UCLA WATER ACTION PLAN DECEMBER 2013 #### PREPARED BY: The University of California, Los Angeles Campus Sustainability Committee—Water Task Force #### STAFF & FACULTY Tracy Dudman, Capital Programs, Senior Planner—Chair Nurit Katz, Facilities Management, Chief Sustainability Officer Aliana Lungo-Shapiro, Housing & Hospitality Services, Sustainability Manager Lewis Rosman, Facilities Management, Director Energy Services Tim Petta, Facilities Management, Supervisor Plumbing Val Padilla, Health System Facilities, Director Teresa Hildebrand, Health System Facilities, Sustainability Programs Manager Carl Newth, Capital Programs, Director Engineering Joshua Witt, Environmental Health & Safety, Program Manager Yoram Cohen, Professor Chemical & Biomolecular Engineering Mark Gold, Institute of the Environment, Associate Director #### STUDENTS—ACTION RESEARCH TEAM Joanna Wheaton Emily Anderson Joel Slater Marlene Alvarado Hannah Aldern | TABLE OF CONTENTS | PAGES | |---------------------------------|-------| | INTRODUCTION | 5 | | UC WATER POLICY | 6 | | WATER INITIATIVES | 7 | | EDUCATION & OUTREACH | 19 | | STORMWATER MANAGEMENT | 24 | | | | | APPENDIX A | | | 3-YEAR BASELINE CALCULATION | 25 | | APPENDIX B | | | INITIATIVE COST ESTIMATES & ROI | 27 | The University of California Policy on Sustainable Practices has committed each campus to achieve a per capita potable water consumption reduction target of 20 percent below a campusspecific baseline by 2020. This Water Action Plan has three main components: UCLA's existing & proposed initiatives for water reduction; education & outreach programs; and stormwater management. The combination of these efforts would enable the campus to meet the Policy's goal. Pursuant to the UC Water Policy, UCLA used the fiscal years of 1999 through 2001 to generate the campus' water baseline. During these three years, the campus used an average of 892,764,180 gallons of water per year. To properly distribute the water use amongst the campus' range of water users, a weighted metric was applied to the defined populations. Thus, the 1999/2001 baseline is 17,084 gallons of water per weighted campus water user, per year. The 20 percent reduction target is 13,667 gallons per user. Comparing the baseline to the weighted per capita water use for 2012/2013, UCLA has already reduced water consumption by 9 percent. This has been achieved through fixture retrofits, water recycling, drought tolerant landscaping and weather based irrigation. ## TO REDUCE CAMPUS WATER USE BELOW THE 2020 TARGET REQUIRES REDUCING ANNUAL WATER USE BY 143,800,000 In addition, projects identified in the campus' 10-year plan that could be constructed by 2020, have the potential to add 28,800,000 gallons per year of potable water demand. Thus, to reach a 20 percent reduction by 2020 that also accounts for growth, the campus needs to reduce potable water use by an estimated 143,800,000 gallons per year. Through implementation of five current and proposed initiatives, the campus can meet the UC Policy water reduction goal. Attaining this goal relies on the Satellite Treatment Plant, which accounts for 80 percent of the anticipated reduction. #### UCLA HAS IDENTIFIED FIVE MAIN INITIATIVES TO ACHIEVE THE 20 PERCENT REDUCTION GOAL 1 Satellite Treatment Plant Partnership with City of Los Angeles Department of Water & Power: Reduction: 144,000,000 gallons per year (gpy) CoGeneration Plant Blowdown Water Recycling: Reduction: 25,500,000 gpy 3 Intramural Field Artificial Turf Installation: Reduction: 6,400,000 gpy ✓ On-Campus Housing Fixture Replacement: Reduction: 4,300,000 gpy 5 Tiverton Greywater System: Reduction: 190,000 gpy #### TOTAL WATER USE REDUCTION 180,390,000 gallons per year IN PARTNERSHIP WITH THE CITY OF LOS ANGELES, UCLA COULD BE ONE OF MANY SITES FOR A SATELLITE WASTEWATER TREATMENT PLANT The Northwest Zone of the campus is home to over 11,000 undergraduate resident students. This density generates over 0.5 million gallons of wastewater per day. The City of Los Angeles, Department of Water and Power (DWP) is committed to increasing recycled water production to 59,000 acre-feet per year (19 Billion gallons) by 2035. Capture and treatment of wastewater from the Northwest Zone would generate 400,000 gallons of recycled water per day to be used in the CoGen Plant's cooling towers. If determined to be feasible, the project would be constructed and operated by DWP on the UCLA campus. The review of the project's feasibility will continue through 2014. THROUGH INSTALLATION OF AN ACTIVE WATER TREAT-MENT SYSTEM, THE COGEN-ERATION (COGEN) PLANT WILL RECYCLE DAILY BLOW-DOWN WATER AND RETURN IT TO THE COOLING TOWERS The CoGen Plant recirculates water seven times through the cooling tower system until the Total Dissolved Solids (TDS) reach a maximum threshold. This water (called blowdown), cannot be passed through the cooling tower system due to its corrosive properties, thus, it is discharged to sewer at a volume of approximately 70,000 gallons per day. Installation of a UCLA proprietary water treatment system developed by the Water Technology Research Center, would remove the TDS from the water and return it back to the CoGen cooling towers. CONVERTING THE 7.7 ACRE INTRAMURAL FIELD FROM GRASS TO ARTIFICIAL TURF WILL NEARLY ELIMINATE WATER USE An average watering day for the existing grass field uses 1,397 gallons of water per minute, with a run time of 22 minutes, for a total of 30,700 gallons per day. Multiplied by 5 days a week and 41 weeks a year (11 weeks for repair or weather) amounts to 6.4 million gallons per year. An artificial turf surface would only require water for spot cleaning. The field is "refreshed" by grooming, thus watering of the entire field is unnecessary. Artificial Turf technology has advanced significantly for both the "grass" cover and the infill medium. These advancements have reduced heat gain, though watering portions of the field to cool the surface may occur. HOUSING & HOSPITALITY SERVICES HAS BEEN REPLACING TOILETS, FAUCETS, AND SHOWERHEADS THROUGHOUT THE EXISTING RESIDENCE HALLS This initiative includes the replacement of 1.6 gallon toilets with 1.0 gallon toilets for an annual water reduction of 1.5 million gallons. Replacement of faucets and showerheads and installation of faucet aerators in existing fixtures will reduce water use by 2.8 million gallons per year. This initiative is currently underway as of 2013 and will continue to be implemented through blocks of rooms or individual buildings into the year 2018. #### THE TIVERTON HOUSE GREY-WATER SYSTEM WILL SAVE 190,000 GALLONS OF WATER PER YEAR # THE TIVERTON HOUSE IS AN OVERNIGHT FACILITY THAT CAN BE MODIFIED TO INSTALL A PILOT GREYWATER SYSTEM With a subterranean parking garage and exposed plumbing lines overhead, the discharged laundry water from the facility can be redirected into a greywater system. An estimated 510 gallons of water are discharged from the facility per day. This water can be captured in an above grade biofiltration unit to provide on-site irrigation water. Although the water reduction potential of this project is negligible, its true intent is to reveal strategies for retrofitting existing campus buildings with greywater treatment systems and to identify water reuse options. # THE CAMPUS CONTINUES TO BE COMMITTED TO EDUCATION & OUTREACH THAT TEACHES WATER CONSERVATION AND SUSTAINABILITY - Cooling Tower Blowdown Pilot Project - 2 Student Action Research Team—Drought-Tolerant Landscaping Study - 3 Student Action Research Team—Fixture Replacement Study - Housing & Hospitality Services Sustainability Initiatives - 5 UCLA Grand Challenge in Environment and Sustainability UCLA is a living laboratory for sustainability where students, staff and faculty collaborate. In addition to hundreds of courses and over 25 research centers focused on environment and sustainability, we are also integrating operations and academics, This section covers examples of these initiatives as well as a ground-breaking new interdisciplinary university wide research initiative on environment and sustainability that focuses on energy and water. Moving forward we will continue to use the physical campus as a test bed for new water technologies and conservation methods. ## UCLA SUSTAINABILITY EDUCATION & OUTREACH COOLING TOWER BLOWDOWN PILOT The filtration system that will be installed at the Cogen cooling towers and help us meet our 2020 goals, was piloted at UCLA in 2011. This successful pilot was critical in development of the technology as well as providing an important water saving solution for UCLA. Professors and graduate students collaborated with Facilities Management staff during implementation. The combination ultra-filtration/reverse-osmosis system, was devised by the UCLA Water Technology Research (WaTeR). The system is dubbed Com2RO: a compact, second-generation, reverse-osmosis system. What makes Com2RO unique is both its small size — designed under a grant from the Navy to fit into the watertight hatch doors of their ships — but, more importantly, the way the ultrafiltration (UF) and reverse osmosis (RO) modules of the system "talk" to each other. Most watercleaning systems – "dumb" systems – fail when confronted with a change in water quality, Professor Cohen, Director of WaTeR said. In contrast, Com2RO is a smart system. "Basically, this integrates ultra filtration with reverse osmosis in a new design that allows [the two operations] to talk to each other," Cohen said. "They can handle changing water-quality conditions, and the system figures out what adjustments to make." The implications are huge and far-reaching: While water-cleaning systems have traditionally needed to be adjusted or even redesigned to handle different kinds of dirty water, the Com2RO could produce freshwater in poverty-stricken countries without experts to adjust the system if polluted water becomes more mineralized or salty. It could also be used on Navy ships to produce drinkable water from both salt water and gray water. Credit: Alison Hewitt, UCLA Today ## UCLA SUSTAINABILITY EDUCATION & OUTREACH #### ACTION RESEARCH TEAM-DROUGHT TOLERANT LANDSCAPING UCLA's Institute of the Environment and Sustainability, home to the Environmental Science Major, the graduate Leaders in Sustainability certificate program, and eight research centers on sustainability, also runs the Education for Sustainable Living Program (ESLP), a unique series of academic courses. A component of ESLP is the Action Research Team program. Action Research Teams (ART) is a student-run program held during winter and spring quarters with the goal of initiating dialogue, conducting research, and enacting change in sustainability by bringing together students, faculty, and administration. The Water Task Force had a dedicated ART team for the 2012/2013 year. The team was successful in moving forward two initiatives (not mentioned above) for a landscape survey of the student residents and future fixture replacement in core academic buildings. Under the guidance of Housing & Hospitality's sustainability manager, Aliana Lungo-Shapiro, the ART team surveyed students on their thoughts regarding replacement of existing landscaping with native/drought-tolerant landscaping. The purpose of the study was to use the residents as a test case to understand the general population's understanding of what drought-tolerant landscaping looks like, why it is more sustainable, and would they want more of this landscaping on the Hill. Further, their responses could drive how the campus could incorporate drought-tolerant landscaping into the broader campus palette. A survey of 134 students revealed a 73 percent preference for drought-tolerant landscaping over the predominately exotic landscaping on the Hill. In addition, 80 percent of students identified that they would want more drought-tolerant landscaping on the Hill in the future. ### UCLA SUSTAINABILITY EDUCATION & OUTREACH **ACTION RESEARCH TEAM-FIXTURE REPLACEMENT** The ART team also assisted Facilities Management's Tim Petta with a survey of water use in Powell Library and Boelter Hall. These are two of several core buildings that have not had fixture upgrades in the restrooms. The team collected data during peak hours, on how long each patron ran water from the sink faucets and how many times a patron turned the faucet on. This was done to establish an existing baseline to inform what water saving would be attained with installation of metered faucets. A sample of 50 men and 50 women in both Powell and Boelter Hall were observed by the team members, for a total of 200 samples. Observations were made during the busiest times when people most used the bathrooms and counted the number of sink users during the specified time. The chosen time was X:50 – X:05 when people were released from class and people were using the bathrooms before class. The team then assumed that there are eight (8) peak periods in the bathrooms per day and this occurred each day across a typical 5-day (Monday through Friday) school week. The average faucet run time for women was 10 seconds and 9 seconds for men, with the combined average of 10 seconds per user. The averages informed what run times should be considered for the new metered faucets that would be set by the installer. In use, each run would be triggered by the patron by pushing a manual, spring-loaded lever. Each new metered faucet has an equipment-only cost of \$150 and the sample bathrooms had a total of 20 sinks; thus, an equipment cost of \$3.000. Calculated water and cost savings for both a 5– and 8-second meter push are as follows: | | Water Savings (gallons) | | | Cost Savings | | | | |----------------|-------------------------|------------------------|--|---------------------|----------------------|----------------|--| | Metered Faucet | 5-year
Operation | 10-year Op-
eration | | 5-year
Operation | 10-year
Operation | ROI
(years) | | | 5-second meter | 853,637 | 1,707,274 | | \$6,646 | \$16,292 | 1.55 | | | 8-second meter | 617,035 | 1,234,071 | | \$3,973 | \$10,945 | 2.15 | | ## UCLA SUSTAINABILITY EDUCATION & OUTREACH #### HOUSING & HOSPITALITY SERVICES SUSTAINABILITY INITIATIVES Housing & Hospitality Services implements its own sustainability initiatives, which focus on Living Green for both on- and off-campus residents; Dining Green in on-campus dining halls; and waste management strategies for Rooms Division, Dining, and Catering, among others. The Living Green program is dedicated to Housing operations that reduce energy and water consumption and reduce waste; which are essential to minimize the impacts of over 11,000 students living on "the Hill." Existing water initiatives include Solar Water Heating, Low Flow Fixtures, Weather Controlled Irrigation, Drip Irrigation Systems, and H2O-to-Go Filling Stations. More details about these initiatives can be found at http://www.sustain.ucla.edu/our-initiatives/housing/ UCLA Dining Services is committed to water reductions through the promotion of Beef-less Thursdays and Tray-Free Dining. Additional details can be found at http://www.sustain.ucla.edu/ our-initiatives/housing/dining-green/ In addition to strategic initiatives, Housing & Hospitality Services has partnered with the Office of Residential Life to establish Team Green Coordinators—"eco-reps" that promote education and outreach within the on-campus residence halls. Team Green Coordinators organize building and Hill-wide programs, create passive education boards, and conduct trainings on energy, water, waste, food, and purchasing. Team Green Coordinators provide incentives (such as shower timers, reusable bags, or CFL light bulbs) to students to encourage long-lasting behavior change. ## UCLA SUSTAINABILITY EDUCATION & OUTREACH UCLA GRAND CHALLENGES On November 15, 2013, UCLA unveiled plans designed to turn Los Angeles into a global model for urban sustainability. The project is the first of six in the UCLA Grand Challenge initiative that will unite the university's resources to tackle some of society's most pressing issues. At a kickoff event at UCLA's Royce Hall, Chancellor Gene Block described the ambitious project, "Thriving in a Hotter Los Angeles," whose goal is for the Los Angeles region to use exclusively renewable energy and local water by 2050 while protecting biodiversity and enhancing quality of life. "With our rich history of creating new ideas and a vibrant tradition of collaboration across disciplines, UCLA is uniquely capable of solving the most pressing issues facing society," Block said. "This is bigger than any research project we have tackled before. Each of our six UCLA Grand Challenge Projects will take on a different issue with an all-star campus-wide team of UCLA faculty, complemented by public engagement and student involvement. Our first project includes dozens of UCLA's most prominent and renowned scholars, who will create a model for sustainable living around the world." "Thriving in a Hotter Los Angeles" seeks to raise \$150 million for research on new technologies and policies. In 2019, UCLA will provide regional decision-makers with a detailed plan for how to achieve full sustainability in greater Los Angeles by midcentury. The roadmap will be backed by cutting-edge research, new technologies and breakthroughs, and recommendations on laws, policies and outreach, many of which will be tested first on UCLA's campus. The effort will involve six dozen faculty and staff from about 30 centers and nearly two dozen departments, including environmental science, law, economics, urban planning, public policy, engineering, public health, conservation biology, transportation and communication studies. For more information please visit the website at http://grandchallenges.ucla.edu/ ## UCLA STORMWATER MANAGEMENT **REGULATION & INNOVATION** Since 2009, active and passive stormwater systems have been incorporated into new construction projects in response to the regulatory changes for the National Pollution Discharge Elimination System (NPDES) Statewide General Construction Permit. The General Permit is required for projects that would result in land disturbance of over one acre. In response, the campus has developed a variety of stormwater retention solutions on a project-by-project basis. A comprehensive plan for how the campus can capture and reuse stormwater as part of its water portfolio will be the primary focus of the Water Task Force through 2014. With support from a new ART team during the 2013/2014 academic year, and in conjunction with the UCLA Grand Challenges, the Water Task Force will develop stormwater initiatives that can be implemented on the campus as a test case for the larger Los Angeles Region. ### APPENDIX A THREE-YEAR BASELINE CALCULATIONS #### **UCLA BASELINE WATER USE VS. 2012/2013** UCLA's baseline consists of the population and total campus water data for the three fiscal years of 1999/2000, 2000/2001, and 2001/2002. The various populations of those three years are multiplied by a weighted campus user factor to generate an annual water use per user. As shown below, the UCLA Baseline Weighted Water User is 17,084 gallons per year (gpy). Compared to the Fiscal Year 2012/2013, the annual gallons per weighted campus user was 15,543. This represents a nine (9) percent reduction from the baseline. | | Baseline | 2012/2013 | |--|-------------|-------------| | On-Campus Resident | 6,957 | 12,190 | | Patients | 622 | 675 | | Full-time Students (non-resident) | 28,515 | 28,278 | | Full-time Staff & Faculty | 18,094 | 22,499 | | Part-time Students | 1,440 | 873 | | Part-time Staff & Faculty | 17,383 | 19,638 | | total population | 73,011 | 84,153 | | | | | | Total Campus Water Use (gpy) | 892,764,180 | 956,542,400 | | | | | | Weighted Campus User | 52,258 | 61,540 | | Water Use per Weighted Campus User (gpy) | 17,084 | 15,543 | Per the UC Policy on Sustainable Practices, an average of the annual gallons per weighted campus user over the three chosen years is used for the campus baseline. The weight per user is as follows: | • | On-Campus Resident: | 1.0 | |---|---------------------------------|-----| | • | Patients: | 1.3 | | • | Full-Time Student/Staff/Faculty | .7. | | • | Part-Time Student/Staff/Faculty | .5 | ### APPENDIX B **INITIATIVE COST ESTIMATES & ROI** #### **HOUSING & HOSPITALITY SERVICES** FIXTURE REPLACEMENT INITIATIVE The Housing & Hospitality Services initiative would replace the following fixtures as follows: Replace 1.6 gallon per flush (gpf) with 1.0 gpf units Toilets: Faucet aerators: Replace 2.2 gallon per minute (gpm) with 0.5 gpm units Replace 2.0 gpm with 1.5 gpm units Replace 2.5 gpm with 1.5 gpm units Showerheads: Showerheads: | Initiative | #Units | Est. Water Savings (gal) | Est. Install Costs | |----------------------------|--------|--------------------------|--------------------| | High efficiency toilets | 1,330 | 1,500,000 | \$152,000 | | Low-flow aerators | 1,640 | 900,000 | \$8,240 | | Low-flow showerheads (2.0) | 1,210 | 1,100,000 | \$8,610 | | Low-flow showerheads (2.5) | 120 | 800,000 | \$1,170 | | | 4,300 | 4,300,000 | \$170,020 | #### **COGENERATION PLANT BLOWDOWN TREATMENT** & RECYCLING INITIATIVE The Blowdown treatment and recycling initiative would potentially have a payback in two (2) years based on the estimated cost of treatment equipment offset annually by water cost savings. | | 0 | 1 | 2 | |--------------------------|-------------|-------------|-------| | | 2014 | 2015 | 2016 | | | | | | | Estimated Equipment Cost | | (\$600,000) | | | | | | | | Blowdown Volume and Cost | | | | | volume/day/gallons | 70,000 | - | - | | volume/year/gallons | 25,550,000 | - | - | | cost/gallons (cents) | 0.013 | 0.013 | 0.013 | | | | | | | Annual Cost | (\$332,150) | (\$267,850) | \$0 |