedcorrect marginals. The algorithm works by alter-
in Figure 4. For example, consider the phrigse  ing the belief at each label node by repeatedly
antioxidant superoxide dismutase passing messages between the node and all po-
-1 ( SOD1 ), where both superoxide tential nodes connected to it (Kschischang et al.,
dismutase - 1 and SOD1 are tagged as 2001).
proteins.SOD1satisfies our criteria for acronyms, The time complexity of computing messages
thus it will be associated with the entity in  from a potential node to a label node is expo-
Figure 4. The candidate long forms ang = nential in the number of label nodes attached to
antioxidant superoxide dismutase the potential. Since this “fan-in” can be large for



OR potential nodes, this step required optimiza8 Experimental Results

tion. Fortunately, due to the special form of the
OR potential, and the normalization before each/Ve have tested the RMN approach on two datasets

message-passing step, we were able to developiat have been hand-tagged for human protein
names. The first dataset is Yapewhich con-

linear-time algorithm for this special case. It can'" >
also be shown that the same linear time complex§'5ts of 200 Medline abstracts. Of these, 147 have

ity holds for computing OR messages in the maxP€en randomly selected by posing a query con-
product algorithm, used to compute the most probt@ining the (Mesh) termgrotein binding inter-

able configuration of labels. Details are omitted®Ction andmolecularto Medline, while the rest
due to limited space. of 53 have been extracted randomly from the GE-

NIA corpus (Collier et al.,, 1999). The second
7 Learning Potentials in Factor Graphs dataset is Aimetiwhich has been previously used
Following a maximum likelihood estimation, we for training the protein interaction extraction sys-

shall use the log-linear representation of potentems in (Bunescu et al., 2004). It contains 225
tials: Medline abstracts, of which 200 are known to de-
60 (G.X.,G.Y,) = exp{wefe (G.X., G.Y.)} scribe interactions between human proteins, while
the other 25 do not refer to any interaction. We
compared the performance of three systehis:
fo(d.Xc,d.Ye) = Z f.(G.X.,G.Y,) RMN is the RMN approach using local templates
GeM,(d.E) and the overlap templat&LT-RMN is the full
Then each clique templatec C will contribute RMN approach, using both local and global tem-
to the log-likelihood objective function with a term plates, andCRF, which uses a CRF for labeling
L(we,d) that can be written as: token sequences. We used the CRF implementa-

and define the empirical counts:

L(we,d) = Z Wefe(G.Xe, G.Y,) — log Z(d.X) tion from (McCallum, 2002) wi_th the set of tags
GEM.(d.E) and features used by the Maximum-Entropy tag-
= Wefe(d.X.,d.Y,) — log Z(d.X) ger described in (Bunescu et al., 2004). All Med-

This function is concave, and assuming that WeIlne abstracts were tokenized and then POS tagged

imum, we need to compute its gradient: protein name in the test data was compared to the

human-tagged data, with the positions taken into

VL(We,d) = fo(d-Xc,d.Ye)— _ _
€ (dX dYV P (d Y ldX account. Two extractions are considered a match
dz: o(d-Xe, d-Ye) P (d Yo |d Xe) if they consist of the same character sequence in

!

) the same position in the text. Results are shown in
wherew is the concatenated vector of all poten-1pias 3 and 4 which give average precision, re-

tial parametersv.. Thus, the gradient of the 10g- ¢4 and F-measure using 10-fold cross validation.
likelihood with respect to potential parametsvs

is the difference between the empirical counts of‘ Method | Precision| Recall| F-measurd
f. and their expectation under the current set of S_aMmN~ | 70.42 5041 | 5876
parametersw. This expectation is expensive to GLT-RMN | 7058 6296 | 6655
compute, since it requires summing over all possi-

ble configurations of candidate-entity labels from‘ CRF ‘ 7245 ‘ 58.64 ‘ 64.81 ‘
a given document. To circumvent this complex-  Taple 3: Extraction Performance on Yapex.
ity, we use the perceptron based approach from
(Collins, 2002), which approximates the full ex-

pectation off, (corresponding to the second term These tables S_hOV\_' that the use of global tgm-
in the gradient) with thef, counts for the most plates for modeling influences between possible

entities from the same document significantly im-

likely labeling under the current parametexs, In
all our experiments, the perceptron was run for 50  1yRy: www.sics.se/humle/projects/prothalt/
epochs, with a learning rate set at 0.01. 2URL.: ftp.cs.utexas.edu/mooney/bio-data/



| Method | Precision| Recall | F-measure] 100 .
LT-RMN 78.46 73.28 | 75.78

GLT-RMN | 79.80 82.63 | 81.19 o %or 1
\ CRF \ 85.37 \ 75.90 \ 80.36 \ %
.% 80 | e — N
Table 4: Extraction Performance on Aimed. ;@

70 E

GLT-RMN ——
LT-RMN -

proves extraction performance. There is also a 60 . .
small improvement over CRF's. We hypothe- 0 20 40 60 8 100
size that further improvements to the LT-RMN ap- Recall ()

proach would push the GLT-RMN performance  gjqre 6: Precision Recall Curves on Aimed.
even higher. The tagging scheme used by CRFs, in

which each token is assigned a tag, is essentially

different from the RMN approach, where candi- getecting whether two NPs are coordinated is dif-

date extractions are either rejected or accepted. Ificult, and the methods we tried introduced too
the tagging approach used by CRFs, extracted €Mnany false coordinations.

tities are available only after tagging is complete,
thereby making it difficult to account for influ- 9 Related Work
ences between them during tagging.

Figures 5 and 6 show the precision-recall
curves for the two datasets. These were obtaine

by varying a threshold on the extraction confi-ng 2003), a set of global features are used to im-
dence, which is the posterior probability that its prove a Maximum-Entropy tagger: however, these

label is 1 as computed by the sum-product algotgayres do not fully capture the mutual influence
rithm. For the Aimed dataset, varying this thresh-panveen the labels of acronyms and their long

old did not help, resulting in an almost flat CUIVE. forms. or between entity repetitions. In particu-

However, adding global templates helped, allow-5; they only allow earlier extractions in a doc-
ing for increased precision at lower levels of re-
call.

There have been some previous attempts to use
global information from repetitions, acronyms,
nd abreviations during extraction. In (Chieu and

ument to influence later ones and not vice-versa.
The RMN approach handles these and potentially
other mutual influences between entities in a more
complete, probabilistically sound manner.

100

90 [\ . 10 Conclusions and Future Work
We have presented an approach to collective in-
formation extraction that uses Relational Markov
Networks to reason about the mutual influences
GLT-RMN between multiple extractions. A new type of
60 , , LT-RMN ------- clique template — the logical OR template — was
0 20 40 60 80 100 introduced, allowing a variable number of relevant
Recall (%) entities to be used by other clique templates. Soft
correlations between repetitions and acronyms and
their long form in the same document have been
captured by global clique templates, allowing for
We also explored using a global template thatocal extraction decisions to propagate and mu-
captured the tendency for candidate entities whoseially influence each other. Experimental results
phrases are coordinated to have the same labalhowed that a collective approach to extraction
This technique did not improve performance sincesignificantly improves performance.

80

Precision (%)

70

Figure 5: Precision Recall Curves on Yapex.



Regarding future work, a richer set of featuresHai Leong Chieu and Hwee Tou Ng. 2003. Named en-
for the local templates would likely improve per- ity recognition with a maximum entropy approach.
formance. Currently, LT-RMN's accuracy is still " €ONLL-2003, pages 160-163.
significantly less than CRF’s, which limits the per- N. Collier, H. Park, N. Ogata, Y. Tateisi, C. Nobata,
formance of the full system. Another limitation ~ T-Ohta, T. Sekimizu, H. Imai, K. lbushi, and J. Tsu-
s the approximate inference used by both RMN |- 10 R el B o cton
methods. The number of factor graphs for which  from genome research papers. BACL-1999,

the sum-product algorithm did not converge was pages 271-272, Bergen.

r?on-negllglble,. andlour approf’alch stoppeq afFer Richael J. Collins. 2002. Ranking algorithms for
fix number of iterations. Besides exploring im-  named-entity extraction: Boosting and the voted
provements to loopy belief propagation that in- perceptron. IACL-2002, pages 489-496.

creqse computationgl cost (Yed.idia etal, _ZOOO)MiChaeI I. Jordan, editor. 1999.earningin Graphical
we intend to examine alternative approximate- Models. MIT Press, Cambridge, MA.

inference methods such as Gibbs sampling, anlg. R. Kschischang, B. Frey, and H.-A. Loeliger. 2001.

other Monte Carlo algo'rithm's. Factor graphs and the sum-product algorithBEEE
A natural next step is to integrate |IE subtasks Transactionson Information Theory, 47(2):498-

like named entity recognition and coreference res- 5109.

olution, such that decisions made in one subtask,n, | afferty, Andrew McCallum, and Fernando
influence decisions made in the other. The con- Ppereira. 2001. Conditional random fields: Prob-
text of a pronoun referring to an entity can help in  abilistic models for segmenting and labeling se-
disambiguating the class of that entity through the duence data. IfCML-2001.

use of a general repeat template. Recent work ilndrew McCallum and Ben Wellner. 2003. Toward
anaphora resolution using RMNs (McCallum and conditional models of identity uncertainty with ap-
Wellner, 2003) and the joint solving of two differ- s\ll'cel‘(t'%” to ?r?per ”.OUI” Coref‘?renceh V:/ﬂ'%A'
ent NLP tasks using dynamic CRFs (McCallum et orkshopon Informationintegrationon the Web.

al., 2003) show the benefit of an integrated, colAndrew McCallum, Khashayar Rohanimanesh, and

lective approach. Charles Sutton. 2003. Dynamic conditional ran-
dom fields for jointly labeling multiple sequences.
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