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Abstract slacks, and critical connection get slightly higher weights.
Combinations of net re-weighting and delay budgeting have

In analytical placement, one seeks locations of circuit m@SC been proposed (e.g, in [27]). As noted in [10, 26], “net

. - ; -weighting” algorithms are oftead hocand have poor
dules that optimize an objective function, but allows mo@%nver%enc% thgory, i.e., if delays along critical n[()ats de-

ule qverlaps. Our work m_troduces a novel m'f"m'za“or‘ Tease, other nets may become critiéaDn the other hand,

maximal path delay that improves upon previously knowge|ay budgeting” may overconstrain the placement prob-

algorithms for timing-driven placement. Our placement dem and prevent good solutions from being found. A unifi-

gorithms have provable properties and are fast in practiceation of budgeting and placement is proposed in [26], but
finding scalable algorithms for such a unification remains
an open problem.

i While many published works focus on timing optimiza-
1 Introduction tion alone, placement instances arising in the design of

The significance of timing-driven layout increases witfg@ding-edge electronics today are often difficult even from
the dominance of interconnect delays over device delalf¥ WlTeIength/corrges_t;]on stand-r[i')omt. Therefore, ad“?'
While today’s commercial placement engines can evalugest placement algorithm must have a proven record in

increasingly accurate measures of path timing, simple md4relength- and congestion-driven context without timing.
els often gIle):ald to more efficient mirﬁ)imizationg.] To f?rst ofviotivated by this circumstance, recent works [12, 23] advo-

der, the total (average) net length objectives correlate wete the use of top-down partitioning-driven placement with
congestion- and delay-related objectives (since wirelenghlytical elements for timing optimization. This provides
creates capacitative load aRE delay). To bring the topol- @ generic framework for large-scale layout with near-linear
ogy of timing constraints closer to placement, some workgtime, based on the strong empirical record of min-cut
[16, 6, 13] minimize delays alongxplicitly enumerated algorithms in wirelength- and congestion-driven placement
paths However, explicit path enumeration becomes inf4]-
practical when the number of signal paths undergoes combiThe contributions of this work are
natorial explosion in large circuits. Indeed, [5] (1994) esti-
mated that explicitely storing all 245K paths in their 5SK-cell o A generic continuous path-timing optimization, first to
design requires 80 hours on their hardware and 163Mb of ayoidheuristicbudgeting and re-weighting;
disk space. An equivalent compact representation took only
1.8Mb in human-readable ASCII format and was produced
in several hours. e An embedding of continuous path-timing optimization
Combinatorial explosion is not a problem for static tim-  into top-down placement;
ing analysis methods [15, 1] which can quickly determine
whether delays along implicitly defined paths satisfy given
timing constraints. The key challenge in timing-drive
global placement is to optimize large sets of path del
without explicitly enumerating them. This is typically don
by interleaving weighted wirelength-driven placement wi
timing analysis, that annotates individual cells, nets a
timing edges with timing information [5]. Such annotar
tions are translated intedge or net weight$20, 1, 25]
for weighted wirelength-driven placement or into additional
constraints for such placement, e.g., per-net delay boundsp reasonable mathematical framework for net re-weighting is avail-
in “delay budgeting” approaches [14, 22, 28, 19, 10]. lfble via Lagrangian relaxation, but such formulations are vulnerable to
erations are repeated until they bring no improvemesémbinatorial explosion and implinear convergence of numerical meth-
For example, at each stage of recursive min-cut in [2@}s versus quadratic convergence of more efficient Newton-based meth-
non-critical nets get weights inversely proportional to thests.

The remaining part of this paper is organized as follows.
I%ckground is covered in Section 2, including top-down

cement, signal delay modeling and static timing analy-
js. Section 3 covers our new continuous path-delay min-
ization, which is embedded into a top-down placement
mework in Section 4. The empirical validation is given
Section 5, and Section 6 concludes the paper.
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2 Background 2.2 Static Timing Analysis

- _ _ .. A standard-cell circuit has cel8 = {c} and signal nets
Timing-driven placement draws upon the more intuitivg = {n}. Nets are connected to cells wilins each of
\(/jwrlelengtg-dlrl\f/enl placemelntland ttlmmgt gnaly?rl_s._ Ct'erbU\Fhich can be either an IN-pin or an OUT-pin (directional-

elay models for large-scale layout must be sufficiently ag-» 3 - Lo )
curate yet quickly computable. Such trade-off is providig%i{r)c'ui;rgs ift“S"Jgﬂ'igggrip{r\],%.s]T'isrrﬁﬁgt:dSIglqéh: ?gﬁ(t)fflg:e

by static timing analysis (STA) tuned to err on the pe . ) . .
simistic side. STA relies on (i) models of signal delays jFonnect pins are constructed in two ways. Each signal net is

P ; o i ; nverted into a set of orient@aterconnecedges that con-
'tgﬂl:]nsdg%gg/ev‘:’i%nge\gﬁ_s’ and (i) path-timing analysis ﬁgct each OUT-pin of the net to all IN-pins of the net. Each

standard cell and macro are represented by a set of oriented
intracellular edges determined by the contents of the cell,
with the exception that intracellular edges of latches and
flip-flops (aka “store elements”) are ignored. We assume
2.1 Top-down placement acyclic timing graphs and in practice break cycles by re-
moving back-edges discovered during DFS traversals. The

Top-down algorithms seek to decompose a given placem@@igy attributed to a given timing edge is a function of ver-
instance into smaller instances by subdividing the plaﬁx locations, including those of the edge source and sink.
ment region, assigning modules to subregions, reformul&our work on large-scale placement we useduced tim-

ing constraints, and cutting the netlist — such that godtg graphwhere all pins on every placeable object are clus-
solutions to smaller instances (subproblems) combine ifg6€d into a single vertex so that every vertex can be placed
good solutions of the original problem. In practice, suchidependently. Intracellular arcs are removed; gate delays
decomposition is accomplished by multilevel min-cut hyA® computed per driver pin and are added to interconnect
pergraph partitioning that attempts to minimize the numib&glays on the respective outgoing edges. o

of nets incident to nodes in multiple partitions. Each hyper-A major objective of timing-driven layoutycle time is
graph partitioning instance is induced from a rectanguf@@deled by the maximal delay along a directed path be-
region, orblock in the layout. Conceptually, a block corretween particular source and sink pairs (primary 1/Os and
sponds to (i) a placement region with allowed locations, (if0s of store elements). The delay along a pathrt =

a collection of modules to be placed in this region, (iii) alli;j;,85,j,,---) 1S @ sum of edge delaygi(= iz, jo =
nets incident to the contained modules, and (iv) locatioiss . ..). More generally, every path may come with a timing
of all modules beyond the given region that are adjacentc@nstrainty, which is satisfied if and only if; < ¢y, corre-
some modules in the region (consideredeasinalswith  sponding to “max-delay$etupconstraints. Those timing
fixed locations). Cells inside the block are represented@sstraintscy; (i.e., upper bounds on path delays) are not
hypergraph nodes, and hyperedges are induced by netgjiien explicitly, but rather defined viactual arrival times
cident to cells in the blocks. Node weights represent cBNAT) andrequired arrival times(RAT) for every driver-
areas. Partitioning solutions must approximately equalig@ and primary output. The timing constraint for a path

total weight in partitions to prevent more cells assigned tqsathen the difference betwedAT@sink— AAT@source
block than can be placed inside without overlaps. We do nota priori restrict the set of eligible paths is de-

The top-down placement process can be viewed as afied, but rather delegate its treatment to (i) generic static

quence of passes where each pass refines every exiélmyg. acriwalys'is base(? on path tracin% [1%]Id?s|cribed EeIOV\g
block into smaller block$. These smaller blocks will col- (1) drop-in use of extensions to handle false paths an

lectively contain all the layout area and cells that the origiulti-cycle paths (and also to model physical phenomena
inal block did. Some of the cells in a given block may beHCh @s cross-talk, inductance and delay uncertainty).
tightly connected to external celle¢minalg located close _ Given delays of timing edges (e.g., computed from a
to the smaller blocks to be created. Ignoring such cgia@cement), static timing analysis (STA) determines (i)
nections implies a bigger discrepancy between goa- whether all timing constraints are satisfied, and (i) which
cut partitioning solutions and solutions that result in beflirécted paths violate their constraints. The key to compu-
ter placements. Yet, external terminals are irrelevant to figdional efficiency of STA is the notion of slack that allows
classic partitioning formulation as they cannot be freely a4 avoid enumerating all paths [15].

signed to partitions due to their fixed status. A compromiseDefinition 1: The slackof a pathttis sy = ¢ —t. The

is achieved by an extended formulation for “partitioninglack of a timing edge(vertex) is the smallest path slack
with fixed terminals”, where the terminals are “propagatédnong the paths containing this edge(vertex). _

to” (fixed in) one or more partitions and assigned zero areag-emma-Definition 2: In a given timing graph, the min-
[8]. Terminal propagation is typically driven by the relativémal vertex slack, minimal edge slack and minimal path
geometric proximity of terminals to subregions/partitiorslack are equal. This value is calledcuit slackand is

[3] and essential to the success of min-cut recursive bisécconvex functions of edge delays, which are functions of

tion. cell locations. o _ o
Negative slack is indicative of violated timing con-

2When recursive bisection is applied, careful choice of vertical versus Bidirectional pins can be captured using pairs of unidirectional pins
horizontal cut direction is important, — the rule of thumb is to keep thand constrained timing graph traversals.
aspect ratios of the blocks as close to a given constant (typically 1.0) as*As [28, 10], we leave “min-delayhold constraints to clock-tree tun-
possible. ings and local optimizations, e.g., buffering, sizing, snaking, etc.

63



straints. Therefore, timing-driven layout aims to maximizean be based on linear/quadratic edge wirelength or ElImore
{minimal slack over all patis computed by STA, to im- delay.

prove cycle time. To compute min-slack in linear time, Observation 3. A placement satisfies all timing con-
two topological traversals propagd®AT and AAT from straints if and only if® < 1.0.

sources and sinks to all vertices. Namely, one computesp is amultiplicativegeneralization of the commoad-

the AAT at a vertexy when, for every directed edgerend- ditive) slack objectives, sinced < 1.0 S> 0.0.

ing atv, the AAT atu and the delay ofivare known. We  Whency; are identical, mi is equivalent to the mini-
write AAT, = max,{delayuv) + AAT,}. Similarly, RAT, mization of maximal path delay, and thus to ng(see Sec-
can be computed when, for every directed edgebegin- tion 2.2). The general m&problem with arbitrary path
ning atv, delayvw) and RAT, is known. ThenRAT, = delayscy determined byAAT sand RAT scan be reduced
minw{RAT, — delay(vw)}. With AAT andRAT available to the case of identicai; by adding a super-source and a
at all vertices, slacks at individual vertices are comput&dPer-sink connected by constant-delay edges to all timing
asRAT— AAT, and similarly for edges [15]. If min-slack isSources and sinks resp. Therefore, the ordinary slack maxi-

negative, some paths must violate their constraints and hByé&ation is a special case of min Our generic placement
negative slacks on all of their edges. ?Igor]thm for mind is a reduction to a simpler objective
unction.

2.3 Gate and Wire Delay Modelin
y g 3.1 Generic minimization of ® by re-

Our slope-agnostic “lumped RC” gate and wire delay mod- it
. ; ; weighting
els in terms of cell locations are simple and fagthey are
based on the following parameters (cf. [11]): Givenedge weights y > 0 on the timing graph, wenini-
e r andc are per-unit resistance and capacitance of intenizethe following MAX-based objective functidn
connect; when routing assignments are unknown, sta-
tistical averages from typical placements are used; o= m”aXWi i dij (%, %1, YY) )
o for each cellR is the resistance of driver-pirandC;
is the capacitance of sink-pin Defined;; = wij dij (X, X;,¥, ;) SO thatd = max; &;.
Load-dependent gate delay at output pis computed as  Our placement optimization @ starts from an initial so-
Ri(Cint + ZjCj) where the summation is over sinksand Iu_tio_n.8 Then we compute edge delays and perform Static
Cint is the total interconnect capacitance on the driven nétming Analysis. Based on slacks/criticalities and edge de-
Cint = cW, whereW is an estimate of the total net lengthlays, we computey;; as outlined below. After that, the cur-

e.g., a weighted half-perimeter wirelength [2], the length ofnt placement is changedrtonimizethe function given by
a Rectilinear Minimum Spanning Tree (RMST), the lengtormula 2. The values & andd;; after placement at itera-

of a minimum single-trunk Steiner tree or the length of KW sk (k)
Rectilinear Steiner Minimum Tree (RSMT). Interconne(ﬁDn kare denoted by, 5" andd;” resp. We prove that

delays are computed asL? wherelL is the Manhattan N this processp cannot increase, which establishes mono-

length of a timing edge. Alternatively, we use Elmore d&@nic convergence. . .

lay model which entails a Steiner tree computation and is-émma 4 Given (i) an arbitrary set; > 0 with at

therefore more expensive. least one non-zero, and (ii) any minimum of the respective
MAX-based objective, all edge delays cannot be improved
simultaneously by another placement. |.e., there is 5@

. . and new placement for which the delay of every edgés
3 Continuous Min-Max Placement & <dj €.

Our continuous optimization assumes that some vertices oProof by contradiction. Suppose we have foundg 0
the timing graph are restricted to fixed locations or re@nd a new placement witersmaller edge delays. Then
angles, and thus can be used in top-down placement. Heéne C = max; dij/dij and note thaC < max; (dij —

minimizationof the path-delay function below includes ope) /d;; < 1. Since every edge delay, in the new place-
timization of the worst slack as a special case: ment will be no longer tha@d;, the value of the objective
t d function for the new placement will b& < 1 times of the
o= m_ Zeen e - =2
= MmaxX— = max=—— (1) value for the original placement. However, this is impos-
Ter ™ Cn sible, since the original placement minimized the objective

Herede denotes the signal delay along edgef the tim- function. 0
ing graph and can also be written é&s= dij (x;, Vi, X;,Yj), Definition 5 Givenk > 1 and a placement for which the
making @ a function of vertex locations via convex delapbjective function (2) has valu&¥, we call an iteration of
models for individual edge%.Common edge delay modelg re-weighting and placemensuccessfuff a placement is

Swith a generic STA implementation, more accurate models or black- “The main difference from more comméstal (equiv. average) wire-
box delay calculators can be used when affordable in terms of runtime lengthobjective is the use of max insteadxf

6The functionsd;j () could also depend on locations of cells neighbor- 8Quadratic placements work well in practice and can be produced very
ing with i and j to better model delays [17]. quickly; faster/better approaches are possible.
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found for whichd**1) < 5. Otherwise we say that the it-3.2  Interpretations of re-weighting
eration has failed. Finding a true minimal value of the func- and comparisons to known results
tion (2) is not required. An iteration isivially successful

if the re-weighted objective function has valged® with In the proposed iteration, let us define tivaing critical-

respect to the previous placement. ity of an edge as timing criticality of the most critical path
Lemma 6 All timing constraints are satisfied if passing through the edge, measured by its contributidn to
) (K (K) . .
(1) _ (K ®) i.e.,Kjj’ = MaXysg, ty’/Cr. It can be viewed as the multi-
dj 7 <dj’/ Tr[ga;j(tﬂ /Cr plicative version of the traditional negative slack [15]. We
" _ _ also defingelative edge delapi(jk) =3k /éfjk). Now Equa-
Proof [mamae” t“’_ /C“'] Is the wors'F ratio between the deiion (5) can be interpreted as multiplying each weigﬂ‘f
lay of a path passing throughy and its constraint. There- _ _ ) 0 )
fore by reducing every edge delay on pathy the resp. ra- by weight adjustment factom;;” = pj; k" which can be
tio, we will ensure that path delay is within its constraint greater than, less than or equal t6.1The main idea here
Cn is to force critical edges to shortéryy only as much as they
kb1 Kkl K K needto cease being critical and allow non-critical edges to
e = Za;éﬂdi(j ' < Cn(Ze; eﬂdi(j N/t = en elongate byas much as they camithout becoming critical.

Intuitively, the re-weighting can be decomposed into two
We now determine multiplicative factors for re-weightingteps. At the first step every edge weight is multiplied by
such that after a successful iteration all timing constrairigative edge delay, which does not change the value of the
are satisfied according to Lemma 6. Namely, for any pathjective function on the current placement, but makes all
mtand any edge; € twe seek to ensure the left-most INzdge terms equa{bﬁk)wi(jk)d'(‘k) =X for anyi, j). Following

equality in the following chain (the remaining equality an : g _ L P
inequality holda priori) H1at, new edge weights are multiplied by timing criticalities

which will increase the objective thanks to timing-critical
edges (thus the iteration will never bévially successfyl
(3)  Improvement of the re-weighted objective will address crit-
ical edges and thus improve
CR ®) ®) ®) Multiplication by relative edge delays is somewhat
=dj [mm Cre [ty ] < djj"Cn/tn (4) counter-intuitive because it givehorter edgesn critical
138 pathsheavier weights than longer edges the same paths.
i +1) However, the useful effect of multiplication by relative edge
In ord(ir IO ensure Inequality (4), we note thﬂé < delays is that all edge terms attain the maximum and the cur-
6(k+1)/wi(j+) by definition of 3tV and 3*k+1) < 3K  rent placement becomes unimprovable (cf. Lemma 4).Af-
by definiton of a successful iteration.  Thereforder being multiplied by edge criticalities, the new weights
. B0 /D) () encourage decreasing delays of critical edges by only as
our goal will be reached once we had"“/wi;"~ = mych as they need to become non-critical, and (ii) allow
(k) (k) ; ; increasing delays of non-critical edges by only as much as
dij _/ ma)w%i be /C“'} » which can be accomplished by rethey can without becoming critical.
weighting. Loosely speaking, the work in [28] mentions théerm,
(1) _ © but computes it for vertices rather than edges. However,
wi = (80 /d) Lrg%xtﬂ /Cn
]

k+1 K
di(j+)§di(j)/ m;

(5) neither [28], nor [10] have the term, which seems to be
what keeps their delay re-budgetings heuristic.

The max-terms in this formula are called “criticalities”
and can be computed using static timing analysis, which is
especially efficient in the case when the main global 0bje3-3 | ower-level minimization
tive is slack maximization. = .

Theorem ITC (Immediate Timing Convergence) All  We note that minimization of the MAX-based objective can
timing constraints are satisfied after awecessfuteration be performed by linear or non-linear programming [18] de-
if re-weighting is performed according to Equation (5). pending on specific delay models. In fact, for the linear-

Now we show that small placement changes causedwiyelength delay objectives, the LP formulation is solvable
the proposed iteration of re-weighting and placement algolinear time (by a result of Megiddo ca 1992). We im-
minimize ®. When the current placement is perturbed Iptemented a simple and extremely fast algorithm in which
little, 3 is approximately constant, and so are the valuggrtices are traversed in an arbitrary order and placed in

dX. We can now rewrite the MAX-based objective functiolpc@lly-optimal locations. Such a pass cannot increase the
as objective, which implies monotonic convergence. Given
£ that most vertices are adjacent to very few other vertices

maxll dij (6) (sparcity), every pass has linear runtime. Passes are re-

e Cpy peated until the objective function improves by less than,
e.g., 0.1%. Very few passes are required in practice because

5®
maxwj dij = max—.
i & di(j )

1® " of the relatively few stages of combinational logic on criti-
~ 8% max = 8K maxZ (7) cal paths.
w>gj C ™ Cy Non-linear delay models can be linearized [26].
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4 Embedding Min-max Placement 5 Implementation details

Into a TOp-DOWﬂ Placement Flow Our implementation CapoT is based on the Capo placer re-
ported in [4] and runs just like Capo unless the command-

Below we sketch a combined algorithm that attempts to §f1€ parametertd is specified. The general architecture

multaneously minimize cycle-time and half-perimeter wiré@mewhat reminds the “slack-graph” approach from [3],
length/congéstion. It starts by a call to continuous miMith its separation of concerns between delay calculation,
max placement that returns cell locations optimizing worstatic timing analysis and placement optimization. As ex-
slack, as well as actual cell slacks in that placement. TRitined in Section 4, we additionally separate continuous
information is translated into pre-assignments for the suBin-max placement from top-down placement.

sequent partitioning runs. Intuitively, the cells with worst

slacks should be selected and pre-assigned in the partitiggf .

where the continuous formulation placed them. Since t Our Placer Implementation

continuous min-max pla:ccerrr]]ent optimizes |SIaCk’ the SL he timing-driven regime, CapoT makes calls to our con-
fﬁggg:nlgng(;%\{i%l?cﬂlsnr%i#—rrg"nae): t?ggg%ﬁg&ﬁ?%@ﬁgéyo uous min-max placer TDplace, which interfaces with our
with more constraints. Thererlzore, the cells with wor atic Timing Analyzer (STA). The results returned by TD-
slacks can only become more critical in the future a ggTagseaL;t::?ib%%nisr;[rggtclggnodff partitioning Instances in
\?vr(])?g':dslgikp(rj%_%i?\?vgfgef partitions in such a way that aerIace and STA are instantiated at the beginning of the
: -down placement and construct a timing graph from the

Selection of cells to be pre-assigned, based on locatigns. : :
; ; ' : list, such that vertices correspond to movable objects.
and slacks, is performed in two stages. In the first stage,. ing edges are created from every source in a given hy-

“goodness” score is computed for each cell as a linear cof- ; .y
bination of cell slack and a delay equivalent of the cell redge to every sink on that same hyperedge. All infor
distance to the cut-line in its block. Subtracting a weightdg2ion necessary to compute gate and edge delays as func-
: : G ns of placement is made available. Fixed-delay edges
delay-equivalent from slack captures the deterioration :
slack in case the cells is assigned into a “wrong” partitio .g., between fixed cells/pads) and store elements (latches
. ; d flip-flops) are marked in the timing graph. The directed
The lower (i.e., the worse) the score, the more importan ; .
. . ; o c aph is traversed by a Depth-First Search, and back-edges
is to pre-assign the cell into the partition containing its cog- t cause purely-combinational (i.e., not containing store
tinuous location. Cells are sorted in the increasing order purely i 9
d d th ith s d ents) cycles are removed. STA maintains an array of
gi%%rgg?s gggr:rfoin h’F n%?%évltre[-)gggilvﬁegdoge%erzscglrﬁn Jes in topological order and edges that create purely-
partitionegr 9 P 9 binational cycles are not added to that array. STA
. . . also maintain@AAT s@sourcesand RAT s@sinks Store el-

It is very important not to pre-assign too many cells bements are considered as sources and sinks simultaneously.
fore calling a partitioner, otherwise, half-perimeter wiréFhe delays of timing edges in STA are produced by a delay
length and congestion of resulting placement can increasaiculator using the latest available placement information.
Therefore our combined is controlled by two parametesJA performs classical static analysis with two topological
that further limit the number of cell selected to be assignedversals and slack computations, as described in Subsec-
at any give level. Both limits are in terms of % total aredon 2.2. It also computesriticalities from slacks, in the
of movable cells. One applies to the whole layout, the othessumption that all AATs are the same and all RATs are
to individual blocks. Once all movable cells in the layouhe same (we also implemented the general case, but have
are sorted by their scores, those cells are traversed inb¢used it in this work). From criticalities, STA computes
order of increasing goodness and marked as for being pgdge weights for use in min-max-weighted delay placement
assigned, and their areas accumul&tdihis traversal con- algorithms. We charge both interconnect delays and load-
tinues until the total area of marked cells reaches the glodapendent gate delays to edges of the timing graph because

area limit (% of the total area of all movable cells). gate delays are computed for each driver pin, thus the pos-

Subsequently, when a particular block is about to gibility to account for non-zero vertex delays in our timing

partitioned, those of its cells that were marked for préhalysis is not used. . . .
assignment are traversed again in the order of increasjndtér STA is constructed, TDplace is instantiated, using
goodness scores, pre-assigned to partitions based on docations of fixed vertices and optional initial locations
continuous location, and their areas accumulated. TRfsmovable vertices. There is an optional array of bound-
traversal continues until the accumulated total reaches ifg boxes, one per vertex, that constrain the possible loca-
area limit for the block. tions of respective vertices. The first continuous placement
In addition to pre-assigning cells based on the continudasperformed subject to every movable object being inside
locations and cell slacks, we re-use those cell locations tae layout bounding box, with the initial location in its ge-
more accurate terminal propagation. In many cases, thisetric center. After that, CapoT reads placement solu-
improves both half-perimeter wirelength and cycle time. tions and vertex slacks, as well as various status informa-
tion, such as the worst slack. The cell locations and slacks
reported by TDplace are used by CapoT to pre-assign hy-
°This O(Nlog(N)) sorting-based computation can be sped up by R€rgraph nodes before multi-level partitioning, as explained
linear-time weighted-median computation, but its share in total runtifelow. After every round of min-cut partitioning, the array
is already negligible, and therefore it suffices to aaift() from the Of bounding boxes in TDplace is changed by CapoT ac-
Standard Template Library. cording to the partitioning results. Subsequently TDplace

DD,
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is called to perform a continuous-variable placement sub-60% more time, this appears within the expectations of

ject to new bounding-box constraints. The cell locatiomair industrial colleagues.

and slacks are used at the next round of partitioning, an®n the largest design, the continuous(analytical) mini-

this top-down placement process continues until reachimization of path delay lasted for 62 iterations, roughly 0.4

end-cases. ) _ _sec per iteration. We empirically observed a linear conver-
While performing continuous placement, TDplace itegence rate. Clearly, finding optimization algorithms with

ates gate/edge delay calculations along the lines of Subsaster convergence rate is an open direction for future re-

tion 2.3, calls to STA and min-max-weighted-delay placgearch.

ment until a convergence criterion is met. The min-max-

weighted-delay placement is performed by a nested itera-

tion. This iteration attempts to improve a previously exis, :

ing solution by linear passes in which every vertex is plac§1 Conclusions

gptir?*n_ally. Thanks to the proven_mo_notoni? g?nverggr;]c;a [lr work proposed a new global timing-driven place-
oth iterations, convergence criteria are fairly straightfor: ) . :

ward — each iteration ?s stopped when its ogjectivg funent algorithm and evaluated it on a set of recent cir-

: ps : : it benchmarks. The main contribution of this paper is
tion changes by less than 0.1%. In practice this ensures global timing-driven placement, and even without a de-

Iﬁéeg\sggﬂué%% fbourciarge scale VLSI placement, and ke fled placer, we were able to demonstrate superior results
gets low. - ! -
on several industrial benchmarks. The proposed algorithms
are rather flexible and can be adapted to various delay for-
. mulations and types of placers. In particular, they should
5.2 Experimental Results be applicable with non-partitioning driven placers popular
. . o among some EDA developers.
We evaluated the proposed algorithms in a simplified frame-ps the feature sizes decrease, interconnect delays begin
work with linear delay model. Our circuits benchmarks agg gominate gate delays. Therefore, the improvements pro-

described in Table 1. vided by our algorithms should increase with every tech-
nology step. Moreover, because of their generic (mathe-
Design | Number of  Number of  Production matical) nature, their applicability is not restricted to silicon
Name Cells Nets Year circuits.
D1 6390 8033 1998
D2 20449 21230 1998
D3 40349 42487 1999 ReferenceS
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