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Abstract

In analytical placement, one seeks locations of circuit mo-
dules that optimize an objective function, but allows mod-
ule overlaps. Our work introduces a novel minimization of
maximal path delay that improves upon previously known
algorithms for timing-driven placement. Our placement al-
gorithms have provable properties and are fast in practice.

1 Introduction
The significance of timing-driven layout increases with
the dominance of interconnect delays over device delays.
While today’s commercial placement engines can evaluate
increasingly accurate measures of path timing, simple mod-
els often lead to more efficient minimization. To first or-
der, the total (average) net length objectives correlate with
congestion- and delay-related objectives (since wirelength
creates capacitative load andRCdelay). To bring the topol-
ogy of timing constraints closer to placement, some works
[16, 6, 13] minimize delays alongexplicitly enumerated
paths. However, explicit path enumeration becomes im-
practical when the number of signal paths undergoes combi-
natorial explosion in large circuits. Indeed, [5] (1994) esti-
mated that explicitely storing all 245K paths in their 5K-cell
design requires 80 hours on their hardware and 163Mb of
disk space. An equivalent compact representation took only
1.8Mb in human-readable ASCII format and was produced
in several hours.

Combinatorial explosion is not a problem for static tim-
ing analysis methods [15, 1] which can quickly determine
whether delays along implicitly defined paths satisfy given
timing constraints. The key challenge in timing-driven
global placement is to optimize large sets of path delays
without explicitly enumerating them. This is typically done
by interleaving weighted wirelength-driven placement with
timing analysis, that annotates individual cells, nets and
timing edges with timing information [5]. Such annota-
tions are translated intoedge or net weights[20, 1, 25]
for weighted wirelength-driven placement or into additional
constraints for such placement, e.g., per-net delay bounds
in “delay budgeting” approaches [14, 22, 28, 19, 10]. It-
erations are repeated until they bring no improvement.
For example, at each stage of recursive min-cut in [20],
non-critical nets get weights inversely proportional to their

slacks, and critical connection get slightly higher weights.
Combinations of net re-weighting and delay budgeting have
also been proposed (e.g, in [27]). As noted in [10, 26], “net
re-weighting” algorithms are oftenad hocand have poor
convergence theory, i.e., if delays along critical nets de-
crease, other nets may become critical.1 On the other hand,
“delay budgeting” may overconstrain the placement prob-
lem and prevent good solutions from being found. A unifi-
cation of budgeting and placement is proposed in [26], but
finding scalable algorithms for such a unification remains
an open problem.

While many published works focus on timing optimiza-
tion alone, placement instances arising in the design of
leading-edge electronics today are often difficult even from
the wirelength/congestion stand-point. Therefore, a ro-
bust placement algorithm must have a proven record in
wirelength- and congestion-driven context without timing.
Motivated by this circumstance, recent works [12, 23] advo-
cate the use of top-down partitioning-driven placement with
analytical elements for timing optimization. This provides
a generic framework for large-scale layout with near-linear
runtime, based on the strong empirical record of min-cut
algorithms in wirelength- and congestion-driven placement
[4].

The contributions of this work are

� A generic continuous path-timing optimization, first to
avoidheuristicbudgeting and re-weighting;

� An embedding of continuous path-timing optimization
into top-down placement;

The remaining part of this paper is organized as follows.
Background is covered in Section 2, including top-down
placement, signal delay modeling and static timing analy-
sis. Section 3 covers our new continuous path-delay min-
imization, which is embedded into a top-down placement
framework in Section 4. The empirical validation is given
in Section 5, and Section 6 concludes the paper.

1A reasonable mathematical framework for net re-weighting is avail-
able via Lagrangian relaxation, but such formulations are vulnerable to
combinatorial explosion and implylinear convergence of numerical meth-
ods versus quadratic convergence of more efficient Newton-based meth-
ods.
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2 Background

Timing-driven placement draws upon the more intuitive
wirelength-driven placement and timing analysis. Circuit
delay models for large-scale layout must be sufficiently ac-
curate yet quickly computable. Such trade-off is provided
by static timing analysis (STA) tuned to err on the pes-
simistic side. STA relies on (i) models of signal delays in
individual gates and wires, and (ii) path-timing analysis in
terms of gate/wire delays.

2.1 Top-down placement

Top-down algorithms seek to decompose a given placement
instance into smaller instances by subdividing the place-
ment region, assigning modules to subregions, reformulat-
ing constraints, and cutting the netlist — such that good
solutions to smaller instances (subproblems) combine into
good solutions of the original problem. In practice, such a
decomposition is accomplished by multilevel min-cut hy-
pergraph partitioning that attempts to minimize the number
of nets incident to nodes in multiple partitions. Each hyper-
graph partitioning instance is induced from a rectangular
region, orblock, in the layout. Conceptually, a block corre-
sponds to (i) a placement region with allowed locations, (ii)
a collection of modules to be placed in this region, (iii) all
nets incident to the contained modules, and (iv) locations
of all modules beyond the given region that are adjacent to
some modules in the region (considered asterminalswith
fixed locations). Cells inside the block are represented as
hypergraph nodes, and hyperedges are induced by nets in-
cident to cells in the blocks. Node weights represent cell
areas. Partitioning solutions must approximately equalize
total weight in partitions to prevent more cells assigned to a
block than can be placed inside without overlaps.

The top-down placement process can be viewed as a se-
quence of passes where each pass refines every existing
block into smaller blocks.2 These smaller blocks will col-
lectively contain all the layout area and cells that the orig-
inal block did. Some of the cells in a given block may be
tightly connected to external cells (terminals) located close
to the smaller blocks to be created. Ignoring such con-
nections implies a bigger discrepancy between goodmin-
cut partitioning solutions and solutions that result in bet-
ter placements. Yet, external terminals are irrelevant to the
classic partitioning formulation as they cannot be freely as-
signed to partitions due to their fixed status. A compromise
is achieved by an extended formulation for “partitioning
with fixed terminals”, where the terminals are “propagated
to” (fixed in) one or more partitions and assigned zero areas
[8]. Terminal propagation is typically driven by the relative
geometric proximity of terminals to subregions/partitions
[3] and essential to the success of min-cut recursive bisec-
tion.

2When recursive bisection is applied, careful choice of vertical versus
horizontal cut direction is important, — the rule of thumb is to keep the
aspect ratios of the blocks as close to a given constant (typically 1.0) as
possible.

2.2 Static Timing Analysis

A standard-cell circuit has cellsC = fckg and signal nets
N = fnlg. Nets are connected to cells withpins, each of
which can be either an IN-pin or an OUT-pin (directional-
ity).3 Thefull timing graph[15] is built using the pins of the
circuit as its verticesV = fvig. Timing edgesE= fei j g that
connect pins are constructed in two ways. Each signal net is
converted into a set of orientedinterconnectedges that con-
nect each OUT-pin of the net to all IN-pins of the net. Each
standard cell and macro are represented by a set of oriented
intracellular edges determined by the contents of the cell,
with the exception that intracellular edges of latches and
flip-flops (aka “store elements”) are ignored. We assume
acyclic timing graphs and in practice break cycles by re-
moving back-edges discovered during DFS traversals. The
delay attributed to a given timing edge is a function of ver-
tex locations, including those of the edge source and sink.
In our work on large-scale placement we use areduced tim-
ing graphwhere all pins on every placeable object are clus-
tered into a single vertex so that every vertex can be placed
independently. Intracellular arcs are removed; gate delays
are computed per driver pin and are added to interconnect
delays on the respective outgoing edges.

A major objective of timing-driven layout,cycle time, is
modeled by the maximal delay along a directed path be-
tween particular source and sink pairs (primary I/Os and
I/Os of store elements). The delaytπ along a pathπ =
(ei1 j1;ei2; j2; : : :) is a sum of edge delays (j1 = i2; j2 =
i3; : : :). More generally, every path may come with a timing
constraintcπ, which is satisfied if and only iftπ � cπ, corre-
sponding to “max-delay”setupconstraints.4 Those timing
constraintscπ (i.e., upper bounds on path delays) are not
given explicitly, but rather defined viaactual arrival times
(AAT) and required arrival times(RAT) for every driver-
pin and primary output. The timing constraint for a pathπ
is then the difference betweenRAT@sink�AAT@source.
We do nota priori restrict the set of eligible paths is de-
fined, but rather delegate its treatment to (i) generic static
timing analysis based on path tracing [15] described below,
and (ii) drop-in use of extensions to handle false paths and
multi-cycle paths (and also to model physical phenomena
such as cross-talk, inductance and delay uncertainty).

Given delays of timing edges (e.g., computed from a
placement), static timing analysis (STA) determines (i)
whether all timing constraints are satisfied, and (ii) which
directed paths violate their constraints. The key to compu-
tational efficiency of STA is the notion of slack that allows
to avoid enumerating all paths [15].

Definition 1: Theslackof a pathπ is sπ = cπ� tπ. The
slack of a timing edge(vertex) is the smallest path slack
among the paths containing this edge(vertex).

Lemma-Definition 2: In a given timing graph, the min-
imal vertex slack, minimal edge slack and minimal path
slack are equal. This value is calledcircuit slack and is
a convex functions of edge delays, which are functions of
cell locations.

Negative slack is indicative of violated timing con-

3Bidirectional pins can be captured using pairs of unidirectional pins
and constrained timing graph traversals.

4As [28, 10], we leave “min-delay”hold constraints to clock-tree tun-
ings and local optimizations, e.g., buffering, sizing, snaking, etc.
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straints. Therefore, timing-driven layout aims to maximize
fminimal slack over all pathsg, computed by STA, to im-
prove cycle time. To compute min-slack in linear time,
two topological traversals propagateRAT and AAT from
sources and sinks to all vertices. Namely, one computes
theAAT at a vertexv when, for every directed edgeuvend-
ing at v, theAAT at u and the delay ofuv are known. We
write AATv = maxuvfdelay(uv)+AATug. Similarly, RATv
can be computed when, for every directed edgevw begin-
ning at v, delay(vw) and RATw is known. ThenRATv =
minvwfRATw� delay(vw)g. With AAT andRAT available
at all vertices, slacks at individual vertices are computed
asRAT�AAT, and similarly for edges [15]. If min-slack is
negative, some paths must violate their constraints and have
negative slacks on all of their edges.

2.3 Gate and Wire Delay Modeling

Our slope-agnostic “lumped RC” gate and wire delay mod-
els in terms of cell locations are simple and fast.5 They are
based on the following parameters (cf. [11]):
� r andc are per-unit resistance and capacitance of inter-

connect; when routing assignments are unknown, sta-
tistical averages from typical placements are used;

� for each cell,Ri is the resistance of driver-pini andCj
is the capacitance of sink-pinj.

Load-dependent gate delay at output pini is computed as
Ri(Cint + Σ jCj) where the summation is over sinksj and
Cint is the total interconnect capacitance on the driven net.
Cint = cW, whereW is an estimate of the total net length,
e.g., a weighted half-perimeter wirelength [2], the length of
a Rectilinear Minimum Spanning Tree (RMST), the length
of a minimum single-trunk Steiner tree or the length of a
Rectilinear Steiner Minimum Tree (RSMT). Interconnect
delays are computed asrcL2 where L is the Manhattan
length of a timing edge. Alternatively, we use Elmore de-
lay model which entails a Steiner tree computation and is
therefore more expensive.

3 Continuous Min-Max Placement
Our continuous optimization assumes that some vertices of
the timing graph are restricted to fixed locations or rect-
angles, and thus can be used in top-down placement. The
minimizationof the path-delay function below includes op-
timization of the worst slack as a special case:

Φ = max
π

tπ
cπ

= max
π

∑e2π de

cπ
(1)

Herede denotes the signal delay along edgee of the tim-
ing graph and can also be written asde = di j (xi ;yi ;xj ;yj),
makingΦ a function of vertex locations via convex delay
models for individual edges.6 Common edge delay models

5With a generic STA implementation, more accurate models or black-
box delay calculators can be used when affordable in terms of runtime.

6The functionsdi j () could also depend on locations of cells neighbor-
ing with i and j to better model delays [17].

can be based on linear/quadratic edge wirelength or Elmore
delay.

Observation 3. A placement satisfies all timing con-
straints if and only ifΦ� 1:0.

Φ is amultiplicativegeneralization of the common (ad-
ditive) slack objectiveS, sinceΦ� 1:0, S� 0:0.

Whencπ are identical, minΦ is equivalent to the mini-
mization of maximal path delay, and thus to maxS(see Sec-
tion 2.2). The general maxS problem with arbitrary path
delayscπ determined byAATsandRATscan be reduced
to the case of identicalcπ by adding a super-source and a
super-sink connected by constant-delay edges to all timing
sources and sinks resp. Therefore, the ordinary slack maxi-
mization is a special case of minΦ. Our generic placement
algorithm for minΦ is a reduction to a simpler objective
function.

3.1 Generic minimization of Φ by re-
weighting

Givenedge weights wi j � 0 on the timing graph, wemini-
mizethe following MAX-based objective function7

δ = max
i j

wi j di j (xi ;xj ;yi ;yj) (2)

Defineδi j = wi j di j (xi ;xj ;yi ;yj) so thatδ = maxi j δi j .
Our placement optimization ofΦ starts from an initial so-

lution.8 Then we compute edge delays and perform Static
Timing Analysis. Based on slacks/criticalities and edge de-
lays, we computewi j as outlined below. After that, the cur-
rent placement is changed tominimizethe function given by
Formula 2. The values ofδ andδi j after placement at itera-

tion k are denoted byδ(k), δ(k)i j andd(k)
i j resp. We prove that

in this processΦ cannot increase, which establishes mono-
tonic convergence.

Lemma 4 Given (i) an arbitrary setwi j � 0 with at
least one non-zero, and (ii) any minimum of the respective
MAX-based objective, all edge delays cannot be improved
simultaneously by another placement. I.e., there is noε > 0
and new placement for which the delay of every edgeei j is
d0i j � di j � ε.

Proof by contradiction. Suppose we have foundε > 0
and a new placement withε-smaller edge delays. Then
defineC = maxi j d0i j=di j and note thatC � maxi j (di j �

ε)=di j < 1. Since every edge delayd0i j in the new place-
ment will be no longer thanCdi j , the value of the objective
function for the new placement will beC < 1 times of the
value for the original placement. However, this is impos-
sible, since the original placement minimized the objective
function.

Definition 5 Givenk> 1 and a placement for which the
objective function (2) has valueδ(k), we call an iteration of
fre-weighting and placementg successfuliff a placement is

7The main difference from more commontotal (equiv. average) wire-
lengthobjective is the use of max instead ofΣ.

8Quadratic placements work well in practice and can be produced very
quickly; faster/better approaches are possible.
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found for whichδ(k+1) � δ(k). Otherwise we say that the it-
eration has failed. Finding a true minimal value of the func-
tion (2) is not required. An iteration istrivially successful
if the re-weighted objective function has value� δ(k) with
respect to the previous placement.

Lemma 6 All timing constraints are satisfied if

d(k+1)
i j � d(k)

i j =

�
max
π03ei j

t(k)π0 =cπ0

�

Proof
h
maxπ03ei j t(k)π0 =cπ0

i
is the worst ratio between the de-

lay of a path passing throughei j and its constraint. There-
fore by reducing every edge delay on pathπ by the resp. ra-
tio, we will ensure that path delaytπ is within its constraint
cπ

t(k+1)
π = Σei j2πd(k+1)

i j � cπ(Σei j2πd(k)
i j )=t(k)π = cπ

We now determine multiplicative factors for re-weighting
such that after a successful iteration all timing constraints
are satisfied according to Lemma 6. Namely, for any path
π and any edgeei j 2 π we seek to ensure the left-most in-
equality in the following chain (the remaining equality and
inequality holda priori)

d(k+1)
i j � d(k)

i j =

�
max
π03ei j

t(k)π0 =cπ0

�
(3)

= d(k)
i j

�
min

π03ei j

cπ0=t(k)π0

�
� d(k)

i j cπ=t(k)π (4)

In order to ensure Inequality (4), we note thatd(k+1)
i j �

δ(k+1)=w(k+1)
i j by definition of δ(k+1) and δ(k+1) � δ(k)

by definition of a successful iteration. Therefore,

our goal will be reached once we haveδ(k)=w(k+1)
i j =

d(k)
i j =

h
maxπ03ei j t(k)π0 =cπ0

i
, which can be accomplished by re-

weighting.

w(k+1)
i j = (δ(k)=d(k)

i j )

�
max
π03ei j

t(k)π0 =cπ0

�
(5)

The max-terms in this formula are called “criticalities”
and can be computed using static timing analysis, which is
especially efficient in the case when the main global objec-
tive is slack maximization.

Theorem ITC (Immediate Timing Convergence) All
timing constraints are satisfied after onesuccessfuliteration
if re-weighting is performed according to Equation (5).

Now we show that small placement changes caused by
the proposed iteration of re-weighting and placement also
minimize Φ. When the current placement is perturbed by
little, δ(k) is approximately constant, and so are the values
dk

i j . We can now rewrite the MAX-based objective function
as

max
i j

wi j di j = max
ei j

δ(k)

d(k)
i j

"
max
π03ei j

t(k)π0

cπ0

#
di j (6)

� δ(k) max
π03ei j

t(k)π0

cπ0

= δ(k) max
π0

t(k)π0

cπ0

(7)

3.2 Interpretations of re-weighting
and comparisons to known results

In the proposed iteration, let us define thetiming critical-
ity of an edge as timing criticality of the most critical path
passing through the edge, measured by its contribution toΦ,

i.e.,κ(k)
i j = maxπ03ei j t(k)π0 =cπ0 . It can be viewed as the multi-

plicative version of the traditional negative slack [15]. We

also definerelative edge delayρ(k)
i j = δ(k)=δ(k)i j . Now Equa-

tion (5) can be interpreted as multiplying each weightw(k)
i j

by weight adjustment factorα(k)
i j = ρ(k)

i j κ(k)
i j which can be

greater than, less than or equal to 1:0. The main idea here
is to force critical edges to shortenby only as much as they
needto cease being critical and allow non-critical edges to
elongate byas much as they canwithout becoming critical.

Intuitively, the re-weighting can be decomposed into two
steps. At the first step every edge weight is multiplied by
relative edge delay, which does not change the value of the
objective function on the current placement, but makes all

edge terms equal (ρ(k)
i j w(k)

i j d(k)
i j = δ(k) for anyi; j). Following

that, new edge weights are multiplied by timing criticalities
which will increase the objective thanks to timing-critical
edges (thus the iteration will never betrivially successful).
Improvement of the re-weighted objective will address crit-
ical edges and thus improveΦ.

Multiplication by relative edge delays is somewhat
counter-intuitive because it givesshorter edgeson critical
pathsheavier weights than longer edgeson the same paths.
However, the useful effect of multiplication by relative edge
delays is that all edge terms attain the maximum and the cur-
rent placement becomes unimprovable (cf. Lemma 4).Af-
ter being multiplied by edge criticalities, the new weights
(i) encourage decreasing delays of critical edges by only as
much as they need to become non-critical, and (ii) allow
increasing delays of non-critical edges by only as much as
they can without becoming critical.

Loosely speaking, the work in [28] mentions theκ term,
but computes it for vertices rather than edges. However,
neither [28], nor [10] have theρ term, which seems to be
what keeps their delay re-budgetings heuristic.

3.3 Lower-level minimization
We note that minimization of the MAX-based objective can
be performed by linear or non-linear programming [18] de-
pending on specific delay models. In fact, for the linear-
wirelength delay objectives, the LP formulation is solvable
in linear time (by a result of Megiddo ca 1992). We im-
plemented a simple and extremely fast algorithm in which
vertices are traversed in an arbitrary order and placed in
locally-optimal locations. Such a pass cannot increase the
objective, which implies monotonic convergence. Given
that most vertices are adjacent to very few other vertices
(sparcity), every pass has linear runtime. Passes are re-
peated until the objective function improves by less than,
e.g., 0.1%. Very few passes are required in practice because
of the relatively few stages of combinational logic on criti-
cal paths.

Non-linear delay models can be linearized [26].
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4 Embedding Min-max Placement
Into a Top-Down Placement Flow

Below we sketch a combined algorithm that attempts to si-
multaneously minimize cycle-time and half-perimeter wire-
length/congestion. It starts by a call to continuous min-
max placement that returns cell locations optimizing worst-
slack, as well as actual cell slacks in that placement. That
information is translated into pre-assignments for the sub-
sequent partitioning runs. Intuitively, the cells with worst
slacks should be selected and pre-assigned in the partitions
where the continuous formulation placed them. Since the
continuous min-max placement optimizes slack, the slack
cannot improve during further top-down placement when
the same continuous min-max placement will be used only
with more constraints. Therefore, the cells with worst
slacks can only become more critical in the future and
should be pre-assigned to partitions in such a way that the
worst slack do not worsen.

Selection of cells to be pre-assigned, based on locations
and slacks, is performed in two stages. In the first stage, a
“goodness” score is computed for each cell as a linear com-
bination of cell slack and a delay equivalent of the cell’s
distance to the cut-line in its block. Subtracting a weighted
delay-equivalent from slack captures the deterioration of
slack in case the cells is assigned into a “wrong” partition.
The lower (i.e., the worse) the score, the more important it
is to pre-assign the cell into the partition containing its con-
tinuous location. Cells are sorted in the increasing order of
goodness scores and those with positive goodness are con-
sidered “good enough” not be pre-assigned before calling a
partitioner.

It is very important not to pre-assign too many cells be-
fore calling a partitioner, otherwise, half-perimeter wire-
length and congestion of resulting placement can increase.
Therefore our combined is controlled by two parameters
that further limit the number of cell selected to be assigned
at any give level. Both limits are in terms of % total area
of movable cells. One applies to the whole layout, the other
to individual blocks. Once all movable cells in the layout
are sorted by their scores, those cells are traversed in the
order of increasing goodness and marked as for being pre-
assigned, and their areas accumulated.9 This traversal con-
tinues until the total area of marked cells reaches the global
area limit (% of the total area of all movable cells).

Subsequently, when a particular block is about to be
partitioned, those of its cells that were marked for pre-
assignment are traversed again in the order of increasing
goodness scores, pre-assigned to partitions based on their
continuous location, and their areas accumulated. This
traversal continues until the accumulated total reaches the
area limit for the block.

In addition to pre-assigning cells based on the continuous
locations and cell slacks, we re-use those cell locations for
more accurate terminal propagation. In many cases, this
improves both half-perimeter wirelength and cycle time.

9This O(N log(N)) sorting-based computation can be sped up by a
linear-time weighted-median computation, but its share in total runtime
is already negligible, and therefore it suffices to callsort() from the
Standard Template Library.

5 Implementation details

Our implementation CapoT is based on the Capo placer re-
ported in [4] and runs just like Capo unless the command-
line parameter-td is specified. The general architecture
somewhat reminds the “slack-graph” approach from [5],
with its separation of concerns between delay calculation,
static timing analysis and placement optimization. As ex-
plained in Section 4, we additionally separate continuous
min-max placement from top-down placement.

5.1 Our Placer Implementation

In the timing-driven regime, CapoT makes calls to our con-
tinuous min-max placer TDplace, which interfaces with our
Static Timing Analyzer (STA). The results returned by TD-
place affect the construction of partitioning instances in
CapoT as described in Section 4.

TDplace and STA are instantiated at the beginning of the
top-down placement and construct a timing graph from the
netlist, such that vertices correspond to movable objects.
Timing edges are created from every source in a given hy-
peredge to every sink on that same hyperedge. All infor-
mation necessary to compute gate and edge delays as func-
tions of placement is made available. Fixed-delay edges
(e.g., between fixed cells/pads) and store elements (latches
and flip-flops) are marked in the timing graph. The directed
graph is traversed by a Depth-First Search, and back-edges
that cause purely-combinational (i.e., not containing store
elements) cycles are removed. STA maintains an array of
edges in topological order and edges that create purely-
combinational cycles are not added to that array. STA
also maintainsAATs@sourcesandRATs@sinks. Store el-
ements are considered as sources and sinks simultaneously.
The delays of timing edges in STA are produced by a delay
calculator using the latest available placement information.
STA performs classical static analysis with two topological
traversals and slack computations, as described in Subsec-
tion 2.2. It also computescriticalities from slacks, in the
assumption that all AATs are the same and all RATs are
the same (we also implemented the general case, but have
not used it in this work). From criticalities, STA computes
edge weights for use in min-max-weighted delay placement
algorithms. We charge both interconnect delays and load-
dependent gate delays to edges of the timing graph because
gate delays are computed for each driver pin, thus the pos-
sibility to account for non-zero vertex delays in our timing
analysis is not used.

After STA is constructed, TDplace is instantiated, using
the locations of fixed vertices and optional initial locations
of movable vertices. There is an optional array of bound-
ing boxes, one per vertex, that constrain the possible loca-
tions of respective vertices. The first continuous placement
is performed subject to every movable object being inside
the layout bounding box, with the initial location in its ge-
ometric center. After that, CapoT reads placement solu-
tions and vertex slacks, as well as various status informa-
tion, such as the worst slack. The cell locations and slacks
reported by TDplace are used by CapoT to pre-assign hy-
pergraph nodes before multi-level partitioning, as explained
below. After every round of min-cut partitioning, the array
of bounding boxes in TDplace is changed by CapoT ac-
cording to the partitioning results. Subsequently TDplace
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is called to perform a continuous-variable placement sub-
ject to new bounding-box constraints. The cell locations
and slacks are used at the next round of partitioning, and
this top-down placement process continues until reaching
end-cases.

While performing continuous placement, TDplace iter-
ates gate/edge delay calculations along the lines of Subsec-
tion 2.3, calls to STA and min-max-weighted-delay place-
ment until a convergence criterion is met. The min-max-
weighted-delay placement is performed by a nested itera-
tion. This iteration attempts to improve a previously exist-
ing solution by linear passes in which every vertex is placed
optimally. Thanks to the proven monotonic convergence of
both iterations, convergence criteria are fairly straightfor-
ward — each iteration is stopped when its objective func-
tion changes by less than 0.1%. In practice this ensures suf-
ficient accuracy for large-scale VLSI placement, and keeps
the overall CPU budgets low.

5.2 Experimental Results

We evaluated the proposed algorithms in a simplified frame-
work with linear delay model. Our circuits benchmarks are
described in Table 1.

Design Number of Number of Production
Name Cells Nets Year

D1 6390 8033 1998
D2 20449 21230 1998
D3 40349 42487 1999
D4 58987 59922 1999

Table 1:Test cases used in the experiments.

The “no timing” configuration reported in Table 2 is the
default configuration of Capo/CapoT, as reported in [3],
followed by greedy overlap removal, greedy improvement
of cell orientations and sliding-window improvement using
branch-and-bound [4]. Greedy overlap removal and im-
provement of cell orientations took negligible time (there
were very few or no cells overlaps). The sliding-window
algorithm took up to 10% of the total time and typically im-
proved the wirelength by several percent. We did not use
the-fast configuration described in [3], but point out that
it is clearly possible to speed-up all runs by a factor of 2
or more by using it and also skipping the post-processing
steps described above. This would entail the increase of
wirelength by at most several percent.

Given that Capo and CapoT return different placement
solution every time they are launched, we collected results
over ten independent starts in each configuration. While
runtimes were fairly stable, we observed a significant vari-
ance of final wirelength and an even greater variance of final
longest-path delay. In order to reach statistically significant
conclusions, we averaged each type of readings in Table 2
over ten independent random starts of CapoT.

The results clearly indicate that, the two proposed
schemes successfully improve circuit delay compared to the
“no timing” configuration. The increase in wirelength is
modest. While the timing configurations tend to require up

to 60% more time, this appears within the expectations of
our industrial colleagues.

On the largest design, the continuous(analytical) mini-
mization of path delay lasted for 62 iterations, roughly 0.4
sec per iteration. We empirically observed a linear conver-
gence rate. Clearly, finding optimization algorithms with
faster convergence rate is an open direction for future re-
search.

6 Conclusions
Our work proposed a new global timing-driven place-
ment algorithm and evaluated it on a set of recent cir-
cuit benchmarks. The main contribution of this paper is
to global timing-driven placement, and even without a de-
tailed placer, we were able to demonstrate superior results
on several industrial benchmarks. The proposed algorithms
are rather flexible and can be adapted to various delay for-
mulations and types of placers. In particular, they should
be applicable with non-partitioning driven placers popular
among some EDA developers.

As the feature sizes decrease, interconnect delays begin
to dominate gate delays. Therefore, the improvements pro-
vided by our algorithms should increase with every tech-
nology step. Moreover, because of their generic (mathe-
matical) nature, their applicability is not restricted to silicon
circuits.
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