
Multi�Protocol Active Messages on a Cluster of SMP�s

�to appear in the Proceedings of SC���

Steven S� Lumetta� Alan M� Mainwaring� and David E� Culler

Computer Science Division

University of California at Berkeley

fstevel�alanm�cullerg�CS�Berkeley�EDU

August ��� ���	

Abstract

Clusters of multiprocessors� or Clumps� promise to be
the supercomputers of the future� but obtaining high
performance on these architectures requires an un�
derstanding of interactions between the multiple lev�
els of interconnection� In this paper� we present the
�rst multi�protocol implementation of a lightweight
message layer�a version of Active Messages�II run�
ning on a cluster of Sun Enterprise ���� servers
connected with Myrinet� This research brings to�
gether several pieces of high�performance interconnec�
tion technology	 bus backplanes for symmetric multi�
processors� low�latency networks for connections be�
tween machines� and simple� user�level primitives for
communication� The paper describes the shared mem�
ory message�passing protocol and analyzes the multi�
protocol implementation with both microbenchmarks
and Split�C applications� Three aspects of the com�
munication layer are critical to performance	 the
overhead of cache�coherence mechanisms� the method
of managing concurrent access� and the cost of access�
ing state with the slower protocol� Through the use
of an adaptive polling strategy� the multi�protocol im�
plementation limits performance interactions between
the protocols� delivering up to
�� MB�s of bandwidth
with
�� microsecond end�to�end latency� Applica�
tions within an SMP bene�t from this fast communi�
cation� running up to ��� faster than on a network of
uniprocessor workstations� Applications running on
the entire Clump are limited by the balance of NIC�s
to processors in our system� and are typically slower
than on the NOW� These results illustrate several po�
tential pitfalls for the Clumps architecture�

� Introduction

Clusters of multiprocessors� or �Clumps�� promise to
be the supercomputers of the future ��� ��	� but ob

taining high performance on these architectures re

quires an understanding of interactions between the
multiple levels of interconnection� In this paper� we
develop and measure a multi
protocol Active Message
layer using the Sun Gigaplane memory system ���	
and the Myricom network �
	� Our system is the
�rst implementation of a lightweight message layer
to transparently handle multiple communication pro

tocols� The uniform� user
level communication ab

straction that results serves as a powerful building
block for applications on Clumps� This research
brings together several pieces of high
performance in

terconnection technology� bus backplanes for sym

metric multiprocessors� low
latency networks for con

nections between machines� and simple� user
level
primitives for communication�

Several groups have studied the problem of pro

gramming Clumps ��� �� ��� ��� ��� ��	� Some of
these e�orts focus on issues related to shared virtual
memory ���� ��	� but most relate to high
level mes

sage libraries such as MPI� The software overheads
associated with memory allocation and tag matching
in traditional message
passing libraries often obscure
the machine
level performance interactions and de

sign issues associated with the actual communication�
Very little work has addressed the complicated set
of tradeo�s involved in implementing a fast commu

nication layer on the combination of cache
coherent
memory and a low
latency network�

Three aspects of the communication layer are crit

ical to performance on Clumps� the arrangement
of data to reduce cache
coherence transactions� the
management of concurrent access to communication
data structures� and the con�nement of adverse inter

�

actions between communication protocols� To quan

tify these dimensions� we have built a multi
protocol
implementation of Active Messages
II ���	 that trans

parently directs message tra�c through the appropri

ate medium� either shared memory or a high
speed
network� The implementation operates on a cluster
of four Sun Enterprise ���� servers running the So

laris ��� operating system and interconnected by a
Myrinet with multiple NIC�s per SMP�
This paper describes the shared memory message

passing protocol and analyzes the e�ects of the hard

ware and software architectures on communication
performance� Using both microbenchmarks and a
range of applications� we illuminate the important
design tradeo�s for a multi
protocol communication
layer� While Clumps have a clear engineering advan

tage over networks of uniprocessor workstations as
the base architecture for large
scale systems� several
obstacles limit their performance advantages at the
application level� The paper brings several of these
problems to light and discusses their implications�
The remainder of the paper is organized as follows�

in the next section� we describe the hardware and
software architectures of the system� Section � then
details the data structures and operations used for
communication through shared memory� in Section
�
we apply microbenchmarks to evaluate base perfor

mance characteristics� Section � compares the per

formance of several applications running on a Clump
and on a network of workstations� Section � pro

vides information about related work� and Section �
presents our conclusions�

� Background

In this section� we describe the relevant features of
the hardware and software architectures on which the
multi
protocol AM
II implementation operates�

��� Hardware Architecture

The experimental platform appears in Figure �� Each
Enterprise ���� server contains eight ��� MHz Ultra

SPARC processors with ��� kB of L� cache per pro

cessor and a total of ��� MB of main memory� Three
Myricom M�F network interface cards �NIC�s� on
independent SBUS�s provide access to a high
speed
network connecting the servers� Each NIC contains
��� kB of SRAM and employs a ���� MHz LANai
processor to manage transfers between the host and
the network� Links in the network provide ��� MB�s
of bidirectional bandwidth� bandwidth between the
host and the NIC is limited by the SBUS to an ob

served maximum of �� MB�s�

Main Memory

Bus Interconnect

Ultrasparc

Myrinet
SBUS
Card

8-port
Myrinet

Gigaplane

Switch

8-port
Myrinet
Switch

8-port

$2

$1

Switch

Myrinet

SMPSun Enterprise 5000 Server

SMP

SMP

SMP

Figure �� Target architecture for the multi

protocol AM
II implementation�a cluster of sym

metric multi
processors� or Clump� Processors in

side an SMP are connected via Sun�s Gigaplane Inter

connect� which provides cache
coherency and delivers
up to ��� GB�s of bandwidth ���	� Communication
between SMP�s utilizes multiple� independent SBUS
connections to a Myrinet high
speed network with in

ternal link bandwidths of ��� MB�s �
	�

The critical components of hardware performance
are the memory hierarchy and the network� as these
characteristics have direct impact on the speed at
which data moves from one processor to another� The
cost of synchronization primitives is also pertinent
when managing simultaneous access by multiple pro

cesses� Using microbenchmarks based upon those of
Saavedra
Barrera ���	� we are able to measure these
values for our system� as shown in Table �� For com

parison� the table also gives the parameters for an
UltraSPARC Model ��� workstation� which uses the
same processor as the Enterprise ����� For message

passing via shared memory� the latency of accesses to
data within another processor�s L� cache is of par

ticular interest� as it represents the minimum cost to
transfer data between two processors� On the Enter

prise ����� such a transfer requires �� cycles� signi�

cantly more than the base memory latency of �� cy

cles�

��� Software Architecture

Active Messages are a well
known model of commu

nication in the parallel programming community and
are typically among the fastest methods of commu

�

Enterprise ���� UltraSPARC ���
server workstation

L� size ��� kB ��� kB
L� miss �memory	 �� cycles
� cycles
L� miss �other L�	 �� cycles N�A
memcpy bandwidth ��� MB�s ��� MB�s

NIC
��bit read ��� cycles ��
 cycles
NIC
��bit write �
 cycles

 cycles
SBUS bandwidth
x
� MB�s
� MB�s

compare�and�swap �� cycles �� cycles

Table �� Selected memory� network� and synchro

nization primitive parameters for our Enterprise ����
servers and UltraSPARC Model ��� workstations�
Both use ��� MHz processors� The uniprocessor
boasts lower memory latency but provides lower
memory bandwidth as well� Note that write latency
for NIC memory is usually hidden by the write bu�er�

nication available ���� ��� ��� ��� ��	� Each active
message contains a reference to a handler routine�
When a message is received� the communication layer
passes the data to the handler referenced by the mes

sage� typically as formal parameters� The association
between message arrival and the execution of a par

ticular block of code is the origin of the term �active
message��

Most Active Message implementations assume the
use of a SPMD model of programming and the avail

ability of a reliable network that is space
shared be

tween users or is time
shared with long� globally

scheduled time slices� The AM
II speci�cation ���	
de�nes a uniform communication interface that pro

vides the functionality required for general
purpose
distributed programming yet permits implementa

tions yielding performance close to that available at
the hardware level� AM
II abstracts communication
into point
to
point messages between communication
endpoints� A group of communicating endpoints form
a virtual network with a unique protection domain�
Tra�c in one virtual network is never visible to a
second virtual network� yet each virtual network re

tains the direct� user
level network access necessary
for high performance� When distinct virtual networks
share the same physical network resources� each con

tinues to perceive private resources� albeit with po

tentially reduced performance� This communication
multiplexing is critical to high
performance message

passing with Clumps� since many processes are ex

pected to be communicating at once� Also� the ratio
of NIC�s to processors in an SMP might� in general�
di�er from one�

The Active Message layer assigns each endpoint a
unique� global name� To create a virtual network�
endpoints map a set of such names into a table of
message destinations� Destinations in the virtual net

work are then indexed using a small integer� Access
rights in a virtual network take the form of a �

bit

Myrinet
NIC

Memory

Myrinet
NIC

Memory

shared memory
queue block

shared memory
queue block

queue block
network

control
block

control
block

queue block
network

Process A

Process B

Main
Memory

Endpoint 1

Endpoint 2

Figure �� Data layout for an AM
II endpoint� The
control block resides in main memory� the network
queue block resides on the network interface card
�NIC�� and the shared memory queue block resides
in a shared memory segment� Only the shared mem

ory queue block is accessible to other processes�

tag speci�ed by each destination endpoint� A sender
must know the value of an endpoint�s tag before send

ing any messages to that endpoint� Tags provide a
reasonable level of protection against both inadver

tently misdirected and malicious messages�
Communication in AM
II uses a request
reply

paradigm� Messages originating outside the Active
Messages layer are called requests� and all request
handler routines must issue a reply using an opaque
message token which holds information about the re

questing endpoint�s name and tag� A message refer

ences a handler routine with a small integer� which is
used by the recipient as an index into an endpoint

speci�c table of such routines� The Active Message
layer reserves index � of the table for the user
de�ned
handler to which messages are returned in the case of
network failure or other faults� e�g�� denial of access�
Two types of message are relevant to this work�

short messages carry up to eight ��
bit arguments�
a bulk data transfer extends a short message with a
block of up to � kB of data�

� Data Structures and Opera�

tions

In this section� we describe the data structures and
operations used to manage local messages� i�e�� mes

sages passed through shared memory� The design

�

packet queue head
handler #

payload
(32 B)

packet queue tail

inverse map

valid flag

bulk index

FIFO bulk data queue (16 x 8 kB)

size

(8 kB)

Tag

Reply Queue Structure
(see above for details)

payload

FIFO packet queue (256 x 64 B)

Request Queue Structure
Shared
Memory
Queue

bulk data tail

type

Block

Figure �� Block diagram of a shared memory queue
block� Short messages use only the packet queue�
Bulk data transfers are written into the bulk data
queue as well�

space of shared memory message
passing layers has
four dimensions� data layout� access control� concur

rency management� and polling strategy� The section
progresses through each of these dimensions� touch

ing on the issues related to each and explaining the
position taken in this work�

��� Data Layout

The multi
protocol representation of an endpoint is a
natural extension of the representation developed for
the Myrinet AM
II implementation ��	� As shown in
Figure �� an endpoint breaks into three blocks� the
control block holds information such as the table of
handler routines and the table of message destina

tions� the network queue block holds message queues
for the network� and the shared memory queue block
holds message queues for shared memory� The control
block is used primarily by AM
II library functions
and is stored in main memory� The network queue
block is handled by the LANai processor and hence
resides in memory on the NIC� The shared memory
queue block is placed in a System V shared memory
segment to allow access by multiple processes within
the SMP� During idle periods� each block can be mi

grated to backing storage in the conventional fashion�
Data in NIC memory back into main memory� and
data in main memory back onto disk�

A diagram of the shared memory queue block ap

pears in Figure �� A copy of the endpoint tag is
used for access control� while two queue structures
hold request and reply messages received by the end

point� Each queue structure further divides into three
sections� queue tail information� accessed only by
senders� queue head information� accessed only by re

cipients� and two FIFO data queues� accessed by both

senders and recipients� The queues are the packet
queue� which contains the handler index and argu

ments� and the bulk data queue� which holds data
for bulk data transfers� Short messages use only
the packet queue� while bulk data transfers use both
queues�
The shared memory queue block has been care

fully tuned for performance� Data are laid out so as
to eliminate false sharing and thereby to reduce bus
transactions� Each packet� for example� occupies a
distinct L� cache line� and bulk data blocks begin on
cache boundaries to increase copying speed�
In addition to the handler index and arguments�

entries in the packet queue contain three other �elds�
a packet type� an inverse queue block mapping� and a
bulk data index� The �rst of these� the packet type�
di�erentiates between short messages and bulk data
transfers� It also serves as the handshake state in
transferring data from a sender to a recipient� A valid
�ag serves the latter purpose for the bulk data queue�
The inverse queue block mapping points to the shared
memory queue block of the sending endpoint in the
address space of the process that owns the receiving
endpoint� enabling reply messages to avoid a poten

tially expensive lookup operation� The last �eld� the
bulk index� records the association between a bulk
data transfer packet and the data itself� The bulk
data queue is signi�cantly shorter than the packet
queue� allowing the shared memory queue block to
�t into a reasonable amount of memory ���� kB��
The shared memory queue block di�ers signi�

cantly from the network queue block in its lack of
send queues� The absence arises from a fundamen

tal di�erence between the methods used to transmit
data over the network and within an SMP� In the net

work case� a sender cannot directly deposit data into
memory located across the network� and must instead
rely on a third party� such as the intelligent Myrinet
NIC�s� to move the data� Within an SMP� the sit

uation is just the opposite� direct access is possible
through shared memory� and no third party exists to
perform the transfer�

��� Access Control

Access control for an endpoint has two components�
accessibility and security� Accessibility determines
when a process is allowed to map shared data into its
address space� Security protects an endpoint against
error� malice� and spying by processes that have al

ready mapped its data�
In this work� we assume the use of multiple pro

cesses within an SMP rather than a number of
threads� Communication between multiple processes

matches the message
passing model more closely than
does communication between threads sharing an ad

dress space� Interprocess communication in Unix typ

ically utilizes the System V IPC layer� which pro

vides a number of standard mechanisms for commu

nication� By choosing to use System V shared mem

ory segments as storage for the shared memory queue
block� we implicitly tie access control decisions to the
model supported by System V interprocess communi

cation� The IPC model is quite similar to that used
by traditional Unix �lesystems� Each segment has
distinct read and write access bits for the owner of
the segment� for a Unix group associated with the
segment� and for all other users� Although perhaps
not impossible to build� a system that addresses se

curity issues through the IPC access model requires
multiple segments and signi�cantly more complex op

erations than our performance requirements can tol

erate� These considerations compel us to assume a
high level of trust between endpoints communicating
through shared memory�

Processes other than the one that owns the end

point can access only the shared memory queue block�
To obtain such access� a process must map the block
into its address space as follows� The segment iden

ti�er for the block is used to extend the endpoint
name�other processes obtain the identi�er when
they learn the name� The actual mapping into an

other process� address space occurs when an endpoint
owned by that process adds the endpoint associated
with the block to its table of message destinations�
The inverse mapping is performed at the same time
to guarantee that reply messages also travel through
shared memory� In Figure �� processes A and B have
mapped the shared memory queue blocks for end

points � and � into their address spaces� A hash
table guarantees that no shared memory segment is
mapped into multiple locations in a single address
space�

��� Concurrency Management

Multiple sender processes may access a shared mem

ory queue block concurrently� requiring atomic en

queue operations to prevent interference� The lo

cal message send operation attempts to minimize the
cost of concurrent access and its impact on applica

tions�

When sending a message� the Active Message layer
�rst decides whether to use a shared memory protocol
or a network protocol� For a local message� the layer
next checks the tag in the destination queue block and
returns any message that lacks access rights� After
this check� the sender attempts to enqueue the mes

sage into the appropriate queue� To enqueue a short
message� the sender �rst obtains a packet assignment
by atomically incrementing the packet queue tail us

ing the compare
and
swap instruction �CAS�� then
claims the assigned packet by changing its type from
free to claimed� again using CAS� If the claim fails�
the queue is full� and the sender backs o� exponen

tially and polls for messages to prevent possible dead

lock� Once the claim succeeds� the sender writes the
data into the packet and completes the enqueue oper

ation by changing the packet type to ready� For bulk
data transfers� a sender claims a bulk data block be

fore obtaining a packet assignment� After �lling both
packet and block� the sender marks the full packet
with ready�bulk�

Given the e�ort made to achieve high performance�
the use of two synchronization primitives� and in par

ticular the CAS instruction� may seem peculiar� We
have studied the performance of a range of mecha

nisms for managing concurrent access to the shared
memory queue blocks� including the mutual exclu

sion techniques described in ���	� The communica

tion regime is one of low resource contention� The
time spent in the critical section of the send oper

ation is small when compared with the total over

head of sending a message� and only intense all
to

one communication results in non
trivial contention
for the shared queues� CAS is reasonably inexpen

sive on the Enterprise ����� and the degree to which
our send operation reduces the impact of senders be

ing swapped out on the progress of other senders re

sults in a level of robustness that proves quite advan

tageous in multiprogrammed systems� Furthermore�
the method outlined above results in superior appli

cation performance even for a dedicated system� The
interested reader is referred to ���	 for further detail�

Although the AM
II library provides support for
protected access to an endpoint using multiple re

ceiver threads� we have assumed the use of a single
thread per process in this work� The issues and costs
for concurrent access by receivers are similar to those
for senders� In the absence of concurrency� the local
poll operation need only check the type of the packet
at the head of each packet queue� When a message
is available� the recipient advances the packet queue
head and passes the arguments and� for bulk data
transfers� the associated data block� to the appropri

ate handler routine� After this call returns� the packet
is marked as free and the data block is marked as in

valid�

�

��� Polling Strategy

Message polling operations are ubiquitous in Ac

tive Message layers� Responsiveness demands that
a layer poll for incoming messages when sending a
message ��	� In the case of the multi
protocol im

plementation� however� the interaction between the
lightweight shared memory protocol and the more ex

pensive network protocol can have signi�cant impact
on the performance of the former� The problem does
not arise from the act of pulling in messages� but from
the cost of checking repeatedly for messages when
no messages are present� The empty packets at the
head of shared memory packet queues remain cache

resident during periods of communication and cost
only a handful of cycles to poll� Network endpoints�
however� reside in uncacheable NIC memory� Reads
from this memory incur an overhead of ��� cycles�
leading to an order of magnitude di�erence between
polling costs for the two substrates� Obtaining a high
level of performance for programs that rely primarily
on the shared memory protocol for messages requires
a more sophisticated polling strategy�

We explored both fractional and adaptive strate

gies for polling� A fractional strategy performs the
more heavyweight poll for only a fraction of all polling
operations� To balance the protocols� a successful
poll accepts a correspondingly larger number of mes

sages when using the more expensive protocol� For
example� a strategy that polls the network only once
in every four calls to poll then accepts up to four
times as many network messages in a single network
poll as it does shared memory messages in a shared
memory poll� An adaptive strategy adjusts polling
rates dynamically in response to tra�c patterns� The
adaptive strategies that we investigated varied a frac

tional polling rate for the network between minimum
and maximum values based on a history of recent
network polling e�orts� Within the boundaries� the
strategy polls whenever the history predicts the pres

ence of a message�

After investigating a wide selection of strategies� we
settled on an adaptive strategy with a maximumnet

work polling frequency of one in eight� slightly above
the cost ratio of one to ten between shared memory
and network polling� Allowing more frequent net

work polling generally decreased application perfor

mance� Our strategy ranges between frequencies of
one in eight and one in thirty
two based on the num

ber of network messages received by the last thirty

two network polls� Applications were not very sen

sitive to small di�erences in these parameters� but
neither did all applications respond in the same way
to changes� The minimumnetwork polling frequency

of one in thirty
two is small enough that applications
running inside of an SMP run within ��� of their ex

ecution times using a single
protocol shared memory
layer with no network accesses�

��� Summary

The data for an active endpoint are split between
main memory� NIC memory� and shared memory seg

ments� Messages between multiple processes within
an SMP travel through the shared memory queue
block� which must �rst be mapped into each pro

cess� address space� Any endpoint in an SMP can
be mapped by any process in that SMP� but only
the shared memory queue data become accessible
through the mapping� We assume a high level of trust
between endpoints communicating through shared
memory�

The queue block holds a tag for access control and
two queue structures for receiving local messages� No
send queues are used for local messages�a sender de

posits data directly into a receive queue at the desti

nation endpoint� The local send operation uses CAS
to minimize interference between senders� The oper

ation takes �ve steps� checking the destination tag�
obtaining a packet assignment� claiming the packet�
writing the data� and marking the packet as ready
for receipt� Bulk data transfers obtain a data block
assignment and claim the block before obtaining a
packet assignment� When a local message arrives� a
recipient notices the change in the type of the packet
at the head of the queue� After passing the data to
the appropriate handler routine� the recipient frees
the packet for reuse� The structure of the shared
memory queue block keeps the number of bus trans

actions produced by these operations to a minimum�

Message polling operations are ubiquitous in Ac

tive Message layers� but polling the network typi

cally costs an order of magnitude more than polling
shared memory� The source of this di�erence lies in
the storage used for the two queue blocks� Shared
memory segments bene�t from the Gigaplane�s cache

coherence support� NIC memory does not� and is
uncacheable� To retain the base performance of
the shared memory protocol� we adopt an adaptive
polling strategy� The strategy polls the network
whenever a history of the last thirty
two network
poll operations predicts the presence of a message�
bounded by a minimum polling rate of one in thirty

two and a maximum rate of one in eight�

�

Shared Multi
Protocol Multi
Protocol
Memory Shared Memory Myrinet Myrinet

Latency �L�
��� ��� ���� ����
Send Overhead �os� ��� ��� ��� ���

Receive Overhead �or� ��� ��
 ��� ���
Gap �g� ��� ��� ���� ����

Gap per Byte �G� ������� ������� ������ ������
Bandwidth ���G� ��� MB�s ��� MB�s ���� MB�s ���� MB�s
Half
power Point ��� kB ��� kB ��� kB ��� kB

Round Trip Time �RTT� ��� ��� �� ��

Table �� LogP parameters and round trip times in microseconds� Values for both the multi
protocol and
the single
protocol implementations are included for comparison� The polling strategy used in the multi

protocol version limits the impact of network polling on the shared memory protocol and actually improves
the network parameters�

� Microbenchmark Analysis

In this section� we investigate the performance of
the multi
protocol implementation with microbench

marks� After a brief explanation of the LogGP net

work model� we present parameters for both protocols
used singly and in combination� We next illustrate
the costs of message
passing relative to the cache
line
transfer time with a detailed breakdown of the over

head involved in sending a local message� A summary
of the issues and implications concludes the section�

��� Methodology

The LogPmodel of network performance ��	 attempts
to characterize communication networks as a set of
four parameters� L� an upper bound on the network
latency �wire time� between processors� o� the proces

sor busy
time required to inject a message into the
network or to pull one out� g� the minimum time
between message injections for large numbers of mes

sages� and P� the number of processors� The over

head o is often separated into send overhead� os� and
receive overhead� or� LogP assumes a small� �xed
message length for communication� neglecting com

mon hardware support for large transfers� LogGP ��	
extends the LogP model with the parameter G� the
time per byte for long messages�

LogP parameters were measured using a mi

crobenchmark from the suite described in ���	� To
measure G� we constructed a second benchmark to
fragment bulk data transfers of arbitrary length into
� kB chunks and to pipeline those chunks through the
Active Message layer� The sending process copies the
data from a send bu�er into the receiving endpoint�
and the receiving process copies the data from the
endpoint into a receive bu�er�

��� Results

The LogGP parameters for the multi
protocol im

plementation appear in Table � alongside the values
measured for the single
protocol implementations��

Round trip times for local messages are roughly an or

der of magnitude less than for network messages� and
sustainable bandwidth is roughly �ve times greater�
peaking at about ��� MB�s for the multi
protocol
implementation� The negative latency for the single

protocol shared memory case indicates overlap in
time between the send and receive overheads ���	� in
this instance due to the poll operation� The adaptive
polling strategy limits the impact of network polling
on local messages to an average of ��� microseconds
for both send and receive overhead and an increase
of roughly ��� in round trip time� For the network
protocol� the adaptive polling strategy reduces to

tal overhead and results in slightly improved perfor

mance� The upper bound on network polling reduces
the send overhead by ��� microseconds� but the ad

ditional shared memory poll operations add ��� mi

croseconds to the receive overhead� The smaller to

tal overhead implies that less latency can be hidden�
and that parameter consequently rises� The gap and
round trip times remain unchanged�

��� Overhead Breakdown

Having explored the coarse measurements of the im

plementation� we now investigate the contributions
of each component of the send operation towards the
total overhead� Recall that after receiving a mes

sage� the recipient marks the message packet as free

�Recent e�orts have reduced the round trip time for AM�II

on Myrinet to �� microseconds� and further optimization is

planned� These improvements have limited impact on the is�

sues discussed in this paper� however�

�

49

39

9

11

22

108

50

42

32

45

46

fill packet

L2 cache miss
(11 cycles hidden)

increment queue tail

call overhead

pull from receiver’s L2 cache

base cost

overflow check

poll for incoming messages

argument and tag checking

concurrency management

multi-protocol extension

Figure
� Breakdown of send overhead in cycles for
the shared memory protocol� The left bar shows the
costs of each component for the base case� which per

forms no error checking or concurrency management
for the destination queue� The cost of the latter ap

pears in the right bar� The send overhead totals
��� cycles ���� microseconds� for the shared mem

ory protocol and �
� cycles ���� microseconds� for
the multi
protocol layer�

to allow its reuse� On the Enterprise ����� that
change invalidates the cache line occupied by the
packet on other processors� Hence� sending a short
message generally incurs at least one L� cache miss�
We expect free packets to remain cache
resident on
the receiving processor during periods of communi

cation� In the LogP microbenchmark� for example�
the processors access roughly �� kB of communi

cation data�quite a bit less than the size of the
��� kB L� cache� The typical time spent servicing
the L� miss is hence closer to the �� cycle latency to
access another L� cache than to the �� cycle main
memory latency�
A breakdown of the send overhead for short mes

sages appears in Figure
� The left bar illustrates
the base cost of a short message in the absence of
error checking and concurrency management for the
destination queue� The total of ��� cycles ����� mi

croseconds� also assumes that the message packet is
not resident in the receiver�s cache� To reach the
base cost� the sender prepares eight arguments and
calls the Active Message layer in a total of �� cycles�
Locating the destination endpoint and advancing the
tail of the queue require another � cycles� Finally� the
layer obtains and �lls a packet� incurring an L� cache
miss in the process� Filling the packet takes another

� cycles� but allows the processor to hide �� cycles
of the miss latency�
The right bar in the �gure extends the base cost

with measurements of the remaining components of
send overhead� When queue packets are resident in
the receiver�s L� cache� each message incurs an ad

ditional �� cycle penalty� A check for destination
queue over�ow is responsible for the next �� cycles�
primarily due to an extra bus transaction� The check
reads the packet type and makes immediate use of the
result� incurring the full overhead of the �rst trans

action� Filling the packet then results in an invalida

tion� the second transaction�� The local poll opera

tion performed before each send adds another
� cy

cles� Function argument and endpoint tag checking
by the Active Message layer introduce another �� cy

cles of overhead� Concurrency management using
CAS adds
� cycles� bringing the total to ��� cycles
���� microseconds� when using only the shared mem

ory protocol� Finally� inclusion of the network pro

tocol more than doubles the time spent in the poll
operation� bringing the total for the multi
protocol
implementation to �
� cycles ���� microseconds��

��� Summary

The numbers presented in this section help to illu

minate the performance of message
passing across
cache
coherent buses and the interactions between
the two protocols� Until the most recent genera

tion of machines and interconnection technology� net

work communication often provided greater band

width than that available from the memory system�
With our system� the shared memory protocol pro

vides �ve times the bandwidth available from the net

work� peaking at ��� MB�sec for the single
protocol
implementation� The end
to
end latency of local mes

sages� ��� microseconds� is an order of magnitude
smaller than that of network messages� The adap

tive polling strategy limits the impact of network
polling on local message latency to an increase of
roughly ��� and reduces peak bandwidth by
��
For the network protocol� the polling strategy reduces
total overhead but has a negligible e�ect on overall
performance� In light of the breakdown of send over

head� we note that bus transactions make up only a
third of the cost� Another third is spent on the basic
mechanisms of the operation� call overhead� argu

ment checks� queue advancement� and packet �lling�
The �nal third of the time is split between manag

ing concurrent access between senders and polling for
incoming local messages�

�One transaction can be eliminated if the sender prewrites

an unused part of the packet before the over�ow check and

uses a memory barrier to prevent reordering� This approach

reduces the send overhead by �	 cycles when measured in iso�

lation� but has a negative impact on the full LogP parameters

and application results� presumablydue to cache line thrashing

when a receiver polls during the send operation�

�

� Application Analysis

In this section� we present execution time measure

ments for three applications running within a Clump
and on uniprocessor UltraSPARC workstations com

municating through a Myrinet network �a NOW��
The applications are drawn from the Split
C ap

plication suite ��	 and are written in a bulk syn

chronous style�processors proceed through a se

quence of coarse
grained phases� performing a global
synchronization between each phase� The results
shed light on several performance issues for Clumps
and illustrate the impact of the multi
protocol imple

mentation�

��� Theory of Performance

The powerful interconnect within each SMP promises
Clumps a signi�cant performance advantage with re

spect to a NOW� Most applications can easily reap
the bene�ts o�ered by fast communication� The full
potential of Clumps may be di�cult to achieve� how

ever� as certain aspects of the system can degrade
overall performance�
The most important of these issues is the balance of

processors to NIC�s inside each SMP� A Clumps appli

cation tuned to take advantage of the shared memory
protocol makes subsequently less use of the network
protocol� allowing processors that share network re

sources to operate at full potential� But for some
applications� such as those with phases of all
to
all
communication� tuning for Clumps may not be pos

sible� In our system� each SMP uses three network in

terfaces to handle network tra�c for eight processors�
leading to three
way sharing for two of the NIC�s�
A second complication arises for applications writ

ten in a bulk synchronous style� which implicitly as

sume a reasonably balanced load� The use of multi

protocol communication can violate that assumption�
as performance bene�ts depend on the fraction of
tra�c routed through the shared memory protocol�
In such a case� the improvement in application ex

ecution time re�ects only the minimum of the per

processor improvements�other processors idle until
the slowest processor has �nished the phase� As a �rst
step towards tuning a bulk synchronous application
for a Clump� a programmer can arrange the virtual
processor layout to reduce the amount of communi

cation tra�c that must travel through the network�
Finally� the additional complexity of cache

coherence support within an SMP results in longer
memory latencies� On the Enterprise ����� the di�er

ence is roughly ��� for memory not shared between
processors� This memory latency penalty does not

Input Parameters Memory

�D FFT ���x���x��� values �
 MB

D underlying lattice
CON�comm ������� nodes�processor
� MB

��� edges present
�D underlying lattice

CON�comp �
����� nodes�processor
� MB

�� edges present
����� nodes�processor

EM
D�naive degree ���
�� remote ��
 MB
naive layout
����� nodes�processor

EM
D�good degree ���
�� remote ��
 MB
good layout

Table �� Input parameters and per
processor mem

ory usage for application runs on the Clump� The
CON runs di�er in the balance between communica

tion and local computation� The EM�D runs di�er
in the layout of virtual processors�

usually play a large role in performance� however� as
it is mitigated by a number of factors� including a
larger L� cache� higher per
processor memory band

width� and locality of access in the application codes�
A more restrictive constraint occurs in the form of ag

gregate memory bandwidth� Although the Gigaplane
provides more bandwidth than the eight processors
can use� the memory banks in each of our SMP�s
are not fully populated� limiting aggregate memory
bandwidth to
�� MB�s� This artifact compounds
the e�ect of the memory latency penalty and has sig

ni�cant impact on performance�

��� Application Pro�le

We chose to run each of the three Split
C applications
with one or two sets of input parameters to illustrate
performance e�ects� For each run� Table � lists the
input parameters and per
processor memory require

ment when running on the Clump� Table
 separates
communication volume for each run into network and
local tra�c�
The �rst application� �
D FFT� performs a fast

Fourier transform in three dimensions and typi�es
regular applications that rely primarily on bulk com

munication� The all
to
all communication pattern
used in �
D FFT exposes the e�ect of the SMP�s pro

cessor to NIC balance�
The second application� CON� �nds the connected

components of a distributed graph� CON performs a
large amount of �ne
grained communication in a sta

tistically well
de�ned pattern� The balance between
computation and communication in CON depends
strongly on the input parameters� We selected a
communication
bound run to highlight the bene�ts of
the fast communication and a second� computation

bound run to demonstrate the e�ect of the SMP
memory latency penalty� The input parameters for
the �rst run result in a period of high contention and
load imbalance near the end of the execution�

�

Network Communication Local Communication
Short Messages Short Messages

Mean Min� Max� Bulk Data Mean Min� Max� Bulk Data � Local

�D FFT
����
����
�
��
���� x
 kB ��
 ��� ����� ��� x
 kB ����

CON�comm ����
� ����
� �
����� ��� x �� B ����
�

���
 ���

� �
� x �� B
���
CON�comp ����
 ����� ��
�� �� x �� B ����� ��
�� ��
�� � x �� B
���

EM
D�naive ������� ������� ��������� none ����
���
 ��
���� ��������� none ����
EM
D�good
���
�� � ������� none �������
� ������
�� ����
���� none �
��

Table
� Per
processor communication volume for the Clump� Only �
D FFT uses a signi�cant number
of bulk transfers� The communication
bound CON run su�ers from a load imbalance in network tra�c�
Di�erences in virtual processor layout result in markedly di�erent tra�c distributions for the EM�D runs�

�
way SMP NOW �� proc��
Shared
Mem� M
P M
P Myri�

�
D FFT ��� ��� ��� ����
CON�comm ���� ���
���
���
CON�comp ��
� ��

 ���� ����

EM�D ��� ��� ���� ����

Table �� Application execution times in seconds�
Values for both the multi
protocol and the single

protocol implementations are included for compari

son� EM�D and the communication
boundCON take
advantage of the multi
protocol layer to obtain su

perior performance on the SMP� The computation

bound CON and �
D FFT performance on the SMP
exhibit inferior performance due to an artifact of our
Clump that limits aggregate memory bandwidth�

EM�D� the last application� propagates electro

magnetic radiation in three dimensions on an irreg

ular mesh and represents the class of applications
that perform irregular� �ne
grained communication�
EM�D alternates between updates to the electric and
magnetic �elds in a bulk synchronous manner� We
use two runs of EM�D to show the e�ect of the
bulk synchronous style and the advantage of intel

ligent virtual processor layout� Both runs partition
the underlying coordinate space on �� processors
into
x
x� blocks� The �rst run uses a naive lay

out for virtual processors� placing processors within
an SMP into
x�x� blocks� In the second run� de

noted EM�D�good in the tables� an SMP�s proces

sors instead occupy �x�x� blocks� reducing both the
aggregate network tra�c and the upper bound on
per
processor network tra�c�

��� Results

Table � presents execution times in seconds for the
three applications running on one SMP and on an
�
processor NOW� For each platform� the table gives
timings using both the multi
protocol implementa

tion and the appropriate single
protocol implemen

tation� Each entry represents the average of mul

Clump NOW
�
 �
way SMP�s� ��� proc��

�
D FFT ��� ���
CON�comm �� ���
CON�comp ��� ���
EM�D�naive �

�
EM�D�good �� ��

EM�D�naive bal� �� to �� �� to
�
EM�D�good bal� ��� to �� �� to ��

Table �� Application execution times and balance
in seconds� The Clump�s smaller per
processor
network bandwidth restricts performance for both
�
D FFT and the CON runs� The EM�D run with
poor virtual processor layout typi�es performance for
bulk synchronous programs� The improved layout ob

tains superior performance by reducing network traf

�c�

tiple executions and is reported to a precision no
greater than that allowed by the variance between
the executions� The application
level impact of net

work polling on the shared memory protocol ranges
from � to ���� Use of the multi
protocol implementa

tion and associated polling strategy on the NOW has
negligible impact on most applications� but reduces
�
D FFT performance by about
�� In terms of the
SMP to NOW comparison� the EM�D run� which par

titions the problem space into �x�x� blocks� results
in the most dramatic improvement� with the SMP
�nishing ��� faster than the NOW� The remaining
runs� �
D FFT and the two CON runs� step through
large sets of data� requiring high memory bandwidth
to support all eight processors� The memory latency
penalty constrains performance for these runs� The
worst case� �
D FFT� takes ��� longer on the SMP�
The CON runs require less memory bandwidth and
use fast communication to greater advantage� For the
computation
bound run� the SMP execution is ���
slower than that of the NOW� In the communication

bound run� the e�ect of fast communication domi

nates� allowing it to �nish
�� faster on the SMP�

Application execution times in seconds on the
Clump and a ��
processor NOW appear in Table ��

��

The NOW uses the single
protocol Myrinet imple

mentation� The bottom section of the table provides
information on the communication load balance be

tween processors for each EM�D run� each entry rep

resents the range across processors of time spent in
the communication phase� The e�ect of the proces

sor to NIC balance in our system is apparent in the
degradation of �
D FFT performance� which takes
���� �a factor of three� longer on the Clump than
on the NOW� The communication
bound CON run
is also a�ected by the sharing of network resources�
requiring ��� more time on the Clump� For the
computation
bound CON run� the ���� slowdown on
the Clump results from a combination of the mem

ory latency penalty and the processor to NIC balance�
The EM�D runs demonstrate the e�ect of the bulk
synchronous style on execution time� In each case�
execution time is limited by the slowest of the pro

cessors� The bene�t of the improved layout in gener

ating less network tra�c is enhanced by the processor
to NIC balance� leading to a ��� improvement in ex

ecution time� For the NOW� the naive layout proves
superior due to bandwidth thinning in the upper re

gions of the tree network connecting the NOW� Ma

chines in the same sub
branch of the NOW network
enjoy greater aggregate bandwidth than do machines
in di�erent branches� and the naive layout takes bet

ter advantage of this arrangement� Comparing the
best EM�D result on each platform� the Clump �n

ishes in ��� less time�

��� Summary

Clumps promise signi�cant performance gains to ap

plications that can reap the bene�ts of fast commu

nication� but their full potential may be di�cult to
achieve� In a NOW� bandwidth scales implicitly with
the number of machines� but the balance of proces

sors to NIC�s in an SMP must be considered more
carefully� The presence of multiple I�O buses is crit

ical� and some applications may require a one
to
one
processor to NIC relationship to achieve performance�
Alternatively� an SMP may be equipped with a sin

gle� large interface� provided the cost of such a device
is not prohibitive�

Also critical to performance is the aggregate mem

ory bandwidth of each SMP� Underpopulation of the
memory banks in our Clump results in an arti�cially
low limit and severely restricts the performance of
some applications� While the problem is not inherent
in our system� it is one that future systems must re

member to avoid� for large computational problems�
caches do not always adequately bu�er memory ac

cesses�

The bulk synchronous style of programming has
achieved some degree of popularity for parallel pro

gramming� When using a Clump� a programmer
must put in a greater e�ort to balance the load be

tween processors� Optimization of the virtual proces

sor layout onto the Clump is a good �rst step�

� Related Work

We have investigated issues related to e�cient
message
passing through both shared memory and
the network within a Clump� The literature pertain

ing to Clumps is still fairly limited� but covers quite
a wide range of topics�

One approach to Clumps that has received much
attention over the years is the extension of shared
memory between SMP�s� Recent e�orts on this front
include SVM ���	 and MGS ���	� These studies in

vestigate a problem complementary to our own in
that both seek to optimize common techniques in
one medium to allow use of those techniques in both�
Each view proves more natural and e�ective than the
other for interesting classes of applications�

In the smaller body of message
passing work�
Nexus comes closest to our own� Nexus is a portable
programming system ���	 that focuses primarily on
portability and on support for heterogeneity� It sup

ports arbitrary sets of machines� processes �or con

texts� in Nexus terminology� and threads� Nexus
generally builds on top of existing communication
layers� resulting in somewhat higher overheads than
those obtained with Active Messages� The communi

cation abstractions are similar to those of AM
II� but
the style of communication is di�erent� Like AM
II�
Nexus has endpoints that de�ne tables of handler rou

tines� but Nexus does not require that communication
obey a request
reply paradigm� This �exibility allows
Nexus to use endpoint names� or startpoints� to initi

ate messages� A startpoint can be bound to multiple
endpoints� allowing for multicast communication�

Since Nexus platforms can support multiple com

munication protocols between a startpoint and an
endpoint� Nexus has explored multi
protocol commu

nication from a more general perspective than have
we ��
	� Although shared memory is mentioned in the
work� numbers are provided only for more expensive
underlying protocols� making a direct comparison im

possible� The Nexus multi
protocol paper also notes
the wide variance between polling costs for di�er

ent protocols and presents data for fractional polling
strategies� We explored more adaptive strategies to
reduce the impact of network polling to a satisfactory
level�

��

An interesting study by Lim et� al� ���	 investigates
the use of one processor in each SMP as a message
proxy for the remaining processors� The work fo

cuses on providing multiple users with protected ac

cess to a single network resource and evaluates the
proxy approach in detail� AM
II sidesteps the ques

tion of protected access by taking advantage of an
SMP�s virtual memory system to grant direct access
to a subset of network resources� An intelligent NIC
plays an essential role in the AM
II approach�

The remaining message
passing work on Clumps
pertains primarily to the problem of programming
them for performance� This paper does not speak di

rectly to that problem� although some insight can be
gained from the section on applications� Such e�orts
often assume that a programmer is willing to rewrite
most or all of an application to obtain performance�

The P
 programming system ��	 was probably one
of the �rst systems to recognize Clumps as a platform�
P
 provides mechanisms start multiple threads on
one or more machines and to communicate between
such threads using either message
passing or shared
memory constructs� The programmer must explicitly
select the appropriate library call� The library also
provides a number of useful reduction operations�

SIMPLE ��	 provides functionality similar to P
�
but extends the library with broadcast operations
and a variety of tuned� many
processor communica

tion methods� SIMPLE also attempts to lighten the
programmer�s burden by o�ering functions that in

volve all processors� all processors in an SMP� one
processor in each SMP� and so forth�
A paper by Fink and Baden ���	 attacks the prob

lem of balance in bulk synchronous algorithms by re

balancing computation and communication for a reg

ular problem within an SMP� Given a �D domain par

titioned in one dimension between SMP�s in a Clump�
the paper calculates a non
uniform partitioning of the
domain within each SMP such that the time spent in
a phase is roughly equal for each processor� Essen

tially� the analysis gives processors on boundaries less
computation to balance the cost of communication�

KeLP� by the same authors� seeks to simplify the
process of application development� Recent exten

sions to KeLP ���	 add new functionality to sup

port applications on Clumps� With KeLP� a pro

grammer expresses data decomposition and motion
in a block
structured style� The runtime system then
employs inspector
executor analysis to overlap com

munication with computation� No global barriers
are used� interprocessor synchronization occurs only
through communication dependencies�

In work related less directly to Clumps� Mukherjee
and Hill ��
	 have investigated the advantages of mak

ing NIC memory cacheable� For multi
protocol com

munication� the importance of cacheable NIC mem

ory is the resulting reduction in the cost of polling
the network� Such systems might not require a so

phisticated polling strategy�

	 Conclusion

Obtaining the performance potential in the Clumps
architecture requires an understanding of interactions
between the multiple levels of interconnection� In this
paper� we have addressed the tradeo�s involved in im

plementing a fast communication layer that uses both
cache
coherent memory and a low
latency network to
route messages� Our multi
protocol active message
layer operates on a cluster of four �
processor Sun
Enterprise ���� servers interconnected by a Myrinet
with three NIC�s per SMP� We evaluated communi

cation performance with microbenchmarks and with
applications� bringing light to a number of perfor

mance issues for the platform and illustrating the re

sults of our decisions�

In the design of a multi
protocol layer for Clumps�
three critical aspects must be considered� data lay

out� concurrent access� and polling strategy� For our
implementation� the data for an endpoint are split
between main memory� NIC memory� and shared
memory� Local communication passes through the
shared memory portion of the endpoint� which is
structured to minimize bus transactions� Concur

rent access by multiple senders is handled using the
compare
and
swap instruction to reduce interference
between senders� Accessing network message data in
uncacheable NIC memory is expensive�typically an
order of magnitude more costly than accessing shared
memory data� To retain the base performance of the
shared memory protocol� we developed an adaptive
polling strategy that varies the rate of network polling
between upper and lower bounds based on a history
of recent network activity�

When measured with microbenchmarks� our imple

mentation illustrates the performance tradeo�s for
fast communication on Clumps� Use of a multi

protocol communication layer has little impact on
network message performance� but both careful en

gineering and an adaptive polling strategy are neces

sary to retain high performance through shared mem

ory� The shared memory protocol provides �ve times
the bandwidth available from the network� peaking at
��� MB�sec� End
to
end latency for short local mes

sages is ��� microseconds� a factor of eight less than
the corresponding number for the network proto

col� The abstractions necessary to support message

��

passing consume a signi�cant fraction of this time�
For example� the overhead involved in a local send
operation is ��� microseconds� Bus transactions ac

count for ��� of this number� basic mechanisms such
as call overhead and packet �lling make up another
���� managing concurrent access leads to another
���� and the remaining ��� is split nearly evenly
between polls for each protocol�

We studied application
level performance issues us

ing three Split
C applications with �ve sets of input
parameters� The applications use a bulk synchronous
style and perform signi�cant amounts of communica

tion� To establish a base case� we presented the same
results for a NOW�Within an SMP� applications take
advantage of the shared memory protocol to achieve
improved performance� but some are constrained by
aggregate memory bandwidth limitations� Inclusion
of the network protocol slows these applications by
no more than ���� The use of the full Clump brings
the balance between processors and NIC�s to light�
For �
D FFT� which uses all
to
all communication�
we observed a factor of three slowdown� as we might
expect given the three
way sharing of NIC�s by pro

cessors in our system� The Clump numbers also
illustrate a drawback of the bulk synchronous pro

gramming style� although many processors might be
able to take advantage of fast communication� a per

formance increase requires that all processors do so�
By rearranging the virtual processors to increase the
fraction of tra�c sent through shared memory� we
demonstrated improved performance� These obsta

cles to performance are not insurmountable� but they
do illustrate several potential pitfalls for Clumps�

The Clumps architecture presents a wealth of in

teresting new tradeo�s and possibilities� With this
paper� we have begun to explore these issues and
have illustrated our �ndings with measurements at
two levels� In the future� we plan to continue our in

vestigation of the low
level aspects of these systems
in order to build a solid foundation of understanding
for exploring more abstract interactions�

Acknowledgements

The authors wish to thank Sun Microsystems� Inc�
for donating the Enterprise ���� servers on which
this work is based� This work was also supported
in part by funding from National Science Foundation
Infrastructure Grant CDA �

������ Lawrence Liv

ermore National Laboratory Intra
University Trans

action Agreement B������� and the Defense Ad

vanced Research Projects Administration Grant
F�����
��
C
���
� Brent Chun developed much of

the Myrinet AM
II protocol� which plays a key role in
enabling this work� Thanks are also due to the mem

bers of the Clumps and NOW groups at U� C� Berke

ley for their encouragement and support� In particu

lar� we are grateful for numerous conversations with
Arvind Krishnamurthy and for valuable feedback on
the presentation from Kathy Yelick� Rich Martin
helped with the selection of applications and input
parameters� Finally� we wish to acknowledge the ef

forts of David Gay and Randi Thomas in developing
and tuning the �
D FFT code�

References

��	 A� Alexandrov� M� Ionescu� K� E� Schauser�
C� Scheiman� �LogGP� Incorporating Long Mes

sages into the LogP Model�One Step Closer To

wards a Realistic Model for Parallel Computa

tion�� �th Annual Symposium on Parallel Algo�
rithms and Architectures� July �����

��	 Accelerated Strategic Computing Initiative� a
program of the Department of Energy� Infor

mation is available via http	��www�llnl�gov�asci�
alliances��

��	 D� A� Bader� J� J�aJ�a� �SIMPLE� A Methodol

ogy for Programming High Performance Algo

rithms on Clusters of Symmetric Multiproces

sors �SMP�s��� preliminary version� May �����
available via
http	��www�umiacs�umd�edu�research�EXPAR�

�
	 N� J� Boden� D� Cohen� R� E� Felderman�
A� E� Kulawik� C� L� Seitz� J� N� Seizovic�
W� Su� �Myrinet�A Gigabit
per
Second Local

Area Network�� IEEE Micro� Vol� ��� February
����� pp� ��
���

��	 E� A� Brewer� B� C� Kuszmaul� �How to Get
Good Performance from the CM
� Data Net

work�� Proceedings of the �th International Par�
allel Processing Symposium� April ���
�

��	 R� Butler� E� Lusk� �Monitors� Message� and
Clusters� the p
 Parallel Programming System��
available via
http	��www�mcs�anl�gov�home�lusk�p��p��
paper�paper�html�

��	 B� N� Chun� A� M� Mainwaring� D� E� Culler�
�A General
Purpose Protocol Architecture for
a Low
Latency� Multi
gigabit System Area Net

work�� Proceedings of Hot Interconnects V� Stan

ford� California� August �����

��

��	 D� E� Culler� A� Dusseau� S� C� Goldstein� A� Kr

ishnamurthy� S� S� Lumetta� T� von Eicken�
K� Yelick� �Parallel Programming in Split
C��
Proceedings of Supercomputing
��
� Portland�
Oregon� November ����� pp� ���
���

��	 D� E� Culler� R� M� Karp� D� A� Patterson� A� Sa

hay� K� E� Schauser� E� Santos� R� Subramo

nian� T� von Eicken� �LogP� Towards a Realistic
Model of Parallel Computation�� Proceedings of
the �th ACM SIGPLAN Symposium on Princi�
ples and Practice of Parallel Programming� San
Diego� California� May �����

���	 D� E� Culler� L� T� Liu� R� P� Martin�
C� O� Yoshikawa� �Assessing Fast Network In

terfaces�� IEEE Micro� Vol� ��� No� �� February
����� pp� ��

��

���	 S� J� Fink� S� B� Baden� �Non
Uniform Parti

tioning of Finite Di�erence Methods Running on
SMP Clusters�� submitted for publication� avail

able via
http	��www�cse�ucsd�edu�users�baden�MT�html�

���	 S� J� Fink� S� B� Baden� �Runtime Support
for Multi
Tier Programmingof Block
Structured
Applications on SMP Clusters�� submitted for
publication� available via
http	��www�cse�ucsd�edu�users�baden�MT�html�

���	 I� Foster� C� Kesselman� S� Tuecke� �The
Nexus Approach to Integrating Multithreading
and Communication�� Journal of Parallel and
Distributed Computing� Vol� ��� August �����
pp� ��
���

��
	 I� Foster� J� Geisler� C� Kesselman� S� Tuecke�
�ManagingMultiple CommunicationMethods in
High
Performance Networked Computing Sys

tems�� Journal of Parallel and Distributed Com�
puting� Vol�
�� January ����� pp� ��

��

���	 W� W� Gropp� E� L� Lusk� �A Taxonomy of Pro

gramming Models for Symmetric Multiproces

sors and SMP clusters�� Proceedings of Program�
ming Models for Massively Parallel Computers

���� October ����� pp� �
��

���	 M� Haines� D� Cronk� P� Mehrotra� �On the De

sign of Chant� A Talking Threads Package��
Proceedings of Supercomputing
���� Washing

ton� D�C�� November ���
� pp� ���
��

���	 D� Jiang� H� Shan� J� P� Singh� �Applica

tion Restructuring and Performance Portabil

ity on Shared Virtual Memory and Hardware

Coherent Multiprocessors�� Proceedings of Prin�
ciples and Practice of Parallel Programming�
����� pp� ���
���

���	 B�
H� Lim� P� Heidelberger� P� Pattnaik� M� Snir�
�Message Proxies for E�cient� Protected Com

munication on SMP Clusters�� IBM Almaden
Research Report RC ����� �������� August
�����

���	 L� T� Liu� D� E� Culler� �Evaluation of the
Intel Paragon on Active Message Communica

tion�� Proceedings of Intel Supercomputer Users
Group Conference� June ����� also available via
http	��now�CS�Berkeley�EDU�

���	 S� S� Lumetta� D� E� Culler� �Managing Con

current Access for Shared Memory Active Mes

sages�� U� C� Berkeley Technical Report in
preparation�

���	 A� M� Mainwaring� D� E� Culler� �Ac

tive Message Applications Programming In

terface and Communication Subsystem Orga

nization�� U� C� Berkeley Technical Report
 CSD
��
���� October ����� also available via
http	��now�CS�Berkeley�EDU�

���	 R� Martin� �HPAM� an Active Message Layer for
a Network of HP Workstations�� Proceedings of
Hot Interconnects II� Stanford� California� Au

gust ���
� pp�
�
���

���	 J� M� Mellor
Crummey� M� L� Scott� �Algo

rithms for Scalable Synchronization on Shared

Memory Multiprocessors�� ACM Transactions
on Computer Systems� Vol� �� No� �� February
����� pp� ��
���

��
	 S� S� Mukherjee� M� D� Hill� �A Case for Making
Network Interfaces Less Peripheral�� Proceedings
of Hot Interconnects V� Stanford� California� Au

gust �����

���	 R� H� Saavedra� �Micro Benchmark Analysis of
the KSR��� Proceedings of Supercomputing
��
�
Portland� Oregon� November ����� pp� ���
���

���	 K� E� Schauser� C� Scheiman� �Experiences with
Active Messages on the Meiko CS
��� Proceed�
ings of the �th International Parallel Processing
Symposium� April �����

���	 A� Singhal� D� Broniarczyk� F� Cerauskis�
J� Price� L� Yuan� C� Cheng� D� Doblar� S� Fosth�
N� Agarwal� K� Harvey� E� Hagersten� B� Lien

cres� �Gigaplane� A High Performance Bus for
Large SMPs�� Proceedings of Hot Interconnects
IV� Stanford� California� August ����� pp�
�
���

�

���	 L� Tucker� A� M� Mainwaring� �CMMD� Active
Messages on the CM
��� Parallel Computing�
Vol� ��� No�
� August ���
� pp�
��
���

���	 T� von Eicken� V� Avula� A� Basu� V� Buch�
�Low
latency Communication over ATM Net

works Using Active Messages�� Proceedings of
Hot Interconnects II� Stanford� California� Au

gust ���
� pp� ��
���

���	 T� von Eicken� D� E� Culler� S� C� Goldstein�
K� E� Schauser� �Active Messages� a Mecha

nism for Integrated Communication and Compu

tation�� in Proceedings of the
�th International
Symposium on Computer Architecture� Gold
Coast� Qld�� Australia� May ����� pp� ���
���

���	 P� R� Woodward� �Perspectives on Supercom

puting� Three Decades of Change�� IEEE Com�
puter� Vol� ��� October ����� pp� ��
����

���	 D� Yeung� J� Kubiatowicz� A� Agarwal� �MGS�
A Multigrain Shared Memory System�� Proceed�
ings of the �
rd International Symposium on
Computer Architecture� Philadelphia� Pennsyl

vania� May ����� pp�

���

��

