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Abstract

The PC algorithm learns maximally oriented
causal Bayesian networks. However, there is
no equivalent complete algorithm for learning
the structure of relational models, a more ex-
pressive generalization of Bayesian networks.
Recent developments in the theory and repre-
sentation of relational models support lifted
reasoning about conditional independence.
This enables a powerful constraint for ori-
enting bivariate dependencies and forms the
basis of a new algorithm for learning struc-
ture. We present the relational causal discov-
ery (RCD) algorithm that learns causal rela-
tional models. We prove that RCD is sound
and complete, and we present empirical re-
sults that demonstrate effectiveness.

1 INTRODUCTION

Research in causal discovery has led to the identi-
fication of fundamental principles and methods for
causal inference, including a complete algorithm—the
PC algorithm—that identifies all possible orientations
of causal dependencies from observed conditional in-
dependencies (Pearl, 2000; Spirtes et al., 2000; Meek,
1995). Completeness guarantees that no other method
can infer more causal dependencies from observational
data. However, much of this work, including the com-
pleteness result, applies only to Bayesian networks.

Over the past 15 years, researchers have developed
more expressive classes of models, including proba-
bilistic relational models (Getoor et al., 2007), that
remove the assumption of independent and identically
distributed instances required by Bayesian networks.
These relational models represent systems involving
multiple types of interacting entities with probabilistic
dependencies among them. Most algorithms for learn-
ing the structure of relational models focus on statisti-

cal association. The single algorithm that does address
causality—Relational PC (Maier et al., 2010)—is not
complete and is prone to orientation errors, as we show
in this paper. Consequently, there is no relational ana-
log to the completeness result for Bayesian networks.

Recent advances in the theory and representation of
relational models provide a foundation for reasoning
about causal dependencies (Maier et al., 2013). That
work develops a novel, lifted representation—the ab-
stract ground graph—that abstracts over all instanti-
ations of a relational model, and it uses this abstrac-
tion to develop the theory of relational d-separation.
This theory connects the causal structure of a rela-
tional model and probability distributions, similar to
how d-separation connects the structure of Bayesian
networks and probability distributions.

We present the implications of abstract ground graphs
and relational d-separation for learning causal models
from relational data. We introduce a powerful con-
straint that can orient bivariate dependencies (yielding
models with up to 72% additional oriented dependen-
cies) without assumptions on the underlying distribu-
tion. We prove that this new rule, called relational
bivariate orientation, combined with relational exten-
sions to the rules utilized by the PC algorithm, yields a
sound and complete approach to identifying the causal
structure of relational models. We develop a new algo-
rithm, called relational causal discovery (RCD), that
leverages these constraints, and we prove that RCD
is sound and complete under the causal sufficiency as-
sumption. We show RCD’s effectiveness with a prac-
tical implementation and compare it to several alter-
native algorithms. Finally, we demonstrate RCD on a
real-world dataset drawn from the movie industry.

2 EXAMPLE

Consider a data set containing actors with a measure-
ment of their popularity (e.g., price on the Hollywood
Stock Exchange) and the movies they star in with



a measurement of success (e.g., box office revenue).
A simple analysis might detect a statistical associa-
tion between popularity and success, but the models
in which popularity causes success and success causes
popularity may be statistically indistinguishable.

However, with knowledge of the relational structure,
a considerable amount of information remains to be
leveraged. From the perspective of actors, we can ask
whether one actor’s popularity is conditionally inde-
pendent of the popularity of other actors appearing in
the same movie, given that movie’s success. Similarly,
from the perspective of movies, we can ask whether
the success of a movie is conditionally independent
of the success of other movies with a common actor,
given that actor’s popularity. With conditional inde-
pendence, we now can determine the orientation for a
single relational dependency.

These additional tests of conditional independence
manifest when inspecting relational data with abstract
ground graphs—a lifted representation developed by
Maier et al. (2013) (see Section 3.2 for more details).
If actor popularity indeed causes movie success, then
the popularity of actors appearing in the same movie
would be marginally independent. This produces a col-
lider from the actor perspective and a common cause
from the movie perspective, as shown in Figure 1.
With this representation, it is straightforward to iden-
tify the orientation of such a bivariate dependency.

This example illustrates two central ideas of this paper.
First, abstract ground graphs enable a new constraint
on the space of causal models—relational bivariate ori-
entation. The rules used by the PC algorithm can
also be adapted to orient the edges of abstract ground
graphs (Section 4). Second, this constraint-based
approach—testing for conditional independencies and
reasoning about them to orient causal dependencies—
is the primary strategy of the relational causal discov-
ery algorithm (Section 5).

3 BACKGROUND

The details of RCD and its correctness rely on fun-
damental concepts of relational data, models, and d-
separation as provided by Maier et al. (2013). This
section provides a review of this theory in the context
of the movie domain example. Note that the relational
representation is a strictly more general framework for
causal discovery, reducing to Bayesian networks in the
presence of a single entity with no relationships.

3.1 RELATIONAL DATA AND MODELS

A relational schema, S = (£, R, A), describes the en-
tity, relationship, and attribute classes in a domain, as

[ACTOR, STARS-IN, MOVIE,
STARS-IN, ACTOR]. Popularity

[MOVIE, STARS-IN, ACTOR].Popularit

[ACTOR].Popularity

[MOVIE, STARS-IN, ACTOR,
STARS-IN, MOVIE]. Success

[MOVIE].Success

TACTOR, STARS-IN, MOVIE].Success

(@) (b)

Figure 1: Abstract ground graphs from (a) the ACTOR
perspective and (b) the MOVIE perspective.

well as cardinality constraints for the number of en-
tity instances involved in a relationship. A schema is
typically depicted with an entity-relationship diagram,
such as the one underlying the model shown in Fig-
ure 2(a). This example has two entity classes—ACTOR
with attribute Popularity and MoOVIE with attribute
Success—and one relationship class—STARS-IN with
no attributes. The cardinality constraints (expressed
as crow’s feet in the diagram) indicate that many ac-
tors may appear in a movie and a single actor may
appear in many movies. A schema is a template for a
relational skeleton c—a data set of entity and relation-
ship instances. The example in Figure 2(b) contains
four ACTOR instances, five MOVIE instances, and the
relationships among them.

Given a relational schema, one can specify relational
paths, which are critical for specifying the variables
and dependencies of a relational model. A relational
path is an alternating sequence of entity and relation-
ship classes that follow connected paths in the schema
(subject to cardinality constraints). In Figure 2(a),
possible relational paths include [ACTOR] (a singleton
path specifying an actor), [MOVIE, STARS-IN, ACTOR|
(specifying the actors in a movie), or even [ACTOR,
STARS-IN, MOVIE, STARS-IN, ACTOR] (describing co-
stars). The cardinality of a relational path is MANY if
the cardinalities along the path indicate that it could
reach more than one instance; otherwise, the cardi-
nality is ONE. For example, card([MOVIE, STARS-IN,
ACTOR]) = MANY since a movie can reach many ac-
tors, whereas card([ACTOR|) = ONE since this path
can only reach the base actor instance.

Relational variables consist of a relational path and
an attribute, and they describe attributes of classes
reached via a relational path (e.g., the popularity of ac-
tors starring in a movie). Relational dependencies con-
sist of a pair of relational variables with a common first
item, called the perspective. The dependency in Fig-
ure 2(a) states that the popularity of actors influences
the success of movies they star in. A canonical depen-
dency has a single item class in the relational path of
the effect variable. A relational model, M = (S, D), is
a collection of relational dependencies D, in canonical
form, defined over schema S. Relational models are
parameterized by a set of conditional probability dis-
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Figure 2: An example relational model involving actors and movies with a single relational dependency stating
that actor popularity causes movie success. The variables in the ground graph are drawn from the instances in
the skeleton, and the dependencies in the ground graph are drawn from the dependency in the model.

tributions, one for each attribute class A(I) for each
I € £EUR, that factorizes a joint probability distribu-
tion for a given skeleton. This class of models can be
expressed as DAPER models (Heckerman et al., 2007),
and they are more general than plate models (Buntine,
1994; Gilks et al., 1994) and than PRMs with depen-
dencies among only attributes (Getoor et al., 2007).

A relational model M paired with a relational skele-
ton o produces a model instantiation GGy, called
the ground graph. A ground graph is a directed
graph with a node for each attribute of every en-
tity and relationship instance in o, and an edge be-
tween instances of relational variables for all depen-
dencies in M. A single relational model is a template
for all possible ground graphs, one for every possi-
ble skeleton. Figure 2(c) shows an example ground
graph. A ground graph has the same semantics as a
Bayesian network with joint probability P(GGa,) =

[Ticeur HXeA(I) Hieo'(]) P(i.X | parents(i.X)).
3.2 ABSTRACT GROUND GRAPHS

The RCD algorithm reasons about conditional inde-
pendence using abstract ground graphs, introduced by
Maier et al. (2013). Unlike the reasoning it supports
in Bayesian networks, d-separation does not accurately
infer conditional independence when applied directly
to relational models. Abstract ground graphs enable
sound and complete derivation of conditional indepen-
dence facts using d-separation.

An abstract ground graph AGGurp, for relational
model M, perspective B € £ UR, and hop threshold
h € N is a directed graph that captures the dependen-
cies among relational variables holding for any possible
ground graph. AGGupp has a node for each rela-
tional variable from perspective B with path length
limited by h. AGGarpr contains edges between rela-
tional variables if the instantiations of those relational
variables contain a dependent pair in some ground
graph. Note that a single dependency in M may sup-
port many edges in AGGarpy. Additionally, a single
model M may produce many abstract ground graphs,

one for each perspective.

Figure 1 shows abstract ground graphs for the model
in Figure 2(a) from the ACTOR and MOVIE perspec-
tives with h = 4. There is a single relational depen-
dency in the example model, yet it supports two edges
in each abstract ground graph. Also, one perspective
exhibits a collider while the other contains a common
cause. The abstract ground graph is the underlying
representation used by RCD, and the conditional in-
dependence facts derived from it form the crux of the
relational bivariate orientation rule.

4 EDGE ORIENTATION

Edge orientation rules, such as those used by the PC
algorithm, use patterns of dependence and conditional
independence to determine the direction of causality
(Spirtes et al., 2000). In this section, we present the
relational bivariate orientation rule and describe how
the PC orientation rules can orient the edges of ab-
stract ground graphs. We also prove that these ori-
entation rules are individually sound and collectively
complete for causally sufficient relational data.

4.1 BIVARIATE EDGE ORIENTATION

The example from Section 2 briefly describes the appli-
cation of relational bivariate orientation (RBO). The
abstract ground graph representation presents an op-
portunity to orient dependencies that cross relation-
ships with a MANY cardinality. RBO requires no as-
sumptions about functional form or conditional densi-
ties, unlike the recent work by Shimizu et al. (2006),
Hoyer et al. (2008), and Peters et al. (2011) to orient
bivariate dependencies. The only required assumption
is the standard model acyclicity assumption, which re-
stricts the space of dependencies to those without di-
rect or indirect feedback cycles.

In the remainder of the paper, let Iyy denote the item
class on which attribute W is defined, and let X — Y
denote an undirected edge.
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Figure 3: The relational bivariate orientation rule is
conditional on whether [Ix... Iy].Y is in the separating
set of [Ix].X and [Ix...Iy...Ix].X.

Definition 1 (Relational Bivariate Orientation)
Let M be a relational model and G a par-
tially directed abstract ground graph for M,
perspective Ix, and hop threshold h. If
[Ix]X - [ley]y is in G, CaT’d([Iy...Ix]) =
MANY, and [Ix]X HiR [Ix...ly...lx].X ‘ Z, then (1)
if [Ixfy]Y € Z, orient as [Ix]XH[Ixfy]Y, (2)
if [Ix...Iy].Y ¢ Z, orient as [[x]. X —[Ix...Iy].Y.

RBO is illustrated in Figure 3. Given Definition 1,
if [Ix...Iy].Y is a collider for perspective Ix, then
[Iy...Ix].X is a common cause for perspective Iy, as-
suming card([Iy... Ix]) = MANY = card([Ix... Iy]). If
card([Ix...Iy]) = ONE and card([Iy...Ix]) = MANY,
then RBO applies only to the abstract ground graph
with perspective I'x. For the example in Figure 1(a),
[ACTOR, STARS-IN, MOVIE|.Success is a collider for
the ACTOR perspective.

RBO is akin to detecting relational autocorrelation
(Jensen and Neville, 2002) and checking whether a dis-
tinct variable is a member of the set that eliminates the
autocorrelation. It is also different than the collider
detection rule (see Section 4.2) because it can explic-
itly orient dependencies as a common cause when the
unshielded triple does not present itself as a collider.
In Section 6.1, we quantify the extent to which RBO
provides additional information beyond the standard
PC edge orientation rules.

4.2 ORIENTING THE EDGES OF
ABSTRACT GROUND GRAPHS

We adapt the rules for orienting edges in a Bayesian
network, as used by PC (Spirtes et al., 2000) and char-
acterized theoretically by Meek (1995), to orient re-
lational dependencies at the level of abstract ground
graphs. Figure 4 displays the four rules'—Collider
Detection (CD), Known Non-Colliders (KNC), Cycle
Avoidance (CA), and Meek Rule 3 (MR3)—as they
would appear in an abstract ground graph.

! An additional rule is described by Meek (1995), but it
only activates given prior knowledge.

A relational model has a corresponding set of abstract
ground graphs, one for each perspective, but all are
derived from the same relational dependencies. Re-
call from Section 3.2 that a single dependency sup-
ports many edges within and across the set of abstract
ground graphs. Consequently, when a rule is activated
for a specific abstract ground graph, the orientation of
the underlying relational dependency must be propa-
gated within and across all abstract ground graphs.

4.3 PROOF OF SOUNDNESS

An orientation rule is sound if any orientation not in-
dicated by the rule introduces either (1) an unshielded
collider in some abstract ground graph, (2) a directed
cycle in some abstract ground graph, or (3) a cycle in
the relational model (adapted from the definition of
soundness given by Meek (1995)).

Theorem 1 Let G be a partially oriented abstract
ground graph from perspective B with correct adja-
cencies and correctly oriented unshielded colliders by
either CD or RBO. Then, KNC, CA, MRS, and the
purely common cause case of RBO, as well as the em-
bedded orientation propagation, are sound.

Proof. The proof for KNC, CA, and MR3 is nearly
identical to the proof given by Meek (1995).

Orientation propagation: Let [B...Ix].X —[B...Iy].Y
be an oriented edge in G. By the definition of ab-
stract ground graphs, this edge stems from a relational
dependency [Iy...Ix].X — [Iy].Y. Let [B...Ix]'. X —
[B...Iy].Y be an unoriented edge in G where [B... Ix]’
is different than [B...Ix], but the edge is supported
by the same underlying relational dependency. As-
sume for contradiction that the edge is oriented as
[B...Ix]).X « [B...Iy].Y. Then, there must exist a
dependency [Ix...Iy].Y —[Ix].X in the model, which
yields a cycle. The argument is the same for abstract
ground graphs from different perspectives.

RBO common cause case: Given Definition 1, no al-
ternate perspective would have oriented the triple as
a collider, and B = Ix. Let [Ix].X —[Ix...Iy].Y —
[Ix...Iy...Ix].X be an unoriented triple in G. As-
sume for contradiction that the triple is oriented as
[Ix]X — [IX Iy}Y — [IX IY Ix]X This cre-
ates a new unshielded collider. Assume for con-
tradiction that the triple is oriented as [Ix].X —
Ix...Iy].Y = [Ix...Iy...Ix].X or equivalently, the re-
verse direction. This implies a cycle in the model. B

4.4 PROOF OF COMPLETENESS

A set of orientation rules is complete if it produces a
maximally oriented graph. Any orientation of an un-
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Figure 4: Schematics of the PC orientation rules on an abstract ground graph from perspective B.

oriented edge must be consistent with a member of the
Markov equivalence class. Lemma 1 describes a use-
ful property that enables the proof of completeness to
reason directly about the remaining unoriented edges.

Lemma 1 Let G be a partially oriented abstract
ground graph, with correct adjacencies and oriented
unshielded colliders. Let G, be the result of exhaus-
tively applying KNC, CA, MR3, and the purely com-
mon cause case of RBO all with orientation propaga-
tion. In G, if PX —P'Y—P".Z, then PX —P".Z.

Proof. Much of this proof follows from Meek (1995).

The following properties hold: (1) X # Z; otherwise,
RBO would have oriented P'.Y «— P".Z. (2) P.X must
be adjacent to P"”Z; otherwise, KNC would have ori-
ented P'.Y — P".Z. (3) P.X « P".Z does not hold;
otherwise, CA would have oriented P'.Y « P".Z.
Therefore, we have a structure of the form P.X —
PY-P'Zand PX-P'.Z.

We show that P.X — P”.Z through exhaustive enu-
meration of the cases under which P.X — P.Y was
oriented. The cases for KNC, CD (and RBO collider
cases), CA, and MR3 follow directly from Meek (1995).

(1) RBO oriented P.X — P'Y from the Iy per-
spective as a common cause. Then, P’ = [Iy],
P = [Iy...]x}, and P” = [nyz] AISO,
[Iylx.[y]y must be in GO with [Iy[x]X —
[Iy...Ix...Iy].Y. By Definition 1, card([Iy...Ix]) =
ONE and card([ly... Ix]) = MANY.

The relational path [Iy ... Iz] and its reverse have car-
dinality ONE; otherwise, RBO would have oriented
[Iy]Y - [IY Iz]Z We show that [Iy Ix}X -
[Iy...Iz].Z cannot remain unoriented.

Since this edge exists, by the construction of abstract
ground graphs, (a) [Iy...Ix]| must be produced by
combining [Iy...Iz] and [Iz...Ix]) (using the extend
method (Maier et al., 2013)) and (b) [Iy...Iz] must
be produced by combining [Iy...Ix] and [Ix...Iz]).
The paths [Ix...Iz] and [Iz... Ix] underlie the depen-

dency between X and Z. Facts (a) and (b) impose
constraints on the schema and abstract ground graphs.
There are four cases for (a) depending on the relation-
ship between [Iy...Iz] and [Iz... Ix], with equivalent
cases for (b).

(i) [Iy...Iz]) and [Iz...Ix] overlap exactly at I.
Then, the path from Ix to Iz must have car-
dinality MANY. This implies that from the I
perspective, RBO would have oriented X to Z.

(ii) [Iy...Ipr... Iz] and [Iz...Ips... Ix] overlap up to

Ins. This is equivalent to case (i), except Ips

appears on the path from Ix to 1.

[Iz...Ix] is a subpath of the reverse of [Iy... Iz].

Then, the path from Iz to Iy must have cardi-

nality MANY, which is a contradiction.

(iv) The reverse of [Iy... Iz] is a subpath of [Iz... Ix].
This is equivalent to case (i), except Iy appears
on the path from Ix to I.

(iii)

(2) Orientation propagation oriented P.X — P'.Y.
Then, there exists an edge for some perspective that
was oriented by one of the orientation rules. From that
perspective, the local structure matches the given pat-
tern, and from the previous cases, X — Z was oriented.
By definition, PX —-P"”.Z. B

Meek (1995) also provides the following results, used
for proving completeness. A chordal graph is an undi-
rected graph where every undirected cycle of length
four or more has an edge between two nonconsecutive
vertices on the cycle. Let G be an undirected graph, «
a total order on the vertices of G, and G, the induced
directed graph (A— B is in G, if and only if A < B
with respect to «). A total order « is consistent with
respect to G if and only if G, has no unshielded col-
liders. It can be shown that only chordal graphs have
consistent orderings. Finally, if G is an undirected
chordal graph, then for all pairs of adjacent vertices
A and B in G, there exist consistent total orderings «
and v such that A— B in G, and A— DB in G,,.

Theorem 2 Given a partially oriented abstract
ground graph, with correct adjacencies and oriented



unshielded colliders, exhaustively applying KNC, CA,
MR3, and RBO all with orientation propagation re-
sults in a maximally oriented graph G.

Proof. Much of this proof follows from Meek (1995).
Let E, and F, be the set of unoriented edges and
oriented edges of G, respectively.

Claim 1: No orientation of edges in F,, creates a cycle
or unshielded collider in G that includes edges from F,,.
Proof. Assume there exists an orientation of edges in
E, that creates a cycle using edges from F,. Without
loss of generality, assume that the cycle is of length
three. (1) If A-»B—C arein E, and A—C in E,,
then CA would have oriented A—C. (2) If A-»B—C
or A« B—C arein E, and A—C' is in E,, then no
orientation A—C would create a cycle. (3) If A— B is
in E, and B—C—A in E,, then by Lemma 1 we have
A — C and no orientation of B—C' would create a cycle.
A similar argument holds for unshielded colliders. [J
Claim 2: Let G, be the subgraph of G containing
only unoriented edges. G, is the union of disjoint
chordal graphs.

Proof. Assume that G, is not the union of disjoint
chordal graphs. Then, there exists at least one disjoint
component of G, that is not a chordal graph. Recall
that no total ordering of G, is consistent. Let A— B«
C be an unshielded collider induced by some ordering
on G,. There are two cases: (1) A and C are adjacent
in G. The edge must be oriented; otherwise, it would
appear in G,. Both orientations of A—C imply an
orientation of A and B, or C and B, by Lemma 1.
(2) A and C are not adjacent in G. Then, A—B—C'is
an unshielded triple in G. Either CD or RBO would
have oriented the triple as a collider, or the triple is
inconsistent with the total ordering on G,. O

Since G is chordal, it follows that no orientation of
the unoriented edges in G creates a new unshielded
collider or cycle. B

5 The RCD Algorithm

The relational causal discovery (RCD) algorithm is
a sound and complete constraint-based algorithm for
learning causal models from relational data.? RCD
employs a similar strategy to the PC algorithm, op-
erating in two distinct phases (Spirtes et al., 2000).
RCD is similar to the Relational PC (RPC) algorithm,
which also learns causal relational models (Maier et al.,
2010). The differences between RPC and RCD are
threefold: (1) The underlying representation for RCD
is a set of abstract ground graphs; (2) RCD employs a
new causal constraint—the relational bivariate orien-
tation rule; and (3) RCD is sound and complete. RPC
also reasons about the uncertainty of relationship ex-
istence, but RCD assumes a prior relational skeleton.

ALGORITHM 1: RCD(schema, depth, hop Threshold, P)

1 PDs < getPotentialDeps(schema, hop Threshold)
2 N < initializeNeighbors(schema, hop Threshold)
35— {}

// Phase I
4 for d «— 0 to depth do

5 for X - Y € PDs do
6 foreach condSet € powerset(N[Y]\ {X})
do
7 if |condSet| = d then
8 if X L' Y | condSet in P then
9 PDs — PDs\ {X — Y,Y — X}
10 S[X,Y] < condSet
11 break
// Phase II

12 AGGs < buildAbstractGroundGraph(PDs)
13 AGGs, S < ColliderDetection(AGGs, S)

14 AGGs,S < BivariateOrientation(AGGs,S)
15 while changed do

16 AGGs < KnownNonColliders(AGGs, S)
17 AGGs < CycleAvoidance(AGGs, S)

18 AGGs < MeekRule3(AGGs, S)

19 return getCanonicalDependencies(AGGSs)

The remainder of this section describes the algorithmic
details of RCD and proves its correctness.

Algorithm 1 provides pseudocode for RCD. Initially,
RCD enumerates the set of potential dependencies, in
canonical form, with relational paths limited by the
hop threshold (line 1). Phase I continues similarly to
PC, removing potential dependencies via conditional
independence tests with conditioning sets of increasing
size drawn from the power set of neighbors of the effect
variable (lines 4-11). Every identified separating set is
recorded, and the corresponding potential dependency
and its reverse are removed (lines 9-10).

The second phase of RCD determines the orientation
of dependencies consistent with the conditional inde-
pendencies discovered in Phase I. First, Phase II con-
structs a set of undirected abstract ground graphs, one
for each perspective, given the remaining dependen-
cies. RCD then iteratively checks all edge orientation
rules, as described in Section 4. Phase II of RCD is
also different from PC and RPC because it searches for
additional separating sets while finding colliders and
common causes with CD and RBO. Frequently, un-
shielded triples X —Y —Z may have no separating set
recorded for X and Z. For these pairs, RCD attempts
to discover a new separating set, as in Phase 1. These
triples occur for one of three reasons: (1) Since X and
Z are relational variables, the separating set may have
been discovered from an alternative perspective; (2)
The total number of hops in the relational paths for
X, Y, and Z may exceed the hop threshold—each de-
pendency is subject to the hop threshold, but a pair of

2Code available at kdl.cs.umass.edu/rcd.



dependencies is limited by twice the hop threshold; or
(3) The attributes of relational variables X and Z are
the same, which is necessarily excluded as a potential
dependency by the assumption of an acyclic model.

Given the algorithm description and the soundness and
completeness of the edge orientation rules, we prove
that RCD is sound and complete. The proof assumes
causal sufficiency and a prior relational skeleton (i.e.,
no causes of the relational structure).

Theorem 3 Given a schema and probability distri-
bution P, RCD learns a correct mazimally oriented
model M assuming perfect conditional independence
tests, sufficient hop threshold h, and sufficient depth.

Proof sketch. Given sufficient h, the set of poten-
tial dependencies PDs includes all true dependencies
in M, and the set of neighbors N includes the true
causes for every effect relational variable. Assuming
perfect conditional independence tests, PDs includes
exactly the undirected true dependencies after Phase I,
and S[X,Y] records a correct separating set for the re-
lational variable pair (X,Y"). However, there may exist
non-adjacent pairs of variables that have no recorded
separating set (for the three reasons mentioned above).
Given the remaining dependencies in PDs, we con-
struct the correct set of edges in AGGs using the meth-
ods from Maier et al. (2013). Next, all unshielded
colliders are oriented by either CD or RBO, with cor-
rectness following from Spirtes et al. (2000) and rela-
tional d-separation (Maier et al., 2013). Whenever a
pair (X,Y) is missing a separating set in S, it is either
found as in Phase I or from a different perspective.
RCD then produces a maximally oriented model by
the soundness (Theorem 1) and completeness (Theo-
rem 2) results of the remaining orientation rules. l

6 EXPERIMENTS

6.1 SYNTHETIC EXPERIMENTS

The proofs of soundness and completeness offer a
qualitative measure of RCD’s effectiveness—no other
method can learn a more accurate causal model from
observational data. To complement the theoretical re-
sults, we provide a quantitative measure of RCD’s per-
formance and compare against the performance of al-
ternative constraint-based algorithms.

We evaluate RCD against two alternative algorithms.
The first algorithm is RPC (Maier et al., 2010). This
provides a comparison against current state-of-the-art
relational learning. The second algorithm is the PC
algorithm executed on relational data that has been
propositionalized from a specific perspective—termed
Propositionalized PC (PPC). Propositionalization re-

duces relational data to a single, propositional table
(Kramer et al., 2001). We take the best and worst
perspectives for each trial by computing the average
F-score of its skeleton and compelled models.

We generated 1,000 random causal models over ran-
domly generated schemas for each of the following
combinations: entities (1-4); relationships (one less
than the number of entities) with cardinalities selected
uniformly at random; attributes per item drawn from
Pois(A = 1)+1; and relational dependencies (1-15)
limited by a hop threshold of 4 and at most 3 par-
ents per variable. This procedure yielded a total of
60,000 synthetic models. Note that this generates sim-
ple Bayesian networks when there is a single entity
class. We ran RCD, RPC, and PPC for each perspec-
tive, using a relational d-separation oracle with hop
threshold 8 for the abstract ground graphs.

We compare the learned causal models with the true
causal model. For each trial, we record the precision
(the proportion of learned edges in the true model)
and recall (the proportion of true edges in the learned
model) for both the undirected skeleton after Phase I
and the partially orientated model after Phase II. Fig-
ure 5 displays the average across 1,000 trials for each
algorithm and measure. We omit error bars as the
maximum standard error was less than 0.015.

All algorithms learn identical models for the single-
entity case because they reduce to PC when analyz-
ing propositional data. For truly relational data, algo-
rithms that reason over relational representations are
necessary for accurate learning. RCD and RPC re-
cover the exact skeleton, whereas the best and worst
PPC cases learn flawed skeletons (and also flawed ori-
ented models), with high false positive and high false
negative rates. This is evidence that propositionaliz-
ing relational data may lead to inaccurately learned
causal models.

For oriented models, the RCD algorithm vastly ex-
ceeds the performance of all other algorithms. As
the soundness result suggests, RCD achieves a com-
pelled precision of 1.0, whereas RPC introduces ori-
entation errors due to reasoning over the class depen-
dency graph and missing additional separating sets.
For recall, which is closely tied to the completeness re-
sult, RCD ranges from roughly 0.56 (for 1 dependency
and 2 entities) to 0.94 (for 15 dependencies and 4 enti-
ties). While RPC and PPC cannot orient models with
a single dependency, the relational bivariate orienta-
tion rule enables RCD to orient models using little in-
formation. RCD also discovers more of the underlying
causal structure as the complexity of the domain in-
creases, with respect to both relational structure (more
entity and relationship classes) and model density.
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Figure 5: Skeleton and oriented precision and recall for the RCD and RPC algorithms, as well as the best and
worst perspective for PPC for a baseline. Results are averaged over 1,000 models for each setting.

To quantify the unique contribution that RBO pro-
vides, we applied RBO as the final orientation rule in
Phase IT and recorded the frequency with which each
edge orientation rule is activated (see Figure 6). As ex-
pected, RBO never activates for the single-entity case
because all paths have cardinality ONE. For truly rela-
tional domains, RBO orients between 11% and 100%
of the oriented edges. However, this does not fully
capture the broad applicability of RBO. Therefore, we
also recorded the frequency of each edge orientation
rule when RBO is applied first in Phase II of RCD. In
this case, for at least two entity classes, RBO orients
between 58% and 100% of the oriented edges.

Finally, we recorded the number of conditional inde-
pendence tests used by the RCD and RPC algorithms.
RCD learns a more accurate model than RPC, but at
the cost of running additional tests of independence
during Phase II. Fortunately, these extra tests do not
alter the asymptotic complexity of the algorithm, re-
quiring on average 31% more tests.

6.2 DEMONSTRATION ON REAL DATA

We applied RCD to the MovieLens+ database,
a combination of the UMN MovieLens database
(www.grouplens.org); box office, director, and actor
information collected from IMDb (www.imdb.com);
and average critic ratings from Rotten Tomatoes
(www.rottentomatoes.com). Of the 1,733 movies with
this additional information, we sampled 10% of the
user ratings yielding roughly 75,000 ratings. For test-
ing conditional independence, RCD checks the signif-
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Figure 6: Frequency of edge orientation rules in RCD,
with RBO last (above) and first (below).

icance of coefficients in linear regression and uses the
average aggregation function for relational variables.
The RCD-generated model is displayed in Figure 7.

We ran RCD with a hop threshold of 4, maximum
depth of 3, and an effect size threshold of 0.01. Be-
cause constraint-based methods are known to be order-
dependent (Colombo and Maathuis, 2012), we ran
RCD 100 times and used a two-thirds majority vote
to determine edge presence and orientation. RCD dis-
covered 27 dependencies. One interesting dependency
is that the average number of films that actors have
starred in affects the number of films the director has
directed—perhaps well-established actors tend to work
with experienced directors. Also, note that genre is a
composition of binary genre attributes.
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Figure 7: RCD-learned model of MovieLens+.

7 RELATED WORK

The ideas presented in this paper are related to three
primary areas of research. First, the RCD algorithm
is a constraint-based method for learning causal struc-
ture from observed conditional independencies. The
vast majority of other causal discovery algorithms have
focused on Bayesian networks and propositional data.
The IC (Pearl, 2000) and PC (Spirtes et al., 2000) algo-
rithms provided a foundation for all future constraint-
based methods, and Meek (1995) proved these equiv-
alent methods to be sound and complete for causally
sufficient data. Additional constraint-based methods
include the Grow-Shrink (Margaritis and Thrun, 1999)
and TC (Pellet and Elisseeff, 2008) algorithms.

Second, RCD emphasizes learning causal relational
models, a more expressive class of models for real-
world systems. Our experimental results also indicate
that propositional approaches may be inadequate to
handle the additional complexity of relational data.
Algorithms for learning the structure of directed rela-
tional models have been limited to methods based on
search-and-score that do not identify Markov equiva-
lence classes (Friedman et al., 1999). The RPC algo-
rithm was the first to employ constraint-based meth-
ods to learn causal models from relational data (Maier
et al., 2010), but RPC is not complete and may intro-
duce errors due to its underlying representation. Both
RPC and PRMs include capabilities to reason about
relationship existence (Getoor et al., 2002); however,
we currently focus on attributional dependencies and
leave causes of existence as future work.

Finally, orienting bivariate dependencies, the most ef-
fective constraint used by RCD, is similar to the efforts
of Shimizu et al. (2006), Hoyer et al. (2008), and Peters
et al. (2011) in the propositional setting. Contrary to
RBO, these techniques leverage strong assumptions on
functional form and asymmetries in conditional densi-
ties to determine the direction of causality. Nonethe-
less, these methods could orient some of the edges that

remain unoriented by RCD, given these additional dis-
tributional assumptions.

8 CONCLUSIONS

Relational d-separation and the abstract ground graph
representation provide a new opportunity to develop
theoretically correct algorithms for learning causal
structure from relational data. We presented the re-
lational causal discovery (RCD) algorithm and proved
it sound and complete for discovering causal models
from causally sufficient relational data. We introduced
relational bivariate orientation (RBO), which can de-
tect the orientation of bivariate dependencies. This
leads to recall of oriented relational models over a pre-
vious state-of-the-art algorithm that is 18% to 72%
greater on average. We also demonstrated RCD’s ef-
fectiveness on synthetic causal relational models and
demonstrated its applicability to real-world data.

There are several clear avenues for future research.
RCD could be extended to reason about entity and re-
lationship existence, and the assumptions of causal suf-
ficiency and acyclic models could be relaxed to support
reasoning about latent common causes and temporal
dynamics. There are also new operators that exploit
relational structure, such as relational blocking (Ratti-
gan et al., 2011), which could be integrated with sim-
ple tests of conditional independence. Finally, RCD
could be enhanced with Bayesian information, similar
to the recent work by Claassen and Heskes (2012) for
improving the reliability of algorithms that learn the
structure of Bayesian networks.
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