
SIGART Bulletin 2(3): 35-44, June 1991.Algernon | A Tractable System for Knowledge-RepresentationJ. M. CrawfordB. J. KuipersDepartment of Computer SciencesThe University of Texas At AustinAustin, Texas 78712jc@cs.utexas.edukuipers@cs.utexas.eduAbstractAccess-Limited Logic (ALL) is a theory ofknowledge representation which formalizes theaccess limitations inherent in a network struc-tured knowledge-base. Where a deductivemethod such as resolution would retrieve allassertions that satisfy a given pattern, anaccess-limited logic retrieves only those asser-tions reachable by following an available accesspath. The time complexity of inference in ALLis a polynomial function of the size of the ac-cessible portion of the knowledge-base, ratherthan an exponential function of the size of theentire knowledge-base (as in much past work).Access-Limited Logic, though incomplete, stillhas a well de�ned semantics and a weakenedform of completeness, Socratic Completeness,which guarantees that for any fact which isa logical consequence of the knowledge-base,there is a series of preliminary queries and as-sumptions after which a query of the fact willsucceed.Algernon implements Access-Limited Logic.Algernon is important in testing the claimsthat common-sense knowledge can be en-coded cleanly using access paths, and thatin common-sense reasoning the preliminaryqueries and assumptions can generally be de-termined from domain knowledge. In this pa-per we overview the principles of ALL anddiscuss the application of Algernon to threedomains: expert systems, qualitative modelbuilding, and logic puzzles.1 IntroductionAccess-Limited Logic (ALL) is a language for knowledgerepresentation which provides both logical coherence andcomputational tractability. ALL embeds the access-limitations of a network-structured knowledge base inthe logic. Operations on ALL knowledge-bases are guar-anteed to terminate in time polynomial in the size of thelocally accessibleportion of the knowledge base. Further-more, ALL is Socratically Complete: for any fact whichis a semantic consequence of the knowledge base, there isa sequence of preliminary queries and assumptions, afterwhich a query of the fact will succeed [10, 9]. While theseformal properties are important, they do not necessar-

ily guarantee that ALL can actually be used to repre-sent knowledge. There are two further claims which canonly be shown empirically: (1) that the syntactic restric-tions on ALL still allow one to express common-senseknowledge cleanly and (2) that in practice the prelimi-nary queries and assertions can generally be determinedfrom domain knowledge.It has been apparent at least since the work of [24] (andothers such as [15]) that a knowledge representation lan-guage su�cient to support the building of large knowl-edge bases must have a clear semantics. Without a clearsemantics one can never be sure exactly what a givenexpression represents, which deductions should followfrom it, or how it compares to an expression in a di�er-ent knowledge representation language. Experience withformally speci�ed knowledge representation systems hasrevealed a trade-o� between the expressive power of suchsystems and their computational complexity [18, 19].Further, to ensure tractable and complete reasoning, onemust restrict the expressiveness of a knowledge represen-tation language almost to the point of unuseability (ex-cept within restricted domains [1, 6]). The most commonsolution to this problem has been to combine fast, spe-cial purpose inference with a �rst-order logic theoremprover [4, 21] or a weaker deduction system [Levesque,84, Patel-Schneider, 85, Vilain, 85]. The main problemwith such systems is that while they answer some queriese�ciently they mysteriously fail on others (or never an-swer at all).Our approach to knowledge-representation in ALL isbased on two claims: �rst, that there exists a set of in-ference mechanisms, e�ciently computable using a net-work structured representation, which are su�cient fora large class of common-sense reasoning problems, andsecond, that these inference mechanisms are Socrati-cally Complete (thus guaranteeing that any logical con-sequence of a knowledge-base can be inferred after someseries of `leading' questions). Time complexity and So-cratic Completeness are formal properties which havebeen shown elsewhere [9]. The claim that the represen-tation and inference mechanisms in ALL are su�cientfor a large class of common-sense reasoning problemscan necessarily only be proven or disproven empirically.In this paper we overview results from the applicationof the lisp implementation of ALL to three �elds: sim-ple expert systems, qualitative model building, and logicpuzzles.



2 Tractable Reasoning andExperimentationReasoning is hard. If a knowledge representation lan-guage is as expressive as �rst-order predicate calculus,then the problem of deciding what an agent could logi-cally deduce from its knowledge is unsolvable [3]. Thusa knowledge-representation system must either give upexpressive power or completeness1. If a system is notcapable of complete inference under a given semantics(e.g., the semantics of predicate calculus) then arguablythis implies that the semantics is not appropriate for thesystem (e.g., if according to the semantics Th j= f , butthe system cannot derive f from Th, then the mean-ing of Th to the system is clearly not the same as themeaning given it by the semantics). If, however, a sys-tem is incomplete, but is Socratically Complete, thenthe semantics accurately re
ects the potential reasoningability of the system (and the actual reasoning ability ofthe system given appropriate queries and assumptions).There are thus three solutions to the undecidability ofpredicate calculus: restrict the expressive power of thesystem, replace the model theoretic semantics of predi-cate calculus (with perhaps a more operational seman-tics), or give up completeness but guarantee SocraticCompleteness. In all cases experimentation is critical.If a system has weak expressive power, then one mustdemonstrate that there are a signi�cant number of in-teresting problems which can be solved within the limitsof the system. If one uses an operational semantics thenone must demonstrate that it gives users a su�cientlyclear picture of what deductions the system is able tomake. Finally, with Socratically Complete systems onemust demonstrate empirically that (at least in some do-mains) the preliminary operations can be derived.3 Introduction to AlgernonAlgernon is a frame based knowledge-representation sys-tem which supports both forward and backward chainingrules of inference. This section describes Algernon in suf-�cient depth that the example below can be understood.For a more detailed discussion see [9].The expressive power of Algernon greatly exceeds thatof ALL. Algernon supports full �rst order quanti�cation(which we are in the process of adding to ALL), anda general mechanism for escaping to lisp. Our generalmethodology has been to test constructs in Algernon be-fore attempting the more di�cult job of formalizing them(and then modifying the implementation based on whatwe learn from the formalization).1One could also give up tractability, however, if asystem is intractable then in practice this means that itdoes not return on some inputs (or returns only aftersome unacceptable period of time), and thus the systemis e�ectively incomplete

3.1 Access PathsOur approach in Algernon begins with the well knownmapping between atomic propositions in predicate cal-culus and slots in frames; the atomic proposition thatthe object a stands in relation r to the object b can bewritten logically as r(a; b) or expressed, in frames, byincluding b in the r slot of the frame for a [16]:r(a; b) � a: r: values: f . . .b . . . gThe main advantage of this frame based representationis that the (conceptual) objects related to a frame can beeasily accessed by looking in a slot of the frame. We de-�ne an access path, in a network of frames, as a sequenceof frames each directly accessible from (i.e., appearingin a slot of) its predecessor. A sequence of predicatesde�nes an access path i� any variable appearing as the�rst argument to a predicate has appeared previously inthe sequence. For example, \John's parent's sister" canbe expressed in Algernon as the path: ((parent John?x) (sister ?x ?y)) (variables are always denoted inAlgernon by Lisp atoms whose print names begin with`?'). The Algernon path ((parent John ?x) (sister?x ?y)) is equivalent to the predicate calculus state-ment: parent(John; ?x) ^ sister(?x; ?y). In predicatecalculus this statement is equivalent to: sister(?x; ?y) ^parent(John; ?x). However, the corresponding sequenceof predicates, ((sister ?x ?y) (parent John ?x)), isnot an access path because a query of (sister ?x ?y)would require a search of the knowledge-base.3.2 Rules Are ImplicationsWe represent logical implications as rules. For example,the logical assertion that8x; y:[spouse(x;y)! spouse(y;x)]can be represented by the forward-chaining rule:((spouse ?x ?y) -> (spouse ?y ?x)).Intuitively, such a rule says that whenever we learn arelation (spouse f g) we should immediately conclude(spouse g f).Algernon also allows backward-chaining (\if-needed")rules. For example:((aunt John ?y) <- (parent John ?x)(sister ?x ?y))Intuitively, this rule says that if you need to �nd an auntof John then you should look for a sister of a parent ofJohn. Notice that the antecedent of this rule is an accesspath. All rules in Algernon must de�ne access paths.



3.3 The Syntax of AlgernonThe interface to Algernon is through the lisp functionsa-assert and a-query. Both functions take two argu-ments. The �rst argument is a comment string and thesecond is the path to be asserted or queried. Thus thesimplest type of assertion in Algernon would be some-thing like:(a-assert "The father of Charles is Adam"'((father Charles Adam)))Where Charles and Adam are names of frames in theknowledge-base, and father is a slot in the knowledge-base. This assertion would add the value Adam to thefather slot of the frame with name Charles (and ap-ply any if-added rules for this slot). The correspondingquery:(a-query "Is Adam the father of Charles ?"'((father Charles Adam)))would succeed i� Adam is in (or could be proven to bein) the father slot of Charles. Queries (and assertions)return all known (or provable) values of variables. Thusthe query:(a-query "Who are sisters of fathers of Charles ?"'((father Charles ?x) (sister ?x ?s)))would �nd all sisters of fathers (i.e., aunts) of Charles.Access paths are queried by querying the �rst predi-cate and then, branching on all sets of variable bindings,querying the rest of the path.Algernon slots can hold `non-values' as well as values.Non-values are used to express negation; they say thatan object does not stand in some relation to some otherobject. Non-values are denoted by (not p), where p isa proposition. Thus an assertion of (not (likes suzanchocolate)) says that suzan does not like chocolate.2Algernon also supports several special forms. Short de-scriptions of the most important special forms are givenbelow. The full syntax of all special forms is given in [9].:taxonomy Adds to the basic taxonomic structure inthe knowledge-base. The taxonomic structure ofsets forms the \backbone" of an Algernon know-ledge-base. Sets are described by lists whoseelements are (names of) the members of thesets and whose sublists are subsets of the set.For example, (:taxonomy (objects (companiesBank))) de�nes the set companieswhich is a subsetof the set objects and which includes the individualBank.:slot Declares a new slot. For example: (:slotsister (people people)) declares the slot sister2Technically, it adds chocolate to the non-value facetof the likes slot of the frame with name suzan.

to be a relation between two members of the setpeople.:rules and :srules Add deduction rules to theknowledge-base. :rules is followed by the nameof the (frame for the) set the rules are to be asso-ciated with, and then the rules. :srules is similarexcept that it associates rules with a slot instead ofa set. For example:(:srules (:slot spouse)((spouse ?x ?y) ->(spouse ?y ?x)))associates the forward-chaining rule with the slotspouse (the construction (:slot spouse) is neededto refer to the slot spouse instead of the frame withname spouse).:create Creates a new frame. The form (:create ?xname) would create a frame with name name andbind the variable ?x to it.:forc Find OR Create. :forc �nds a frame satisfying adescription, or creates a new frame and asserts thedescription. For example, (:forc ?x (father Tom?x)) binds ?x to the father of Tom, if the fatherof Tom is known, otherwise it creates a new frame,binds ?x to it, and asserts that it is the father ofTom.:assume Adds an assumption to the knowledge-base.Algernon includes a simple truth maintenance sys-tem to support dependency directed backtracking.3.4 The Incompleteness of AlgernonThere are three sources of incompleteness in Algernon.3First, if-added and if-needed rules can be combined insuch a way that logically entailed deductions cannot bedrawn (without preliminary queries). We refer to thisas if-added/if-needed incompleteness. An example ofif-added/if-needed incompleteness is shown in �gure 1.Second, Algernon allows the knowledge-base to be par-titioned. Partitions limit rule backchaining | facts inother partitions are simply retrieved (for details see [8]).Finally, in the presence of negation, there may be logi-cal consequences of the knowledge-base which cannot bederived by simple rule application. Such deductions canbe drawn in Algernon by making assumptions and thenreasoning by contradiction. Reasoning by contradictionis demonstrated in the annotated example.3To be more precise, there are three sources of incom-pleteness in the portion of Algernon formalized by ALL| see the introduction to section 3.



Consider a knowledge-base containing the rules:((r1 c ?x) <- (r2 c ?x))((r1 c ?x) -> (r3 c ?x))and the fact (r2 c c). Logically this entails (r3 c c),but this deduction cannot be drawn in Algernon without�rst querying (r1 c c).Figure 1: An example of if-added/if-needed incomplete-ness. 4 Applications of AlgernonAlgernon has been used by a graduate level expert sys-tems class and several simple expert systems have beenbuilt using it [9]. In general, expert systems are rulebased and do not depend on complex reasoning (e.g.,proofs by contradiction). Thus the incompleteness ofAlgernon was not a problem in these applications. Theaccess path restrictions also seemed to pose no di�cul-ties. Algernon's use by the class did, however, pressureus to increase the usability of Algernon by working on itsuser interface and documentation. We were also forcedto modify Algernon's algorithms in order to make it eas-ier for our users to understand the order in which ruleswere applied (this was particularly important in appli-cations which queried their users and needed to do so ina particular order).Algernon has also been used to support our work onqualitative model building [7]. In general, the reasoningrequired for model building is `straight line' reasoning| it involves no proofs by contradiction or reasoning bycases. Partitional boundaries occasionally had to be ad-justed in order to make sure that model building did notterminate prematurely. Some cases of if-added/if-neededincompleteness also arose, but these were debugged fairlyeasily, and �xed by modifying the rules involved. The ac-cess path restriction forced the addition of inverses forsome slots, but otherwise was not a problem.The natural language group at MCC has recently be-gun using Algernon, and has developed functions whichtranslate from an abstract knowledge-base interfacebased on Ontolingua [14] down to Algernon queries andassertions [2].Logic puzzles are an interesting domain for Algernonfor two reasons: �rst, they generally require a limitedamount of general knowledge and thus can be studiedwithout �rst having to build a large knowledge-base ofcommon-sense facts, and second they generally do re-quire complex reasoning and thus test our ability to gen-erate preliminary operations. The annotated exampledemonstrates the application of Algernon to a simplelogic puzzle.5 Annotated ExampleConsider the following problem (from [25]):

In a certain bank the positions of cashier, man-ager, and teller are held by Brown, Jones andSmith, though not necessarily respectively.The teller, who was an only child, earns theleast. Smith, who married Brown's sister,earns more than the manager. What positiondoes each man �ll ?These facts can be asserted into the Algernon knowledge-base as shown in �gure 2. A small amount of common-sense knowledge is also needed to solve this problem(e.g., anyone with a sister is not an only child), and is as-serted into Algernon as shown in the �gure. Declarationsfor the slots unique to the bank problem are also shown.Several generally useful slots (e.g., coreferent, less,least, one-to-one) are de�ned in Algernon's `back-ground' knowledge-base (see [9]). Notice that we explic-itly create frames for `the cashier', `the manager', and`the teller'. Solving the problem then becomes a matterof deriving appropriate coreference links between theseframes and the frames for Brown, Jones, and Smith.Initially Algernon is unable to derive these coreferencerelations. We lead Algernon to the solution by asking aseries of questions which are similar to the questions aperson might ask themselves (we have also implementedheuristics capable of generating preliminary operationsfor this problem | see section 6).For the queries, we show the output produced by Al-gernon. The �rst line in the output is only a comment.Next is either a message that the operation failed, or alist of the variable bindings produced. Variable bind-ings are shown in the form: ?u --- frame [name],where, `frame' is frame itself, and `name' is the value inthe name slot of the frame.4 Finally, Algernon producesthe following performance data:Insertions: The number of new facts addedto the knowledge-base.Rule applications: The number of rule ap-plications.Uni�cations: The number of uni�cationsperformed.Matches: The number of matches performed.Frame insertions: The number of valuesadded to slots of frames.5Frame accesses: The number of retrievals ofvalues from frames.For the operations which result in contradictions we in-clude some tracing output to show the contradiction andhow it is resolved.Note that the last query (as well as two others) returnstwo sets of variable bindings. This is because the path4This is provided to increase readability in cases inwhich the frame is something like frame26.5This is distinct from the number of insertions sinceAlgernon uses the frames for various kinds of internalbookkeeping.



(a-assert "New sets." '((:taxonomy (objects (companies Bank)(positions cashier manager teller)(people)))))(a-assert "New slots."'((:slot sister (people people):comment "(sister a b) = The sister of a is b.")(:slot only-child (people booleans):cardinality 1:comment "(only-child a true) = a is an only child.")(:slot holds (people companies positions):comment "(holds ?p ?c ?pos) = ?p holds position ?pos in company ?c.")(:slot position (companies positions people):comment "(position ?c ?pos ?p) = In company ?c, ?pos is held by ?p.")))(a-assert "Sisters and only children."'((:RULES people((sister ?p1 ?p2) -> (not (only-child ?p1 true))))))(a-assert "Holds and position."'((:SRULES (:slot position)((position ?c ?pos ?p) -> (holds ?p ?c ?pos)))(:SRULES (:slot holds)((holds ?p ?c ?pos) -> (position ?c ?pos ?p)))));; One extra rule to enhance Algernon's ability to reason about one-to-one relationships.(a-assert "Forward chaining rule for cf-member."'((:RULES sets((one-to-one-into ?s1 ?s2) (member ?s1 ?x) -> (cf-member ?x ?s2)))))(a-assert "In a certain bank the positions of cashier, manager, and teller are held byBrown, Jones and Smith, though not necessarily respectively."'((:forc ?cp (position Bank cashier ?cp)) ; This finds or creates "the cashier".(:forc ?mp (position Bank manager ?mp)) ; "The manager."(:forc ?tp (position Bank teller ?tp)) ; "The teller."(:create ?b Brown) (:create ?s Smith) (:create ?j Jones)(isa ?b people) (isa ?j people) (isa ?s people);;(:create ?pos posts) (member ?pos ?cp) (member ?pos ?mp) (member ?pos ?tp)(complete ?pos true) ; ?pos = {"the cashier", "the manager", "the teller"}.(:create ?emp employees) (member ?emp ?b) (member ?emp ?j) (member ?emp ?s)(complete ?emp true) ; ?emp = {Brown, Smith, Jones}.;;(one-to-one ?pos ?emp);;;; Finally, the implicit assumption that Brown, Jones and Smith are different people:(:assume (not (coreferent ?b ?j))) (:assume (not (coreferent ?j ?s)))(:assume (not (coreferent ?s ?b)))))(a-assert "The teller, who was an only child, earns the least."'((position Bank teller ?tp) (only-child ?tp true) (least ?tp posts)))(a-assert "Smith, who married Brown's sister, earns more than the manager."'((:forc ?sis (sister Brown ?sis))(spouse Smith ?sis) (position Bank manager ?man) (greater Smith ?man)))Figure 2: Algernon assertions to set up the Bank problem.



(a-query "What positions do Brown, Smith and Jones hold ?"'((coreferent Brown ?be) (holds ?be Bank ?post)(coreferent Smith ?se) (holds ?se Bank ?post)(coreferent Jones ?je) (holds ?je Bank ?post)))QUERYING: What positions do Brown, Smith and Jones hold ?*Query failed.*Insertions: 3 Rule applications: 7 Unifications: 7 Matches: 26.Frame insertions: 25 Frame accesses: 182Figure 3: Query initially fails.
(a-query "If Smith were the manager then could he earn more than the manager ?"'((position Bank manager ?man) (:assume (coreferent Smith ?man))(not (greater Smith ?man))))QUERYING: If Smith were the manager then could he earn more than the manager ?** Beginning raa Trace **Contradiction: (not (greater smith frame2))(greater smith frame2)(not (greater smith frame2)) supported by assumptions: ((coreferent smith frame2))(greater smith frame2) supported by assumptions: nilDropping assumption: (coreferent smith frame2).Asserting its negation: (not (coreferent smith frame2)).** End raa Trace ***Query failed.*Insertions: 27 Rule applications: 96 Unifications: 35 Matches: 258.Frame insertions: 166 Frame accesses: 1789Figure 4: Proof by contradiction that Smith is not the manager.



(a-query "If Smith were the teller then could he earn more than the manager?"'((position Bank teller ?t) (:assume (coreferent Smith ?t))(position Bank manager ?man) (not (greater Smith ?man))))QUERYING: If Smith were the teller then could he earn more than the manager?** Beginning raa Trace **Contradiction: (not (greater smith frame2))(greater smith frame2)(not (greater smith frame2)) supported by assumptions: ((coreferent smith frame3))(greater smith frame2) supported by assumptions: nilDropping assumption: (coreferent smith frame3).Asserting its negation: (not (coreferent smith frame3)).** End raa Trace ***Query failed.*Insertions: 28 Rule applications: 90 Unifications: 35 Matches: 243.Frame insertions: 164 Frame accesses: 1837Figure 5: Proof by contradiction that Smith is not the teller.(a-query "Hence, Smith holds which job ?" '((coreferent Smith ?se) (holds ?se Bank ?post)))QUERYING: Hence, Smith holds which job ?Result 1:Bindings: ?post --- cashier [cashier]?se --- frame1 [nil]Result 2:Bindings: ?post --- cashier [cashier]?se --- smith [smith]Created frame: frame1-selfsetInsertions: 15 Rule applications: 33 Unifications: 6 Matches: 88.Frame insertions: 50 Frame accesses: 536Figure 6: Hence Smith is the cashier.



(a-query "If Brown were the teller then would he be an only child ?"'((position Bank teller ?t) (:assume (coreferent Brown ?t)) (only-child Brown true)))QUERYING: If Brown were the teller then would he be an only child ?** Beginning raa Trace **Contradiction: (only-child brown true)(not (only-child brown true))(only-child brown true) supported by assumptions: ((coreferent brown frame3))(not (only-child brown true)) supported by assumptions: nilDropping assumption: (coreferent brown frame3).Asserting its negation: (not (coreferent brown frame3)).** End raa Trace ***Query failed.*Insertions: 19 Rule applications: 40 Unifications: 14 Matches: 122.Frame insertions: 72 Frame accesses: 789Figure 7: Proof by contradiction that Brown is not the teller.(a-query "Hence Brown holds which job ?" '((coreferent Brown ?be) (holds ?be Bank ?post)))QUERYING: Hence Brown holds which job ?Result 1:Bindings: ?post --- manager [manager]?be --- frame2 [nil]Assumption: ((not (coreferent smith brown))(not (coreferent jones smith))(not (coreferent brown jones)))Result 2:Bindings: ?post --- manager [manager]?be --- brown [brown]Assumption: ((not (coreferent smith brown))(not (coreferent jones smith))(not (coreferent brown jones)))Deleted value: (not (coreferent jones frame3))Insertions: 13 Rule applications: 40 Unifications: 17 Matches: 150.Frame insertions: 101 Frame accesses: 1206Figure 8: Hence Brown is the manager.



(a-query "Hence Jones holds which job ?" '((coreferent Jones ?je) (holds ?je Bank ?post)))QUERYING: Hence Jones holds which job ?Result 1:Bindings: ?post --- teller [teller]?je --- frame3 [nil]Result 2:Bindings: ?post --- teller [teller]?je --- jones [jones]Created frame: jones-selfsetInsertions: 21 Rule applications: 63 Unifications: 14 Matches: 213.Frame insertions: 110 Frame accesses: 1134Figure 9: Hence Jones is the teller.succeeds with ?je bound to either frame3 (the frame for\the teller") or jones. Since these two frames are nowknown to be coreferent, any fact true of either frame isinherited by the other.The entire example (assertions and queries) runs inabout four seconds on a Sparc Station One.6 ConclusionAs discussed above, there are three sources of incom-pleteness in ALL. In theory, one could eliminate par-titional incompleteness and if-added/if-needed incom-pleteness (by making the entire knowledge-base a singlepartition and duplicating all if-added rules as if-neededrules) without sacri�cing tractability (though this wouldclearly increase the average-case time-complexity ofALL).If we thus ignore partitional incompleteness and if-added/if-needed incompleteness, we can informally char-acterize the deeper source of incompleteness in ALL.ALL is incomplete for problems which require reason-ing by cases (or, equivalently, reasoning by contradic-tion). If one can reason in a `straight line' (by applyingModus Ponens) from known facts to a conclusion thenALL should also be able to derive the conclusion imme-diately. If, however, one must consider several cases andshow that in each case the conclusion follows, then ALLwill generally require preliminary operations.We are currently investigating the problem of generatingthe series of queries and assumptions necessary to drawnon-obvious deductions. The hard part of this prob-lem is generating the assumptions; one can show thatany result deducible using only queries is deduced by a�xed polynomial series of queries. This suggests thatone might want to combine Algernon with assumption

maintenance techniques to e�ciently search the space ofpossible assumptions.In the domain of logic puzzles, we have implementeda simple heuristics for generating the assumptions andqueries. If a puzzle contains two sets, S1 and S2, in aone-to-one relationship, then for each member of S1 andeach member of S2, one can assume a coreference linkbetween the two members and query the negation of thefacts given in the puzzle. Though this corresponds toa fairly dumb search for contradictions, the time com-plexity of the procedure is just the size of S1, times thesize of S2, times the number of facts in the puzzle. Thismethod is su�ciently powerful to solve the bank prob-lem presented above, but it is not su�cient to solve alllogic puzzles as some puzzles require nested assumptions(and the complexity of complete reasoning with nestedassumptions is exponential in the depth of the nesting).However, one can bound the depth of assumption nesting(thus guaranteeing time complexity polynomial in thesize of the knowledge base but exponential in the depthbound) and asymptotically approach complete reasoning[10]. Such an approach might be useful for deriving thebest solution possible within some time bound.Space limitations prevent a fair review of the large bodyof related work. The interested reader is referred to [9].Algernon has been an important part of our work inALL. It has been critical, both in testing new constructsfor knowledge-representation, and in empirically investi-gating the problem of query and assumption generation.More recently it has been used to support our work inqualitative model building. We plan to make it generallyavailable for research purposes in the near future, andexpect it to be useful for building large common-senseknowledge-bases.



AcknowledgmentsThis work has taken place in the Qualitative ReasoningGroup at the Arti�cial Intelligence Laboratory, The Uni-versity of Texas at Austin. Research of the QualitativeReasoning Group is supported in part by the Texas Ad-vanced Research Program under grant no. 003658-175,NSF grants IRI-8905494 and IRI-8904454, and by NASAgrant NAG 2-507. References[1] Allen, J. (1983). Maintaining knowledge about tem-poral intervals. CACM 26(11):832-43.[2] Barnett, J., Rich, E., and Wroblewski, D. (1991). Afunctional interface to a knowledge base for use bya natural language processing system. Manuscript.Knowledge-Based Natural Language Project, MCC,3500 West Balcones Center Dr., Austin, Texas.[3] Boolos, George S., and Je�rey, Richard C. (1980).Computability and Logic, Cambridge UniversityPress, New York.[4] Brachman, R.J., Fikes,R. E., and Levesque H. J.(1983). Krypton: A functional approach to knowl-edge representation. FLAIR Technical Report No.16, Fairchild Laboratory for Arti�cial IntelligenceResearch, Palo Alto, CA, May, 1983. (Revisedversion in IEEE Computer 16(10), 1983, 67-73.)(Reprinted in [5], pp. 412-429.)[5] Brachman, R.J. and Levesque, H.J. (1985). Read-ings in Knowledge Representation, Morgan Kauf-mann, Los Altos, Cal.[6] Bundy, A., Byrd, L., Mellish, C. (1985). Special-purpose, but domain-independent, inference mech-anisms. In Progress in Arti�cial Intelligence, ed. L.Steels, J. Campbell, pp. 93-111. London: Ellis Hor-wood.[7] Crawford, J., Farquhar, A., and Kuipers, B. (1990).QPC: A compiler from physical models into Quali-tative Di�erential Equations. AAAI-90.[8] Crawford, J. M., and Kuipers, B. (1989). Towardsa theory of access-limited logic for knowledge repre-sentation. In Proceedings of the First InternationalConference on Principles of Knowledge Representa-tion and Reasoning, Morgan Kaufmann, Los Altos,California.[9] Crawford, J. M. (1990). Access-Limited Logic | Alanguage for knowledge-representation. Universityof Texas at Austin dissertation. Available as Techni-cal Report number AI90-141, Arti�cial IntelligenceLaboratory, The University of Texas at Austin.[10] J. M. Crawford and B. J. Kuipers. (1991). Nega-tion and Proof by Contradiction in Access-LimitedLogic. To appear in AAAI-91.

[11] deHaan, J., and Schubert, L. K. (1986). Inferencein a topically organized semantic net. AAAI-86, pp.334-338.[12] Etherington, David W., Borgida, Alex, Brachman,Ronald J., and Kautz, Henry (1989). Vivid knowl-edge and tractable reasoning: preliminary report.IJCAI-89 pp. 1146-1152.[13] Findler, N.V. (1979). Associative Networks: Repre-sentation and Use of Knowledge by Computer, Aca-demic Press, New York.[14] Gruber, T., Pang, D., and Rice, J. Ontolingua:A Language to Support Shared Ontologies. Techni-cal Report, Stanford Knowledge Systems Lab, PaloAlto, California.[15] Hayes, Patrick J. (1974). Some problems andnon-problems in representation theory. In Proc.AISB Summer Conference, University of Sussex.(Reprinted in [5], pp. 3-22.)[16] Hayes, Patrick J. (1979). The logic of frames. InFrame Conceptions and Text Understanding, ed. D.Metzing, Walter de Gruyter and Co., Berlin, pp.46-61. (Reprinted in [5], pp. 288-295.)[17] D. B. Lenat and R. V. Guha. (1990). Building LargeKnowledge-Based Systems. Addison-Wesley, Read-ing, MA.[18] Levesque, H. J. (1986). Knowledge representationand reasoning. In Ann. Rev. Comput. Sci. 1:255-87.Annual Reviews Inc, Palo Alto, California.[19] Levesque, H.J., Brachman R.J. (1985). A funda-mental tradeo� in knowledge representation andreasoning (revised version). In [5], pp. 41-70.[20] Patel-Schneider, P.F. (1985). A decidable �rst-orderlogic for knowledge representation. IJCAI-85.[21] Schubert, L.K., Papalaskaris, M.A., and Taugher,J. (1983). Determining type, part, color, and timerelationships. IEEE Computer, 16(10), 53-60.[22] Shapiro, S.C. and the SNePS ImplementationGroup (1989). SNePS-2 User's Manual. Departmentof Computer Science, SUNY at Bu�alo, 31pp.[23] Vilain, M. (1985). The restricted language architec-ture of a hybrid representation system. IJCAI-85,pp. 547-551.[24] Woods, W. (1975). What's in a link: foundationsfor semantic networks. In Representation and Un-derstanding: Studies in Cognitive Science, ed. Bo-brow, D. and Collins, A., Academic, New York, pp.35-82.[25] Wylie, C.R., Jr. (1957). 101 Puzzles in Thought &Logic, Dover Publications Inc, Mineola, New York.


