
Metrics and Laws of Software Evolution - The Nineties View

M M Lehman
J F Ramil

P D Wernick
Department of Computing

Imperial College of Science, Technology and
Medicine

London SW7 2BZ
tel: +44 (0)171 594 8214
fax: +44 (0)171 594 8215

e-mail: {mml,jcf1,pdw1}@doc.ic.ac.uk
URL:http://www-dse.doc.ic.ac.uk/~mml/feast1/

D E Perry
Bell Laboratories, Murray Hill, NJ 07974

+1 908 582 2529
dep@research.bell-labs.com

W M Turski
Institute of Informatics

Warsaw University
Warsaw 02-097
+48 22 658 3522

wmt@mimuw.edu.pl

Abstract
The process of E-type software development and evolution
has proven most difficult to improve, possibly due to the
fact that the process is a multi-input, multi-output system
involving feedback at many levels. This observation, first
recorded in the early 70s during an extended study of
OS/360 evolution, was recently captured in a FEAST
hypothesis; a hypothesis being studied in on-going two-
year project, FEAST/1. Preliminary conclusions based on
a study of a financial transaction system, FW, are outlined
and compared with those reached during the earlier OS/360
study. The new analysis supports, or better does not
contradict, the laws of software evolution, suggesting that
the 1970s approach to metric analysis of software
evolution is still relevant today. It is hoped that FEAST/1
will provide a foundation for mastering the feedback
aspects of the software evolution process, opening up new
paths for process modelling and improvement.

Keywords: Software:- process, evolution, process metrics,
dynamics and improvement; Lehman's laws

1 Introduction

A 1968 study of the IBM software programming
process1 [leh69,85] led, inter alia, to metric based studies
of OS/3602 [bel72,leh74,85] and other systems
[leh80b,kit82]. Analysis of data relating ultimately to
some 26 of OS/360 releases and sub-releases, identified
and ordered by their release sequence number rsn [cox66],
yielded insights into various aspects of its evolutionary

trends. An example of the study output is provided by
figure 1.

OS/360

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25

Growth Trend

RSN

Size in Modules

Fig. 1 OS/360 growth trend by rsn

Up to release rsn21, the OS/360 growth trend illustrated
by figure 1 may be interpreted as a small ripple
superimposed on otherwise smooth growth. This pattern
is reminiscent of traces generated by self-regulating and
self-stabilising systems with both positive and negative
feedback [bel72, leh78]. The behaviour thereafter may be
interpreted as a sign of instability induced by excessive
positive feedback; rapid functional evolution which led to
a fission process; the transition from OS/360 to VS1 and
VS2. Alternatively it may be interpreted as chaos-like
behaviour. Either interpretation suggests that further
prediction based on earlier behaviour is uncertain.

It was these observations that first suggested that
software evolution processes are and must be treated as
being feedback driven and constrained systems [leh74,78].
Subsequently, preliminary examination of data on several

1 Unless otherwise stated, all references in this paper to processrefer
to both ab initio development and to subsequent system maintenance,
that is, to the process of all aspects of system evolution [leh85].
2 References in this paper to the IBM OS/360 system, refer to both that
system and its successor OS/370.

non-IBM systems repeated many of the earlier
observations [leh77,bel78].

The feedback theme was also applied by Abdel-Hamid
and Madnick [abd91] in their work on the use of system
dynamics in modelling software project management
issues. This approach and related modelling techniques
originated in the seminal work of Forrester and his
colleagues at M.I.T [for61,70]. More recently it has been
applied to the study of aspects of software process
improvement, eg. [abd91,mcg93,wae94,mad96].

The 1970s study, exemplified by figure 1, revealed
regularity unexpected for variables the indirect
consequences of human decision but not directly or
intentionally controlled. It could and was, therefore,
captured in a series of statements abstracting the observed
behaviour. Such abstraction involves a domain larger than
the realm of software technology as normally understood.
In fact, it includes software technology as a sub domain.
From the point of view of software engineering, such
statements must, therefore, be accepted as an external
regulating and constraining force. To overcome them
r e q u i r e s e x p e r t i s e i n o r g a n i s a t i o n a l d y n a m i c s ,
management, sociology etc., not just software technology.
Thus they were subsequently referred to as laws of
software evolution [leh74,78,80,85]. The laws, as
proposed then [leh74] and subsequently amended
[leh78,80], are summarised in table 1 with column 1
indicating the year when each was first published.

The laws could, however, only be applied with any degree
of confidence to the domains to which the data related.
Generalisation depended on obtaining confirming evidence
from other systems and organisations. If achieved, such
generalisation would provide a theoretical and practical
base and framework for the evolution ofE-type programs,
that is, software solving a problem or addressing an
application in the real world [leh80b].

2 Process improvement

In recent years many businesses, and the software
industry in particular, have developed a strong interest in
and commitment to disciplined process improvement.
More and more business processes are, however, dependent
on software generated information. They are driven and
controlled by computers and software, probably including
E-type legacy systemsthat may have been operational for
many years. Now specification and design of such systems
requires assumptions about the intended application and its
operational domain. These, in turn, will be reflected in the
software. Subsequently, installation and operation of the
system together with exogenous change will invalidate
some of the embedded assumptions [leh89]. The system
must, therefore, be continually updated to maintain their
validity and adapt to changed circumstances. Business and
software process improvement are strongly linked and
interdependent [leh97].

N o . Brief Name Law

I
1974

Continuing Change E-type systems must be continually adapted else they become progressively less
satisfactory.

II
1974

Increasing Complexity As an E-type system evolves its complexity increases unless work is done to
maintain or reduce it.

III
1974

Self Regulation E-type system evolution process is self regulating with distribution of product
and process measures close to normal.

IV
1980

Conservation of Organisational
Stability (invariant work rate)

The average effective global activity rate in an evolving E-type system is
invariant over product lifetime.

V
1980

Conservation of Familiarity As an E-type system evolves all associated with it, developers, sales personnel,
users, for example, must maintain mastery of its content and behaviour [leh80a]
to achieve satisfactory evolution. Excessive growth diminishes that mastery.
Hence the average incremental growth remains invariant as the system evolves.

VI
1980

Continuing Growth The functional content of E-type systems must be continually increased to
maintain user satisfaction over their lifetime.

VII
1996

Declining Quality The quality of E-type systems will appear to be declining unless they are
rigorously maintained and adapted to operational environment changes.

VIII
1996

Feedback System
(first stated 1974,
formalised as law 1996)

E-type evolution processes constitute multi-level, multi-loop, multi-agent
feedback systems and must be treated as such to achieve significant improvement
over any reasonable base.

Table 1 Laws of software evolution

The present paper focuses on software process
improvement. The fact is that the software industry has
been seeking improvement of the software development
and maintenance process for many years [wil51,leh96].
Academic and industrial effort has yielded incremental
improvement, through the introduction of new languages,
formalisation, improved methods, mechanised support
(CASE), new programming paradigms and so on.
Nevertheless, the industrial track record raises the question
why, despite so many advances, the global software
development process from conception to use is still so
often marred; why satisfactory functionality, performance
and quality is only achieved over a lengthy evolutionary
process, why software maintenance never ceases until a
system is scrapped, why software is still generally regarded
as the weakest link in the development of computer-based
systems [leh94,96].

Explanations for individual failures can always be
found. This paper summarises a more general approach
arising from recognising that development and evolution
processes for E-type systems are intrinsically feedback
systems [leh94]. The remainder of the paper reports
preliminary results from an investigation of this
hypothesis.

3 FEAST (Feedback, Evolution And
Software Technology) and FEAST/1

Some years ago, the realisation that feedback3 in the
software process could explain the difficulties encountered
in achieving its global improvement, led to the
formulation of a FEAST hypothesis [fea94,leh94]:

As complex feedback systems, E-type software processes
evolve strong system dynamics and with it the global
stability characteristics of other such systems. Consequent
stabilisation effects are likely to constrain efforts at
process improvement.

More recently the hypothesis was restated in the
following terms [leh96c]:

As for other complex feedback systems, the dynamics of
the real world software development and evolution
processes will posses a degree of autonomy and global
stability.

Both versions of the hypothesis include a number of
assertions [leh96a] but these are not further discussed here.

The hypothesis and its implications were examined over
a period of time by a FEAST core group, a subgroup of
the present authors. Its deliberations [leh96b] led to three
workshops held at Imperial College during 1994/5
[fea94,95]. The objectives were to expose the ideas to a
wider group of people interested in the software process, to
seek the objective criticism of experts and, in general, to
explore the hypothesis and its implications.

The EPSRC4 proposal that resulted from these
discussions was entitled FEAST/1 [leh96c], the "/1" in the
title indicating that this two year, 3 person project was to
be seen as a first step in a longer and more widespread
investigation. The proposal was approved in March 1996
and the resultant project commenced formal investigations
in October 1996 in collaboration with ICL plc, Logica
plc, Matra-BAe Dynamics plc and two groups within the
UK Ministry of Defence. The stated objectives [leh96c]
were to:

• provide objective evidence that feedback phenomena
and the consequent system dynamics have substantial
impact in the software process

• demonstrate that the phenomena can be exploited in
both managing and improving industrial processes

• produce justification for a wider and more substantial
study based on the feedback perspective.

The two year investigation will seek to identify and
characterise the feedback mechanisms active in the process,
their impact on process characteristics and methods for
applying the understanding gained to improve the
respective processes. It expects to demonstrate (or
otherwise) the feedback behaviour of some widely different
systems. Three approaches are being employed:

• a black boxapproach is studing quantitative data from
a number of industrial software processes to identify
patterns in the evolution of the respective systems.
The data will be analysed in a search for footprints of
dynamical behaviour and feedback control

• a white box approach aims at the construction and
enactment of system dynamics models of individual
processes. These will reflect feedback mechanisms,
their properties and their impact on the global process

• a third approach, not included in the original proposal
and not formally part of FEAST/1, is exploring the
use of multi-agent systems [mca95] to model the
selected processes and to evaluate proposed
improvements.

Full investigation of the hypothesis and, if upheld, of
means for its exploitation, is not straightforward. As
previously discussed [leh96b], difficulties arise from
several factors. The processes being investigated are likely
to include tens, if not hundreds, of forward paths and
feedback loops. A simulation approach such as the system
dynamics technique referred to in section 1 is, therefore
more appropriate tool for the investigation than the
analytical tools of control theory. Moreover, the
processing and control mechanisms associated with these
loops involve people, individually and in groups as
managers or implementors. All observe, interpret,
communicate, decide and act or refrain from acting on the
basis of their overall perception, their instructions and,
consciously or otherwise, their inclinations, experience
and biases. Much of the feedback control is unplanned or
even unconscious. Some, at least, of the feedback
mechanisms are, therefore, stochastic and non-

3 The term feedback may be interpreted in several different ways. This
theme has been discussed in [leh96b]. 4 (UK) Engineering and Physical Sciences Research Council.

deterministic. Furthermore the system being modelled
includes elements that contain implicit models of
themselves. This is of course mathematically intractable
posing a fundamental ultimate obstacle to the
investigation [göd31, leh85]. Note also that convincing
support for the hypothesis requires that the analysis and its
associated predictive models, must necessarily be
quantitative. The number of data points available for each
of the classes of data is, however, likely to be relatively
small. Statistical analysis and the determination of
significance is, therefore, not straight forward. Work in the
application of control theory to economic modelling
[bec94] and, more recently, in the application of system
dynamics to aspects of the software process
[abd91,wae94,mad96] suggest, however, that progress is
possible. Note also that software engineers and others in
the organisations in which and with which they work do
not, in general, have the understanding, knowledge, skills
or experience required for this analysis as part of their
background. The long term study requires, therefore, a
collaborative, extended, multidisciplinary approach to
achieve exploitable results.

The remainder of this paper focuses on the initial
results of the first FEAST/1 black box study. Much still
remains to be done and the most significant contribution
of the present project may well be to arouse wider
international interest and so trigger the necessary
collaborative investigations.

4 A first case study: the Logica FW
system

4.1 FW data

After extensive discussion with the collaborators and
others, selection criteria and candidate systems have been
identified. The preference was for medium to large
systems, how ever defined. It was also considered desirable
to concentrate on systems that were being used in a
number of locations so that the effect of users' feedback
which, it is believed, is likely to have significant impact,
could be identified and assessed. Other criteria included the
availability of historical data on system evolution to
permit initial black box analysis to detect the presence or
absence of feedback-like behaviour. Prior experience
suggests that data on some ten releases is necessary for the
identification of behaviour patterns. For the white box
studies seeking to model internal process structure and to
identify active feedback controls and their impact, ongoing
projects were considered essential. Projects having, in
addition, a sufficiently long history to provide meaningful
black box data would be particularly useful since this
would provide opportunities for linking characteristics
inferred from the black and white box studies. At the time
of writing collaborator products and processes satisfying
these criteria have been identified, information on process
structure and content is being gathered and metric data

should be available shortly.
The first system evolution data to be made available to

the FEAST/1 project was on the Logica plc Fastwire
(FW) financial transaction system. This 8 years old
system is now installed on some one hundred sites. The
data set received covers the most recent 5 years of its
evolution. Since then there have been several main
releases and many more sub-releases. The data set as
received from Logica related to some 100 releases (as
defined by them) with each entry including three data
items; release ID, size in modules and number of modules
changed. Release dates were also available for most of the
data points. Many of these releases were, however, of the
same size as their predecessor. Clarification revealed that
these were fix releases that were very frequently only
transmitted to those (limited) number of customers
adversely affected by a fault in an earlier release. A subset
of the data was therefore selected. As more familiarity with
the system history has been attained the criteria, and
therefore the subset selected, have had to be changed to
yield the set shown in table 2. The analysis and plots
presented below may, therefore, differ somewhat from
those included in earlier publications [tur96], [leh96a,97].
The trends and patterns they display have, however, not
changed significantly. Details of the selection and
refinement criteria applied to the data have been
documented in an internal report.

RSN Size in
Modules

Release
ID

RSN Size in
Modules

Release
ID

1 977 1.0 12 2087 5.0A

2 1344 2.0A 13 2091 5.0B

3 1390 2.0B 14 2095 5.0C

4 1492 2.0C 15 2101 5.0D

5 1581 2.0D 16 2151 5.0E

6 1595 2.0E 17 2167 5.0F

7 1800 3.0A 18 2312 6.0A

8 1832 3.0B 19 2315 6.0B

9 1897 4.0A 20 2696 7.0A

10 1897 4.0B 21 2699 7.0B

11 1902 4.0C

Table 2 The FW data set

To protect their identity, the IDs of the releases listed in
table 2 have been replaced by a sequence of identifiers that
replace those assigned by Logica. In addition, and as was
done in the OS/360 study [leh80b], consecutive integers
have been assigned to the releases comprising the
evolution sequence to be analysed. These provide a
pseudo-time measure designated the rsn, a sequence
numberin the sense of Cox and Lewis [cox66]. Basing the
analysis on this measure is appropriate because only at the
instant of release of an E-type software system are its
properties, as determined by the then established software

text, uniquely defined. By definition, an E-type system
operates in a domain always liable to change at a rate that
is accelerated by development, installation and operation of
the system. Thus the software too, that is the code and/or
its documentation, must be repeatedly updated and adapted5

to remain a faithful model of the application in its
operational domain. At the time of release the text is, by
edict, fully defined. At all other times it is likely to be in
a state of flux [leh85].

The releases included in the analysis whose results are
presented below may be categorised into three classes:

• Major mainstream releases. These are intended to be
adopted by the majority of user organisations. They
are often required to achieve standardisation or for legal
reasons.

• Minor mainstream releases. These provide minor
improvements or enhancements. Such releases are
included in the analysis presented below only where,
in addition to other criteria, at least one module has
been added or deleted with respect to its evolutionary
predecessor.

• Error correction releases. These neither add nor
enhance functionality. These also have been included
in the analysis if they involve system growth by, at
least, one module.

One consequence of ordering releases by rsn in the
presence of the various types of releases is that a situation
may arise in which the ordering adopted differs from the
date ordering. For example, work on a new mainstream
version 3.0A may have been proceeding concurrently with
minor enhancement or bug-fixing of an older release.
Release 3.0A may be shipped to mainstream clients before
2.0E is ready for delivery. As illustrated in figure 2,
release 2.0D precedes release 3.0A in real time and might,
therefore, appear to be its unique parent. Release 3.0A
will, however, have also inherited functionality and code
first developed for and integrated into 2.0E. Therefore, in
the evolutionary sense release 2.0E is (at least) also a
predecessor of 3.0A and is given the lower rsn.

Release
Date

Release Size

3.0A

2.0D
2.0E

Fig. 2 Example of release ordering by date
(not to scale)

An additional release type has been identified in the FW
process. This type, termed ad-hoc, is initially aimed at the
satisfaction of the needs of a specific client. Such releases
are excluded from the results presented below. However,
unless providing some temporary facility later to be
removed, the enhancements included in such releases are
sooner or later integrated into the main stream to maintain
smooth, uniform evolution over all installed systems and
simplify overall FW configuration management.
Moreover, these releases absorb project resources and,
therefore, impact other concurrent activities. Thus they
need, ultimately, to be included in the analysis.

4.2 System growth

With the cost of storage declining at all levels, system
size is, in itself, not of major concern. It may, therefore,
be seen as a independent and composite monitor of system
evolution which, within limits, is neither planned nor
managed. It is determined by other factors. Some of these
will be managed, others "just happen". Size determinants
include system design, programmer style and experience,
development timetables and constraints, intensity of the
desire to achieve compactness or clarity6. The great
majority of reported software metrics work has tended to
use locs (lines of code) as the measure of system size. As
in the case of the original OS/360 study [leh80b,85] the
FW analysis reported here has used module count for that
purpose. In the absence of a better measure, module count
also serves as an initial estimator of system functionality
and power. The 1970s study did, in fact, compare the
results of loc and module based studies. It was shown that
these were essentially similar but with the locs measure
providing a less consistent picture of the evolutionary
behaviour of the system than did the module count. Locs
are, therefore, considered inferior as a measure. The
superiority of module count was explained by the
observation that, however modules are defined, they have,
within a given domain, some degree of functional integrity
whereas locs have none [leh85]. The number of modules
in a specific system is also not, in general, dependent on
individual programmer practice. Module numbers may,
therefore, be expected to provide a more consistent
measure of system size and hence a better, though
admittedly coarse, indicator of system functionality.

The function point (FP) [alb79] measure may be
considered an alternative measure for system functionality
or power. Their use does, however, raise some questions.
For example, how arbitrary are the interpretation of the
definitions or the factor ratings achieved and, as a
consequence, how consistent are the results obtained by
different raters? Moreover, the establishment of the
measure requires judgment based on subjective measures
and the overall determination is labour intensive and
difficult to automate [kem93]. There is also little, if any,

5 As per the first law of software evolution as reproduced in table 1.

6 Or even, where productivity is measured in locs and the concern is
with productivityimprovement.

experience in application of the measure to larger systems.
Finally, it must be observed that, unlike module count,
FP data is not widely available from data archives of
software systems across the industry. They are certainly
not available from the systems being offered for study by
the FEAST/1 collaborators. Module count is, therefore,
being used as a size measure and, by implication, as a
system power estimator, in the FEAST investigation. To
date, and as illustrated by the results presented below, this
decision appears to be justified.

The growth in modules of FW over releases rsn1 to
rsn21, that is releases 1.0 to 7.0B is shown in figure 3.
The overall growth pattern should be compared with that
of OS/360 over its first 20 or so releases as illustrated in
figure 1.

The abscissa of figure 3 represents the individual release
sequence numbers as explained above. The figure clearly
shows the upward trend of system growth. The trend is,
therefore, consistent with the first and sixth laws of
software evolution but does not distinguish between them.
Moreover, it also shows a ripple effect strongly
reminiscent of that of OS/360 as in figure 1. It was, of
course, this ripple phenomenon that first suggested that
the software process was stabilised by feedback control, as
captured in the third and eight laws. Thus this initial result
of the present study is certainly compatible with the
conclusions and, in particular, the laws of software
evolution, first reached in the study of OS/360 more than
twenty years ago.

Logica FW

0

500

1000

1500

2000

2500

3000

0 5 10 15 20

Growth Trend

RSN

Size in Modules

Fig. 3 FW growth trend by rsn

4.3 Incremental growth

Figures 4 and 5 show the incremental growth per
release of OS/360 and FW respectively over the releases
rsn1 to rsn21 for each system. The horizontal line indicates
the average growth per release over this range. For FW the
plot includes all the data in table 1. For OS/360 the final
five releases for which data is available are omitted from
the plot since they reflect the transition (in growth trend
terms) from OS/370 to VS1 and VS2.

The two plots display remarkably similar cyclic
characteristics though, as one should expect, they differ in
detail. They also resemble statistical process control charts
[dav84]. It was, in part, the observation of this cyclic
pattern and its symmetry around the average with respect
to OS/360 that originally led to formulation of the third
and fifth laws. The long term trend of the moving average
of the incremental growth of E-type systems as they
evolve will, in general, be difficult to determine because of
the small number of data points generally available. It
might be the case that this average declines because of
increasing complexity. Alternatively, it might grow as a
consequence of improving process technology. It may also
be that these (and other?) contrary pressures compensate
for each other over time so that the original assertion of
invariance remains valid. It is, in fact, not certain that all
systems or domains behave in the same way. The fifth law
as stated in table 1 will have to be re-examined. The
analysis outlined below will provide additional insight for
FW and will identify the growth trend model which, for
that system at least, is to be preferred.

OS/360

-50

150

350

550

750

950

1150

1350

1550

0 5 10 15 20

Incremental Growth

RSN

Modules

Average Increment

Fig. 4 Incremental growth per release o f
OS/360 over releases rsn 2 to rsn 21

Logica FW

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Incremental Growth

RSN

Modules

Average Increment

Fig. 5 Incremental growth per release o f
FW over rsn 2 to rsn 21

As pointed out previously [leh74,78], the cyclic effect
reflected by the peaks and troughs in the incremental
growth plots may be indicating the presence of feedback
driven and controlled growth. Thus, influences tending to
increase system functionality, that is growth towards the
peaks, may have their source in positive feedback. The
declines may reflect size stabilisation and other negative
feedback effects. An example of such feedback is the
evolutionary pressure that arises when clients and users
express a need for enhancements to existing capability or
system extension. But as implementation of such changes
proceeds, the size and complexity of the system increases
leading to declining comprehendability, increasing error
rates, increasing resistance to change or the impact of
budgetary constraints. These lead to a decrease of resources
available for, for example, growth as the resource demand
for fault fixing and complexity reductionincreases [leh85].
If sufficiently mature [hum95], the process will be directed
in its evolution and growth patterns by data reflecting such
needs. That is, the data or its derivatives will be used to
adjust process objectives (immediate and/or long term) and
process parameters. It will be used to drive, constrain, and
in general, manage the process. Positive feedback drives
growth while negative influences force a period of
consolidation (correction and restructuring). An example of
the consequences of excessive positive feedback may be
provided by the final 7 releases, rsn20 to rsn26, of OS/360
(figure 1). A hypothesis that explains the system's
apparently unstable behaviour over these releases is that it
was a consequence of excessive growth, in response to
market demand, in going from rsn19 to rsn20.

This brief analysis suggests that the FW data supports,
in part at least, the third and fifth laws of software
evolution as originally inferred from OS/360 study.
Analysis of the long term growth trend of FW in the next
subsection suggests, however, that the wording of laws III
and V as in table 1, must be modified.

4.4 The Inverse Square model (IS)

This section presents two models of FW growth. The
first of these, illustrated in figure 6, is obtained from the
data set of table 2 using a least squares linear (LSL) fit.
The models focus on the general trend and largely ignore
the ripple. Detailed analysis of the latter is beyond the
scope of this paper.

After investigating other possibilities Turski developed
an alternative, inverse square, model (IS) represented by
the nonlinear discrete-time dynamical recursion (1) [tur96].
In this model si is the actual value of rsni, ŝi is its fitted
or predicted size, "n" is the total number of releases in the
data set and Eis a model parameter.

ŝ1 = s1 (1a)
ŝi = ̂ si-1 + E/(̂ si-1) 2 {i = 2,…, n} (1b)

The parameter Eis the average of individual Ei,
calculated from either (2) or (3).

Ei = (si - si-1)si-1
2 {i = 2,..., n} (2)

Ei = (si - s1)/(Σk=1
i-1(1/(sk) 2)) {i = 2,..., n} (3)

Logica FW

0

400

800

1200

1600

2000

2400

2800

0 5 10 15 20
RSN

Least Squares Linear Fit (LSL)

Size in Modules

Fig. 6 Least squares linear fit to FW over
rsn 1 to rsn 21

Algorithm (2) uses only the two most recent data
points in computing Ei. With (3) all data to rsni are
considered. In either case the average of the resultant set of
Ei gives an estimated value for E. A third approach (LSIS)
computes Efrom the entirety of data using a least squares
criterion and is illustrated in figure 7.

Logica FW

0

400

800

1200

1600

2000

2400

2800

0 5 10 15 20
RSN

Size in Modules

Inverse Square Fit (IS)

Fig. 7 Least squares inverse square fit t o
FW over rsn 1 to rsn 21

The conceptual implications guiding the selection of
one of the three alternative algorithms for computing Eare
subtle and are not discussed further here. They yield
slightly different values for Ebut, in the context of this
study, they do not produce significantly different
behavioural patterns. Nor do they change the conclusions
to be drawn. Finally, the observant reader will notice
apparent outliers rsn20 and rsn21. No comment can be made
at this time about the significance of these or their
possible implication.

For the trend models estimated from the full set of 21
data points, statistical measures of the closeness of fit of
the LSL and IS models do not differ significantly.
Comparative assessment is, therefore, difficult on basis of
currently available data. This may be due to the fact that
the damping in the IS trend is not strong. Moreover,
neither model addresses the ripple. The deviations from
smooth growth that the latter represents could, of course
simply be noise, the compounded impact of many,
continuing, localised, often short term management and
implementation decisions in which case it would not affect
the assessment. The FEAST hypothesis suggested that, in
part at least, the ripple is an indicator of the presence of
feedback-controlled mechanisms that regulate the long
term growth trend. The ongoing white box modelling
activity in FEAST/1 represents a first step in the attempts
to resolve this issue, to permit refinement of the models
and a more precise assessment of the degree to which they,
their derivatives or different models reflect the reality of
the processes studied; and the degree to which they may be
generalised.

Including the ripple will assist in comparative
assessment of the model. It has, however, been pointed
out already [tur96] that the phenomenology of the
situation suggests several reasons for preferring the IS
model:

• The IS inverse square property can be interpreted as
reflecting the complexity growth of a software system
over a sequence of releases. Such growth is due, in
part, to increases in the complexity of the application,
for example, as features not included in the original
system definition, and often orthogonal to it, are
added. Moreover, the process of evolution adds change
upon change upon change with, in general, little
attention paid to the resultant complexity growth
[leh85]. It is this phenomenon that is captured by the
second law (table 1).

• As a one parameter model IS is also compatible with
the fourth law of software evolution, with the
parameter Ereflecting the constant effort that the law
identifies [leh78].

• IS also satisfies the Principle of Parsimony [cox66].
• No system can grow forever. The linear growth model

is thus incompatible with reason and common
experience.

4.5 Further consideration of the Inverse Square
model

The list of reasons for favouring IS over the LSL
includes the observation that the single parameter Eof the
former may be interpreted as a constant effort parameter as
predicted by the fourth law. Estimation of Efrom the
available data strengthens that argument. Such estimation
produces a value that, as shown below, remains relatively
constant as FW evolves. That is, the single parameter of
the model may be interpreted as the constant effort or work

output identified in the fourth law as being required to take
the system from one release to the next. The principal
questions raised by this interpretation, questions not
satisfactorily answered, relate to the interpretation of Eand
the units in which it is measured. Does Erelate to the
input effort required to achieve release by release system
evolution or to the output achieved from the process
measured by some measure of increase in system quality
and power? To answer the first question requires further
investigation and additional data. As to units, si is a
dimensionless count. Hence Eis dimensionless. But
despite these unsolved questions it is concluded that, on
the basis of currently available data, the above remarks,
together provide some justification for preferring the IS
model. It appears to reflect reality more closely.

The full implications of one further indicator of the
superiority of IS over LSL must now be considered. When
modelling large data sets, the first part is often used to
estimate model parameters and the second to then evaluate
its "predictive" capability [ger93]. With the small size of
the data set available from FW, this might not appear to
be a fruitful path to follow. Turski [tur96] did, however,
investigate this question, asking: "How many points
beginning with rsn1 have to be considered in order to get
an appropriately low error of fit, an acceptable predictive
capability?" In terms of the FEAST hypothesis this
question is equivalent to asking: How fast is the FW
dynamics established? An answer for FW is suggested by
the plot of figure 8.

Figure 8 plots a set of mean absolute error of fit values
(maej {j = 2, ..., 21}, where j indicates the number of
points from rsn1 used to compute E, see Appendix). The
values of mae2 and mae3 are relatively large. As j is
increased maej converges rapidly and reaches a relatively
steady value by j equal 6 (parameter Ecomputed from the
first six releasesonly). Thereafter maej {j = 6, ...,21} has a
mean of 74.6 with a standard deviation of 2.8. The mae6
value is only 4.7% of the system size at rsn6, 3.2% of its
size at rsn19 and 2.8% of its size at rsn21. This behaviour is
counter-intuitive in several ways. Possible interpretations
and implications are summarised below. Overall, it does,
however, appear to indicate the strength of the system
dynamics. This phenomenon supports the observation
made by one of the authors many years ago with regards to
OS/360 evolution that "Rather than the managers
managing the (evolving software) system, the system
manages the managers." It must, of course, be understood
that the reference here is to long term evolution, not to the
specifics of individual decisions, often localised in time,
system space and implementation space.

• Figure 8 based on the IS model suggests that the FW
growth trend is established over some six of the
releases included in the study. In accordance with the
FEAST hypothesis, it is assumed that the dynamics
arises from the characteristics of the software, the
organisations developing, marketing and using the
software, the communications between them and the

controls that are exercised. In any event figure 8
supports the hypothesis that the E-type systems
evolution process develops strong dynamics.

• The mae for IS of 74.6 modules with standard
deviation of 2.8 over the stable range is very close to
the calculated average incremental growth of about
86.1 modules over all data points (fig. 5). This raises
the question whether there is some relationship
between the variance of the ripple (which is a
significant source of error for the trend fit) and the
mean incremental growth. Establishing a correlation
would lead to a concept of safe growth rate limits.
Establishing either would provide strong conceptual
support for the incremental or evolutionary release
strategy [gil88]. The entire question remains to be
investigated.

Logica FW

0

50

100

150

200

250

300

0 5 10 15 20

Modules

o f
Poin t

IS

Mean Absolute Error over All Releases
 as Function of Number of Data Points

 Used to Estimate E

Fig. 8 Mean absolute error of fit to FW over
all releases as function of number o f
points used to estimate IS model

Logica FW

0

500

1000

1500

2000

2500

3000

0 5 10 15 20

Modules

 # of
Points

IS

LSL

Mean Absolute Error over All Releases
 as Function of Number of Data Points

 Used to Estimate Models

Fig. 9 Mean absolute error of fit to FW over
all releases as function of number o f
points used to estimate LSL model
(squares) superimposed on that o f
IS model (circles)

• Note that the maeof LSL over the stable range is, at
86 modules, even closer to the average incremental
growth of 86.1 modules than is that of IS. The
implications of this, for example on the evaluation of
the relative value of the two models requires more
investigation.

• The IS plot in Figs. 8 and 9 stabilises much more
rapidly than does the LSL plot. Moreover, if IS and
LSL are estimated by using only rsn1 and rsn2, the
former outperforms the latter by an order of
magnitude. Thus while there are still unanswered
questions, figures 8 and 9 appear to support the earlier
conclusion that IS is to be preferred over LSL. That
they provide further support for the FEAST
hypothesis and the laws of software evolution does
not require further emphasis

The results presented above are based on the
examination of the FW system, investigation of OS/360
not having yet been reopened. Continued investigation of
these and other systems is clearly required.

4.6 Impact of the study on the laws of software
evolution

More work is clearly required for firm conclusions to be
reached in regards to the many issues raised above. It is
nevertheless considered appropriate to indicate in table 3
the extent to which the investigators feel encouraged to see
the present results as being compatible with, or even
supporting, the laws of software evolution. The weight of
evidence suggests that, despite the 20 year gap and the
significant difference between IBM and Logica systems and
their development and operational environments, there are
strong similarities in the phenomenology of their
evolutionary growth. It is believed that the results of the
studies to date will, with some modification, extend to E-
type systems in general. The FEAST/1 project will, it is
hoped, receive sufficient data from the evolution processes
of a variety of systems to establish confidence in a set of
conclusions that are valid in some stated domain or, of
course, to demonstrate that they cannot be generalised.

5 Final remarks

The results achieved so far by applying this method in
the FEAST/1 project are encouraging. Additional data on a
wide spectrum of software systems to be received from
various industrial collaborators should, if consistent,
permit generalisation of both the conclusions reached and
the measurement and analysis techniques being employed.
The present paper describes the black box approach that
has revealed aspects of FW evolution and of its evolution
dynamics, has provided material for interpretation and for
the formulation of explanatory hypotheses. A white box
modelling approach is simultaneously seeking to model
the structure of other industrial software processes and to
simulate their behaviour including their feedback control

loops. These investigations are being further backed up
through the development of a multi-agent model. It is
hoped that this work will confirm, perhaps modified
versions of, the laws of software evolution [leh96d] that
now include the FEAST hypothesis and, put them on
firmer foundations. If successful over a range of systems,
the investigation will provide a base for a plausible theory
of software process and software evolution. The
alternative, that the results of the investigation
demonstrate that the laws and the hypothesis are not of
general relevance though satisfied for particular instances
of E-type systems and their evolution processes cannot, at
this stage, be dismissed.

The FEAST/1 study has already made visible progress
in illustrating how measurement concepts can be applied
to the study of software evolution. It has successfully
extended the 1970s techniques by applying more rigour
[law82] to mastery of the observed phenomena. The
specific results derived are of considerable interest, both in
themselves and from a wider perspective. The long term
significance of this paper is, however, more likely to be in
the approach and techniques it presents. Being able to

detect, measure and control feedback phenomena and their
impact is believed to be key to major advances in software
process management and execution.

In view of the fact that this paper will be presented at
the Metrics '97 symposium it is appropriate to comment
on its focus on the FEAST hypothesis, the related
FEAST/1 project and the absence of references to other
relevant metrics work [fen96,ieee94,kit82,96,vot95].
FEAST/1 is believed to exemplify an original metrics
based approach to the study of the software process and
software evolution. This approach has been consistently
followed from the first primitive study of OS/360 in the
late sixties and seventies [leh69,85] to the current
investigation. The study was triggered by a general
observation; the universal and persistent problems
accompanying software development and maintenance, ie.
software evolution. Following recognition of the problem
as appropriate for research investigation [leh69,85] and
receipt of appropriate data, first from OS/360 and more
recently from Logica FW [leh96d], patterns and
regularities in their evolution were revealed and modelled.
Interpretation of the models led, in turn, to thegeneration

Table 3 The laws of software evolution in the light of the preliminary FW analysis 7

7 It is hoped to obtain more data that will provide evidence, one way or the other.

N o . Brief Name Support Indicator

I Continuing Change √ Fig. 3 clearly indicates continuing growth. Logica's confirmation that
this is partly due to adaptation and change supports the law.
Quantification will be of interest.

II Increasing Complexity √ The inverse square law of growth (eq. 1) and its predictive power (fig. 7)
supports complexity as a constraining factor.

III Self Regulation ? The ripple (fig. 3) of the, otherwise, smooth growth (eq. 1) suggests
regulation around a smooth trend. Identification of the underlying
mechanisms is required to support the law as it stands.

IV Conservation of
Organisational Stability
(invariant work rate)

√ The ability to obtain a close fit and very good predictive power with a
single and constant parameter E(eq. 1) provides support. Measures of the
work rate are required.

V Conservation of Familiarity ?7 Fig. 5 still suggests that the average incremental growth has a definite
trend. Its invariance as in the original formulation is now, however,
questioned. Determination of the trend and the consequences of a release
whose incremental growth exceeds the average significantly must await
the further behaviour of the system in its evolution.

VI Continuing Growth √ Fig. 3 clearly indicates continuing growth. Logica's confirmation that
this is partly due to functional growth supports the law. Quantification
will be of interest.

VII Declining Quality ? No data that provides evidence for or against is available.

VIII Feedback System √ Regulation as in figs. 3, 5, 7, 8 and inverse square law, (eq. 1) are
supportive. Feedback control mechanisms must be identified to obtain
further support.

of hypotheses (eg. the laws and FEAST) to interpret them.
These successive steps led to an iterative investigation that
is now yielding further data (historical and/or obtained by
experimentation and measurement) to support, refute or
modify and then to extend and generalise the emerging
theoretical base and framework. Such results must, of
course, be continually validated or adjusted by observation
of and experimentation in actual industrial processes. Thus
the more general relevance of the paper to the metrics
community is in its approach which may be compared
with those more widely adopted.

Apart from any theoretical advance that this study will
provide, it should, if successful, lead to the development
of methods and tools for process management, release
planning and process improvement. This will shape the
direction of software metrics, software process modelling
and process improvement in the years to come. If the
extent to which feedback phenomena in E-type evolution
processes shapes and constrains the software process
significantly, mastery and command of that phenomena
will open up important new prospects. Moreover, the
software process is a special case of business processes, in
general [leh97]. The approach applied and the conclusions
reached should find much wider application. It is believed
that FEAST/1 is a study which, if successful, will
eventually lead to a theory and to a technology which
together can trigger major advances in the software and
other business processes and their improvement.

6 Acknowledgements

We are grateful to Logica plc for providing access to the
FW data and in particular to Joe Halberstadt for his
collaboration. Sincere appreciation is also due to Profs.
Berc Rustem and Vic Stenning, co-Principle Investigators
on the FEAST/1 project, for their many contributions to
the investigation and to Dr. Emma McCoy of the ICSTM
Mathematics Department for her help with statistical
aspects of this investigation. We also acknowledge the
constructive contributions of participants in the three open
FEAST workshops in 1994/5. Last but not least our
thanks to the anonymous referees for their careful reading
and constructive comments. Since October 1996 the work
reported here has been supported under EPSRC grants
numbers GR/K86008 and GR/L07437.

7 References8

[abd91] Abdel-Hamid T and Madnick SE, Software Project
Dynamics - An Integrated Approach, Prentice-Hall,
Englewood Cliffs, 1991, 264 pps.

[alb79] Albrecht AJ, Measuring Application Development
Productivity, Proc. Guide/Share: IBM Application
Development Symposium, Monterey, CA, 1979,
pp. 83 - 92

[bec94] Becker RS, Hall B, and Rustem E, Robust Optimal
Control of Stochastic Nonlinear Economic
Systems, J. of Economic Dynamics and Control, n .
18, 1994, pp. 125 - 148

[bel72] Belady LA and Lehman MM, An Introduction to
Growth Dynamics, Proc. Conf. on Statistical
Comp. Perf. Evaluation, Brown Univ. 1971,
Academic Press, 1972, W Freiberger (ed.), pp. 503 -
511

[bel78]* id., Characteristics of Large Systems, Proc. Conf.
Research Directions in Software Technology, (P.
Wegner ed.), Sponsored by Tri-Services Committee
of the DOD, Brown U. Providence, RI, Oct. 1878,
MIT Press, 1979, pp. 106 - 142

[box70] Box GP and Jenkins GM, Time Series Analysis,
Forecasting and Control, Holden-Day, San
Francisco, 1970, 553 pps.

[cox66] Cox DR and Lewis PAW, The Statistical Analysis
of Series of Events,Methuen, London, 1966

[dav84] Davis OL and Goldsmith PL, Statistical Methods in
Research and Production, 4th. ed., Longman,
London, 1984, 478 pps.

[fea94,5] Preprints of the three FEAST Workshops, Lehman
MM (ed.), Dept. of Comp., ICSTM, 1994/5

[fen96] Fenton NE and Pfleeger SL, Software Metrics - A
Rigorous and Practical Approach, 2nd ed., PWS
Publ. Co., London, 1997, 638 pps.

[for61] Forrester JW, Industrial Dynamics, Productivity
Press, Cambridge, MA, 1961

[for70] Forrester JW, Understanding the Counter Intuitive
Behaviour of Social Systems in Systems
Behaviour, ed. by Open Systems Group, 3rd. Ed.,
pp. 270-287, Paul Chapman Publishing Co. and
The Open University. London, 1972

[ger93] Gershenfeld NA and Weigend AS, The Future of
Time Series: Learning and Understanding, in Time
Series Prediction: Forecasting the Future and
Understanding the Past, Gershenfeld NA and
Weigend AS (eds.), SFI Studies in the Sciences of
Complexity, Proc. Vol. XV, Addison-Wesley,
1993, pp. 1-70

[gil88] Gilb T, Principles of Software Engineering
Management, Addison Wesley, 1988

[göd31] Gödel K, Über formal unentscheibare Sätze der
Principia Mathematica und verwandterSysteme, I ,
Monatshefte für Mathematik und Physik 38, 1931,
pp. 173-1198. English translation, On Formally
Undecidable Propositions,Gödel K, Basic Books,
New York, 1962

[hum95] Humphrey WS, A Discipline for Software
Engineering, SEI Series in Software Engineering,
Addison-Wesley, Reading, MA, 1995, 789 pps.

[ieee94] Measurement Based Process Improvement, sp. iss.
IEEE Softw., IEEE Comp. Soc. v. 11, n. 4, July
1994

[kem93] Kemerer CF, Reliability of Function Point
Measurement: A Field Experiment,CACM v. 3, n .
2, Feb. 1993, pp. 85 - 97

[kit82] Kitchenham B, System Evolution Dynamics of
VME/B, ICL Tech. J., May 1982, pp. 42 - 57

[kit96] id., Software Metrics: Measurement for Software
Process Improvement, NCC Blackwell, 1996, 241
pps.8 Papers identified by a * in the reference listing are reprinted in

[leh85].

[law82] Lawrence MJ, An Examination of Evolution
Dynamics, Proc. 6th. Int. Conf. On Softw. Eng.,
Tokyo, Japan, 13 -16 Sept. 1982, IEEE Comp. Soc.
Ord.N. 422, IEEE Cat n. 81CH1795-4, pp.188-196.

[leh69]* Lehman MM, The Programming Process, IBM Res.
Rep. RC 2722, IBM Res. Centre, Yorktown
Heights, NY 10594, Sept. 1969

[leh74]* id., Programs, Cities, Students, Limits to Growth?,
Inaugural Lecture, May 1974, Publ. in Imp. Col of
Sc. Tech. Inaug. Lect. Ser., vol 9, 1970, 1974, pp.
211 - 229. Also in Programming Methodology,
(Gries D , ed.), Springer, Verlag, 1978, pp. 42 - 62

[leh77] Lehman MM and Patterson J, Preliminary CCSS
System Analysis Using Techniques of Evolution
Dynamics, Working Papers, First Software Life
Cycle Management Workshop, Airlie VA, 1977,
publ. by ISRAD/AIRMICS, Comp. Sys. Com., US
Army, Fort Belvoir, VA, Dec. 1997, pp. 324 - 332

[leh78]* id., Laws of Program Evolution - Rules and Tools
for Programming Management, Proc. Infotech State
of the Art Conf., Why Software Projects Fail, - Apr.
1978, pp. 11/1 11/25

[leh80a]* id., On Understanding Laws, Evolution and
Conservation in the Large Program Life Cycle, J. of
Sys. and Software, v. 1, n. 3, 1980, pp. 213 - 221

[leh80b]*id., Programs, Life Cycles and Laws of Software
Evolution, Proc. IEEE Spec. Iss. on Softw. Eng., v .
68, n. 9, Sept. 1980, pp. 1060 - 1076

[leh85]* Lehman MM and Belady LA, Program Evolution -
Processes of Software Change, Academic Press,
London, 1985, 538 pps.

[leh89] Lehman MM, Uncertainty in Computer Application
and its Control Through the Engineering of
Software, J. of Software Maintenance: Research and
Practice, v. 1, n. 1, Sept. 1989, pp. 3 - 27

[leh94] id., Feedback in the Software Evolution Process,
Keynote Addr., CSR Eleventh Annual Workshop on
Softw. Evolution: Models and Metrics. Dublin, 7-
9th Sept. 1994, in Information and Softw. Tech.,
sp. Iss. on Softw. Maintenance, v. 38, n. 11, 1996,
Elsevier, 1996, pp. 681 - 686

[leh96a] id., Process Improvement - The Way Forward,
Invited Keynote Address, Proc. Brazilian Softw.
Eng. Conf., SBES'96, Universidade Federal de Sao
Carlos, Brazil, 1996, pp. 23 - 35

[leh96b] Lehman MM, Perry DE and Turski WM, Why is i t
so Hard to Find Feedback Control in Software
Processes?, Inv. Pres., Proc. 19th Australasian
Comp. Sc. Conf., Melbourne, Austr., Jan. 31 - Feb.
2, 1996

[leh96c] Lehman MM and Stenning V, FEAST/1: Case for
Support, ICSTM - DoC EPSRC Proposal, March
1996

[leh96d] Lehman MM, Laws of Software Evolution
Revisited, Position Paper, EWSPT96, Oct. 1996,
LNCS 1149, Springer Verlag, 1997, pp. 108 - 124

[leh97] id., Process Modelling - Where Next?, ICSE 9 Most
Influential Paper Award, Proc. ICSE 19,Boston,
MA, 20 - 22 May 1997, pp. 549 - 552

[mad96] Madachy RJ, System Dynamics Modelling of an
Inspection Process, 18th Int. Conf. On Softw.
Eng., Berlin, 25-29 March 1996, IEEE Comp. Soc.
Ord. N. PR07246, pp. 376-386

[mat92] MATLAB High-performance Numeric Computation
and Visualisation Software - Reference Guide, The
MathWorks, Inc., Natick, MA, 1992

[mca95] McCabe FG and Clark KL, Programming in April:
An Agent Process Interaction Language, in
Intelligent Agents, Springer Verlag, 1995.

[mcg93] McGowan CL and Bohner SA, Model Based Process
Assessments, Proc. 15th Int. Conf. on Softw. Eng.,
Baltimore, MD, 17 - 21 May 1993, IEEE Comp.
Soc. ord. n. 3700-02, pp. 202-211

[mea72] Meadows DH et al, Limits to Growth, Signet, 1972
[tur96] Turski W, Reference Model for Smooth Growth of

Software Systems, IEEE Trans. on Softw. Eng., vol.
22, n. 8, 1996

[vot95] Votta LG and Zajac ML, A Design Process
Improvement Case Study Using Process Waiver
Data, Proc. ESEC '95, Sitges, Barcelona, Spain, 25
- 28 Sept. 1995

[wae94] Waeselynck H and Pfahl D, System Dynamics
Applied to the Modelling of Software Projects, in
Software - Concepts and Tools, v. 15, Springer-
Verlag, Berlin, 1994, pp. 162 - 174

[wil51] Wilkes M V, Wheeler D J and Gill S, The
Preparation of Programs for an Electronic Digital
Computer, Addison Wesley Press Inc., 1951, 167
pps.

Appendix

This appendix indicates how the values of the mean
average error of fit (mae), as in section 4.5 figures 8 and 9,
have been computed. It also records the equations used to
compute the least squares linear (LSL) and inverse square
(IS) models.

As explained in section 4.5, for each of the models LSL
and IS, a set of maej values {j=2,...,21} was computed to
determine the effect on the error of fit of the number of
points used in the estimation. The average error over the
entire data set for each such number of points was then
taken as a measure of the goodness of fit for that model.
Each set of maej was calculated from the expression:

maej = (1/n) Σk=1
n |sk - ̂ sk,j| (A.1)

where throughout the appendix:
n (= 21 for the FW set) is the number of data points
used in calculating mae;
j {j = 2,...,21} represents the number of data points
being used to estimate the LSL and IS models,
respectively;
sk is the actual system size for the release with sequence
number rsnk (table 2);
ŝk,j represents the fitted system size for rsnk, with

sub-index j indicating that the corresponding model
(either LSL or IS) has been computed using the first j
points of the data set only.
Similarly, ŝk is used below to represent the fitted

system size based on LSL whose parameters have not, or
IS whose parameter has not, necessarily been adjusted to
minimise the error of fit in some sense.

Computation of ̂ sk,j

Least Squares Linear Model. In this case ^sk,j is
expressed as follows:

ŝk,j = aj.k + bj {k = 1,…, n} (A.2)
The parameters aj and bj are computed for each value of

j using a least squares linear regression, as provided by
most statistical packages and spreadsheets, to minimise
Σk=1

j (sk - ̂ sk) 2.

Inverse Square Model. For this model, each value of
ŝk,j is computed recursively from s1 [tur96]:

ŝ1,j = s1 (A.3a)
ŝk,j = ̂ sk-1,j + Ej /(̂ sk-1,j) 2 {k = 2,…, n} (A.3b)

where

Ej = (1/(j-1)) Σi=2
j Ei {j = 2,..., n} (A.4)

Ei in expressionA.4 will have been computed either
from expression 2 or 3 (section 4.4). Ej may also be
computed using the least squares criterion and is then the
value of Ewhich minimises the error of fit, dj, over the
first j points, expressed as:

min
E(dj) = min

E(Σk=1
j (sk - ̂ sk) 2) (A.5)

where min
E(.) indicates the minimum value of (.) over the

entire range of the parameter E. Expression 1 (section 4.4)
shows how ŝk may be computed.

For the FW data choosing one or other of these
approaches has only minimally effect on the results. The
choice has no significant impact on the interpretation of
these results or on the conclusions reached.

Figures 7, 8 and 9 (IS plot) in section 4.5 arebased on
expression A.5. This has been implemented under
MATLAB [mat92] and is available on the Web at
http://www-dse.doc.ic.ac.uk/~mml/feast1/.

mml568[papers]
18/8/97

