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Abstract

This paper deals with a class of two person zero-sum linear quadratic differential games, where the control functions for
both players are subject to integral constraints. The duration of game is fixed. We obtain the necessary conditions of the
Maximum Principle and also optimal control by using method of Pontryagin’s Maximum Principle. Finally, we discuss
an example.
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1. Introduction

In this study, a class of two person zero-sum linear quadratic differential games (Basar & Olsder, 1999) is considered.
The Pontryagin ’s Maximum Principle is a powerful method for the calculation of optimal controls. Because of it has
the important advantage not requiring previous evaluation of the payoff functional. Here we describe this method for a
non-autonomous linear quadratic differential game and illustrate its use with an example. The present paper is closely
related to the following works.

Note a two player linear quadratic differential game was investigated by (Jodar, 1991). In this work an explicit solution of
a set of coupled asymmetric Riccati type matrix differential equations was found.

(Amato et al., 2002) considered a class of two player zero-sum linear quadratic differential games. They studied two
cases, the finite horizon case and the infinite horizon case. In the finite horizon case, sufficient conditions for the existence
of closed loop strategies were obtained based on the existence of the solution of suitable parameterized Riccati equations.
Then the infinite horizon case was studied where the closed loop strategies are also required to guarantee asymptotic
stability of the whole system.

A problem of linear quadratic optimization was investigated by ( Rozonoer, 1999 ). In this study necessary and sufficient
conditions for existence of optimal control for all initial positions were obtained. Using Pontryagin maximum Principle
and Bellman’s equations, some general hypotheses have been proposed.

(Sussmann and Willems, 1997) gave an historical review of the development of optimal control . They studied the
development of the necessary conditions for a minimum, using the Euler-Lagrange equations to the work of Legendre and
Weierstrass and, eventually, the maximum principle of optimal control theory.

(Lewis, 2006 ) studied the linear quadratic optimal control problem by using method of Pontryagin s Maximum Princi-
plewas in autonomous systems.

(Mou and Yong, 2006 ) was devoted to a thorough review of general two-person zero-sum linear quadratic games in
Hilbert spaces.

In (Wang and Yu, 2010), the Maximum Principle for a new class of non-zero sum stochastic differential games was
considered. A necessary and sufficient condition in the form of Maximum Principle for open-loop equilibrium point of
the games was established.

The above results can be obtained using two classical approaches: Maximum Principle (Pontryagin et al., 1962) and
Dynamic Programming (Bellman, 1957). However our work is base on Maximum Principle of Pontryagin. For a com-
prehensive review, see (Athans & Falb, 1966).

The paper is organized as follows: in Section 2, we describe the statement of the problem. In Section 3, we give some
conditions and Theorem (fixed interval). In Section 4, we derive the main result and one example. Finally the conclusion
is given in section 5.
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2. Problem formulation

We consider the linear quadratic differential game described by

x(1) = A(Ox(1) + B(O)(u1 () + uz (1)), xo = x(to) (D
and by the payoff functional
1
J(xo, uy,u) = f L(x, uy, up)dt ()
where .
L(x,up,up) = E(x(t)TQ,-(t)x(t) +u1 ()" R (Dur () + ur (D" R (ua(1)), 3)

X, x0 € R", uj,u; € R™, A(t) and B(r) are continuous matrices, A(r) € R™", B(t) € R™™", L is a Lagrangian, Q;(r) € R™",
R;i() e R™™ | =1,2. Moreover, Q; is assumed to be symmetric and R;; are symmetric positive definite.

3. Conditions And Scheme Of The Method

In this section we consider a differential game governed by the equation

x(t) = f(x(0), ur (1), ux(2)), x € R, uy € R™, up € R, 4)

where the function f : R” xR” xR™ — R” satisfies conditions that ensures existence, uniqueness and extendability of the
solution of the initial value problem for (4) with x(#y)) = xo. The corresponding control functions u;(¢), u> () for Pursuer
and Evader, respectively, must satisfy the following constraints.

i1 1)
f luy ()dt < p?, f lun(1)dt < o 5)
o )

where p and o are positive numbers.
3.1 Boltyanskii Tangent Cone To A Set At A Point
Let S be an arbitrary subset of R” and xy € S. The vector v € R” is called tangent vector to S at xy if and only if there

¢(€)

exists a function ¢ : R — R" such that xo + ev + ¢(€) € S for all sufficiently small € > 0 and — — 0 as € — 0. Clearly,

if v is a tangent vector to S at xo and k > O, then kv is also a tangent vector to S at xo. We intr%duce Boltyanskii tangent
cone to set S at a point xo by Cs(xo). For simplification, it is denoted by C. The dual cone C* of a cone C in the linear
space R” is defined as the set

Ct={x"eR":(x",x) <0 forall x e R"}.

3.2 Transversality Condition

It is an additional necessary condition for optimality for a problem with the terminal constraint. Instead of being of the
form x(#;) = x; considered form x(¢;) € S, where S is a given subset of R”.

3.3 The Maximum Principle With Transversality Conditions For Fixed Time Interval Problems
We suppose that the following conditions are valid
C,. n and m are nonnegative integers.
C,. ty and t; are real numbers such that 1y < 7;.
C3. The following continuous functions
filto, 1] X R" X R" x R" —» R"

F x ur,up) = (filt, x, w1, u2), ..., fult, X, u1,u2)) € R”

and
L:[t),H] xR"xR"xR" - R

(&, x, u, up) — L(t, x, u1, up)

are given.
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C4. Foreach (t, x,uy, up) € [ty, 1] X R" x R™ x R™ the functions

S, x,ur,u2) = (fi(t, X, u1, u2), oy fult, X, u1,u2)) € R"

and
X — L(t,x,u1, us)

are continuously differentiable, and their partial derivatives with respect to the x coordinate are continuous functions
of (¢, x,uy, up).

Cs. xp is a given point of R” and S is a given subset of R”.
Ce. The set of all trajectory-controlled triple 7 C7 define on [#, ;] is the set of all triples (x(-), u; (), u2(-)) such that

a. u;:[ty,t1] = R™, i = 1,2, is a measurable bounded function. (see (5))

b. x:[ty,t;] = R", is an absolutely continuous function.
c. x(t) = f(t, x(t), u; (1), ux (1)) for every t € [t, t1].
C;. If Lis a Lagrangian, the corresponding payoff functional is

J:7CT - R

defined by
J(x,uy,up) = f L(x(t), uy (1), ur(1))dt.

)
Cs. We assume set O7 C7 be set of all optimal control trajectory system (4) such that
a. (x*(),u; (), u5(-) € OTCT
b. x*(ty) = xp and x*(t;) € S
c. J(xo, uy, uz) < J(xo, uj, u5) < J(xo, u, uz) for all (x(-), u1(+), u2(-)) € 7CT such that x(#p) = xo and x(¢;) € S.

Cy. C is a Boltyanskii tangent cone to S at the point X = x*(¢;).

We use the following Theorem (see Pschenichnii, 1980 and Sussmann, 2006) for proving the main result.

Theorem (fixed interval) Assume that m,n,ty,t,, f, L, xo,S satisfy the conditions C\ — Cs, T CT and J are defined by
Co — C7 and (x*, uy, u3) holds Cg. % is defined by Co and C satisfies Co. Define the Hamiltonian H

H:[t), 1] X R"xR"xR" - R

given by
H(t7 X, Uy, Uz, P) = <P» f(ty X, u]’uz)) + L(t7 X, Uy, 142)'

The variable p is the costate and also there exists a pair (1, dy) such that
(D). [to,t1] — A(2) is absolutely continuous function;
@i). Ao €1{0,1};
(iii). (A1), Ap) # (0,0) for every ¢ € [ty, t;] (the nontriviality condition).
(iv). The adjoint equation holds, i.e.
At = —Z—Z(:, X uy,uy, A®D), o)
forevery t € [ty, 1]
(v). The maximum Hamiltonian is the function defined by
H(t, x", uy, u, A1), o) = max{H(t, x*, uy, uz, A(t), do) | uy, up € R™}
forevery t € [ty, 11].
(vi). The transversality condition holds

-A(t;) € C*.
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The statement of the problem considered in the Proposition is followed from Theorem (fixed interval) ( see Athans &
Falb, 1966). The sets S are sub manifolds. Part (vi) of Theorem (fixed interval) give the transversality conditions when
the initial and final point are constrained to lie in subsets.

In Proposition, the problem being solved is a very particular case. The initial constraint set is a point, i.e., So = {xp}.
The final condition, however, is completely unconstrained, i.e., S| = R". If one applies the transversality condition, this
implies that the adjoint vector must vanish at the final time since it must annihilate every vector in R".

The main result of this paper is then the following ( Athans & Falb, 1966), (Lee & Markus, 1986) and (Pontryagin et al.,
1962).

4. Main Result

Proposition. (The Maximum Principle for A Linear Quadratic Differential Game) Let (1)-(3) be the linear differential
game , Q;(1) € R™" and R;(r) € R™™ with R;; > 0,i = 1,2, xo € R", and 1y, 1, € [to,11] satisfy 19 < ;. If (&, s, vi) €
OT CT, then there exists the function A : [fo,;] — R”, i = 1,2, such that £,, i, and v, satisfy the initial/final value
problem

& Al =81 =520 || &
@ |=| -0 AT 0 40 |, &) =x0, A1) =0,
(1) - 0 AT || KO

where S,(t) = BOR; ()BT (1), i = 1,2.
Proof. By the transversality conditions of the Maximum Principle we have A;(z;) = 0, i = 1,2. By Theorem ( fixed
interval), the Hamiltonian is

H(x,uy,up, 1) = (A;(1), A(t)x + B(t)(uy + u2)) + L(x, uy, up)

1 1 1 .
=i, A()x + B(t)(uy + u»)) + (EXTQi(Z)X + EM{Rilul) + EuzTRizuz), i=1,2

1
= Aij(O(ajixi + bjs(uy + uy) + z(xj‘hjxj + wyryug + upryup),

which is a quadratic function of u; with a negative-definite second derivative. Thus the unique maximum occurs at the
point where the derivative of the Hamiltonian with respect to u; vanishes. Hamilton’s equations are

. oOH
i = e —X(Aijaj + qjkxe)
. OH
X o= oy T AN + bjs(urs + ups)
OH
0 = o Aibjs + risuis

where i = 1,2, j=1,2,..,n, k =1,2,...,n, s = 1,2,...,m. In matrix form, three equations for optimal control behavior
are

x = A()x+ B(t)u;
A; —Qi(x — A" A:(1)
0 Rii(Hu; + BT ()0, i=1,2.

These equations are solved under end conditions x = xo at t = #y and A;(t;) = /ll! at ¢t = t;. Assuming R;; is regular, i.e.,
R exists.

u; = —R;'BOT A1), i=1,2.
By assumption we have (¢., u., v.) € OT CT , &.(ty) = xo, A} (1) =0, i=1,2.

That is to say, for almost every ¢ € [#y, ;]
pin(0) = =R (OBOT (1), i=1,2

as may be verified by a direct computation. Since the adjoint equations for the extended systems are

. 1 1 1

O = sz (f)Qi(f)f*(f)'i'E,U*T(I)Ril(t)ﬂ*(f)‘*'EV*T(f)Riz(I)V*(f),
&n = AWMED) + BOu@) + v(1)),

2@ = 0,

A = =QE®D) — ATOA(1)).
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We substitute the form of the optimal control into the second of these equations to get the differential equations in the
statement of the result. It is clear that we must have £.(f)) = xo. That 27 (#;) = 0 follows since the terminal condition is
unspecified. O

4.1 Example

We consider a system whose state space is R”, the describing equations are

X =a(tu, x(0)= xp,
y = a()v, y(0) = yo,

where initial position (xo,yo) € R?, and a(¢) is a continuous function. The control function u(-) (respectively, v(-)) of the
Pursuer (Evader ) satisfies the inequalities (5). Terminal condition is that the terminal position x be zero, but we are not
imposing any condition on the terminal velocity y. We solve this problem by applying Theorem (fixed interval) and the
Proposition. In this case, (x(-), y(-)) moves from (xp, yp) to some point of the y-axis in minimum time. The dynamical law
is denoted by

fOoy,u,v) = (@u, atm)’

and the Lagrangian is identically equal to 1. The terminal constraint is x(¢;) € S, where
S ={(x,y) eR*: x=0}

The Hamiltonian H is given by
H(x,y,u,v, py, py) = pra(u + pya(t)v + 1,

where p, and p, to denote the two components of the variable p. Suppose that (x*(-), y*(-), u*(-), v*(+)) is a solution of our
minimum time problem then (x*(), y*(-), u*(-), v*(-)) € OT C7 . Hence by Theorem (fixed interval) and the Proposition
there exists a pair (4, Ag) satisfying all the conditions of the conclusion. Write A(t) = (A.(#), A,(1)). The adjoint equations
implies that

/.lx(t) =0, /.1)’(t) =0,

for all ¢ € [z, 1]

Therefore the function A,(7) is constant. Then there exist constant a such that A,(r) = a, for all ¢ € [¢,7]]. Then there
exists a constant b such that
A1) = b, forall re[1,1]]

If a and b are both equal to zero, the function A,, A, would vanish identically and then the Hamiltonian maximization
condition would say that the function u is maximized by taking u = u*(¢). By using the conditions of Theorem (fixed
interval), we see a and b can not be both vanish. To see this, observe that if a = b = 0 then it follows that A, = A, = 0. But
then the nontriviality condition tells us that 1y # 0. So the value H(x*(:), y*(:), u*(-), v*(-), Ay, 4y, dg) = 1. It is clear that the
set S itself is a Boltyanskii tangent cone to S at the terminal point x*(¢). Therefore the tranversality condition says that
At e =St ie.

A1) =0.

So, A,(f) = b is a linear function which is not identically zero (because a and b do not both vanish) but vanishes at the
endpoint #] of the interval [¢;, #]]. Therefore, A,(f) never vanishes on (t;, 7). It follows that the optimal control u*(-) and
v*(-) are either constantly equal to 1 or constantly equal to —1. Thus we have proved that all optimal controls are constant.

5. Conclusion

This paper describes the applications of Pontryagin’s Maximum Principle for finding optimal control in a linear quadratic
differential games.
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