Subcubic Algorithmsfor Recursive State M achines

Swarat Chaudhuri

Pennsylvania State University
University Park, PA 16802, USA

swarat@cse.psu.edu

Abstract

We show that the reachability problem for recursive statehimes
(or equivalently, pushdown systems), believed for long &weh
cubic worst-case complexity, can be solved in slightly sithc
time. All that is necessary for the new bound is a simple adapt
of a known technique. We also show that a better algorithretexi
if the input machine does not have infinite recursive loops.

Categories and Subject Descriptors F.1.1 [Computation by ab-
stract devicek Models of computation—Automata; F.2.2nal-
ysis of algorithms and problem complejitilonnumerical algo-
rithms and problems—Computations on discrete structufes;2
[Theory of ComputatignSemantics of programming languages—
Program analysis.

General Terms Algorithms, Theory, Verification

Keywords Recursive state machines, pushdown systems, CFL-
reachability, context-free languages, interprocedumalysis, tran-
sitive closure, cubic bottleneck.

1. Introduction

certain program point along a path respecting the nestimyof
cedure calls?” The problem also shows up in many other pnogra
analysis contexts—for example field-sensitive alias aisal{Reps
1998), type-based flow analysis (Rehof and Fahndrich 2601
shape analysis (Reps 1998).

Reachability for RSMs is equivalent to a well-known graph
problem calledcontext-free language (CFL) reachabilityrhe
question here is: given an edge-labeled directed graph and a
context-free grammar over the edge labels, is there a path fr
nodes to nodet in the graph that is labeled by a word generated
by the grammar? This problem, which may be viewed as a gen-
eralization of context-free recognition, was originallgrased in
the context of database theory (Yannakakis 1990), whereag w
shown that Datalog chain query evaluation on the graph repre
sentation of a database is equivalent to single-sourcglesgink
CFL-reachability. It has since been identified as a cent@blpm
in program analysis (Reps 1998; Melski and Reps 2000).

All known algorithms for RSM and CFL-reachability follow
a dynamic-programming scheme known in the literatursias-
marization (Sharir and Pnueli 1981; Alur et al. 2005; Bouajjani
et al. 1997). The idea here is to derive reachability factshef
form (v,v"), which says that the RSM can start at stateith an

Pushdown models of programs have numerous uses in programempty stack and end at statewith an empty stack. The most well-

analysis (Horwitz et al. 1988; Reps et al. 1995, 2003; Alualet
2005). Recursive state machin€alur et al. 2005), or finite-state
machines that can call other finite-state machines realysiform

a popular class of such models. These machines (c&Bis
from now on) are equivalent to pushdown systems, or finagest
machines equipped with stacks. They are also natural akistra
of recursive programs: each component finite-state machauels
control flow within a procedure, and procedure calls andrnestu
are modeled by calls and returns to/from other machinesn&ou
analysis of a program then involves algorithmic analyssoRSM
abstracting it.

In this paper, we study the most basic and widely applicable
form that such analysis takes: determination of reachwhile-
tween states. Can an RSM, in some execution, start at avstaie:
reach the state’? Because RSMs are pushdown models, any path
that the RSM can take respects the nested structure of callseea
turns, and reachability analysis of an RSM abstraction abggam
gives acontext-sensitive program analyshs classic application is
interprocedural data-flow analysis— “can a data-flow faechea

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’08, January 7-12, 2008, San Francisco, California, USA.
Copyright(© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

known algorithms following this scheme (Horwitz et al. 198%ps
et al. 1995) discover such pairs enumeratively via grapretsal.
Unlike context-free recognition, which has a well-knowrbsu-
bic solution (Valiant 1975), RSM and CFL-reachability havet
been known to have subcubic algorithms even in the single-si
single-source case (for RSM-reachability, the size of ataimce
is the number of states in it; for CFL-reachability, it is them-
ber of nodes in the input graph). This raises the questi@athase
problems intrinsically cubic? The question is especiatifeiest-
ing in program analysis as problems like interprocedurta-flaw
analysis and slicing are not only solvable using RSM-rebitityg
but also provably as hard. Believing that the answer is “yes”
searchers have sometimes attributed the “cubic bottlérdthese
problems to the hardness of RSM or CFL-reachability (Ref@8.19
Melski and Reps 2000).

In this paper, we observe that summarization can benefit #om
known technique (Rytter 1983, 1985) for speeding up cekiaits
of dynamic programming. The idea, developed in the contéxt o
language recognition for two-way pushdown automata, i r
resent a computation accessing a table as a computatiormon ro
and column sets, which are stored using a “fast” set dat&-stru
ture. The latter, a standard data structure in the algosthit@ra-
ture (Arlazarov et al. 1970; Chan 2007), splits each opamaiti-
volving a pair of sets into a series of operations on pairset s
drawn from a small sub-universe. If the sub-universes affe su
ciently small, all queries on them may be looked up from agabl
precomputed exhaustively, allowing us to save work durimg@xa
pensive main loop. When transferred to the RSM-reachglpititb-

lem with slight modifications, Rytter's method leads to agoal
rithm that phrases the computation of reachability as aessrpiof
operations on sets of RSM states, and ha©én®/ logn) time
complexity. The technique may also be applied to the stahalar
gorithm for CFL-reachability, referenced for example by |ské
and Reps (2000), leading to a similar speedup. This implies s
cubic solutions for Datalog chain query evaluation as weltte
many program analysis applications of RSM-reachability.

Our other contribution is an observation that the reachgbil
problem for RSMs gets easier, so far as worst-case complexit
is concerned, as recursion is restricted. We study the ab#eh
ity problem forbounded-stack recursive state machingkich are

RSMs where the stack never grows unboundedly in any execu-

tion. Machines of this sort have a clear interpretation iogpam
analysis: they capture the flow of control in procedural paots
without infinite recursive loops. In spite of this extra stiure, they
have not been known to have faster reachability algorithmas t
general RSMs (note that a bounded-stack RSM is in fact afinite
state machine—however, the latter can be exponentiathgidhan
the RSM, so that it is not an option to analyze it instead ofyapp
ing an RSM-reachability algorithm). We show that it is possi
to exploit this structure during reachability analysiseTkey ob-
servation is that empty-stack-to-empty-stack reachsibfidicts in
bounded-stack RSMs can be derived idepth-first order—i.e., if
stateu has an edge to stateit is possible to first infer all the states
empty-stack-to-empty-stack reachable frorand then use this in-
formation to infer the states reachable this way frofthis is not
possible for general RSMs). It turns out that, as a resultcare
solve the reachability problem using a transitive closuger@thm
for directed graphs that allows the following kind of modifiilons
to the instance: “for an edde, v) that goes from one strongly con-
nected component to another, compute all descendamtsy and
add some edges frombased on the answer.” Unfortunately, none
of the existing subcubic algorithms for transitive closoea han-
dle such modifications. Consequently, we derive a new tigesi
closure algorithm for directed graphs that can.

Our transitive closure algorithm speeds up a proceduredbase
on Tarjan’s algorithm to determine the strongly conneciaumo-
nents of a graph. Such algorithms have a sizable literaRursdpm
1970; Eve and Kurki-Suonio 1977; Schmitz 1983). Their attra
tion in our setting is that they perform one depth-first traaé of
the input graph, computing closure using set operationsgatoe
way, so that it is possible to weave the treatment of addedsdg
into the discovery of edges in the original graph. The iddarizk
the speedup is, once again, to reuse computations on srttelinz
common to set computations, except this time, it can be taken
ther and yields a complexity @ (min{mn/logn,n®/log?n}),
wheren is the number of nodes in the graph ancdthe number of
edges. This directly leads to @(n?/ log® n) solution for all-pairs
reachability in bounded-stack RSMs.

We finish our study of the interplay of recursion and readitgibi
in RSMs with a note on the reachability problem faerarchical
state machinegAlur and Yannakakis 1998). These machines can
model control flow in structured programs without recursiads

and form a proper subclass of bounded-stack RSMs. The one pub frome = (v, w) to ¢’

lished reachability algorithm for such models is cubic (A&nd
Yannakakis 1998); here, we give a simple alternative thattha
same complexity as boolean matrix multiplication. Whilésthl-
gorithm is almost trivial, taken together with our otheruiks, it
indicates a gradation in the complexity of RSM-reachabdit re-
cursion is constrained.

The paper is organized as follows. Section 2 defines the three

classes of RSMs that interest us, CFL-reachability, andatsteset
data structure. Section 3 discusses reachability in geRSMs
and CFL-reachability. In Section 4, we study reachability f

bounded-stack RSMs, and Section 5 briefly examines reditfiabi
in hierarchical state machines. We conclude with some dison
in Section 6.

2. Basics

Recursive state machines (RSMs), introduced by Alur e2aDn3),
are finite-state-machines that can call other finite-staiehines
recursively. RSMs are equivalent to pushdown systems, agd a
solution for RSM-reachability can be translated to a sohutihe
same complexity for pushdown systems. In this section, Viieele
three variants of recursive state machines. We also revieiv t
connection with the context-free language reachabilibpfam.

Recursive state machines

A recursive state machin®SM) M is atuple(M1, Mo, ..., My),
where eachM; = (L;, B;,Y:, En;, Fz;,—;) is a component
comprising:

e afinite setl; of internal states

e afinite setB; of boxes

e amapY; : B; — {1,2,...,k} that assigns a component to

every box;
e asetfn; C L, of entry statesnd a sefz; C L; of exit states

e an edge relatior-;C (L;URetns;\ Ex;)x (L;UCalls;\ En;),
whereCalls; = {(b,en) : b € Bi,en € Eny,) } is the set of
callsand Retns; = {(b,ex) : b € Bi,ex € Exy,)} the set
of returnsin M;.

Note that an edge cannot start from a call or an exit state, and
cannot end at a return or an entry state. We assume that for eve
distinct 7 and j, Li, B;, Calls;, Retns;, LJ‘, Bj, C(Illsj', and
Retns; are pairwise disjoint. Arbitrary calls, returns and intrn
states inM are referred to astates The set of all states is given
by V U, (Li U Calls; U Retns;), and the set of states in
Mj is denoted byV;. We also writeB = |J, B; to denote the
collection of all boxes inV/. Finally, the extensions of the relations
—; and functionsY; are denoted respectively byC V x V and
Y:B—{1,2,...,k}.

For an example of an RSM, see Figure 1-(b). This machine
has two componentsd/; and M. The componentl/; has an
entry states and an exit state, boxesb; and b: satisfying
Y (b1) = Y (b2) = 2, and edgess, (b1, w)) and((b2,v),t). The
componentM, has an entry;, and an exit, and an edgéu, v).

The semantics al/ is given by an infiniteconfiguration graph
Cwu . Let aconfigurationof M be a pairc = (v,w) € V x B*
satisfying the following condition: ifv = b; ... b, forsomen > 1
(i.e., if w is non-empty), then:

l.ve Vy(bn), and
2. foralli € {1, e, — 1}, bit1 € BY(bi,)'

The nodes o€, are configurations oM. The graph has an edge
(v',w") if and only if one of the following

holds:
1. Local move:v € (L; U Retns;) \ Ez;, (v,v') €—;, and
w = w;

2. Callmove:w = (b,en) € Calls;,v' = en, andw’ = w.b;

3. Return movev € Ez;, w = w'.b, andv’ = (b, v).

Intuitively, the stringw in a configuration(v, w) is a stack and
paths inCys define the operational semantics idf. If v is a call

(b, en) in the above, then the RSM pustiesn the stack and moves
to the entry staten of the componenY (b). Likewise, on reaching

@

int g; voi d bar ()
void main () int y = 0;
{ }
int x = 1;
bar () ;
g =1
bar () ;
L: x =g0;
}
(b) (c) s
main (M7)
a
b b
. 1 2 o t (1, (b1,u)
o v (52
a
bar (M2) b1
v
a
o
t

Figurel. (a) ACexample (b) RSM forthe uninitialized variable
problem (c) CFL-reachability formulation

an exitez, it pops a frame off the stack and moves to the return
(b, ex). Unsurprisingly, RSMs have linear translations to and from
pushdown systems (Alur et al. 2005).

Size Thesizeof an RSM is the total number of states in it.

Reachability Reachability in the configuration graph is defined
as usual. We call the staté reachablefrom the statev if a
configuration(v’, w), for some stackw, is reachable fron{v, ¢)

in the configuration graph. Intuitively, the RSM, in this eahas an
execution that starts atwith an empty stack and ends @twith
some stack. The staté is same-context reachabfeom v if (v/, €)

is reachable fronfu, €). In this case the RSM can startiatvith an
empty stack and react with an empty stack—note that this can
happen only ifv andv’ are in the same component.

Theall-pairs reachability problenfor an RSM is to determine,
for each pair of states, v’, whetherv’ is reachable from'. The
single-source and single-sink variants of the problem afened
in the natural way. We also define tsame-context reachability
problem where we ask i)’ is same-context reachable fram

All known algorithms for RSM-reachability and pushdown-sys
tems, whether all-pairs or single-source/single-sinkpesgontext
or not, rely on a dynamic programming scheme caflechmariza-
tion (Sharir and Pnueli 1981; Alur et al. 2005; Bouajjani et aD71:9
Reps et al. 1995), which we will examine in Section 3. The wors
case complexity of all these algorithms is cubic. Tighteurmis are
possible if we constrain the number of entry and exit stabetoa
edges in the input. For example, if each component of thetinpu
RSM has one entry and one exit state, then single-souragesin
sink reachability can be determined@(m + n) time, wherem
is the number of edges in the RSM andthe number of states
(the all-pairs problem has the same complexity as graptsitran
tive closure) (Alur et al. 2005). In this paper, in additiengeneral

RSM-reachability, we study reachability algorithms forl&Scon-
strained in a different wayoy restricting or disallowing recursian

To see the use of RSM-reachability in solving a program anal-
ysis problem, consider the program in Figure 1-(a). Suppese
want to determine if the variablg is uninitialized at the line la-
beledL. This may be done by constructing the RSM in Figure 1-
(b). The two components correspond to the procedusga and
bar; states in these components correspond to the controlspoint
of the program—e.g., the statemodels the entry point afain,
and (b2, v) models the point immediately before lineProcedure
calls tobar are modeled by the boxés andb.. For every state-
ment that does not assigngpan edge is added between the states
modeling the control points immediately before and after skate-
ment. Theng is uninitialized atL iff (b2, v) is reachable frons.
More generally, RSM-reachability algorithms can be usechteck
if a context-sensitive program abstraction satisfies atyafiep-
erty (Alur et al. 2005). For example, the successful sofewaodel
checker $am (Ball and Rajamani 2001) uses an algorithm for
RSM-reachability as a core module.

Bounded-stack RSMsand hierarchical state machines

Now we define two special kinds of RSMs with restricted recur-
sion: bounded-stack RSMand hierarchical state machinesNe
will see later that they have better reachability algorishttran gen-
eral RSMs.

The class obounded-stack RSM®nsists of RSMsV where
every call(b, en) is unreachable from the state. By the seman-
tics of an RSM, the stack of an RSM grows along an edge from a
call to the corresponding entry state. Thus, intuitivelipoainded-
stack RSM forbids infinite recursive loops, ensuring thatrig path
in the configuration graph starting with a configuratiene), the
height of the stack stays bounded. To see an applicatiosjdmma
procedure that accepts a boolean value as a parameterh@ip# t
and, if the result is 1, calls itself recursively. While tiisogram
does employ recursion, it never runs into an infinite reeerkiop.

As a result, it can be modeled by a bounded-stack RSM.

A hierarchical state machinAlur and Yannakakis 1998), on
the other hand, forbids recursion altogether. Formallghsa ma-
chine is an RSMV/ where there is a total ordex on the compo-
nentsMi, ..., M such that ifM; contains a box, thenMy) <
M;. Thus, calls from a component may only lead to a component
lower down in this order. For example, the RSM in Figure 1igb)

a hierarchical state machine.

Note that every bounded-stack or hierarchical machine can
be translated to an equivalent finite-state machine. Horyélvis
causes an exponential increase in size in the worst caset esnd
unreasonable to analyze a hierarchical/bounded-stackingaby
“flattening” it into a finite-state machine. The questiontthrer-
ests us is: can we determine reachability in a bounded-stack
hierarchical machine in timpolynomial in the inp® The only
known way to do this is to use the summarization technique tha
also works for general RSMs, leading to an algorithm of cubic
worst-case complexity.

Context-free language reachability

RSM-reachability is equivalent to a graph problem caliedtext-
free language (CFL) reachabilitfYannakakis 1990; Reps 1998)
that has numerous applications in program analysis.d.&e a
directed graph whose edges are labeled by an alpbatzetd let

be a context-free language over We say a nodé is L-reachable
from a nodes if there is a path froms to ¢ in S that is labeled
by a word inL. The all-pairs CFL-reachability problem fér and

L is to determine, for all pairs of nodesandt, if ¢ is L-reachable
from s. The single-source or single-sink variants of the probleen a
defined in the obvious way. Customarily, the size of the imstds

given by the number. of nodes inS, while L is assumed to be
given by a fixed-sized gramméi.

Let us now see how, given an instance of RSM-reachability,
we can obtain an equivalent CFL-reachability instance. V&b
a graph whose nodes are states of the input R8Mfor every
edge(u,v) in M, S has an edge from to v labeled by a symbol
a. For every callb, en) in the RSM,S has an edge labeldd from
(b, en) to en; for every exitez and return(b, ex) in M, we add
a)p-labeled edge irb from ez to (b, ex) (for example, the graph
S constructed from the RSM in Figure 1-(b) is shown in Figure 1-
(c)). Now, the state is reachable from the statein M if and only
if vis L-reachable fromu in S, whereL is given by the grammar
S — S5 (S | (55| a. The translation in the other direction is
also easy—we refer the reader to the original paper on RSMs (A
et al. 2005).

Note that context-free recognition is the special case df-CF
reachability whereS is a chain. A cubic algorithm for all-pairs
CFL-reachability can be obtained by generalizing the Cecke
Younger-Kasami algorithm (Hopcroft and Ullman 1979) forlCF
recognition—this algorithm again relies on summarizatidhe
problem is known to be equivalent to the problem of evalgatin
Datalogchain querie®n a graph representation of a database (Yan-
nakakis 1990). Such queries have the fi{X, Y') < qo(X, Z1)A
q1(Z1,Z2) N ... ANq(Zk,Y), where they;'s are binary predicates
andX, Y and theZ;’s are distinct variables, and have wide appli-
cations. It has also come up often in program analysis—fanmex
ple, in the context of interprocedural dataflow analysis gliwing,
field-sensitive alias analysis, and type-based flow arsmlftdor-
witz et al. 1988; Reps et al. 1995; Horwitz et al. 1995; Re#&519
1998; Rehof and Fahndrich 2001). The “cubic bottleneckhefke
analysis problems has sometimes been attributed to thevbdli
cubic hardness of CFL-reachability.

A special case is the problem Bfyck-CFL-reachability The
constraint here is that the CFL is now a language of bal-
anced parentheses. Many program analysis applicationg=bf C
reachability—e.g., field-sensitive alias analysis of Jakegrams
(Sridharan et al. 2005)—turn out actually to be applicatiarf
Dyck-CFL-reachability, though so far as asymptotic bougdsit
is no simpler than the general problem. This problem is edeint
to the problem of same-context reachability in RSMs.

Fast sets

Our algorithms for RSMs use a set data structure that esploit
sharing between sets to offer certain set operations atriowtzed
cost. This data structure—calléast set§rom now on—is standard
technology in the algorithms literature (Chan 2007; Artazeet al.
1970) and was used, in particular, in the papers by Rytte8319
1985) on two-way pushdown recognition. Its essence istlsatits
an operation on a pair of sets into a series of unit-cost ¢pes
on small sets. We will now review it.

Let U be a universe of elements of which all our sets will be
subsets. The fast set data structure supports the folloojega-
tions:

¢ Set differenceGiven setsX andY’, return alist Diff (X,Y)
consisting of the elements of the $&f \ Y').

e [nsertion Insert a value into a set.

e Assign-union Given setsX andY’, perform the assignment
X — XUY.

Let us assume an architecture with word gize- 8(logn). A
fast set representation of a set is the bit vector (of lengttor the
set, broken intdn/p] words. Then:

e To computeDiff (X,Y), where X andY are fast sets, we
compute the bit vector foZ = X \ Y via bitwise operations

on the words comprisind(andY". This takesO(n/p) time
assuming constant-time logical operations on words. ToHis
elements ofZ, we repeatedly locate the most significant bit
in Z, add its position inX to the output list, and turn it off.
Assuming that it is possible in constant time to check if advor
equals 0 and find the most significant bit in a word, this can be
done inO(|Z] + n/p) time. Note that the bound is given in
terms of thesize of the outpufThis is exploited while bounding
the amortized cost of a sequence of set differences.

Insertion ofd0 < z < n—1 involves setting a bit in théx /p|-th
word, which can be done i@(1) time.

The assign-union operation can be implemented by word-by-
word logical operations on the components¢fandY’, and
takesO(n/p) time.

In case the unit-cost operations we need are not availdtdg, t
can be implemented using table lookup. Let a fast set now be a
collection of words of lengtlp = [logn/2]. In a preprocessing
phase, we build tables implementing each of the binary oryuna
word operations we need by simply storing the result for each
of the O(27.27) = O(n) possible inputs. The time required to
build each such table i©(p.n) (assuming linear-time operations
on words), and the space requirementii&:). The costs of our
fast set operations are now as before.

3. All-pairsreachability in recursive state
machines

Let us now study the reachability problem for recursiveestat-
chines. We remind the reader that all known algorithms f@g th
problem are cubic and based on a high-level algorithm callea-
marization In this section we show that a speedup technique de-
veloped by Rytter (1985, 1983) can be directly applied te #i
gorithm, leading to ar®(n?®/ log n)-time solution. The modified
algorithm computes reachability via a sequence of operstan

sets of stateseach represented as a fast set. In this sense it is a
symbolidmplementation of summarization, rather than an iterative
one like the popular algorithm due to Reps et al. (1995). \&e al
show that the standard cubic algorithm for CFL-reachabiléfer-
enced for example by Melski and Reps (2000), can be speeded up
similarly using Rytter’s technique.

3.1 Reachabilityin RSMs

Let us start by reviewing summarization. We have as input@iR
M = (M,..., M) as in Section 2, with state s&t, box set
B, edge relation—~C V x V,and amapt’ : B — {1,...,k}
assigning components to boxes. The algorithm first detessnin
same-context reachabilithy building a relationd® C V x V,
defined as the least relation satisfying:

1. ifu =voru— v, then(u,v) € H®;
2. if (u,v") € H® and(v',v) € H®, then(u,v) € H*;

3. if (u,v) € H® andw is an entry andv is an exit in some
component, then for all boxdssuch that(b, u), (b,v) € V,
we have((b,u), (b,v)) € H".

For example, the relatio®/® for the RSM in Figure 1-(a) is
drawn in Figure 2 (the transitive edges are omitted). WHile t
definition of H? is recursive, it may be constructed using a least-
fixpoint computation. Once it is built, we construct a redatH C
V x V defined as:

H — U{((b,en), (b,ex)) € H° : b € B, anden is an
entry andex an exit ofY' (b) }
U {((b,en),en) : enis an entry inY’(b)},

(b1, u)
So——=0—>0
L (b1,)
\
\

\
\

(bg, v)
*——=o—>0
(bg, uw)

t

Ueg — oV

Figure 2. The relationH. H* is the transitive closure of non-
dashed edges, ard” is the transitive closure of all edges

and compute the (reflexive) transitive closuifé of the resultant
relation (see Figure 2). It is known that:

LEMMA 1 ((Alur et al. 2005; Bouajjani et al. 1997)For statesv
andv’ of M, v’ is reachable fromv iff (v,v") € H*. Also,v’ is
same-context reachable fromiff (v, v’) € H®.

Within the scheme of summarization, there are choices as to
how the fixpoint computations faif ® and H* are carried out. For
example, the popular algorithm due to Reps et al. (1995) eyspl
graph search to construct these relations enumerativedyritrast,
the algorithm we now present, obtained by a slight modificati
of an algorithm by Rytter (1985) for two-way pushdown redegn
tion, phrases the computation as a sequence of operatiosst®n
of states Unlike previous implementations of summarization, our
algorithm has a slightly subcubic worst-case complexity.

The algorithm is a modification of the procedur@ & LINE-
REACHABILITY in Figure 3, which uses a workli$¥” to compute
H* and H* in a fairly straightforward way. Line 1 of the baseline
routine inserts intra-component edges and trivial reaitihafacts
into H* and W. The rest of the pairs itH® are derived by the
while-loop from line 2—-10, which removes pairs froi¥i one by
one and “processes” them. While processing a fairv), we
derive all the pairs that it “implies” by rules (2) and (3) ihet
definition of H* andthat have not been derived alreadnd insert
them into H® andW. At the end of any iteration of the loopl’
contains the pairs that have been derived but not yet predess
The loop continues tillV is empty. It is easy to see that on its
termination,H® is correctly computed. Lines 11-14 now compute
H*.

Note that a pair is inserted inid” only when it is also inserted
into H*, so that the loop has one iteration per insertion ifta At
the same time, a pair is never taken outfbf once it is inserted,
and no pair is inserted into it twice. Latbe the size of the RSM,
and leta: < n? be an upper bound on the number of pdirsv)
such that is reachable fronx. Then the loop ha®(«) iterations.

Let us now determine the cost of each iteration. Assuming we
can insert an element iH* andW in constant time, lines 4—6 cost
constant time per insertion of an element id{d. Thus, the total
cost for lines 4—6 during a run of ASELINE-REACHABILITY IS
O(a). The for-loops at line 7 and line 9 need to identify all states
andv’ satisfying their conditions for insertion. Done enumeelj,
this costsO(n) time per iteration, causing the total cost of the
loop to beO(an). As for the rest of the algorithm, line 14 may
be viewed as computing the (reflexive) transitive closura gfaph
with n states an@(«) edges. This may clearly be done@{an)
time. Then:

LEMMA 2. BASELINE-REACHABILITY terminates on any RSM
M intimeO(a.n), wherea: < n? is the number of pairgu, v) €
V x V such thatv is reachable from:. On termination, for every
pair of statesu andv, v is reachable fromu iff (u,v) € H*, andv
is same-context reachable fromiff (u,v) € H®.

BASELINE-REACHABILITY ()

1 W—H —{(w,u):ueVU—

2 whileW # 0

3 do(u,v) < remove fromiW/

4 if u is an entry state andan exit state in a component;
5 then for b such tha®(b) =

6 do insert((b,u), (b,v)) into H*, W

7 for (u',u) € H® such that(v',v) ¢ H®

8 do insert(v’,v) into H* andW

9 for (v,v") € H® such that(u,v") ¢ H®

do insert(u,v’) into H* andW
H* «— HS
for calls (b,en) € V
do insert((b,en), en) into H*
H* « transitive closure oH*

Figure 3. Baseline procedure for RSM-reachability

To convert the baseline procedure into a set-based algurith
interpret the relation® as ann x n table, and denote the-
th row and column as sets (respectively denoted?bw (uv) and
Col(u)). Then we haveRow(u) = {v : (u,v) € H°} and
Col(u) = {v : (v,u) € H*}. Now observe that the for-loops
at lines 7 and 9 can be captured st difference operation3he
for-loop in line 7-8 may be rewritten as:

for u' € (Col(u) \ Col(v)) do insert(v’,v) into H* andW,
and the for-loop in line 9-10 may be rewritten as:
for v € (Row(v) \ Row(u)) do insert(u,v") into H* andTV.

Our set-based algorithm for RSM-reachability —callegARHA-
BILITY from now on— is obtained by applying these rewrites to
BASELINE-REACHABILITY . Clearly, REACHABILITY terminates
after performingD(«) set difference and insertion operations, and
when it does, the tabled™ and H*® respectively capture reachabil-
ity and same-context reachability.

We may, of course, use any set data structure offering efficie
difference and insertion in our algorithm. If the cost of diter-
ence is linear, then the algorithm is cubic in the worst-ca$e
complexity, however, become3(na/logn) = O(n?®/logn) if
we use the fast set data structure of Section 2. To see why, as-
sume that the rows and columns&f are represented as fast sets
and that set difference and insertion are performed usiegfh
erations Diff and Ins described earlier. In each iteration of the
main loop, the inner loops first compute the difference of sets
of size n, then, for every element in the answer, inserts a pair
into H® (this involves inserting an element into a row and a col-
umn) andWV. If the i-th iteration of the main loop inserts pairs
into H?, the time spent on the operatidpiff in this iteration is
O(n/logn—+o;). Since the result is returned as a list, the cost of it-
eratively inserting pairs in it inté * andWW is alsoO(c;). The cost
of these operations summed over the entire runAGHABILITY
isO(a.n/logn+> 7 0;) = O(an/logn+a) = O(an/logn).
The only remaining bottleneck is the transitive closurene L4 of
the baseline procedure. This may be compute@in.n/logn)
time using the procedure we give in Section 4.1. The totaétim
complexity then become®(an/logn)—i.e.,0(n®/logn).

As for the space requirement of the algorith®(n?) space is
needed just to store the tabl&& and H*. The space required by
tables implementing word operations, if unit-cost word ragiens
are not available, is subsumed by this factor. Thus we have:

THEOREM1. The algorithmREACHABILITY solves the all-pairs
reachability and same-context-reachability problems dorRSM
with » states inO(n®/log n) time andO(n?) space.

Readers familiar with Rytter'D(n?/logn)-time algorithm
(Rytter 1985) for recognition of two-way pushdown languagall
note that our subcubic algorithm is very similar to it. Rétadt a
two-way pushdown automaton (2-PDA) is a pushdown automaton
which, on reading a symbol, can move its “reading head” oep st
forward and back on the input word, while changing its cdntro
state and pushing/popping a symbol on/off its stack. Thguage
recognition problem for 2-PDAs is: “given a word of lengthn
and a 2-PDAA of constant size, iy accepted byA?” This prob-
lem may be linearly reduced to the reachability problem f8Mg.
Notably, there is also a reduction in the other directiorve@ian
RSM M where we are to determine reachability, write out the states
and transitions of\f as an input word. Now construct a 2-PDA
that, in every one of an arbitrary number of rounds, movelsatd
to an arbitrary transition oM and tries to simulate the execution.
Using nondeterminismA can guess any run dff, and accept the
input if and only if M has an execution from a staigo a statev.

This may suggest that a subcubic algorithm for RSM-readithabi
already exists. The catch, however, is that an RSM of sipeay
haveQ(n?) transitions, so that this reduction outputs an instance
of quadratic size. Clearly, it cannot be combined with Rigtal-
gorithm to solve reachability in RSMs in cubic (let alone cuihic)
time.

On the other hand, what Rytter's algorithm actually doe®is t
speed up a slightly restricted form of summarization. Retted
routine BASELINE-REACHABILITY, and letu, v, ... be positions
in a word rather than states of an RSM. Just like us, Ryttdveker
pairs(u, v) such that the automaton has an empty-stack to empty-
stack execution from to v. One of the rules he uses is:

Suppos€u, v) is already derived. 1f4 can go fromu’ to u
by pushingy, and fromv to v" by popping~, then derive
(u',v").

This rule is analogous to Rule (3) in our definition of summafi
tion:

Suppose(u, v) is already derived. Ifu is an entry andy
is an exit in some component aridis a box such that
(b,u), (b,v) € V, then derive((b, u), (b,v)).

The two rules differ in the number of new pairs they derive: Be
cause the size ofl is fixed, Rytter’s rule can generate at most a
constant number of new pairs for a fixed péir, v). On the con-
trary, our rule can derive a linear number of new pairs foegiv
(u,v). Other than the fact that Rytter deals with pairs of posgion
and we deal with RSM states, this is the only point of diffeshe-
tween the baseline algorithms used in the two cases. At fastg,
this difference may seem to make the algorithm cubic, astibeea
derivation happens inside a loop with a quadratic numbeteof i
ations. Our observation is that a tighter analysis is péssiur
rule above only does a constant amount of woek insertionof a
pair into H®. Thus, over a complete run of the algorithm, its cost
is quadratic and subsumed by the cost of the other lines, a&ven
ter the speedup is applied. For the rest of the algorithmteRgt
complexity arguments carry over.

3.2 CFL-reachability

As RSM-reachability and CFL-reachability are equivalenbtp
lems, the algorithm RACHABILITY can be translated into a set-
based, subcubic algorithm for CFL-reachability. Howetiter's
technique can also be directly applied to the standard igthgor
for CFL-reachability, described for example by Melski anepR
(2000). Now we show how. Let us have an insta€e’) of CFL-
reachability, where5 is an edge-labeled graph withnodes and
G is a constant-sized context-free grammar. Without losseof g
erality, it is assumed that the right-hand side of each nl@ has

BASELINE-CFL-REACHABILITY ()
1 W H* —{(u,A,v):uSvinS,and A - ainG}

2 U{(u, A,u): A—€inG}

3 whileW # 0

4 do(u, B,v) < remove fromiW/

5 for each productiold — B

6 doif (u, A,v) ¢ H®

7 then insert(u, A, v) into H°, W

8 for each productiod — C'B

9 dofor each edgéu’, C,u) such thatv', A,v) ¢ H®
10 do insert(u’, A,v) into H* andW
11 for each productio®d — BC
12 dofor each edgév, C,v’) such that(v, A,v") ¢ H®
13 do insert(v, 4,v") into H* andW

Figure 4. Baseline algorithm for CFL-reachability

at most two symbols. The algorithm in Melski and Reps’ paper—
called BASELINE-CFL-REACHABILITY and shown in Figure 4—
computes tuplegu, A,v), whereu,v are nodes ofS and A is

a terminal or non-terminal, such that there is a path frorto

v labeled by a wordw that G can derive fromA. A worklist

W is used to process the tuples one by one; derived tuples are
stored in a tablg?®. It is easily shown, by arguments similar to
those for RSM-reachability, that the algorithm is cubic asguires
quadratic space. On termination, a tuple 7, v), whereu, v are
nodes and the initial symbol ofG, is in H? iff v is CFL-reachable
from w.

As in case of RSM-reachability, now we store the rows and
columns ofH® as fast sets of)(n) size. For a node: and a non-
terminal A, the rowRow (u, A) (similarly the columnCol(u, A)),
stores the set of nodes such thatu, A, ") (similarly (v', A, w))
isin H°. Now, the bottlenecks of the algorithm are the two nested
loops (lines 8-10 and 11-13). We speed them up by implenggntin
them using set difference operations— for example, the fomp
line 8-10 is replaced by:

for each productiomd — CB
dofor v’ € (Col(u,C) \ Col(v, A))
do insert(u’, A,v) into H® andW.

Assuming a fast set implementation, the cost for this looin ia
given iteration of the main loop ©(n/logn + o), whereo is the
number of new tuples inserted inf®°. Since the number of inser-
tions into H* is O(n?), its total cost during a complete run of the
algorithm isO(n®/ log n). The same argument holds for the other
loop. Let us call the modified algorithm CFLERCHABILITY . By
the discussion above:

THEOREMZ2. The algorithmCFL-REACHABILITY solves the all-
pairs CFL-reachability problem for a fixed-sized grammadaan
graph withn nodes inO(n?/ log n) time andO(n?) space.

Theorem 2 improves the previous cubic bound for all-pairs—
or, for that matter, single-source, single-sink— CFL-tesility.
By our discussion in Section 2, this implies subcubic, setell
algorithms for Datalog chain query evaluation as well asntiagy
program analysis applications of CFL-reachability.

4. All-pairsreachability in bounded-stack RSMs

Is a better algorithm for RSM-reachability possible if thgout
RSM is bounded-stack? In this section, we show that thisdeed
the case. As we mentioned earlier, the only previously known
way to solve reachability in bounded-stack machines is ® us
summarization, which gives a cubic algorithm; speedingitising

the technique we presented earlier leads to a fdotpr- speedup.

Now we show that the bounded-stack property gives us a second

logarithmic speedup. Our algorithm combines graph seaiith w

a speedup technique used by Rytter (1983, 1985) to recognize

languages of loop-free 2-way PDAsUnlike the algorithm for
general RSMs, it is not just an application of existing teghes,
and we consider it the main new algorithm of this paper.

We start by reviewing search-based algorithms for reatihabi
in (general) RSMs. Led! be an RSM as in Section 2, and recall the
relation H defined in Section 3—henceforth, we view it as a graph
and call it thesummary graptof M. The edges off are classified
as follows:

e Edges((b, en), en), whereb is a box ancn is an entry state in
Y (b), are known asall edges

e Edges((b,en), (b, ex)), whereb is a box, ancen is an entry
andez an exitinY (), are calledsummary edges

e Edges that are also edgesidf are calledocal edges

Note that a state is same-context reachable from a stai# there

is a path inH from « to v made only of local and summary edges.
Let the set of states same-context reachable fudme denoted by
H*(u). While the call and local edges &f are specified directly by
M, we need to determine reachability between entries and iexit
order to identify the summary edges. The search-based fatiomn

of summarization (Reps et al. 1995; Horwitz et al. 1995) @ew
reachability computation fak/ (or, in other words, computation of
the transitive closurél ™ of H) as a restricted form ahcremental
transitive closure. A search algorithm is employed to cot@pu
reachability inH; when an exitex is found to be same-context-
reachable fronen, the summary edgé(b, en), (b, ex)) is added

to the graph The algorithm must now explore these added edges
along with the edges in the original graph.

Let us now assume thatl is bounded-stack. Consider any call
(b,en) in the summary grapl/. BecauseM is bounded-stack,
this state is unreachable from the state Hence,(b, en) anden
are not in the same strongly connected component (SCE) and
a call edge is always between two SCCs. The situation is lskdtc
in Figure 5. The nodes are states/df (en is an entry ancezx is
an exit in the same component, whilds a box), and the large

circles denote SCCs. We do not draw edges within the same SCC—,

the dotted line fromen to ex indicates thatex is same-context
reachable fronen.

We will argue that all summary edges H may be discovered
using a variant of depth-first graph search (DFS). To stat, et
us assume that the summary grdjlis acyclic, and consider a call
(b, en) in it. First we handle the case when no pathfnfrom en
contains a call. As a summary-edge always starts from atbél,
means that no such path contains a summary-edge eithehand t
part of H reachable fronen is not modified due to summary edge
discovery. Thus, the séf°(en) of statesy same-context reachable
(i.e., reachable via summary and local edges) framcan be
computed by exploringZ depth-first fromen. Further, because the
graph is acyclic, the same search can label eachswdth the set
H*(v). This is done as follows:

e if v has no children, the’ °(v) = {v};
e if v has childrenui, us, ..., um, then

H*(v) = UHS(W).

1A loop-free 2-PDA is one that has no infinite execution on aoydyThe
recognition problem for loop-free 2-PDAs reduces to rebiityain acyclic
RSMs—i.e., RSMs whose configuration graphs are cycle-fodwiously,
these are less general than bounded-stack RSMs.

———=local edge

- ---> call edge

——= summary edge

Figure5. All-pairs reachability in bounded-stack RSMs

Once we have computed the et (en) of suchv-s that are
same-context reachable froem, we can, consulting the transi-
tion relation ofM, determine all summary edgé®, en), (b, ex)).
Note that these are the only summary edges ftbpan) that can
ever be added té/. However, these summary edges may now be
explored viathe same depth-first traversalwe may view them
simply as edges explored after the call-edgertalue to the DFS
order. The same search can compute thelE¥tu) for each new
stateu found to be reachable from the retufb, ex). Note that
descendants db, ex) may also be descendants«f—for exam-
ple, a descendant of en may be reachable from a different en-
try point en’ of Y (b), which may be “called” by a call reachable
from (b, ex). In other words, the search frofh, ex) may encounter
somecross-edgesthus needing to use some of thE’-sets com-
puted during the search froem. Once theH °-sets foren and all
summary-children(b, ez) are computed, we can compute the set
H?®((b,en)). Since we are only interested in reachability via sum-
mary and local edges and a call has no local out-edges, this se
the union of theH *-sets for the summary children.

Now suppose there are at m@st 1 call states in a path &/
from en. Let the statd’, en’) be the first call reached froem in
a depth-first exploration— because of the bounded-stagkeptyp
no descendant efn’ can reacten in H. Now, there can be at most
(p — 1) calls in a path fromen’, so that can inductively determine
the summary edges froiib’, en’), explore these edges, and label
every state in the resultant tree by the sBt°(v). It is easy to see
that this DFS can be “weaved” into the DFS frem.

The above algorithm, however, will not work wheid has
cycles. This is because in a graph with cycles, a simple DRSata
construct the set&l*(v) for all statesv. This difficulty, however,
may be resolved if we use, instead of a plain DFS, a transitive
closure algorithm based on Tarjan’s algorithm to compute38Cs
of a graph (Aho et al. 1974). Many such algorithms are known in
the literature (Purdom 1970; Eve and Kurki-Suonio 1977;nSith
1983). LetReach(v) denote the set of nodes reachable from a node
v in a graph. The first observation that these algorithms uieats
for any two nodes;; andwvs in the same SCC of a graph, we have
Reach(v1) = Reach(v2). Thus, it is sufficient to compute the set
Reach for a single representative node per SCC. The second main
idea is based on a property of Tarjan’s algorithm. To undersit,
we will have to define theondensation graply of a graphG:

e the nodes of5 are the SCCs of7;

* the edge set is the least set constructed by: “if, for nétjesnd VISIT(u) N
S of G, G has nodes € S1,v € S3 such that there is an edge addu to Visited

f to v, thenG h dge from; to Sa.” push(u, L)
rom u to v, thenG has an edge frorf: to .S, low(u) «— dfsnum(u) — height(L)

3
Now, Tarjan's algorithm, when running on a gragh “piggy- 4 Reach(u) «— 0; rep(u) «—L
backs” a depth-first search of the graph and outputs the rajdés 5 Out(u) < 0; Next(u) = { children ofu }
in a bottom-up topological order. This is possible becabsecon- 6 for v € Next(u)
7
8
9

N =

densation graph of any graph is acyclic. For example, runoim doif v ¢ Visited then VISIT (v)

the graph in Figure 5 (let us assume that all the edges arerinow if v € Done

the algorithm will first output the SCC containirg, then the one then addwv to Out(u)

containing(b, ex), then the one containing, en), etc. We can, in 10 ese low(u) «— min(low(u), low(v))
fact, view the algorithm as performing a DFS on the condémsat 11 if low(u) = dfsnum(u)

graph ofG. In the same way as when our input graph was acyclic, 12 then repeat

we can now compute, for every nodein the condensation graph, 13 v« pop(L)
the set of node®each(S) reachable from that SCC, defined as: 14 addv to Done
15 addv to Reach(u)
Reach(S) = | Reach(u). 16 Out(u) — Out(u) U Out(v)
u€s 17 rep(v) — u
For eachsS, this set is known by the time the algorithm returns from 18 until v = u
the first node inS to have been visited in the depth-first search. 19 Reach(u) — Reach(u) U U, ¢ oui(u) Reach(rep(v))

Assuming that we have a transitive closure algorithm of the
above form, let us focus on bounded-stack RSMs again. Let us BASELINE-CLOSURK)

also suppose that we are only interested in same-contetiabi 1 Visited < 0; Done «— 0
ity. We apply the transitive closure algorithm to the grdphafter 2 for each node:
modifying it in the two following ways. First, we ensure ttae 3 do ifu ¢ Visited then VISIT (u)

setsReach(u), for a stateu, only contain descendants ofreach-
able via local and summary edges— this requires a trivialimod
fication of the algorithm. To understand the second moditinat
consider once again a cgll, en) in a summary graplf/; note that

the call edgé (b, en), en) is an edge in the condensation gragh

Figure 6. Transitive closure of a directed graph

Thus, the seReach(Sen), WhereSe,, is the SCC okn, is known idea is that in any DFS tree 6f, the nodes belonging to a particular
by the time the transitive closure algorithm is done explgthis SCC form a subtree. The nodg in an SCCS that is discovered
edge. Now we can construct all summary edges f(bran) and first in a run of the algorithm is marked as tfepresentativeof .S;
add them as outgoing edgéem (b, en), viewing them, as inthe for each nodev in S, rep(v) denotes the representative $f(in
acyclic case, as normal edges appearing after the calliedgeor- this caseuo). A global stackZ supporting the usual push and pop
der of exploration. The sekeach(S(,.n)) Can now be computed. operations is maintainedeight (L) gives the height of the stack at
By the time the above algorithm terminate®¢ach(S.) = any given time. As soon as we discover a node, we push it on this
H?®(u) for each state— i.e., we have determined all-pairs same- stack—note that for any SCC, the representative is the fck to
context reachability in the RSM. To determine all-pairschesbil- be on this stack. For every nodeg dfsnum(u) is the height of the
ity, we simply insert the call edges into the summary grapitl a stack when it was discovered, ahev(u) equals, once the search
compute its transitive closure. In fact, we can do betteth wome from v has returned, the minimumlfsnum-value of a node that a
extra book-keeping, it is possible to compute reachabitityhe descendant of. in the DFS tree has an edge to. Now observe that
same depth-first search used to compute same-context biltgha i low(u) = dfsnum(u) at the point when the search is about to
(i.e., summary edges). return from a node, thenu is the representative of some SCC. We

Next we present an algorithm for graph transitive closuset,th maintain the invariant that all the elements above and &ivduof
in addition to being based on Tarjan’s algorithm, also uastdets u in the stack belong to the SCC af Before returning fromu,

to achieve a subcubic complexity. Using the technique redi we pop all these nodes and output them as an SCC. Nodes in SCCs

above, we modify it into an algorithm for bounded-stack RSM- already generated are stored in aBete.

reachability ofO(n?/ log® n) complexity. Now we shall see how to generate the set of nodes reachable
) o from a node ofG. Let S be an SCC of¥; we want to compute the

4.1 Speeding up search-based transitive closure set Reach(S) of nodes reachable froifi. Consider the condensa-

The algorithm that we now present combines a Tarjan’s-élyor tion graphG of G, whereS is a node. IfS has no children in the

based transitive closure algorithm (studied, for exampleSchmitz graph, thenReach(S) = S; if it has childrenS,, Sa, .. ., Sk, then
(1983) or Purdom (1970)) with a fast-set-based speedupitpeh Reach(S) = |J, Reach(S;). Once this set is computed, we store it
used by Rytter (1983, 1985) to solve the recognition probiem in a tableReach indexed by the representatives of the SCCé&/of
a subclass of 2-PDAs. While subcubic algorithms for graphsi- Of course, we compute this set as well as generate the SCCs in
tive closure have been known for a long time, this is, so favas one depth-first pass @f. Recall that the SCCs a¥ are generated
know, the first algorithm that is based on graph traversalyaid in a bottom-up topological order (the outputting of SCCsirelby
runs inO(n®/ log? n) time. Both these features are necessary for lines 12-19 of VisIT, the recursive depth-first traversal routine of
anO(n?®/ log? n)-time algorithm on bounded-stack RSMs. our algorittlm). By the timeS is generated, the SCCs reachable
As in our previous algorithms, we start with a baseline cubic from it in G have all been generated, and the entrieRedch
time algorithm and speed it up using fast sets. This algorith corresponding to the representatives of these reachalils §&e
called BaseLINE-CLOSUREand shown in Figure 6, is simply a been precisely computed. Then all we need to fill Batich (uo),
DFS-based transitive closure algorithm. Let us first see itow whereug is the representative , is to track the edges out ¢
detects strongly connected components in a grapfiihe main and take the union of and the entries oReach corresponding to

the children ofS in G. Note that these outgoing edges could either

note that Cache has at mostr.2? = O(n*/?/logn) entries.

be edges in the DFS tree or DFS “cross edges.” They are trackedNow, line 5 in SSEEDUPgets executed at most once for each cell

using a tableDut indexed by nodes ai—for anyw in S, Out(u)
contains the nodes outside 8fto which an edge frona may lead.
At the end of the repeat-loop from line 13-18y¢(uo) contains all
nodes outsid& with an edge from insid&’. Now line 19 computes
the set of nodes reachable fram.

As for the time complexity of this algorithm, note that forcha
u, VISIT(u) is called at most once. Every line other than 16 and 19
costs timeO(m + n) during a run of BSELINE-CLOSURE, and
since line 16 tries to add a node €t (u) once for every edge out

of the SCC ofu in G, its total cost i90(m). Line 19 does a union

of two sets of nodes for each edge@] so that its total cost is
O(mn). As for space complexity, the sefach(u) can be stored

in Cache during a complete run of @MSURE—i.e., O(r.27) =
O(n®*?/logn) times. Each time it is executed, it cost¥(n)
time (asSet(i,z;) is of sizeO(logn) and as union of two en-
tries of Reach costsO(n/logn) time), so that itstotal cost is
O(n°/?/logn). Thus, the bottleneck is line 6. Let us compute
the total number of times this line is executed during a run of
closure. Since the total size of all th@ut(u)'s during a run of
BASELINE-CLOSUREIS bounded byn, the emptiness test in line

3 ensures that line 6 is executédm) times in total during a
run of the closure algorithm (this is the tighter bound whee t
graph is sparse). The other obvious bound on the number ef exe
cutions of this line isO(r.n) (this captures the dense case). Each

usingO(n?) space, a cost that subsumes the space requirements ofime it is executed, it costs tim@(r). Thus, the total complexity

the other data structures. Then we have:

LEMMA 3. BASELINE-CLOSUREterminates on any grap&' with
n nodes andn edges in time)(mn). On termination, for every
nodeu of G, Reach(rep(u)) is the set of nodes reachable fram
The algorithm require®)(n?) space.

We will now show a way to speed up the proceduresBLINE-
CLOSURE using a slight modification of Rytter's (1983, 1985)
speedup for loop-free 2-PDAs. L&t be the set of all nodes of
G (we have|V| = n), p = [logn/2], andr = [n/p]. We use
fast set representations of sets of nodes- V—each such set is
represented as a sequemogords, each of length. We will need
to convert a list representation &f into a fast set representation

as above. It is easy to see that this can be done using a sort intime ando

O(nlogn) time.

/* speeds up the operation

Reach(u) — U, e oui(u) Reach(rep(v)) */

letzy, ..., z, be the words in the fast set fé?ut(u) in
SPEEDUK)

1 compute(z,...
2 for1<i<r

3 do if x; = 0 continue

7z’r>

4 if Cache(i,z;) =L
5 then Cache(i, z:) — Uyesei(i,z;) Reach(rep(v))
6 Reach(u) < Reach(u) U Cache(s, z;)

Figure7. The speedup routine

Now recall that the bottleneck of the baseline algorithm is
line 19 of the routine V8IT, which costsO(mn) over an entire
run of the algorithm. Now we show how to speed up this line.
First, let us implement BSELINE-CLOSURE such that entries
of the tableReach are stored as fast sets, and the s@ig(u)
are represented as lists. Now consider the procedaeeESuUPin
Fig. 7, which is a way to speed up computation of the recugenc
Reach(u) — U,cou(u) Reach(rep(v)). The idea is cache the
value (Uye x Reach(rep(v))) exhaustively for all non-empty sets
X that are sufficiently small, and use this cache to compute the
value for larger set®ut(u). This is done using a tabl€ache (of
global scope) such that for ea¢th< ¢ < r and for each word
w # 0 of lengthp, we have a table entr¢fache (i, w) containing
either a subset oF, represented as a fast set, or a special “null”
value L (note that the paifi, w) uniquely identifies a subset &f
of size at mosp—this set is denoted b§et (i, w)). Initially, every
entry of Cache equalsL.

Let us now use the Assign-Union operation for fast sets (see
Section 2) to implement line 6 off=EDUR and replace line 19 of
VIsIT by a call to $EEDUR To see that this leads to a speedup,

of the modified algorithm (let us call this algorithm.GSURE) is
O(min{m.r, r.n.r})—i.e.,O(min{mn/ logn,n?/log? n}).

As for the space requirement of the algorithm, each fast set
stored in a cell of the tabl€ache costs spac®(n). As Cache
hasO(n*/?/logn) cells, the total cost of maintaining this table
is O(n®?/logn). The space costs of the other data structures,
including the table needed for fast sets operations if cost-word
operations are not available, is subsumed by this cost. élesmc
have:

THEOREM3. CLOSURE computes the transitive closure of a di-
rected graph witm nodes andn edges in

O(min{mn/ logn,n*/log®n})
(n%/2/1og n) space.

4.2 Bounded-stack RSMs

Using the ideas discussed earlier in this section, the ithgor
CLOSUREcan now be massaged into a reachability algorithm for
bounded-stack RSMs. Figure 8 shows pseudocode for a baselin
algorithm for same-context reachability in bounded-st&&Ms
obtained by modifying BSELINE-CLOSURE The setsH *(u) in

the new algorithm correspond to the sBisich (u) in the transitive
closure algorithm. The main difference lies in lines 14-dfjch
insert the summary edges into the graph. Also, as it is samtext
reachability that we are computing, a child is added to the se
Out(u) only if it is reached along a local or summary edge (the
“else” condition in line 17). A correctness argument may berg
following the discussion earlier in this section.

Adding an extra transitive closure step at the end of this-alg
rithm gives us an algorithm for reachability. With some exipok-
keeping, it is possible to evade this last step and compuaiehee
bility and same-context reachability in the same search-emi
the details. The speedups discussed earlier in this saoégmow
be applied. Let us call the resultant algorithma8Kk-BOUNDED-
REACHABILITY . It is easy to see that its complexity is the same as
that of Q_LOSURE The only extra overhead is that of inserting the
summary edges, and it is subsumed by the costs of the res al-th
gorithm. Thus, the algorithm 13.CK-BOUNDED-REACHABILITY
has time complexityO(min{mn/logn,n®/log?n}), wherem
andn are the number of edges and nodes in the summary graph of
the RSM. The space complexity is as for@SURE In generalm
is O(n?), so that:

THEOREM4. The algorithmSTACK-BOUNDED-REACHABILITY
computes all-pairs reachability in a bounded-stack RSMiz#
in O(n?/ log? n) time andO(n°/? / log n) space.

We note that an algorithm as above cannot be obtained from
any of the existing subcubic algorithms for graph transitifosure.
All previously known O(n?®/log? n)-time algorithms for graph

VISIT(u)
addu to Visited

push(u, L)

3 low(u) « dfsnum(u) < height(L)
4 H°(u) «— 0; rep(u) —L
5 Out(u) «— 0

6 if uisaninternal state
7

8

9

N -

then Next(u) «— {v:u — v}
ese if uisacall(b,en)
then Next(u) < {en}
else Next(u) « 0
for v € Next(u)
doif v ¢ Visited then VISIT (v)
if v e Done

14 thenif u = (b,en)isacalland = en
15 then for exit statesz € H®(en)
16 do add(b, ex) to Next(u)
17 else addv to Out(u)

18 ese low(u) «— min(low(u), low(v))
19 if low(u) = dfsnum(u)

20 thenrepeat

21 v < pop(L)

22 addv to Done

23 addv to H*(u)

24 Out(u) < Out(u) U Out(v)
25 rep(v) — u

26 untilv =u

27 H* () — H () UU, ¢ gy H (rep(v))

BASELINE-SAME-CONTEXT-STACK-BOUNDED-REACHABILITY ()
1 Visited «— 0; Done «— ()

2 for each state

3 do if u ¢ Visited then VISIT (u)

Figure 8. Same-context reachability in bounded-stack RSMs

transitive closure use reductions to boolean matrix mliggion

and do not permit online edge addition even if, as is the case f
bounded-stack RSMs, these edges arise in a special waye Whil
Chan (2005) has observed that DFS-based transitive closaye

be computed in tim®(mn/ log n) using fast sets, this complexity
does not suffice for our purposes.

5. Reachability in hierarchical state machines

j < k—1. Note that we do not need to process the grAptagain.
We proceed inductively, processing eveify only once. Once the
transitive closure off; is computed, we add all the call edges from
the differentH;’s and compute the transitive closure of the entire
graph. By Lemma 1, there is an edge frento v’ in the final clo-
sure iffv’ is reachable from.

As for complexity, letn be the total number of states ., and
let n; be the number of states in the subgrdph Let BM (n) =
O(n?37%) be the time taken to multiply twe x n boolean matri-
ces. Since transitive closure of a finite relation may be ceduo
boolean matrix multiplication, the total cost due to traimsi clo-
sure computation in the successive phases, as well as thadima
sitive closure, isX; BM (n;) + BM(n) = O(BM (n)). The to-
tal cost involved in identifying and inserting the summang @all
edges i90(n?). AssumingBM (n) = w(n?), we have:

THEOREMS5. All-pairs reachability in hierarchical state machines
can be solved in tim@®(BM (n)), whereBM (n) = O(n*3"%) is
the time taken to multiply twe x n boolean matrices.

Of course, the above procedure is far from compelling—the cu
bic, summarization-based reachability algorithm pulgdlin the
original reference on the analysis of these machines (Aldréan-
nakakis 1998) is going to outperform it in any reasonabldie@p
tion. However, taken together with our other results, itlights a
gradation in the structure of the summary graph and the caxitpl
of RSM-reachability as recursion in the input RSM is corisge.

6. Conclusion

In this paper, we have adapted a simple existing techniqiee in
the first subcubic algorithms for RSM-reachability and CFL-
reachability, and identified a way to exploit constraints ren
cursion during reachability analysis of RSMs. In summadiire
based analysis of general RSMs, summary edges can arise in
arbitrary orders, and all-pairs reachability can be deiteedh in
time O(n®/logn). For bounded-stack RSMs, summary edges
have a “depth-first” structure, and the problem can be soined
O(n?/ log® n) time using a modification of a DFS-based transitive
closure algorithm. For hierarchical state machines, tioblpm is
essentially that of computing transitive closure of the ponents.
Given that RSM-reachability is a central algorithmic pexhlin
program analysis, the natural next step is to evaluate thetipal
benefits of these contributions. Such an effort should relpeeitinat
real implementations of RSM-reachability-based prograalyses
apply heuristics such as cycle elimination and node clinger
and are often fine-tuned to the specific problem at hand. Thus,
instead of implementing our algorithms literally, the gshbuld be

As we saw, the reason why reachability in bounded-stack RSMs to explore combinations of techniques known to work in pcact

is easier than general RSM-reachability is that summarg®dy
the former case have a “depth-first” structure. For hieliaedistate
machines, the structure of summary edges is restrictedgéniau
permit an algorithm with the same complexity as boolean imatr
multiplication.

Let us have as input a hierarchical state machifigvith com-
ponentsiMy, . .., My, such that a call from the componelf; can
only lead to a component/; for j > i. The summary grap#/ of
M may be partitioned inté subgraphdd, . . ., Hy such that call-
edges only run from partition&l; to partitionsH;, wherej > i.
As the componend/;, does not call any other component, there are
no summary edges ifl.

To compute reachability i/, first compute the transitive clo-
sure of Hy. Next, for all entriesen and exitsex of M, and all
boxesb with Y'(b) = k, add summary edgegb, en), (b, ex)).
Now remove the call edges frofd,_; and compute its transitive
closure and, once this is done, use the newly discoveretiabac
ity relations to create new summary edges in subgrdphsvhere

with the high-level ideas used in this paper. As for alganiith
directions, a natural question is whether this is the bestamedo.
A hard open question is whether all-pairs CFL-reachabiéy be
reduced to boolean matrix multiplication. This would beesally
satisfactory as the former can be trivially seen to be as hard
the latter. Yannakakis (1990) has noted that Valiant’s cédo of
context-free recognition to boolean matrix multiplicativaliant
1975) can be applied directly to reduce CFL-reachabiliganclic
graphs to boolean matrix multiplication. However, therersé¢o be
basic difficulties in extending this method to general geaph
Another set of questions involves stack-bounded RSMs and ou
transitive closure. Given a program without infinite re@ams can
we automatically generate a stack-bounded abstractidrcdimabe
analyzed faster than a general RSM abstraction? Can ouwittvan
closure algorithm have applications in other areas—fomnmla,
databases? Recall that, being a search-based algoritdogstnot
require the input graph to be explicitly represented, arsliible
for computing partial closure—i.e., computing the sets ofles

reachable from some, rather than all, nodes. Algorithmk wiich
features have been studied with theoretical as well as ipahct

motivations— a new engineering question would be to see how

well the techniques of this paper combine with them.

Acknowledgements: The author thanks Rajeev Alur, Byron Cook,
Stephen Fink and Mihalis Yannakakis for valuable commefs.
anonymous referee pointed out that Rytter's speedup caubpb
plied directly to the classical CFL-reachability algorithwe thank
him or her for this.

References

A. V. Aho, J. E. Hopcroft, and J. D. UllmanThe Design and Analysis of
Computer AlgorithmsAddison-Wesley Series in Computer Science and
Information Processing. Addison-Wesley, 1974.

R. Alur and M. Yannakakis. Model checking of hierarchicaitstmachines.
In 6th ACM Symposium on Foundations of Software Engineepages
175-188, 1998.

R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, ahdYan-
nakakis. Analysis of recursive state machindsCM Transactions on
Programming Languages and Systefi&4):786—-818, 2005.

V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. FaradZe On
economical construction of the transitive closure of aemed graph.
Soviet Mathematics Doklagd$1:1209-1210, 1970. ISSN 0197-6788.

T. Ball and S. Rajamani. The SLAM toolkit. 143th International
Conference on Computer Aided Verificatigmages 260-264, 2001.

A. Bouajjani, J. Esparza, and O. Maler. Reachability anslgtpushdown
automata: Applications to model checking.8th International Confer-
ence on Concurrency ThegyNCS 1243, pages 135-150, 1997.

T. M. Chan. All-pairs shortest paths with real weightsoin?> / logn))
time. In9th Workshop on Algorithms and Data Structyrpages 318—
324, 2005.

T. M. Chan. More algorithms for all-pairs shortest paths @ighted graphs.
In 39th ACM Symposium on Theory of Computjpages 590-598, 2007.

J. Eve and R. Kurki-Suonio. On computing the transitive utesof a
relation. Acta Informatica 8:303-314, 1977.

J.E. Hopcroft and J.D. Uliman.Introduction to Automata Theory, Lan-
guages, and ComputatioMddison-Wesley, 1979.

S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural islicusing de-

pendence graphs (with retrospective)Blest of Programming Language
Design and Implementatippages 229-243, 1988.

S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedurtdfttav anal-
ysis. In3rd ACM Symposium on Foundations of Software Enginegring
pages 104-115, 1995.

D. Melski and T. W. Reps. Interconvertibility of a class of senstraints
and context-free-language reachabilifyheoretical Computer Science
248(1-2):29-98, 2000.

P. W. Purdom. A transitive closure algorith8IT, 10:76-94, 1970.

J. Rehof and M. Fahndrich. Type-base flow analysis: fronymolphic
subtyping to CFL-reachability. 188th ACM Symposium on Principles
of Programming Languagepages 54—-66, 2001.

T. Reps. Shape analysis as a generalized path problenACM Work-
shop on Partial Evaluation and Semantics-Based Program ipda-
tion, pages 1-11, 1995.

T. Reps. Program analysis via graph reachabilitformation and Software
Technology40(11-12):701-726, 1998.

T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedaialfidw analysis
via graph reachability. I22nd ACM Symposium on Principles of
Programming Languagepages 49-61, 1995.

T. W. Reps, S. Schwoon, and S. Jha. Weighted pushdown syatehtkeir
application to interprocedural dataflow analysis.10th Static Analysis
Symposiumpages 189-213, 2003.

W. Rytter. Time complexity of loop-free two-way pushdownt@mata.
Information Processing Letterd6(3):127-129, 1983.

W. Rytter. Fast recognition of pushdown automaton and eoiitee lan-
guages.Information and Contrql67(1-3):12—-22, 1985.

L. Schmitz. An improved transitive closure algorithniComputing 30:
359-371, 1983.

M. Sharir and A. Pnueli. Two approaches to interprocedueghftbw
analysis.Program Flow Analysis: Theory and Applicationsages 189—
234, 1981.

M. Sridharan, D. Gopan, L. Shan, and R. Bodik. Demand-drp@&ints-to
analysis for Java. [20th ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applicatipages 59-76, 2005.

L. G. Valiant. General context-free recognition in lessntt@bic time.
Journal of Computer and System SciendéX?2):308-315, 1975.

M. Yannakakis. Graph-theoretic methods in database théor§th ACM
Symposium on Principles of Database Systgrages 230-242, 1990.

