SIGART Bulletin 2(3): 35-44, June 1991.

Algernon — A Tractable System for Knowledge-Representation

J. M. Crawford
B. J. Kuipers
Department of Computer Sciences
The University of Texas At Austin
Austin, Texas 78712
jc@cs.utexas.edu
kuipers@cs.utexas.edu

Abstract

Access-Limited Logic (ALL) is a theory of
knowledge representation which formalizes the
access limitations inherent in a network struc-
tured knowledge-base. Where a deductive
method such as resolution would retrieve all
assertions that satisfy a given pattern, an
access-limited logic retrieves only those asser-
tions reachable by following an available access
path. The time complexity of inference in ALL
is a polynomial function of the size of the ac-
cessible portion of the knowledge-base, rather
than an exponential function of the size of the
entire knowledge-base (as in much past work).
Access-Limited Logic, though incomplete, still
has a well defined semantics and a weakened
form of completeness, Socratic Completeness,
which guarantees that for any fact which is
a logical consequence of the knowledge-base,
there is a series of preliminary queries and as-
sumptions after which a query of the fact will
succeed.

Algernon implements Access-Limited Logic.
Algernon is important in testing the claims
that common-sense knowledge can be en-
coded cleanly using access paths, and that
in common-sense reasoning the preliminary
queries and assumptions can generally be de-
termined from domain knowledge. In this pa-
per we overview the principles of ALL and
discuss the application of Algernon to three
domains: expert systems, qualitative model
building, and logic puzzles.

1 Introduction

Access-Limited Logic (ALL) is a language for knowledge
representation which provides both logical coherence and
computational tractability. ALL embeds the access-
limitations of a network-structured knowledge base in
the logic. Operations on ALL knowledge-bases are guar-
anteed to terminate in time polynomial in the size of the
locally accessible portion of the knowledge base. Further-
more, ALL is Socratically Complete: for any fact which
is a semantic consequence of the knowledge base, there is
a sequence of preliminary queries and assumptions, after
which a query of the fact will succeed [10, 9]. While these
formal properties are important, they do not necessar-

ily guarantee that ALL can actually be used to repre-
sent knowledge. There are two further claims which can
only be shown empirically: (1) that the syntactic restric-
tions on ALL still allow one to express common-sense
knowledge cleanly and (2) that in practice the prelimi-
nary queries and assertions can generally be determined
from domain knowledge.

It has been apparent at least since the work of [24] (and
others such as [15]) that a knowledge representation lan-
guage sufficient to support the building of large knowl-
edge bases must have a clear semantics. Without a clear
semantics one can never be sure exactly what a given
expression represents, which deductions should follow
from it, or how it compares to an expression in a differ-
ent knowledge representation language. Experience with
formally specified knowledge representation systems has
revealed a trade-off between the expressive power of such
systems and their computational complexity [18, 19].
Further, to ensure tractable and complete reasoning, one
must restrict the expressiveness of a knowledge represen-
tation language almost to the point of unuseability (ex-
cept within restricted domains [1, 6]). The most common
solution to this problem has been to combine fast, spe-
cial purpose inference with a first-order logic theorem
prover [4, 21] or a weaker deduction system [Levesque,
84, Patel-Schneider, 85, Vilain, 85]. The main problem
with such systems is that while they answer some queries
efficiently they mysteriously fail on others (or never an-
swer at all).

Our approach to knowledge-representation in ALL is
based on two claims: first, that there exists a set of in-
ference mechanisms, efficiently computable using a net-
work structured representation, which are sufficient for
a large class of common-sense reasoning problems, and
second, that these inference mechanisms are Socrati-
cally Complete (thus guaranteeing that any logical con-
sequence of a knowledge-base can be inferred after some
series of ‘leading’ questions). Time complexity and So-
cratic Completeness are formal properties which have
been shown elsewhere [9]. The claim that the represen-
tation and inference mechanisms in ALL are sufficient
for a large class of common-sense reasoning problems
can necessarily only be proven or disproven empirically.
In this paper we overview results from the application
of the lisp implementation of ALL to three fields: sim-
ple expert systems, qualitative model building, and logic
puzzles.

2 Tractable Reasoning and
Experimentation

Reasoning is hard. If a knowledge representation lan-
guage is as expressive as first-order predicate calculus,
then the problem of deciding what an agent could logi-
cally deduce from its knowledge is unsolvable [3]. Thus
a knowledge-representation system must either give up
expressive power or completeness’. If a system is not
capable of complete inference under a given semantics
(e.g., the semantics of predicate calculus) then arguably
this implies that the semantics is not appropriate for the
system (e.g., if according to the semantics Th |= f, but
the system cannot derive f from Th, then the mean-
ing of Th to the system is clearly not the same as the
meaning given it by the semantics). If, however, a sys-
tem is incomplete, but is Socratically Complete, then
the semantics accurately reflects the potential reasoning
ability of the system (and the actual reasoning ability of
the system given appropriate queries and assumptions).

There are thus three solutions to the undecidability of
predicate calculus: restrict the expressive power of the
system, replace the model theoretic semantics of predi-
cate calculus (with perhaps a more operational seman-
tics), or give up completeness but guarantee Socratic
Completeness. In all cases experimentation is critical.
If a system has weak expressive power, then one must
demonstrate that there are a significant number of in-
teresting problems which can be solved within the limits
of the system. If one uses an operational semantics then
one must demonstrate that it gives users a sufficiently
clear picture of what deductions the system is able to
make. Finally, with Socratically Complete systems one
must demonstrate empirically that (at least in some do-
mains) the preliminary operations can be derived.

3 Introduction to Algernon

Algernon is a frame based knowledge-representation sys-
tem which supports both forward and backward chaining
rules of inference. This section describes Algernon in suf-
ficient depth that the example below can be understood.
For a more detailed discussion see [9].

The expressive power of Algernon greatly exceeds that
of ALL. Algernon supports full first order quantification
(which we are in the process of adding to ALL), and
a general mechanism for escaping to lisp. Our general
methodology has been to test constructs in Algernon be-
fore attempting the more difficult job of formalizing them
(and then modifying the implementation based on what
we learn from the formalization).

!One could also give up tractability, however, if a
system is intractable then in practice this means that it
does not return on some inputs (or returns only after
some unacceptable period of time), and thus the system
is effectively incomplete

3.1 Access Paths

Our approach in Algernon begins with the well known
mapping between atomic propositions in predicate cal-
culus and slots in frames; the atomic proposition that
the object a stands in relation r to the object b can be
written logically as r(a,b) or expressed, in frames, by
including b in the r slot of the frame for a [16]:

r(a,b) = values: { ...b... }

The main advantage of this frame based representation
is that the (conceptual) objects related to a frame can be
easily accessed by looking in a slot of the frame. We de-
fine an access path, in a network of frames, as a sequence
of frames each directly accessible from (¢.e., appearing
in a slot of) its predecessor. A sequence of predicates
defines an access path iff any variable appearing as the
first argument to a predicate has appeared previously in
the sequence. For example, “John’s parent’s sister” can
be expressed in Algernon as the path: ((parent John
?x) (sister ?x 7y)) (variables are always denoted in
Algernon by Lisp atoms whose print names begin with
‘?’). The Algernon path ((parent John ?x) (sister
?x ?y)) is equivalent to the predicate calculus state-
ment: parent(John,?z) A sister(?z,?y). In predicate
calculus this statement is equivalent to: sister(?z,7y) A
parent(John,?z). However, the corresponding sequence
of predicates, ((sister ?x ?y) (parent John ?x)),is
not an access path because a query of (sister ?x ?y)
would require a search of the knowledge-base.

3.2 Rules Are Implications

We represent logical implications as rules. For example,
the logical assertion that

Ve, y.[spouse(x,y) — spouse(y,z)]
can be represented by the forward-chaining rule:
((spouse ?x ?y) -> (spouse ?y ?x)).

Intuitively, such a rule says that whenever we learn a
relation (spouse f g) we should immediately conclude
(spouse g f).

Algernon also allows backward-chaining (“if-needed”)
rules. For example:

((aunt John ?y) <- (parent John ?x)
(sister ?x 7?y))

Intuitively, this rule says that if you need to find an aunt
of John then you should look for a sister of a parent of
John. Notice that the antecedent of this rule is an access
path. All rules in Algernon must define access paths.

3.3 The Syntax of Algernon

The interface to Algernon is through the lisp functions
a-assert and a-query. Both functions take two argu-
ments. The first argument is a comment string and the
second is the path to be asserted or queried. Thus the
simplest type of assertion in Algernon would be some-
thing like:

(a-assert "The father of Charles is Adam"
’((father Charles Adam)))

Where Charles and Adam are names of frames in the
knowledge-base, and father is a slot in the knowledge-
base. This assertion would add the value Adam to the
father slot of the frame with name Charles (and ap-
ply any if-added rules for this slot). The corresponding

query:

(a-query "Is Adam the father of Charles ?"
>((father Charles Adam)))

would succeed iff Adam is in (or could be proven to be
in) the father slot of Charles. Queries (and assertions)
return all known (or provable) values of variables. Thus
the query:

(a-query "Who are sisters of fathers of Charles ?"

> ((father Charles ?x) (sister 7x 7s)))

would find all sisters of fathers (.e., aunts) of Charles.
Access paths are queried by querying the first predi-
cate and then, branching on all sets of variable bindings,
querying the rest of the path.

Algernon slots can hold ‘non-values’ as well as values.
Non-values are used to express negation; they say that
an object does not stand in some relation to some other
object. Non-values are denoted by (not p), where p is
a proposition. Thus an assertion of (not (likes suzan
chocolate)) says that suzan does not like chocolate.?

Algernon also supports several special forms. Short de-
scriptions of the most important special forms are given
below. The full syntax of all special forms is given in [9].

:taxonomy Adds to the basic taxonomic structure in
the knowledge-base. The taxonomic structure of
sets forms the “backbone” of an Algernon know-
ledge-base. Sets are described by lists whose
elements are (names of) the members of the
sets and whose sublists are subsets of the set.
For example, (:taxonomy (objects (companies
Bank))) defines the set companies which is a subset
of the set objects and which includes the individual
Bank.

:slot Declares a new slot. For example: (:slot
sister (people people)) declares the slot sister

ZTechnically, it adds chocolate to the non-value facet
of the 1likes slot of the frame with name suzan.

to be a relation between two members of the set
people.

:rules and :srules Add deduction rules to the
knowledge-base. :rules is followed by the name
of the (frame for the) set the rules are to be asso-
ciated with, and then the rules. :srules is similar
except that it associates rules with a slot instead of
a set. For example:

(:srules (:slot spouse)
((spouse ?x ?7y) ->
(spouse 7y 7x)))

associates the forward-chaining rule with the slot
spouse (the construction (:slot spouse) is needed
to refer to the slot spouse instead of the frame with
name spouse).

:create Creates a new frame. The form (:create ?x
name) would create a frame with name name and
bind the variable ?x to it.

:forc Find OR Create. :forc finds a frame satisfying a
description, or creates a new frame and asserts the
description. For example, (:forc ?x (father Tom
?x)) binds ?x to the father of Tom, if the father
of Tom is known, otherwise it creates a new frame,
binds 7x to it, and asserts that it is the father of
Tom.

:assume Adds an assumption to the knowledge-base.
Algernon includes a simple truth maintenance sys-
tem to support dependency directed backtracking.

3.4 The Incompleteness of Algernon

There are three sources of incompleteness in Algernon.’
First, if-added and if-needed rules can be combined in
such a way that logically entailed deductions cannot be
drawn (without preliminary queries). We refer to this
as if-added/if-needed incompleteness. An example of
if-added/if-needed incompleteness is shown in figure 1.
Second, Algernon allows the knowledge-base to be par-
titioned. Partitions limit rule backchaining — facts in
other partitions are simply retrieved (for details see [8]).
Finally, in the presence of negation, there may be logi-
cal consequences of the knowledge-base which cannot be
derived by simple rule application. Such deductions can
be drawn in Algernon by making assumptions and then
reasoning by contradiction. Reasoning by contradiction
is demonstrated in the annotated example.

To be more precise, there are three sources of incom-
pleteness in the portion of Algernon formalized by ALL
— see the introduction to section 3.

Consider a knowledge-base containing the rules:

((r1 ¢ ?x) <- (r2 c 7x))
((r1 ¢ ?x) -> (r3 ¢ ?x))

and the fact (r2 ¢ ¢). Logically this entails (3 ¢ ¢),
but this deduction cannot be drawn in Algernon without
first querying (r1 ¢ ¢).

Figure 1: An example of if-added/if-needed incomplete-
ness.

4 Applications of Algernon

Algernon has been used by a graduate level expert sys-
tems class and several simple expert systems have been
built using it [9]. In general, expert systems are rule
based and do not depend on complex reasoning (e.g.,
proofs by contradiction). Thus the incompleteness of
Algernon was not a problem in these applications. The
access path restrictions also seemed to pose no difficul-
ties. Algernon’s use by the class did, however, pressure
us to increase the usability of Algernon by working on its
user interface and documentation. We were also forced
to modify Algernon’s algorithms in order to make it eas-
ier for our users to understand the order in which rules
were applied (this was particularly important in appli-
cations which queried their users and needed to do so in
a particular order).

Algernon has also been used to support our work on
qualitative model building [7]. In general, the reasoning
required for model building is ‘straight line’ reasoning
— it involves no proofs by contradiction or reasoning by
cases. Partitional boundaries occasionally had to be ad-
justed in order to make sure that model building did not
terminate prematurely. Some cases of if-added/if-needed
incompleteness also arose, but these were debugged fairly
easily, and fixed by modifying the rules involved. The ac-
cess path restriction forced the addition of inverses for
some slots, but otherwise was not a problem.

The natural language group at MCC has recently be-
gun using Algernon, and has developed functions which
translate from an abstract knowledge-base interface
based on Ontolingua [14] down to Algernon queries and
assertions [2].

Logic puzzles are an interesting domain for Algernon
for two reasons: first, they generally require a limited
amount of general knowledge and thus can be studied
without first having to build a large knowledge-base of
common-sense facts, and second they generally do re-
quire complex reasoning and thus test our ability to gen-
erate preliminary operations. The annotated example
demonstrates the application of Algernon to a simple
logic puzzle.

5 Annotated Example

Consider the following problem (from [25]):

In a certain bank the positions of cashier, man-
ager, and teller are held by Brown, Jones and
Smith, though not necessarily respectively.
The teller, who was an only child, earns the
least. Smith, who married Brown’s sister,
earns more than the manager. What position
does each man fill ?

These facts can be asserted into the Algernon knowledge-
base as shown in figure 2. A small amount of common-
sense knowledge is also needed to solve this problem
(e.g., anyone with a sister is not an only child), and is as-
serted into Algernon as shown in the figure. Declarations
for the slots unique to the bank problem are also shown.
Several generally useful slots (e.g., coreferent, less,
least, one-to-one) are defined in Algernon’s ‘back-
ground’ knowledge-base (see [9]). Notice that we explic-
itly create frames for ‘the cashier’, ‘the manager’, and
‘the teller’. Solving the problem then becomes a matter
of deriving appropriate coreference links between these
frames and the frames for Brown, Jones, and Smith.

Initially Algernon is unable to derive these coreference
relations. We lead Algernon to the solution by asking a
series of questions which are similar to the questions a
person might ask themselves (we have also implemented
heuristics capable of generating preliminary operations
for this problem — see section 6).

For the queries, we show the output produced by Al-
gernon. The first line in the output is only a comment.
Next is either a message that the operation failed, or a
list of the variable bindings produced. Variable bind-
ings are shown in the form: 7u --- frame [name],
where, ‘frame’ is frame itself, and ‘name’ is the value in
the name slot of the frame.? Finally, Algernon produces
the following performance data:

Insertions: The number of new facts added
to the knowledge-base.

Rule applications: The number of rule ap-
plications.
Unifications:
performed.
Matches: The number of matches performed.
Frame insertions: The number of values
added to slots of frames.®

Frame accesses: The number of retrievals of
values from frames.

The number of unifications

For the operations which result in contradictions we in-
clude some tracing output to show the contradiction and
how it is resolved.

Note that the last query (as well as two others) returns
two sets of variable bindings. This is because the path

*This is provided to increase readability in cases in
which the frame is something like frame26.

®This is distinct from the number of insertions since
Algernon uses the frames for various kinds of internal
bookkeeping.

(a-assert "New sets." ’((:taxonomy (objects (companies Bank)
(positions cashier manager teller)
(people)))))
(a-assert "New slots."
’((:slot sister (people people)
:comment "(sister a b) = The sister of a is b.")
(:slot only-child (people booleans)
:cardinality 1
:comment "(only-child a true) = a is an only child.")
(:slot holds (people companies positions)
:comment "(holds ?p ?c ?pos) = 7p holds position ?pos in company ?c.")
(:slot position (companies positions people)
:comment "(position ?c ?pos ?p) = In company ?c, 7pos is held by ?p.")))

(a-assert "Sisters and only children."
> ((:RULES people
((sister ?pl ?p2) -> (not (only-child ?p1l true))))))

(a-assert "Holds and position."
> ((:SRULES (:slot position)
((position ?c 7pos 7p) -> (holds ?p ?c 7pos)))
(:SRULES (:slot holds)
((holds ?p ?c ?pos) -> (position ?c ?pos ?7p)))))

;; One extra rule to enhance Algernon’s ability to reason about one-to-one relationships.
(a-assert "Forward chaining rule for cf-member."
>((:RULES sets
((one-to-one-into 7s1 ?s2) (member 7sl ?x) -> (cf-member 7x ?s2)))))

(a-assert "In a certain bank the positions of cashier, manager, and teller are held by
Brown, Jones and Smith, though not necessarily respectively."

’>((:forc 7cp (position Bank cashier ?cp)) ; This finds or creates "the cashier".
(:forc 7mp (position Bank manager ?mp)) ; "The manager."
(:forc 7tp (position Bank teller 7tp)) ; "The teller."

(:create ?b Brown) (:create ?s Smith) (:create ?7j Jones)
(isa ?b people) (isa ?j people) (isa ?s people)
HH

(:create ?pos posts) (member 7?pos 7cp) (member 7pos 7mp) (member ?pos ?tp)

(complete ?pos true) ; 7pos = {"the cashier", "the manager", "the teller"}.
(:create 7emp employees) (member ?emp ?b) (member ?emp ?j) (member Zemp ?s)
(complete Zemp true) ; ?emp = {Brown, Smith, Jones}.

HH

(one-to-one 7pos 7emp)

HH

;; Finally, the implicit assumption that Brown, Jones and Smith are different people:
(:assume (not (coreferent ?b 7j))) (:assume (not (coreferent ?j ?s)))

(:assume (not (coreferent ?s ?b)))))

(a-assert "The teller, who was an only child, earns the least."
’((position Bank teller 7?tp) (only-child ?tp true) (least ?tp posts)))

(a-assert "Smith, who married Brown’s sister, earns more than the manager."

’((:forc 7sis (sister Brown ?sis))
(spouse Smith ?sis) (position Bank manager 7man) (greater Smith 7man)))

Figure 2: Algernon assertions to set up the Bank problem.

(a-query "What positions do Brown, Smith and Jones hold ?"
’((coreferent Brown ?be) (holds ?be Bank ?post)
(coreferent Smith ?se) (holds ?se Bank 7post)

(coreferent Jones ?je) (holds ?je Bank ?post)))

QUERYING: What positions do Brown, Smith and Jones hold ?

Query failed.
Insertions: 3 Rule applications: 7 Unifications: 7 Matches: 26.

Frame insertions: 25 Frame accesses: 182

Figure 3: Query initially fails.

(a-query "If Smith were the manager then could he earn more than the manager 7"
’((position Bank manager 7man) (:assume (coreferent Smith ?man))
(not (greater Smith 7man))))

QUERYING: If Smith were the manager then could he earn more than the manager ?

** Beginning raa Trace **
Contradiction: (not (greater smith frame2))
(greater smith frame2)

(not (greater smith frame2)) supported by assumptions: ((coreferent smith frame2))
(greater smith frame2) supported by assumptions: nil

Dropping assumption: (coreferent smith frame2).
Asserting its negation: (not (coreferent smith frame2)).

**% End raa Trace **

Query failed.

Insertions: 27 Rule applications: 96 Unifications: 35 Matches: 258.
Frame insertions: 166 Frame accesses: 1789

Figure 4: Proof by contradiction that Smith is not the manager.

(a-query "If Smith were the teller then could he earn more than the manager?"
’((position Bank teller ?t) (:assume (coreferent Smith ?t))
(position Bank manager 7man) (mot (greater Smith ?man))))

QUERYING: If Smith were the teller then could he earn more than the manager?
** Beginning raa Trace **
Contradiction: (not (greater smith frame2))

(greater smith frame2)

(not (greater smith frame2)) supported by assumptions: ((coreferent smith frame3))
(greater smith frame2) supported by assumptions: nil

Dropping assumption: (coreferent smith frame3).
Asserting its negation: (not (coreferent smith frame3)).
** End raa Trace **

Query failed.

Insertions: 28 Rule applications: 90 Unifications: 35 Matches: 243.
Frame insertions: 164 Frame accesses: 1837

Figure 5: Proof by contradiction that Smith is not the teller.

(a-query "Hence, Smith holds which job ?" ’((coreferent Smith 7se) (holds ?se Bank ?post)))

QUERYING: Hence, Smith holds which job ?

Result 1:
Bindings: ?post --- cashier [cashier]
?se --- framel [nil]
Result 2:
Bindings: ?post --- cashier [cashier]
?se --- smith [smith]
Created frame: framel-selfset
Insertions: 15 Rule applications: 33 Unifications: 6 Matches: 88.
Frame insertions: 50 Frame accesses: 536

Figure 6: Hence Smith is the cashier.

(a-query "If Brown were the teller then would he be an only child ?"
’((position Bank teller ?t) (:assume (coreferent Brown ?t)) (only-child Brown true)))

QUERYING: If Brown were the teller then would he be an only child ?
** Beginning raa Trace **
Contradiction: (only-child brown true)

(not (only-child brown true))

(only-child brown true) supported by assumptions: ((coreferent brown frame3))
(not (only-child brown true)) supported by assumptions: nil

Dropping assumption: (coreferent brown frame3).
Asserting its negation: (not (coreferent brown frame3)).
** End raa Trace **

Query failed.

Insertions: 19 Rule applications: 40 Unifications: 14 Matches: 122.
Frame insertiomns: 72 Frame accesses: 789

Figure 7: Proof by contradiction that Brown is not the teller.

(a-query "Hence Brown holds which job ?" ’((coreferent Brown ?be) (holds ?be Bank ?post)))

QUERYING: Hence Brown holds which job 7

Result 1:
Bindings: ?post --- manager [manager]
?be —--- frame2 [nil]
Assumption: ((not (coreferent smith brown))
(not (coreferent jones smith))
(not (coreferent brown jones)))
Result 2:
Bindings: ?post --- manager [manager]
?be —--- brown [brown]
Assumption: ((not (coreferent smith brown))
(not (coreferent jones smith))
(not (coreferent brown jones)))
Deleted value: (not (coreferent jones frame3))
Insertions: 13 Rule applications: 40 Unifications: 17 Matches: 150.

Frame insertions: 101 Frame accesses: 1206

Figure 8: Hence Brown is the manager.

(a-query "Hence Jones holds which job ?" ’((coreferent Jones ?je) (holds ?je Bank ?post)))

QUERYING: Hence Jones holds which job 7
Result 1:
Bindings: ?post --- teller [teller]
?je --- frame3 [nil]
Result 2:
Bindings: ?post --- teller [teller]
?je --- jones [jones]

Created frame: jones-selfset

Insertions: 21
Frame insertions:

Rule applications: 63

110 Frame accesses: 1134

Unifications: 14 Matches: 213.

Figure 9: Hence Jones is the teller.

succeeds with ?je bound to either frame3 (the frame for
“the teller”) or jones. Since these two frames are now
known to be coreferent, any fact true of either frame is
inherited by the other.

The entire example (assertions and queries) runs in
about four seconds on a Sparc Station One.

6 Conclusion

As discussed above, there are three sources of incom-
pleteness in ALL. In theory, one could eliminate par-
titional incompleteness and if-added/if-needed incom-
pleteness (by making the entire knowledge-base a single
partition and duplicating all if-added rules as if-needed
rules) without sacrificing tractability (though this would
clearly increase the average-case time-complexity of

ALL).

If we thus ignore partitional incompleteness and if-
added/if-needed incompleteness, we can informally char-
acterize the deeper source of incompleteness in ALL.
ALL is incomplete for problems which require reason-
ing by cases (or, equivalently, reasoning by contradic-
tion). If one can reason in a ‘straight line’ (by applying
Modus Ponens) from known facts to a conclusion then
ALL should also be able to derive the conclusion imme-
diately. If, however, one must consider several cases and
show that in each case the conclusion follows, then ALL
will generally require preliminary operations.

We are currently investigating the problem of generating
the series of queries and assumptions necessary to draw
non-obvious deductions. The hard part of this prob-
lem is generating the assumptions; one can show that
any result deducible using only queries is deduced by a
fixed polynomial series of queries. This suggests that
one might want to combine Algernon with assumption

maintenance techniques to efficiently search the space of
possible assumptions.

In the domain of logic puzzles, we have implemented
a simple heuristics for generating the assumptions and
queries. If a puzzle contains two sets, S1 and S2, in a
one-to-one relationship, then for each member of S1 and
each member of S2, one can assume a coreference link
between the two members and query the negation of the
facts given in the puzzle. Though this corresponds to
a fairly dumb search for contradictions, the time com-
plexity of the procedure is just the size of S1, times the
size of 52, times the number of facts in the puzzle. This
method is sufficiently powerful to solve the bank prob-
lem presented above, but it is not sufficient to solve all
logic puzzles as some puzzles require nested assumptions
(and the complexity of complete reasoning with nested
assumptions is exponential in the depth of the nesting).
However, one can bound the depth of assumption nesting
(thus guaranteeing time complexity polynomial in the
size of the knowledge base but exponential in the depth
bound) and asymptotically approach complete reasoning
[10]. Such an approach might be useful for deriving the
best solution possible within some time bound.

Space limitations prevent a fair review of the large body
of related work. The interested reader is referred to [9].

Algernon has been an important part of our work in
ALL. It has been critical, both in testing new constructs
for knowledge-representation, and in empirically investi-
gating the problem of query and assumption generation.
More recently it has been used to support our work in
qualitative model building. We plan to make it generally
available for research purposes in the near future, and
expect it to be useful for building large common-sense
knowledge-bases.

A cknowledgments

This work has taken place in the Qualitative Reasoning
Group at the Artificial Intelligence Laboratory, The Uni-
versity of Texas at Austin. Research of the Qualitative
Reasoning Group is supported in part by the Texas Ad-
vanced Research Program under grant no. 003658-175,
NSF grants IRI-8905494 and IRI-8904454, and by NASA
grant NAG 2-507.

[1]

(2]

[10]

References

Allen, J. (1983). Maintaining knowledge about tem-
poral intervals. CACM 26(11):832-43.

Barnett, J., Rich, E., and Wroblewski, D. (1991). A
functional interface to a knowledge base for use by
a natural language processing system. Manuscript.
Knowledge-Based Natural Language Project, MCC,
3500 West Balcones Center Dr., Austin, Texas.

Boolos, George S., and Jeffrey, Richard C. (1980).
Computability and Logic, Cambridge University
Press, New York.

Brachman, R.J., Fikes,R. E., and Levesque H. J.
(1983). Krypton: A functional approach to knowl-
edge representation. FLAIR Technical Report No.
16, Fairchild Laboratory for Artificial Intelligence
Research, Palo Alto, CA, May, 1983. (Revised
version in IEEE Computer 16(10), 1983, 67-73.)
(Reprinted in [5], pp. 412-429.)

Brachman, R.J. and Levesque, H.J. (1985). Read-
ings in Knowledge Representation, Morgan Kauf-
mann, Los Altos, Cal.

Bundy, A., Byrd, L., Mellish, C. (1985). Special-
purpose, but domain-independent, inference mech-
anisms. In Progress in Artificial Intelligence, ed. L.
Steels, J. Campbell, pp. 93-111. London: Ellis Hor-
wood.

Crawford, J., Farquhar, A., and Kuipers, B. (1990).
QPC: A compiler from physical models into Quali-
tative Differential Equations. AAAI-90.

Crawford, J. M., and Kuipers, B. (1989). Towards
a theory of access-limited logic for knowledge repre-
sentation. In Proceedings of the First International
Conference on Principles of Knowledge Representa-
tion and Reasoning, Morgan Kaufmann, Los Altos,
California.

Crawford, J. M. (1990). Access-Limited Logic — A
language for knowledge-representation. University
of Texas at Austin dissertation. Available as Techni-
cal Report number AI90-141, Artificial Intelligence
Laboratory, The University of Texas at Austin.

J. M. Crawford and B. J. Kuipers. (1991). Nega-
tion and Proof by Contradiction in Access-Limited
Logic. To appear in AAAI-91.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

(21]

(22]

23]

(24]

25]

deHaan, J., and Schubert, L. K. (1986). Inference
in a topically organized semantic net. A A AI-86, pp.
334-338.

Etherington, David W., Borgida, Alex, Brachman,
Ronald J., and Kautz, Henry (1989). Vivid knowl-
edge and tractable reasoning: preliminary report.
IJCAI-89 pp. 1146-1152.

Findler, N.V. (1979). Associative Networks: Repre-
sentation and Use of Knowledge by Computer, Aca-
demic Press, New York.

Gruber, T., Pang, D., and Rice, J. Ontolingua:
A Language to Support Shared Ontologies. Techni-
cal Report, Stanford Knowledge Systems Lab, Palo
Alto, California.

Hayes, Patrick J. (1974). Some problems and
non-problems in representation theory. In Proc.
AISB Summer Conference, University of Sussex.
(Reprinted in [5], pp. 3-22.)

Hayes, Patrick J. (1979). The logic of frames. In
Frame Conceptions and Text Understanding, ed. D.
Metzing, Walter de Gruyter and Co., Berlin, pp.
46-61. (Reprinted in [5], pp. 288-295.)

D. B. Lenat and R. V. Guha. (1990). Building Large
Knowledge-Based Systems. Addison-Wesley, Read-
ing, MA.

Levesque, H. J. (1986). Knowledge representation
and reasoning. In Ann. Rev. Comput. Sci. 1:255-87.
Annual Reviews Inc, Palo Alto, California.

Levesque, H.J., Brachman R.J. (1985). A funda-
mental tradeoff in knowledge representation and
reasoning (revised version). In [5], pp. 41-70.

Patel-Schneider, P.F. (1985). A decidable first-order
logic for knowledge representation. IJCAI-85.

Schubert, L.K., Papalaskaris, M.A., and Taugher,
J. (1983). Determining type, part, color, and time
relationships. IEEE Computer, 16(10), 53-60.

Shapiro, S.C. and the SNePS Implementation
Group (1989). SNePS-2 User’s Manual. Department
of Computer Science, SUNY at Buffalo, 31pp.

Vilain, M. (1985). The restricted language architec-
ture of a hybrid representation system. IJCAI-85,
pp- 547-551.

Woods, W. (1975). What’s in a link: foundations
for semantic networks. In Representation and Un-
derstanding: Studies in Cognitive Science, ed. Bo-
brow, D. and Collins, A., Academic, New York, pp.
35-82.

Wylie, C.R., Jr. (1957). 101 Puzzles in Thought &

Logic, Dover Publications Inc, Mineola, New York.

