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Abstract

The performance of many supercomputer programs is limited by the ability to get data
from the memory to the processing elements. Increasing bandwidth and decreasing
the latency of memory are major concerns of supercomputer architects. Compiler
techniques to improve the memory performance of some memory levels have been
developed, but no study of the performance and methods to improve the performance
of data caches has been reported.

Measuring actual supercomputer cache performance has not been accomplished
with previous cache simulation methods. Trace files for programs that take any
significant execution time are too large to store. PFC-Sim is a program-driven event
tracing facility that can simulate data cache performance of very long programs. PFC-
Sim simulates cache concurrently with program execution, allowing very long traces
to be used, since the trace entries are discarded as quickly as they are generated.
Some of these programs have traces in excess of 4 billion entries.

In this work, PFC-Sim is used to measure the cache performance of array refer-
ences in a benchmark set of supercomputer applications, RiICEPS, gathered at Rice
University. Data cache hit ratios varied between 44 and 99% (average 70%) for a
16K cache and 48 and 99% (average 91%) for a 256K cache. Some of the programs
have very large working sets, yielding poor cache performance even with large caches.
PFC-Sim also determines the cache performance for each memory reference in the
original program. The hit ratios were clustered around either 100% or 0%.

By locating the references that miss, attempts to improve memory performance
can focus on references where improvement is possible. The compiler can estimate the
number of loop iterations which can execute without filling the cache, the overflow
iteration. The overflow iteration combined with the dependence graph can be used to
determine at each reference whether execution will result in hits or misses. Using this
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estimate of dynamic memory performance, two methods for improving performance
are examined, program transformation and software prefetching.

Program transformation can be used to improve cache performance by reordering
computation to move references to the same memory location closer together, thereby
eliminating cache misses. Many programs have been transformed by hand to improve
their memory performance. Using the overflow iteration, the compiler can often do
this transformation automatically. Automatic blocking has advantages in correctness
and portability. Standard blocking transformations cannot be used on many loop
nests that contain transformation preventing data dependences. A new version of
blocking transformations is defined, wavefront blocking, which allows any loop
nest to be blocked, if the components of dependence vectors are bound between the
references in the loop nest.

When the cache misses cannot be eliminated, software prefetching can overlap
the miss delays with computation. Software prefetching uses a special instruction to

preload values into the cache. A cache load resembles a register load in structure,

but does not block computation. It only moves the address into cache where a later
register load will be required to bring the value into the processor. Using a simple
heuristic, the compiler can inform the cache (on average) over 100 cycles before the
process will require a load of the value. This allows the cache misses to be serviced
in parallel with the computation.

LA
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Chapter 1

Introduction

1.1 Overview

A major limitation of supercomputers today is the inability to get data to the pro-
cessing units fast enough to keep the units busy. Vector and parallel processors
replicate arithmetic units, dramatically increasing the number of operations that can
be performed during any time period. Vector and shared memory multiprocessors,
however, still have (at some point in the memory hierarchy) a single memory to sup-
port the increase in computational power. This has placed a substantial burden on
computer architects to increase bandwidth between the memory and the processing
units. Doubling the number of processing units is much easier than doubling the
amount of data that main memory can supply during a given time period. As less
bandwidth per processor is available, it becomes increasingly important to understand
how the bandwidth is used and to define mechanisms to improve its effectiveness.

In von Neumann and data-flow architectures, data must be moved to each process-
ing element before it can be manipulated. Computation may be abstractly modeled
as a flow of data between the processor and the memory. In an abstract model, the
processor makes requests to a black box, known as the memory, which returns val-
ues at some rate (the bandwidth) after a delay (average memory latency). When
modeling computation, the boundary between memory and the processor is flexible.
Several natural locations to measure the flow of data are between the registers and
cache, between cache and main memory, and between main memory and backing
store. If the processor includes the registers but not the cache, the memory requests
are the loads and stores in the program. When the processor is defined to include
the main memory but not backing store, the memory requests are the virtual page
misses generated.

Execution time in this model is e time required to do the computation, T, plus
the time waiting for the data to arrive, T,,. The time spent waiting for data to arrive
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is the number of memory requests, R, times the average memory latency. If this is
broken into components for a three-level memory hierarchy, total execution time is
T. + Tmocne + Trmmasn + T

Most compiler optimization research has studied methods to reduce T, since it
typically encompasses the majority of the total execution time. Register allocation
has been the major research area addressing the time spent waiting at any memory
level. Register allocation reduces T, _,, by reducing the number of requests to cache.
Virtual memory systems attempt to reduce Tnpacking Dy minimizing the number of
virtual page misses that occur across all active programs. Little research has been
done on how a compiler can reduce the amount of time spent waifing on requests to
either main memory or the backing store [AS79],(Tha81].

bdacking*

The amount of time spent waiting on memory can be reduced in two ways.
Either the number of requests can be reduced or the average latency can be reduced.
When possible, reducing the number of requests may also reduce the average latency:
Memory latency is a function of the rate of requests, R/(T, + Tm). When the number
of requests exceeds the bandwidth of the memory, average latency will increase un-
til the average rate of requests can be satisfied by the bandwidth. Saturation of the
memory bandwidth increases T,, until it is a significant fraction of the total execution
time. Reducing execution time for a program that saturates the memory bandwidth
will require either more memory bandwidth or fewer memory requests.

Previous work in reducing the traffic between a cache and main memory has
mainly involved studies of different cache architectures. Natural program locality is
high enough to ensure that caches are effective and the cache-main meniory interface
rarely if ever saturates on non-vector uni-processors. As vector and parallel proces-
sors become more common, this will no longer be true. Their multiple processing
elements can manipulate much more data in a given time period, greatly increas-
ing the probability that the bandwidth between the cache (or caches) and the main
memory becomes saturated. (Note that in the abstract model, multiple computa-
tional elements can be represented by lowering the computation time, T, allowing a
very simple method of simulating the effect of parallel or vector processors.) A second
effect of parallel processors comes from parallel programming. For many problems,
extracting parallelism decreases locality of reference of each processor. Thus, the



total number of references per time unit is rising and processor reference locality is
falling, greatly increasing the strain on memory hierarchies.

This dissertation studies the amount of data that flows across the cache-main
memory boundary for supercomputer applications. The focus of this work is com-
putationally intensive programs. These programs are the most likely to access large
amounts of data, stressing the memory system. Computationally intensive programs
are also likely to use hignly optimizing compilers to produce the fastest executables
possible. Scientific programs that are typically run on supercomputers require a large
number of floating point operations. Smaller programs on medium or small comput-
ers may benefit from the techniques developed in this thesis, but the focus of this
work is on the programs that require Cray-class computers. Methous to reduce the
amount of data traffic by increasing the average number of references to each item
while it resides in the cache are explored. Increasing the average number of references
to each cache item reduces the number of memory requests. .

When a memory location is requested, most architectures wait for the value to
return before continuing. Certain architectures and operating systems have tried
to hide memory latency from the processor. Almost every virtual memory system
transfers control to another process during a page miss. This allows the processor to
do productive work on other jobs while the backing store produces the page. Some
RISC architectures (e.g. IBM’s RT) attempt to hide the delay between the registers
and the memory by allowing several instructions to execute between a register load
and the arrival of data in the register. The Denelcor HEP and HORIZON [KS88]
architectures hide main memory latency by switching instruction streams every cycle.
If enough instruction streams are available, the processor never delays waiting for
memory to return a value. Since the HORIZON is, for the time being, a paper
architecture, and few, if any, HEPs are still running, supercomputers today generally
wait for.the memory on every main memory access.

People seem to believe that the amount of processing lost during these delays,
Tinmains does not significantly slow uni-processors. Otherwise, more work on meth-
ods to improve cache performance would exist today. Architects of shared-memory
MIMD machines have found memory latency problems to be the principal difficulty
in effectively utilizing their machines [KS88]. Cedar{GKLS83] and RP3[PBG*85]
compilers go to some effort to localize a processor’s memory accesses (both spatially



and temporally) to reduce the memory latencies. If memory latency has such an
effect on multiprocessors, the assumption that the time spent waiting for memory on
uni-processors is insignificant may not be correct.

This dissertation examines that assumption and explores methods to help all
programs reduce average memory latency by separating cache and register loads.
Separating cache and register loads allows memory latency to be overlapped with ex-
ecution, reducing the average amount of time spent waiting for each memory request.
The next section gives some background on cache memories and dependence analysis.
This is followed by a discussion of the previous work in this area.

1.1.1 Cache Memories

Cache memories are high-speed buffers used to hold portions of the main memory
believed to be in use. Values in a cache can be accessed in much less time than would
be required to access main memory. When a significant fraction of the references
are found in the cache, the total memory delay during execution is reduced. The
effectiveness of cache has been explained by the “property of locality”(DenT72]. Over
short periods of time, references are accessed non-uniformly over its address space.
References to be used in the near future are likely to be values used in the recent past
or those values that are close to the present values.

Cache design has several performance criteria. A cache should maximize the
probability that it contains a requested value (the hit ratio). The cache should also
be as simple as possible to minimize cache hit access time. Their are other criteria,
but these are normally the two most important.

The design of a cache involves a number of decisions. This work examines the
benefits (in terms of increasing the hit ratio) and costs (in terms of the total data
traffic required) of a number of potential cache structures. The cache parameters
discussed in this work are cache size, cache associativity, cache replacement policy,
main memory update policy, line size and hardware prefetching.

Cache Size

The first parameter of a cache normally given is its size. The more values that are kept
in cache, the higher the probability that the requested value is present. Caches cannot
be expanded without limit because of cost, physical size constraints and limited access
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time. A design may attempt to use the smallest cache that provides a certain level
of performance.

Cache Associativity

The user cannot directly address the cache, but rather the cache serves as a buffer for
addresses in the main memory. The mapping of addresses into the cache is determined
by the associativity of the cache. A fully associative cache can map an address in
main memory to any cache block. This requires that the cache maintain a very large
associative memory. Each time a block is accessed, the address must be compared
against the associative memory to determine if the address is present in the cache.
At the other end of the spectrum are direct mapped caches, which map each address
to a unique cache block. During a lookup, only one location must be checked to
determine if the value is present in the cache. Between the two extremes are set
associative caches. A set associative cache can map an address into a limited number
of locations. The number of potential cache locations for an address is determined
by the degree of set associativity, 2 for 2-way, 4 for 4-way, etc. Most computer caches
designed today are set associative.

A tradeoff exists between the number of sets and set size. A direct mapped cache
will have four times as many sets that are one-quarter the size of sets in a 4-way
associative cache. Poor performance occurs when programs cyclically reference more
elements than can be kept in a set. For a direct mapped cache, two elements that are
accessed alternately and map to the same slot produce no hits. For larger set sizes,
the number of items in the rotation can be larger before performance degrades.

Cache Replacement Policy

When a value is requested from the cache which is not present and the cache is full,
some block in the cache must be removed so that the requested block can be brought
into the cache. The goal of a replacement policy is to remove values that will not be
used in the future.

Main Memory Update Policy

There are two basic methods that memory buffers use to update the backing mem-
ory. The buffer either waits as long as possible before writing a value back to the



memory hoping to reduce the number of writes, or it passes modified values through
immediately, reducing coherency problems and the maximum time to satisfy a miss.
Delaying the write to the backing memory is called a write-back (or copy-back) write
policy. Immediately passing the value through to the next memory is a write-through
policy. The advantage of the write-back method is a much lower volume of mem-
ory traffic. For multiprocessors, where the volume of memory traffic will be crucial,
the write-through memories have the advantage of maintaining consistency between
processors. Write-through mermories are further broken into two groups depending
on whether it is believed that a value that is written will be used again before it is
flushed from the memory. The write-through no-load on write-miss policy speculates
that it will not be used again so it does not save the block in the cache after storing
the value in main memory. While the standard write-through policy loads the block
into the cache on a write miss.

Line Size

To improve the probability that a value is in the cache when requested, there are
several mechanisms to prefetch memory locations. Prefetching (fetching before the
actual request) allows the cache to guess what values will be needed in the near future
and bring them into the cache. The cache line is the fixed-sized unit of information
transfer between the main memory and the cache. The most common prefetching
mechanism is the multi-word cache line. The presence of adjoining items increases
the number of hits whenever locality of reference exists in the accesses.

Hardware Prefetching

A second form of prefetching that can be implemented is hardware prefetching. In
a hardware prefetching scheme, whenever the first word of a cache line is accessed,
the next sequential cache line is fetched from the main memory. For example, if
address 100400 were accessed (either loaded from or stored into), then the hardware
would request that the block starting at 100404 be brought from main memory to the
cache (assuming one word cache lines). Hardware prefetching is very effective when
FORTRAN arrays are accessed along columns.



1.2 Dependence Theory

To correctly determine if an address is in the cache when it is accessed, it is neces-
sary to know the last time that it was used. In conjunction with the development of
restructuring compilers for vectorization and parallelization, a method for describing
the constraints on execution order, called data dependence analysis, has been devel-
oped. The constraints identify the potential last accesses of any memory location in
the program. A conservative set of dependences is built during the analysis. There
are four types of dependences: true, anti, output and input [KucT78][KKP+81].

1.2.1 Data Dependence Analysis

The four types of data dependences are shown in Figure 1.1. To have a true
dependence between two statements, a value defined in statement S, must be used in
statement Sz. A true dependence can be viewed as a requirement that a producing
statement execute before the consuming statement. A second type of constraint
occurs when a statement S; uses a value, and a later statement S, redefines that
value. Statement S must be executed first to ensure that the value produced by S,
is not used in S;. This is an anti-dependence. A third ordering constraint occurs
when statement S; defines a value and a later statement S, also defines the value.
For the value to be correct upon completion of both statements, S; must follow S1.
Dependences of this type are called output dependences. An input dependence is not
a constraint on execution order but does indicate a reuse of a memory location. Since
both S; and S; only use the same value, they can execute in any order and produce
correct results.

Data dependences do not specify all of the constraints on statement ordering.
Control flow through the program affects which statements are actually executed.

Sh A=,

.. ... = A A= .. ..o = A
S, ... = A A= ... A= ... ce. = A
true anti output input

Figure 1.1 Types of Data Dependences



For instance, in the following example, statement S; depends on which branch is
taken in statement S;.

S - IF (I.EQ.0) GOTO 10
S ANS = ANS / I
S3 10 CONTINUE

Sz is said to be control dependent(KKP*81] on S;. To avoid dealing with con-
trol dependences as a separate form of dependence, a process called IF-Conversion
[AKPW383]| has been developed to convert all control dependences into data depen-
dences. IF-Conversion removes all control flow by replacing forward branches with
guards on the affected statements. Backward branches are replaced with guards and
explicit WHILE loops. IF-Conversion allows us to focus only on data dependences.

Data dependences in the presence of DO loops can be characterized as either
loop carried or loop independent[All83]. A loop carried dependence is simply
a dependence that exists between separate iterations of a loop. Each loop carried
dependence is associated with a particular loop in the program. A loop independent
dependence is a dependence within a single iteration of the loop. Any dependence
that is not surrounded by a loop (i.e., exists if all loops are removed) is also loop
independent.

1.2.2 Data Dependence Analysis of Arrays

When array references are treated as single scalar variables, very imprecise informa-
tion is generated. If different elements of an array are being accessed, memory is not
being reused and no dependence exists. By determining when the iteration space of
array references does not overlap, a much more accurate dependence graph can be
built. To make data dependence information on arrays more precise, several tests
have been developed to determine if a dependence exists between two array refer-
ences. For a majority of array references, these tests precisely determine whether

dependences exists. For example, in the following loop,

(S1) DO I =1,30
(S2) A(I) = A(I)=*B(I)
(S3) C(I) = A(I+1)

(Sy) ENDDO



if arrays A, B and C were treated as scalar variables, a loop independent true depen-
dence would exist from S, to S; on A. Additionally, four loop carried dependences
would be identified: (1) a true dependence from S, to S; on A, (2) an anti-dependence
from S3 to S; on A, (3) an output dependence from S2 to S; on A and (4) an output
dependence from S3 to S3 on C. The multiple cycles in the dependence graph would
mark this loop as unparallelizable.

However, if we consider the arrays on an element by element basis, a more precise
picture emerges. Since no memory location is modified more than once in the loop,
no output dependences actually exist. S, and S5 use the value of A present before the
loop starts execution, eliminating both true dependences. The only dependence that
remains is the loop carried anti-dependence from S to the next iteration’s S2 on the
variable A. With only a single dependence to guarantee, a restructuring compiler can
attempt to produce a parallel or vector version of this loop.

A statement in a loop actually represents a large collection of executable state-
ments, one executable statement per iteration. A direction vector [Wol82] relates
references to the same memory location according to which iterations of the enclosing
loops cause the overlap. The direction vector is formed from the distance vector,
which is the pairwise difference of the overlap of the iteration space that causes the
two references to access the same data. The distance vector represents the number
of iterations of a loop that a dependence must cross. This will be an important value
in determining if a requested value is present in the cache.

Much research has been done to determine when data dependences exist between
statements with arrays (Ban76] [Ban79] [AK84] [Kuh80] [Wol82] [AlI83] [TIF86]. The
problem can be stated as, “Given two array references and information about which
loops contain them, do they ever refer to the same storage location?”

A data dependence exlsts between two array references A(f(7;)) and A(g(zg)) if,
and only if, for some vector i; and i2

f(;'.l) - 9(72) =

Bernstein proved that this problem is undecidable for arbitrary functions f and g
[Ber66]. Knuth showed that for real programs, the expressions are generally simple
[Kou71]. Therefore, placing restrictions on f and g is reasonable. In order to solve
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the problem, functions have been restricted to affine functions in the loop control
variables, i.e.,
f)=ap+ay i+ +ag-if

where a; is constant.

Making this restriction, two tests have been developed to determine data de-
pendences, the ged test [Coh73][Ban76] and Banerjee’s Inequality[Ban76][Wol82]
[AK84]. The gcd test determines whether any integer solutions exist for f — g=0.
Banerjee’s Inequality determines whether there are any solutions to the same equa-
tion (integer or real) within the area specified by the loop bounds. Both of the tests
are conservative. If either determines that a dependence does not exist, there is no
dependence. There are cases where both tests determine that a dependence could
exist when there is actually no dependence.

Before applying the gcd or Banerjee’s test, the optimizing compiler at Rice Univer-
sity, PFC, uses a separability test. The separability test is quick and accurate, but
works only on a restricted set of subscript expressions'. If a pair of subscripts are of
the form ai + 6, and at + b,, then a dependence exists if either (1) a=0and b; = b,
or (2) b-‘-:—"z is an integer and is less than or equal to the upper bound of a normalized
loop. Separability is much faster than the other tests and works on at least 50% of the
expression pairs in a group supercomputer applications. For some of the programs in
the group, over 95% of the expression pairs are separable [Ros88].

Kuhn and Triolet [Kuh80][TIF86] describe the region of memory references by a
set of linear inequalities. If the sets of linear inequalities overlap, then a dependence
exists. This method is more accurate, but potentially much slower.

1.2.3 Cache Dependence

When dealing with cache, there is no distinction between types of references. A load
has the same effect as a store — both cause the item touched to become the “most
recently used” (ignoring, for the time being write-through no-load on miss). Thus
there need be only one type of cache dependence — from reference to reference. An
important effect of this observation is that variable uses as well as variable assignment

'Randy Allen developed PFC's separability test after studying Lamport’s paper on Parallel
Execution of Do-Loops [Lam74]
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become “kills”, where a kill terminates all outstanding dependences. Hence, there
may be many fewer cache dependences than data dependences.

To see the difference between the two graphs, observe that the following code
fragment has six data dependences and only three cache dependences.

DO I =1,30
(Sv) A= ...
(S52) ce. = A
(S3) .. = A

ENDDO

The six data dependences in this loop are from S, to itself and to S2 and to S3, from
Sz to 3 and S, and from S3 to S;. At times during the execution of a transforming
compiler, the transitive closure of the data dependence graph is required. Many
transforming compilers will actually produce all nine dependences from this code
fragment. Since transitive cache dependences are not used anywhere, the aggressive
use of kill sites is encouraged for cache dependence analysis. Aggressive use of kill sites
reduces the cache dependences for this code fragment to three: ( 1) a loop independent
true edge between S; and S, (2) a loop independent input edge between S, and
S3, and (3) a loop carried anti edge between S3 and ;. Eliminating half of the
dependences can be significant when algorithm running times depend directly on the
number of edges in the graph.

1.2.4 LC(x) and D(x)

During computation of the overflow iteration, it will be convenient to blur the dis-
tinction between loop carried and loop independent dependences. To avoid having
to handle the dependences separately, two functions will be used: Loop Carried By,
LC(e) and Distance, D(e). The values of both of these functions are obvious for loop
carried dependences. LC(e) is the loop level that carries the distance, and D(e) is
the value of the distance vector at that level. LC(e) for a loop independent depen-
dence edge is the minimum nesting level of any statement between the source and the
sink of the edge, including the endpoints. The distance D(e) of a loop independent
dependence is always 0.

When trying to determine the amount of memory used by a program segment, a
dependence edge that does not have both of its endpoints within the segment should
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not be considered. For loop carried dependences, the endpoints are contained in the
segment if the edge is carried by a loop in the segment. For a loop independent edge,
the edge is considered when the endpoints are both within the segment. By defining
LC(z) to be the nesting level of the smallest loop that includes both endpoints of a
loop independent dependence, LC (z) indicates which loops are affected by an edge
z.

The distance D(z) indicates how many iterations of a loop must occur before the
dependence can be satisfied. It is correct to set D(z) to 0 for loop independent edges,
since the loop control structure will not execute between the source and the sink of
the dependence.

1.2.5 Uniformly Generated Dependences

The dependence graph is made up of edges indicating where dependences may exist.
When we are trying to compute how much memory is used by a loop, the dependences
that prevent new data from being used are those that actually exist. Must depen-
dences would provide better information about which references require additional
data to be used in a program segment. Although transformations need to guarantee
that all possible dependences are maintained, when considering memory performance,
inaccuracies cause only sub-optimal performance, not incorrect performance. If the
may edges were included when the overflow iteration was computed, each loop would
be predicted to use less memory during execution. If a program was tuned using a
low estimate of the amount of data required, the actual usage would cause misses. If
a high estimate is used, the actual usage would fit into a smaller cache, just wasting
some of the available space. Accurate estimates will allow better tuning, minimizing
the misses for a given memory size.

Gannon, Jalby, and Gallivan (GJGS87| defined a uniformly generated dependence
as a dependence between two references for which a distance vector exists and each
element is known (not symbolic).

If two references have a known distance vector between them, then the compiler
has determined that the two references will touch the same memory location. A
uniformly generated dependence separates two references that must access the same
location during execution. Uniformly generated dependences fit neatly into the idea of
must dependences. Many other dependences, such as those due to different symbolic



13

subscripts or index arrays, will rarely or never access the same location. No other
well-defined class of dependences definitely uses the same memory location at both
ends every time the ends are executed. ‘

May dependences are ignored due to the manner in which the overflow iterations
are calculated. For each reference in a loop, the dependence graph is used to determine
whether the reference has been used previously in the loop. If a must dependence
exists (and the execution path between the two statements occurs), then the sink will
not use a “new” storage location. The assumption is that may dependences will, in
actuality, rarely use the same memory locations. If the statements rarely use the same
location, then the sink of the dependence will use a “new” storage location. Because
the overflow iteration should overestimate the amount of memory used, rather than
underestimate, only must dependences are considered. For the purposes of computing
the overflow iteration of a loop, any dependence that is not uniformly generated is
ignored.

1.3 Previous Work

The previous work fits into two basic categories: cache performance studies and
attempts to improve memory performance. Previous cache performance studies have
used short traces; a method to trace the cache performance of complete programs is
presented in this work. The basic difference between the methods to improve memory
performance described in this dissertation and previous work, is our attempt to make
the best use of a fixed size memory rather than attempting to minimize the set of
active locations.

1.3.1 Cache Performance Studies

The best known cache performance study is by Alan Smith [Smi82]. He measured the
performance of a combined instruction and data cache on 19 program address traces
(3 PDP-11 and 16 IBM 360/370). The traces were split into groups of four. A cache
simulation run switched between traces in a group every 10,000 references to model
multiprogramming, until each trace had supplied 250,000 references. The traces var-
ied from a text editor written in C to the COBOL compiler and an APL plotting
program. Seven of the programs were written in various dialects of FORTRAN. This
set of programs was meant to model a general purpose educational workload. The
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programs were not CPU intensive and did not have large data requirements. A 32K
cache produced a 98+% hit ratio for every program measured.

Smith made a number of statements about cache performance. He stated that a
hardware prefetching mechanism was effective for all tested programs. Set associa-
tivity above 8 produced very little benefit. Optimal line size was between 64 and
256 bytes. LRU was on average 12% more effective than FIFO. There was no clear
performance difference between the write-back and write-through policies (Smig2).

In 1985, Smith conducted a detailed examination of hardware prefetching{Smi85b).
In this study, 49 traces from 6 architectures and 7 languages were used. Again, the
traces were short (two 500K and the rest 250K or shorter). Only three programs
accessed over 100,000 bytes of virtual storage during the traces. It was noticed that
the various machines and compilers had different instruction fetch and data write
percentages. Smith’s report indicated the need to examine a representative workload
to determine the effectiveness of a cache for a particular machine.

Lee, Yew and Lawrie [LYL87b] looked at the performance considerations of caches
on multiprocessors. The cache performance of 23 scientific library subroutine calls
was examined. A compile time cache coherency solution prevented multiple copies
of read/write data by marking them as non-cacheable references. The longest trace
was about 34 million references, and the average trace was between 5 and 6 million
references. They found that the optimal cache line was always less than eight words
and in many cases only one or two words.

Chapter 2 discusses a cache performance study using typical supercomputer ap-
plication programs as the workload. Scientific programs that run on large computers
are a different type of workload than a general purpose computing workload. Before
attempting to transform programs to improve performance, a study to determine
the potential gains is performed. During the performance study, the differences in
memory performance due to workload variation are discussed.

1.3.2 Improving Memory Performance

A number of researchers have improved performance at various levels of the memory
hierarchy. The work has ranged from trying to lower the number of virtual page
faults to eliminating extraneous uses of vector registers. The following sections are
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brief descriptions of the most relevant work, together with a brief discussion of their

influence on and differences with the work in later chapters.

Virtual Memory Locality

Abu-Sufah [AST9] examined the problem of reducing the number of virtual memory
pages used by a program. In contrast with earlier work surveyed by Denning [Den70]
and Kuck [KL70], he used data dependences as the basis of his solution. Abu-Sufah
produced a general mechanism that substantially reduces virtual memory paging.
His studies suggest that a transformed program can get the same performance as the
original program with one-fifth to one-sixth the number of virtual memory pages.

Abu-Sufah developed a general method for measuring the space-time cost of vari-
ous programs using a virtual memory page as the unit of allocation. He then examined
the effects on the space-time cost of programs, of three transformations individually,
and in combination. The three transformations are loop distribution to separate the
program into smaller pieces, loop fusion to recombine pieces that are heavily related,
and strip mining to access arrays in single page size sections.

Program transformations were very successful for Abu-Sufah in reducing each
program’s space-time cost. Although the criterion, space-time cost, is not useful for
cache memories, the effectiveness of the transformations in tuning programs to the
criterion is encouraging. The success demonstrates that transformations can be used
to change global memory performance in a predictable manner.

Cache Packing

Kalid Thabit [Tha81] examined several software methods to reduce the effective main
memory access time when a cache is present. Two models for compiler control of the
cache, -the prompting and the explicit models, were presented. In addition to
presenting these models, Thabit showed that memory allocation to make maximum
use of long cache lines is equivalent to bin packing and is an NP-compleﬁe problem.
Also presented is a simple data dependence test to determine whether a blocking
transformation (strip mining) suggested by Abu-Sufah is safe.

The prompting model presents the compiler with two cache commands, Prompt
and Release. Prompt allocates a memory block in the cache, possibly bringing data
in from main memory, and Release deallocates the data block. The allocation mech-
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anism is not speculative. If a block is requested, then it will be used. Since Prompts
are not speculative, they cannot be moved across contro] dependences that may af-
fect execution. Allowing speculative prefetching, we can move many of the prefetch
commands much further from the actual uses, greatly increasing the likelihood that
the prefetch completes before the value is actually required. The prompting model
was presented by Thabit with no data on how effective it would be in practice.

The explicit model gives the compiler complete control of cache block alloca-
tion, cache block deallocation, and transfer of data to and from main memory. This
model reduces the cache management problem to the register allocation problem (on
a somewhat larger scale). There are severa] problems with this model. The most
common solution to the register allocation problem in the literature is graph coloring
[CAC*81],[Cha82]. The graph coloring solution is intractable and does not seem to
be a promising method of cache management. When thousands of cache blocks exist,
the coloring could take an unacceptably long time to solve. A second problem is that
the control instructions would need to be inserted into the program rather than being
handled by the hardware.

Thabit’s model for compiler control of cache showed that some simple optimal
cache allocation problems are NP-complete. Rather than look for solutions to these
problems, compiler writers need to determine what cache behavior is common in
actual programs and find solutions that are fast and accurate for those cases.

Cache Locality

Gannon, Jalby and Gallivan have done the only known prior work on maximizing
cache locality (GJG87]. They computed the number of active locations in an array.
Transformations were then used to reduce this number and to predict a lower bound
on the number of cache hits.

The general method is to define a family of “reference” windows for each variable,
A reference window defines the current set of elements that must be in the cache (i.e.,
those that will be used again). A reference window is defined for each dependence
and specifies the set of elements used at the source before some time ¢ that are also
used at the sink after time ¢.

To define these windows accurately, several common subcases of data dependences
are defined. The most important is when a dependence distance vector can be de-
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termined exactly and consists of constants. This is called a uniformly generated
dependence. It is simple to compute the window size of a uniformly generated de-
pendence. In general, the window will be one larger than the number of iterations
necessary to carry the dependence. For example, a loop independent dependence has
a distance vector of all zeros and a window size of one. A uniformly generated loop
carried dependence with a distance of three has a window size of four elements.

The hit ratio can be calculated by determining a spanning dependence for each
variable and then counting the number of references inside the spanning window and
the number of different locations accessed by the spanning dependence. The hit ratio
is then the number of references minus the number of different locations divided by
the number of references. This is a program constant and cannot be changed with
safe transformations. Gannon et.al. attempted to minimize the maximum sum of
active windows in the program.

A major difference between Gannon’s methods and the methods proposed in this
dissertation is our emphasis on the loop that does not fit into the cache. Cache man-
agement is not an absolute; there is a trade-off between compile time and execution
time. Under the approach in this dissertation, it is possible to identify when the
program fits into available cache such that there is no need to further improve the
program.

This dissertation uses Gannon’s definition of uniformly generated dependences to
describe dependences that must reuse a memory location. Dependence graphs include
edges that either can not be disproved or are known to occur only occasionally. When
determining whether a memory location resides in cache when referenced, the only
edges of interest are those that actually occur. Uniformly generated dependences
capture this idea very cleanly.

Vector Register Allocation

Allen and Kennedy [AK88] studied methods to section vector loops when the num-
ber of loop iterations exceeds the vector pipe length. Assuming a vector pipe of 64
elements (CRAY-1, CRAY-XMP) and a 100 element vector operation, the naive so-
lution of executing the first 64 as one operation and the last 36 as a second operation
may produce incorrect results. The simple solution of using temporary storage to
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guarantee that the correct values are always used can use a tremendous amount of
storage.

Allen and Kennedy use the data dependence graph to determine when simple sec-
tioning produces potentially incorrect results. A number of program transformations
such as, loop reversal, input prefetching, loop splitting, loop interchange, and loop
fusion can be used to produce correct results without using temporary storage. The
circumstances under which each transformation is safe and effective were described.

" Register allocation optimizes the performance of a small explicitly controlled set of
locations. The compiler knows the contents of each register at all times. Maintaining
this level of information about cache and virtual memories would be very expensive
due to the large number of cache locations and the nonlinear complexity of register
allocation methods. To improve cache performance, methods that do not track every
cache location are needed. Fortunately, cache misses are not catastrophic errors. If
a register does not have the expected contents, then the program is incorrect. If the
cache does not have the expected value, then the result is a cache miss. Thus, a
probabilistic solution can be used.

Allen and Kennedy have shown the effectiveness of program transformations for
improving memory access patterns. Vector register allocation deals with specifically
allocated memory, but the specific transformations to shorten dependences between
references that use the same memory locations could be effective for cache manage-
ment if applied properly.

Cache Prefetching

Lee, Yew and Lawrie have studied data prefetching for shared-memory multiproces-
sors [LYL87a], [LYL87b]. Working on the Cedar project with software-enforced cache
coherency, they found that data prefetching was effective in addressing the memory
access bottleneck. Their view of data prefetching initiates operand fetches several
instructions beyond the current processor instruction.

Data prefetching does not address the problem of saturating the memory band-
width, but it does attempt to overlap the memory latency with execution. They
report that prefetching obviates the performance advantage of long cache lines. Since

multiprocessor interconnection strategies may have limited-width data paths, using
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shorter cache lines can reduce the average memory latency. They hypothesized that
with data prefetching, shorter cache lines will perform better for multiprocessors.
Lee et. al.[LYL87a] showed that low level prefetching can be effective. In general,
prefetches into registers can not be separated from the use of the register by more
than a few instructions, since a register must be allocated during the prefetching. If
prefetching is separated from register loads, the prefetch can be moved further away
from the actual load, allowing a larger overlap of memory latency and computation
time. The success of overlapping data fetches at the low level indicates that more

aggressive prefetching may be able to almost completely overlap memory latency
delays with execution.

Blocking

Two recent papers have reported on computer programs whose performance displayed
noticeable sensitivity to problem size when running on vector or parallel processors.
Vector performance of an Alliant FX/1 fell by as much as 60% when the vector lengths
were greater than the length that could be maintained in the cache [ASM86]. IBM
3090 performance fell by 30% when the arrays of a matrix multiplication were larger
than the cache size [LS88]. In both reports, it was noted that performance did not
degrade when accesses were blocked into groups smaller than the cache size.

Blocking data accesses to improve the performance of a processor (particularly
parallel processors) is a well-known technique. Gallivan, Jalby, Meier and Sameh
[GIMS88] discussed the performance of blocked BLAS3 linear algebra routines on an
Alliant and found that blocked versions generated twice the MFLOPs for some array
sizes. For tridiagonal linear equations, Berry and Sameh [BS88] improved the perfor-
mance by blocked LU decomposition over the standard LINPACK version[DMBST79)
by as much as 800%. On a Cray-2, unrolling the inner loop improved performance by
a factor of three, and a blocked assembly program increased performance by a factor
of six for large arrays [Cal86].

In these studies, programmers were either blocking the programs by hand, [LS88],
or providing library routines that have been blocked by hand (eg. BLAS3 [GJMS88]).
Although both of these methods are effective, it is desirable to automate the blocking
of data. Any machine dependent function that the compiler can perform simplifies
a programmer’s job and makes the programs easier to port to new machines. When
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the compiler performs the blocking, it does not obscure the programmer’s view of the
program, and the blocking is ensured to be performed correctly. This will eliminate
some errors and make others easier to locate. When the programmer is blocking
array accesses by hand, some estimate of the potential benefit is weighed against the
demands on his time. If the gains are small or difficult to determine, blocking is not
done. By spending some compilation time to block memory accesses, any program
that benefits from blocking is blocked.

When code is blocked by hand, the program should be retuned every time the
memory hierarchy changes. This includes moving between manufacturers, moving
between computer models from one company and, in some instances, moving between
different versions of the same computer. Automatic blocking can tune code to a
particular memory hierarchy by simply recompiling.

The first step towards automatic methods of increasing memory performance is
understanding how typical memories perform on real programs. The performance
of caches on computationally intensive programs has not been thoroughly studied.
Before it is possible to start optimizing programs to run on parallel processors with
multiple caches or multiple levels of cache, a firm understanding of how a single cache
and processor interact is required. This dissertation attempts to understand how
computationally intensive programs run on sequential caches and investigates how to
improve their performance. Both software and hardware mechanisms for improving
performance are considered.

Chapter 2 describes a tool to measure very long cache traces and uses it to measure
the performance of a group of supercomputer application programs. The next chapter
presents a static model of the dynamic memory behavior. Program transformations
to improve a program’s memory performance are discussed in Chapter 4. For those
cases where transformations are ineffective at eliminating cache misses, Chapter 5
examines a simple method of overlapping cache misses with other computation.



Chapter 2

Data Cache Performance

2.1 Introduction

This chapter describes an experimental study of a wide variety of programs and caches
to determine how various memory structures perform for computationally intensive
programs. Hardware designers can use this study to help make design decisions for
super and super-mini computers. Chapters 4 and 5 will use the tools built for cache
simulation and observations of programs with poor cache performance to examine
methods for improving the cache performance during compilation.

Recent studies at the University of Illinois and IBM have shown that memory
performance can have a significant impact on the overall performance of a computer.
Abu-Sufah and Maloney measured the vector performance of an Alliant FX/8 on
increasing vector lengths and found that when the vectors exceeded the cache size, the
performance declined by up to 60% [ASMS86]. In similar work, Liu and Strother found
that a matrix multiply problem that did not fit in the cache ran 30% slower on an
IBM 3090 vector processor than when the problem did fit into the cache [LS88]. Both
reports recognized the problem as a memory performance problem and suggested
methods to improve overall performance by improving the cache hit ratios of the
programs.

In both studies, the test programs were quite simple, namely, a program with
very long vector operations, and a single matrix multiplication problem. While these
are certainly subroutines that will be called by programs running on supercomputers,
they will not normally be programs by themselves. However, actual production codes
tend to be computationally intensive and thousands of lines long.

In the past, cache performance studies have not examined the class of compu-
tationally intensive programs. There are two reasons: (1) there is no commonly
acknowledged benchmark, and (2) tracing simulations of long programs requires too
much storage. Studies such as those done by Alan Smith [Smi82],(Smi85a] use trace
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lengths from 10,000 to 333,000 entries. These traces correspond to fractions of a sec-
ond of execution time for powerful machines. However, traces of this length are used
for several reasons. First, the storage required to keep a trace that would correspond
to minutes or hours of execution is not available. Second, most cache studies have
been directed toward time-sharing systems that will swap the program out to disk af-
ter a small time-slice, effectively flushing the cache about every 10,000 accesses. QOther
studies have used whole programs, but the relationship between these programs and
actual supercomputer applications is unknown. Chi and Dietz, [CD89] are looking
at the performance of a class of caches. They use full programs such as bubble sort,
puzzle, and tower of Hanoi for their study, but the performance of these programs
does not necessarily correspond to the performance of supercomputer applications.

The cache studies have focused on cache performance and have paid little attention
to the relationship between misses in the cache and the program that is executing.
Before the compiler can attempt to improve memory performance, an understanding
of the behavior of each reference in the source program is required. To determine the
performance of individual references during execution of long programs, we developed
a new simulation tool called PFC-Sim.

PFC-Sim is a program-event-driven tracing facility which can be modified to per-
form a variety of dynamic statistic-gathering tasks. The version used in this disser-
tation gathers information about memory performance in terms of hits, misses and
traffic. Another version counts floating point operations and dynamic vectorization
percentage. All versions of PFC-Sim have the same basic structure (see Figure 2.1)
including a preprocessor that locates interesting events in the source program and
inserts code that invokes a run-time simulator, run-time routines to simulate some
functions or just record the events, and visualization tools to make the dynamic
statistics easier to understand. For memory simulation, every data reference in the
program is preceded by a call to the cache simulator. To simulate execution time, ev-
ery basic block has a statement that increments the simulated clock by the execution
time required for a single execution of the block.

Very long programs can be simulated by PFC-Sim since trace entries produced
by a program are discarded as soon as the simulator processes them. In this manner,
simulations of any length can be run without concern for disk space. The translation
process that marks events in the source gives each event a unique number. By passing
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that number to the simulator, separate statistics for each event are - -aintained. When
execution completes, the statistics about the entire program can be gathered, or
subsets (i.e., single loops or individual references) can be examined.

To understand supercomputer program memory performance, a collection of ac-
tual production programs is required. Researchers at Rice University are collecting
a set of computationally intensive programs known as the Rice Compiler Evaluation
Program Suite (RiCEPS). Each program in the suite is written in FORTRANTT
and includes the data required for execution. Each program is either an actual pro-
duction program or an “abstracted” version, where “abstracting” involves replacing
proprietary routines with computationally-similar, non-proprietary versions of those
routines. The execution times of the programs vary from less than one minute to sev-
eral days on an IBM 3081D. As a collection of production supercomputer programs,
the benchmark gives a much better idea of the supercomputer run-time performance
than programs used in previous studies. ,

As describe in Chapter 1, a cache can be specified by a number of parameters:
cache size, cache line (or block) size, replacement policy, write policy, degree of as-
sociativity, and whether it employs a prefetching mechanism. To understand the
effects of these parameters, each program in RiCEPS was run with a variety of cache
structures. The structures were chosen to allow each parameter to be investigated
separately. Each series of simulations was run for each parameter. The series involved
changing the parameter while holding all other parameters constant.

The simulations provide two basic types of information about whole programs:
the hit ratio and the amount of memory traffic generated. To better understand the
results of each design decision, each parameter’s effect on these values was determined.
Trends among the programs was examined as well as individual programs that do not
follow the trends. To reduce the number of misses in a program, the compiler must
locate the misses. By counting misses and hits for each reference, the hit ratio for
each individual reference was determined.

Cache performance effects on program execution can also be realized from the
information produced by PFC-Sim. Using the estimated execution time and the
number of misses during the program, the percentage of execution time spent waiting
for the memory can be determined. As supercomputers get faster and more distant
(in cycles) from their main memories, this can become a pronounced performance
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problem. The second impact of cache performance is the amount of traffic generated
to support the execution. Most modern supercomputers have found it difficult to
provide enough bandwidth to keep the floating point units running at peak rates.
By investigating the average amount of bandwidth required for each floating point
operation, a measure of the peak effective MFLOP rate for a machine was determined.

The following two sections detail the tools used for the data cache performance
studies. The programs that presently comprise RiCEPS are described. Then, PFC-
Sim’s design and implementation is discussed. Using the results of the experimental

study, the effects of various cache design decisions on actual program performance
are then discussed.

2.2 Rice Compiler Evaluation Program Suite

The Rice Computer Evaluation Program Suite ( RiCEPS) is being gathered to address
the lack of a publicly accessible set of computationally intensive programs. RiCEPS
is a group of programs culled from production supercomputers. Each program was
selected to be representative of a group of applications. The programs are substantial
in size and require a significant amount of execution time. Where possible, programs
that took too long have been shortened. One method used to shorten programs is to
reduce the length of time being simulated (from 12 hours to 10 minutes in the case of
the BARO test program). In some cases, this has lowered the total execution time on
an IBM 3081D from a projected 10 days to about 3 hours. A wave analysis program
(WANALL), which iteratively finds better answers, had the number of iterations
reduced from 200 to 3 (shortening the execution time from 67 hours to 80 minutes).

Work on the benchmark set is progressing in parallel with this thesis. The bench-
mark is expected to grow to about twenty programs by early 1989. When the bench-
mark programs are considered stable, the intention is to make them available through
Argonne National Laboratory’s netlib facility. Each program in the benchmark in-
cludes, in addition to the FORTRAN program, a brief description of what the code
does (what it solves/what algorithms it uses) and at least one set of data to run the
program. Some of the programs generate their own data and do not use any explicit
data sets.

The experiments reported later in this chapter used a preliminary version of the
benchmark containing twelve programs. Many of these programs will not be present
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in the final benchmark for a variety of reasons. In some cases, we do not have
permission to redistribute. In other cases, we may find that a code that arrives later is
more representative of programs for that class of computationally intensive problems.
The programs’ execution times range from one minute (MATRIX) to several hours
(SIMPLE, BARO, BOAST). While most programs are 1 to 3 thousand lines, they
range in size from 15 lines to over 23,000 lines. All of the programs run under the
IBM VS2 FORTRAN compiler on an IBM 3081D.
The benchmark programs used for this work included:

e MCMB - a mixed characteristic microbial biodegradation program. Concen-
tration is solved by continuous linears in space. Backward differencing in time
is treated by segmented characteristics. Preconditioned conjugate gradient it-
erations are used to solve matrices for both concentration and pressure.

¢ MATRIX - a simple 100 x 100 matrix multiply.

¢ BARO - weather simulation of an isolated vortex embedded in a mean westerly
flow. It uses a shallow water atmospheric model with a fourth order potential
entropy conserving advection scheme and leapfrog differencing.

¢ SIMPLE - an abstracted hydrodynamics program produced by Livermore
National Laboratory for distribution and tests.

e EFTE304 - calculates the current distribution on an arbitrary body excited by
a plane wave of desired amplitude H-Field. The program manipulates the given
data to obtain triangular patches. Current density is calculated at the center
of each edge.

¢ BOAST - a black oil reservoir simulator.

¢ EULER]1 - a solver for one dimensional unsteady Euler equations that utilizes
spectral methods: collocation method with Chebyshev series, 1D propagating
shock wave, bursting diaphragm flow, and colliding shock wave flows.

e SHEAR - three dimensional turbulent fluid dynamics simulation based on spec-
tral techniques.
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e MHD2D - solves 2D MHD equations with periodic boundar)'r conditions on a
256 x 256 grid using the spectral method and leapfrog time differencing.

¢ ONEDIM - eigenfunctions and eigenvalues of the time independent Schroe-
dinger equation for one dimensional potential.

¢ LINPACKD - benchmark that has been used to determine the floating point

performance of the most recent computer/compiler combinations on double pre-
cision LINPACK calls. [Don88§]

e WANALL1 - boundary control of wave equations by conjugate gradient method,
without initial data smoothing using a perturbed bilinear form without cutting.

2.3 PFC-Sim

PFC-Sim is a program-driven-event tracing facility consisting of three parts: a pre-
processor, run-time routines. and visualization tools written for this research (see
Figure 2.1). To fulfill the requirements of this research, PFC-Sim needs to run on
long programs in a limited amount of space and needs to create a map between ac-
tions in the trace and the corresponding events in the source program. To eliminate
the need for an enormous trace file, the simulation of memory occurs during pro-
gram execution. Unique marking of each event in the program source allows a simple
mapping between the source program and actions during execution.

A one hour program can access the cache billions of times. Even with very small
trace entries, this would easily exceed the available disk storage. In a typical tracing
simulation, a single execution of the program is traced, the trace file is compacted in
some manner, and then many simulations are run on the resulting compacted trace
file. Since PFC-Sim runs on programs where the original trace file is too long to
store, the compaction and simulation steps run concurrently with the program being
traced, eliminating the need to ever write the trace entries. This requires retracing
of the entire program for every different memory simulation, but since at least 90
percent of the execution time is in the simulation routines, the cost of re-executing
the program is not prohibitive.

Only computing the hit ratio of a program does not aid a programmer in deter-
mining whether a particular section of code is getting adequate memory performance.
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To improve a program’s memory performance, some means of determining the ref-
erence or set of references causing the majority of the misses is needed. If memory
accesses are determined by looking at the assembly code produced by the program,
it will be very difficult (particularly if the code is optimized) to determine to which
source statement a particular load corresponds. By marking loads and stores in the
program source, PFC-Sim has several advantages. The mapping between events and
source program statements is simple; every event is given a unique number.

The PFC-Sim preprocessor accepts as input a FORTRAN program to be simu-
lated and marks every load or store of an array variable in the program with a call to
the simulator. The PFC-Sim simulator consists of three externally-linked FORTRAN
calls which can simulate a wide variety of memory structures. The set of visualization
tools present the information from the simulation in ways that allow quick identifi-
cation of important events. Each of the three parts are more fully explained in the
following sections.

2.3.1 PFC-Sim Preprocessor

The PFC-Sim preprocessor is embedded inside a powerful vectorizing and paral-
lelizing source-to-source translator developed at Rice University, called the Parallel
FORTRAN Converter (PFC). PFC builds and uses a dependence graph to trans-
form a FORTRANT77 program (possibly with vector and parallel extensions) into an
equivalent FORTRAN program with vector and/or parallel constructs. The output
of PFC-Sim does not use any non-FORTRANTT constructs that were not present in
the original program.

PFC makes a series of passes over an abstract syntax tree. Between any of the
passes, the PFC-Sim preprocessor can obtain the tree and mark events of interest.
To simulate memory usage on the original input program, PFC-Sim marks the tree
immediately after parsing, scanning for two types of events. The first type of event
is an access of memory, either a LOAD or a STORE, and the second type of event
is the crossing of basic block boundaries. Although this work only describes the
memory simulation version of PFC-Sim, any operation that a compiler can detect
can be counted dynamically in the same manner. At the present time, a second
version of PFC-Sim exists that gathers statistics about vector operations as detected
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by PFC. The total counts of floating point operations in the RiCEPS programs, used
in Section 2.4.6, are from this version of PFC-Sim.

PFC-Sim’s approach of adding lines to the program to perform dynamic counts
is similar to a technique used by Kumar to measure the total potential parallelism
in programs. In his paper [Kum87], Kumar discussed experiments that determined,
for each statement, the earliest cycle during which the data used in a statement
was available and the earliest cycle that the execution was guaranteed. From these
numbers, the earliest cycle that the result of the statement could be avajlable was
determined. By measuring the longest chain of statements through the program,
Kumar determined the minimum execution time of the program. The maximum
average parallelism is then the number of statements divided by the minimum time,
and the maximum parallelism is the maximum number of statements executed at any
given time.

The PFC-Sim preprocessor uses Kumar'’s idea, inserting computation to simulate
memory usage before every memory access. Every program statement is checked to
see what events would occur during its execution. If the event can be simulated in one
or two statements then those statements are inserted preceding the actual statement.
This technique is used to keep track of actual running time. When more complex
simulation is needed, a subroutine call is inserted. The simulator subroutines must
then be included when the program is linked. This technique is used for memory
simulation.

The PFC-Sim preprocessor inserts two types of calls, namely LOAD and STORE,
in front of ordinary statements. Calls to LOAD and STORE are treated by the sim-
ulator in the same way that hardware would treat the equivalent instructions. Each
call passes the address being accessed, the length of the element, current simulation
time and a unique identifier for the particular reference.

Every statement is examined, and two lists are built from the memory references
that occur during the statement. The first list contains the references that would
require a load during execution. The second list contains the references that are
written to memory by the statement and that require a store. A symbol table is used
to determine if each reference is an array or a scalar. The default handling of scalars is
to ignore the references that they generate. The number of blocks occupied by scalars
will normally be very small, and preliminary testing showed that they cause very few
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additional misses to occur. A second reason to ignore scalars is that many will be kept
in registers between uses when a good global register allocator is available. Ignoring
scalar references is also practical. The simulator requires three times as long to run
when scalars are included. »

All statistics about memory performance are kept in the simulator. When program
execution completes, the statistics must be saved. Every FORTRAN RETURN or
STOP statement in the main routine of a program is preceded by a call to SIMFNL.
SIMFNL builds a data set with the information that was gathered on that particular
run.

Besides :nserting statements for memory references, the preprocessor also divides
the program into basic blocks. During execution, profiling data is generated, and
simulated execution time is kept. The simulation slows the program down, but event
frequency can be determined from the simulated time. An accurate estimate of the
execution time of a single basic block is possible in the absence of any memory delays.
By incrementing the simulation time at the beginning of any basic block and adding
a miss penalty when appropriate, an accurate clock is maintained.

When simulating parallel processors, maintaining a running time of the program
will be important for two reasons. First, calculation of cache miss rates requires
knowledge of the time, and when parallel memories are modeled, ordering of events
can be determined by comparing two execution times. By ordering instruction streams
across processors, memory interference between multiple processors can be calculated.

One effect of the preprocessor is to approximately double the size of a program.
Figure 2.2 shows matrix multiply before and after the preprocessor. Most of the
changes are straightforward.

2.3.2 Memory Simulation

The run-time package for memory simulation consists of five routines. The three
mentioned in the previous section and two that are called internally from LOAD and
STORE. An initialization routine is called the first time that the memory simulator
is activated to set up all of the control structures. The initialization routine reads
in the specifications for the requested memory and performs the appropriate actions.
The second routine is an automatic prefetch mechanism that can be used to simulate
hardware prefetching. Almost any memory structure can be modeled by the package.



DOI=1,N
DOJ=1, N
ACI,)) =0
DOK=1, N
A(I,J) = A(I,J) + B(I,K)*C(K,J)
ENDDQ
ENDDO
ENDDQ

becomes

DOI=1,N
DOJ=1, N
CALL STORE(A(I,J),4,TIME,1)
ACT,I) =0
DOK=1, N
CALL LOAD(A(I,J),4,TIME,2)
CALL LOAD(B(I,K),4,TIME,3)
CALL LOAD(C(K,J),4,TIME,4)
CALL STORE(A(I,J),4,TIME,S)
A(I,J) = A(I,J) + B(I,K)*C(K,J)
ENDDO
ENDDO
ENDDO

Figure 2.2 Matrix Multiply - Before and After PFC-Sim
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The initialization routine reads in a file that contains seven parameters. The first
five specify the type of memory to be modeled, the sixth gives the frequency of trace
entries for one of the visualization tools, and the last activates hardware prefetching.

The five memory specifications are

e number of memory blocks

size of each memory block
e associativity

e replacement algorithm

e write policy

The first memory parameter is the number of blocks in the memory. The number
of blocks should be divisible by the specified set associativity. In the current imple-
mentation, the number of blocks must be no greater than 256K, but this can easily
be changed if more are required. Since FORTRAN requires static allocation of ar-
rays, some limit must exist. Without the memory constraints of IBM’s VM operating
system (without the XA feature), the default maximum number of blocks could be
higher.

The second parameter is the block size, or length of a cache line in bytes. The
size of each line times the number of blocks defines the size of memory being modeled
(SIZE = NUMBER*BLOCKSIZE). The size is specified in bytes and can be any
positive integer, although memories normally have sizes that are powers of two.

Associativity is the third parameter. Again, any positive integer is acceptable.
When the associativity does not divide the number of blocks evenly, the memory
simulator may behave in an unpredictable manner. A direct-mapped memory has
a set associativity of one, a fully associative memory has the set size equal to the
number of blocks, and an X-way set associativity is requested by setting the third
parameter to X. The associative memory is simulated with a linked list, causing fully
associative simulations to be substantially slower than the other types.

The fourth parameter is the replacement algorithm to be used. Four different
replacement strategies are supported.

o Least Recently Used (LRU) — the most common in practice.
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e First In, First Out (FIFO)
¢ Random (RAND)
e Optimal (OPT) — furthest next use, impossible in practice.

The fifth memory parameter declares the write policy to be used. Three write
policies are presently supported.

e Write-back — writes modified blocks only when cache line is being replaced.
o Write-through — writes modified blocks back immediately.

o Write-through, no-load on write- that if a block being written is not present in
the cache, it is not placed into the cache.

These options cover most caches and main memories available in present archi-
tectures. The OPT replacement algorithm is a useful tool in detecting when trans-
formations could have a noticeable impact on performance. The main problem with
implementing the OPT algorithm is that it requires up to one block for every accessed
variable in the program. Since PFC-Sim has an imposed limit of 16M of user storage
in its present implementation, this has prevented testing of larger programs using an
OPT cache.

After the initialization routine has identified the memory to be simulated, the
memory control structure is initialized. The initial cache contains no values. After
memory initialization, LOAD and STORE calls perform almost identical actions.
Both routines emulate the memory lookup function and increment the arrays that
count either hits or misses for the unique identifier passed with the call. The difference
between the calls is that STORE marks the block as dirty and may require that the
block be immediately written out. Besides the arrays to count hits and misses, a
traffic array counts the number of bytes that are moved between memories due to
each reference.

To provide a means for the programmer to examine memory performance during
execution, a compact trace file can be generated. Instead of providing a reference by
reference summary, a single entry is generated for every time interval specified. The
time interval is the sixth parameter and is given in microseconds (of simulated time).

\
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Trace entires are also generated every 3000 misses, giving more detailed information
in code sections with poor hit rates.

The last parameter to the PFC-Sim run-time routines activates hardware prefetch-
ing. To reduce the number of memory misses, several people have suggested an au-
tomatic prefetching mechanism. In the later sections of this dissertation, the results
of testing one particular version are given. The automatic prefetch that is supported
places the next sequential memory block into the memory whenever the first byte
of a cache line is accessed. This prefetch function assumes that memory is accessed
sequentially by most programs.

2.3.3 Visualization Tools

Many different visualization tools can be developed using compact trace and statistics
files. Two have been developed. The first tool is a browser (on a color IBM 3279)
that allows a user to color every reference in the program according to the hit ratio
of that reference. For example, by coloring all of the low hit ratios red, while lea.vmg
the remaining references green, references that have the greatest possibility of being
improved are easy to locate.

The second tool uses the trace file to graph the miss rate as a function of execution
time. The trace file may be viewed at any magnification from the interval between
the compact trace file entries to a level which allows the entire program to be viewed.
To allow the programmer to locate portions of the code that have poorer memory
performance than expected, the tool provides a means of moving from a particular
trace file entry to the point in the program which is currently being executed.

2.3.4 Potential Uses of PFC-Sim

PFC-Sim’s basic structure is a powerful mechanism for developing a range of tools
to examine program behavior. As it was designed for this research, PFC- Sxm is both
easy to modify and flexible in its possible uses.

The PFC-Sim front-end examines the source of a program, identifies and marks
events of interest. During execution, each one of the events can be counted or other-
wise noted. As implemented, the basic event is memory references and the dynamic
action on each event is to model some type of memory hardware. The structure, how-
ever, can be easily modified for other applications. One graduate student, working
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part-time and having had no previous experience with the compiler (or the operating
system environment it lives on), modified PFC-Sim to determine the dynamic vec-
torization percentage of floating point operations, in about two months. Developing
new visualization tools for the back-end required less than a week each. Modifying
the output into a form that could be easily accepted by a graphics tool was straight-
forward.

PFC-Sim can obviously be modified to gather any type of dynamic statistical in-
formation desired. More interesting modifications of PFC-Sim are for applications in
debugging and performance analysis. By simulating the effects of a machine around
the execution of a program, both data and program breakpoints are easy to imple-
ment. Other debugging activities can also be implemented. While PFC-Sim would
not provide major debugging functionality over present sequential systems, it would
provide benefits in parallel debugging. A careful implementation could maintain
clocks for each parallel stream and duplicate actual event ordering for specific hard-
ware. Duplication of actual event ordering may simplify debugging of race condition
problems. Using PFC-Sim for performance analysis (or performance debugging) is
already done to some degree. As a memory simulator, PFC-Sim generates profiling
data for the basic blocks in each program. To determine the effectiveness of some
transformations in this work, profiling data was used to limit examination of the pro-
grams to the most frequently executed basic blocks. Generating more sophisticated
tools on top of the available data (and expanding the amount of data collected) would
not be difficult.

Modifications to the basic structure of PFC-Sim can be used for a variety of
program evaluation and debugging purposes. For some applications, like dynamic
statistic gathering, it seems to be exceptionally well-suited to produce information in
forms that can be used by other tools. For other applications, like debugging, the
PFC-Sim structure is a new approach that could be very useful. While PFC-Sim
was developed for this research, this dissertation uses just one of its many possible
configurations to examine the performance of data caches on actual supercomputer
applications.
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2.4 Experiments

The experiments in this section show the effectiveness cache structures for compu-
tationally intensive programs. In addition to determining how the hit ratio for the
program is affected by the cache structure, the total data traffic between the levels
of the memory hierarchy is measured. Every reference in every program will have its
individual hit ratio measured dynamically. Compiler transformations can reorder ref-
erences, increasing or decreasing the distance between consecutive usages of a memory
location. If compiler transformations may be successful in reducing cache misses, then
it will be useful to examine the effects of transformations on individual references.
The eventual goal is to develop compiler predictions of memory performance.
Hundreds of possible cache configurations exist, and testing all possible configura-
tions is impossible with available computer resources. To test the effect of a particular
cache parameter, a base cache was defined and a single parameter was varied on each
simulation. The selected base cache was a 32K LRU, 4-way set associative cache,
with a one-word cache line, using a write-back store policy and doing no prefetching.

2.4.1 Cache Size

When describing a cache, the first characteristic is normally its size. During the design
of a computer, the selected cache size is often the largest that can fit in a reasonable
fraction of the available physical space and that will not represent an unreasonable
fraction of the total machine cost. Within the physical and practical constraints, a
larger cache results in a higher hit ratio. The first series of cache simulations examines
the effects of increasing cache size from 16K to 256Kbytes.

‘For every examined cache parameter, two graphs are presented: the generated
hit ratio, and the required data traffic. The hit ratio graph shows the absolute hit
ratios for each program and the arithmetic average for all programs. The programs
in RiCEPS vary greatly in execution time. To graph the amount of data traffic for
each cache’s structure in a manner that is not dominated by the longer programs,
the data traffic graph is normalized. Each data point is a percentage of the minimum
data traffic for that program over all graphed caches. (Every line has at least one
point at one, and none below one.) This normalizes the graphed points and allows
discussion of the relative effect on data transferred between a cache and main memory
as a function of cache parameters.
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As shown in Figure 2.3, all of the programs’ hit ratios increased as data cache
size increased. An average 16K cache hit 70.8% of the time, a 32K cache hit 75.9%
of the time, and the hit ratio continued to rise smoothly to a peak of 90.9% for a
256K cache. The average hit ratio line is nearly straight. Each doubling of the data
cache size increased the hit ratio by approximat.ely 5%. The average hit ratios of the
larger caches are dominated by a few programs with very large working sets. For
256K caches, only four of the eleven programs® had a significant percentage of misses.
Over 50% of the misses were generated by a single program WANALL.

Overall, the average effect of doubling the cache size was to reduce the miss ratio
by about 21% for each doubling of cache size. This was lower than the 27% that Alan
Smith found with his sample group[Smi82]. The average improvement as cache size
increased was lower for this set of programs due to differences in the programs used
in the two studies. The larger working sets of the RiCEPS programs increased the
probability that a program’s working set does not fit into a given cache size. This
decreased the effectiveness of each doubling of the cache size.

The programs did not react uniformly to the increasing cache size. EFIE304’s
hit ratio increased dramatically at both 32 and 64K and very few misses occurred
with a 128K data cache. MATRIX’s hit ratio increased less than 5% between 16 and
32K, but the misses were almost non-existent with a 64 cache. SIMPLE showed
improvement when the cache size increased from 16 to 32K, but few additional hits
occurred if the cache was increased to 256K. WANALL’s hit ratio increased less than
0.1% when the cache was increased from 16K to 128K (and only 6% at 256K).

Before a compiler can understand how cache size affects a program’s performance,
the compiler writer needs to understand why the programs use the larger caches
with such differing effectiveness. To understand why programs react so differently,
let us consider the performance of MATRIX in detail. The first doubling in cache
size had little effect (hit ratio increased by 2%), and the second was very effective
(hit ratio increased by 22%). MATRIX only has 5 array accesses, the first when
the result element is initialized to zero and the remaining four inside the main loop
(¢ = A+ B+ C). The number of misses produced by four of the references did not
change between any of the simulations. The only value that changed is the number

1Hit Ratios are not available for MCMB above 64K because the 16Mbyte virtual address space
available under the IBM VM Operating system will not contain both the program’s data space and
the larger cache data structure required.
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of misses that occur when loading an element from the C array. When only a 16K
cache existed, the load of C missed 100% of the time (1,000,000 misses, 0 hits).
Increasing the cache size to 32K caused the hit ratio for the C reference to increase
slightly, (8.74% with 912.576 rnisses. 87,424 hits). Increasing the cache size further
to 64k caused the hit ratio for C to jump to 99% (10,000 misses, 990,000 hits) where
it remained for 128K and 256K caches. The radical difference can be explained by
computing working set sizes.

A 100 x 100 single precision FORTRAN array occupies 40,000 words. In the
naive implementation of matrix multiplication that was used, the entire C array is
referenced before any element in C is accessed a second time. This causes a perfect
LRU mechanism to remove every element before it is ever reused. The only way that
an element can still be present in caches smaller than 40,000 bytes is if the LRU
replacement is less than perfect. When the number of words in the array exceeds the
amount of storage needed for the entire array (and the active column of B), the hit
ratio rises very quickly. The hit ratio, graphed as a function of size, is not a smooth
function, but a series of steps that occur whenever the working set size of a particular
reference is exceeded.

The normalized data traffic graph, illustrated in Figure 2.4, shows the strain that
a particular cache/program pair puts on the main memory. The larger caches have
potentially smaller fractions of the misses than a small cache. When fewer misses
are generated, less data needs to be moved between the main memory and the cache.
The programs that require massively more bandwidth at 16K than at 256K are those
with working set sizes below 256K yet above 16K. These programs never push values
out of large caches, but a small cache will cycle through the values a large number
of times before completing execution of the program. Programs with larger working
set sizes may cycle through the cache entries even with large caches and demonstrate
less disparity between traffic for different memory sizes.

Overall, increasing the cache size is sporadically very effective at reducing cache
misses and memory traffic between the cache and the main memory. When the cache
size exceeds the working set size for a portion of the program, the increase is very
effective; otherwise, the increase has very little effect on the hit ratio. The working
set size of a program will be a difficult value to identify during compilation since it
can depend both on the program and the input data.



Qe N-—a3F~02

0O = e ~

40

1000 EULER1
LINPACKD—_____
500 i N
EFIE304
200 - P~
100 b e BOAST ...........................................................................
50— ... ONEDIM—S—
MATRIX \
20| SHEARS . NN\ N
10 et A N N N
5 b« e e MHD2D ........................................................
N BARO—— N\
SIMPLE
. MCMB -
WANAL1
{ |
16K 32K 64K 128K 256K

Cache Size

Figure 2.4 Effects of Cache Size - Normalized Data Traffic.



41

2.4.2 Set Associativity

The second cache parameter studied was associativity. In F igure 2.5, hit ratios for the
RiCEPS programs are shown under the various set associativities. For the majority
of tested programs, the associativities all performed approximately the same. Each
of the cache associativities had at least two programs for which it produced fewer
misses than the other three tested associativities. The difference in misses was not
significant except for four programs: MATRIX, SIMPLE, BOAST and EULERI.
MATRIX performed much better with a direct-mapped cache than any set associative
cache, while SIMPLE, BOAST and EULERLI had higher hit ratios with an 8-way set
associative cache.

It is particularly surprising that MATRIX incurs over twice as many misses with
an 8-way set associative cache than with a direct-mapped cache. When examined
more closely, it became obvious that MATRIX displayed pathological LRU behavior.
The 10,000 elements in the C array are accessed sequentially through a cache with’
only 8,192 (8K) entries. '

To see the behavior, consider sequential accessing of 5 elements with a 4 element
cache. With a 4-way (fully) associative LRU cache, the first four values go into the
cache (4,3,2,1). The fifth element does not fit and pushes the first value out (5,4,3,2).
During the second time through the array, the first element replaces the oldest element
(1,5,4,3). This continues and the value requested is never found as it was replaced by
the previous access.

A direct-mapped cache only allows each element to enter one location. Normally,
sequential values are mapped to different cache locations. If 1 and 5 share a location,
the previous accesses now find some locations present in the cache. The first four
elements enter the cache. The fifth accessed element replaces the first. To begin the
second cycle, the first element replaces the fifth because they share one location. The
next three accesses are located in the cache (hits), and then five again replaces one.
Each pass through the array after the first pass results in three hits and two misses.
With this type of access pattern, MATRIX on a direct-mapped cache produces slightly
under half of the misses that resulted when a 4-way associative cache was used.

For BARO and EULERI, the overall hit ratios were very high. Since the programs’
working sets fit into the cache, the LRU mechanism prevents values that will be
needed again from accidentally being removed from the cache. For these programs,
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two arrays used blocks which crossed the blocks used by the other, causing a direct
mapped cache to discard elements that would be used again. The effect of these
premature bumps is very noticeable in Figure 2.6. The values in the cache are used
so many times without missing that a small change in the number of misses causes a
dramatic increase in traffic between the cache and main memory.

For most programs, the lack of any significant difference in hit ratios supports
a belief that pathological situations are uncommon in practice. Data caches with
smaller set sizes require less hardware to implement (i.e., fewer comparators), and
may perform as well as memories with higher associativities. This will be particularly
true when the compiler attempts to keep arrays used during the same iteration from

mapping to the same slots (A(1) and B(1) should not use the same slot for any A or
B).

2.4.3 Write Policy

Since write-back and write-through both make the same decision on when to load
a value into the cache, no difference between the hit ratios of these two policies
is possible. For all tested programs, the write-through no-load policy produced a
slightly lower hit ratio (within 1%)(see Figure 2.7). Long cache lines would increase
this difference since consecutive writes to a single line would cause two misses for
the no-load version and only one for the standard version of write-through memory.
The difference between hit ratios of write-through and write-through with no-load is
small, and could easily be outweighed by other factors.

The extra traffic generated between the cache and main memory by pushing every
value through to the main memory on store is shown in F igure 2.8. The write-through
caches transferred between 50% and 100% more bytes to and from the main memory
for 10 of the 12 programs. The other two programs, BOAST and SHEAR, generated
almost 4 times the traffic with a write-through cache as with a write-back cache. The
average increase in traffic for the 12 programs was 97%. Both BOAST and SHEAR
had high hit ratios. Each repeated calculation of an array value caused additional
traffic with a write-through cache that the write-back cache avoided by maintaining
the value in cache until all modifications of the array were completed.
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2.4.4 Prefetching

In the preceding simulations, the cache memory policies attempted to retain data
between accesses. This section investigates mechanisms that attempt to predict which
data will be used next and bring that data into the cache before it is requested. Two
different prefetching methods were tested. The first and most common method was
to have cache blocks that are more than one data item long. Also examined was a
hardware prefetching mechanism that brings the next sequential block into the cache
at every access. Both prefetching strategies work best when memory is accessed
sequentially.

Long Cache Lines

To determine the degree of locality among the references and the effects of long cache
lines on memory performance, we again examined the hit ratios and the data traffic
observed for the various line lengths on the programs in RiCEPS.

Three cache line lengths (4, 64, and 128 bytes) were simulated. In Figure 2.9,
we see that the longer cache lines substantially reduced the misses that occur during
execution. Several programs, including BARO, showed almost perfect prefetching,
(i.e., the number of misses for 4 byte cache lines was 16 times the number of misses
for 64 byte lines). Doubling the line length to 128 bytes produced mixed results.
Several programs (e.g., BARO) had the number of misses reduced by almost 50%.
Others, (e.g., MATRIX), showed little difference in the number of misses between 64
and 128 byte lines. A third group, including EFIE304 and MHD2D, had fewer misses
for 64 than 128 byte lines

The programs fall into two distinct groups upon examining the total amount of
transferred data (Figure 2.10). For programs where the prefetching was spectacu-
larly successful, the increase in traffic was minimal (less than 10% for WANALIL and
BARO). The more common case was for traffic to increase from three to six fold for
64 byte lines and five to eight fold for the 128 byte lines.

Overall, prefetching with long cache lines was successful for the computationally
intensive programs in the benchmark. The cost of long cache lines showed up in the
increased required bandwidth. Many architectures hide this cost by building wide
busses and interleaving main memory so that the wider cache lines are supported
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with a single transfer. This allows a higher bandwidth to be supported for wide cache
lines than the bandwidth that was supported by single word lines.

The increase in bandwidth from long cache lines and write-through policies will
be cumulative. On average. the amount of data moved for a write-through 128 byte
cache line will be over 10 times the amount required for a write-back 4-byte cache
line.

Hardware Prefetching

When hardware prefetching was enabled, the programs separated into two approxi-
mately equal sized groups. Figure 2.11 shows one group of programs where misses
were almost completely eliminated. Two of the programs in this group already had
very few misses, but three programs (SIMPLE, MATRIX, and BARO) showed stun-
ning improvements in hit ratios. The second group showed almost no improvement
using hardware prefetching. BARO appears to have been modified to allow easy vec-
torization. The accesses to memory are arranged to allow all vectors to have strides
of one. With vector strides of one, the prefetching accurately predicted the next
required value.

The overhead in data traffic for hardware prefetching was uniformly very low.
Only three programs (Figure 2.12) showed more than 1% increase in data traffic.
MCMB increased by 3%, SHEAR by 10% and EULER1 by 50%. EULERL’s increase
in traffic occurs because hardware prefetching actually produced slightly more cache
misses than the non-prefetching version. Whenever a prefetch occurs that is not used,
it pushes some value out of the cache. Occasionally hardware prefetching pushes out
a value that EULER1 would have otherwise reused. The small number of extra loads
from this effect are magnified because EULER1 does not otherwise push items out
prematurely.

Hardware prefetching is a big win for programs with column-wise accesses and
produces very little overhead for any program. This method of hardware prefetching
seems to be a profitable feature that any computer designed for computationally
intensive programs should consider.



O - o O

4
/ No Prefetching
4

100 — — -

sall%ZE 9
N B N Hard
N ardware
q A N \
N
— Y N N
80 b N A y — —\
] N Y7
N 1 —
V1 N N d A N F [
N ¥ N U N -
% N A N =t
60 - A N N N 4 A [-\
N W N U N L
1 N A N
N M N 1
d N % N
q N 1 AN
N ¢ N W N ¥
4 A N L N
40 N A N 1 | ‘N
1 N 2 A\ N
N V] \ N A ¥
A X A N v
S ) N M N
N V1 N
V1 N V1 TN
N ] [N M y N %
20 M U N ) N
N 1] N 1 N v
" \ N " N A
N M1 U N 7] N
N Y (N K N 4
0 - 4

Average EULER1  SIMPLE BARO LINPACKD MHD2D WANALIL
BOAST SHEAR  MATRIX ONEDIM EFIE304 MCMB

Figure 2.11 Effects of Hardware Prefetching - Hit Ratios



P

O - o O

(@] ]
(V)

/ No Prefetching

1.6 —
= N
N \ Hardware
1.4 -
\
1.2 -
N _
o1 dlm N W MM mmmImN T
2 N A N d N
N ¥ N U N
q g ) 9 IR 1
0.8 N M N 7 N
V1 N v N 4 N
N U U N W NN W
/\ AN /\ /\ /1\
06 4 | N e’ N d M
N W N U T
N “ N %
N U N 7] N
/1 N A N % N
49 [N ¥V N Y N M W
AK AN N 4\ A\ /\
AL | N 1 U N 7] N
N W N N
0.2 1 A N A N 1
N N d
N ’ N [ A
N U N | N
0.0 N 4 A 4

Average EULER1  SIMPLE BARO LINPACKD MHD2D WANAL1L
BOAST SHEAR  MATRIX ONEDIM  EFIE304 MCMB

Figure 2.12 Effects of Hardware Prefetching - Normalized Data Traffic



2.4.5 Hit Ratios of Individual References

In Section 2.4.1, the performance of MATRIX was examined in some detail. Three
of the references were almost always hits (> 99%), one reference was always a miss
and the last reference was a miss when the cache had smaller than 40K. Except for
a very small range of cache sizes approximately 40K, every reference in MATRIX
could be viewed as either a hit or a miss. If references generally demonstrate this
behavior, then a compiler can estimate memory performance by estimating whether
each reference will be a hit. Besides estimating current performance, this information
can be used to improve the performance. The only references whose hit ratio can be
improved are those that generate misses. On average, only considering the references
that miss can reduce the number of references that must be considered by 70%.

The cache hit ratio reported by PFC-Sim for complete programs is actually the
total of the hits and misses counted for each individual reference in the program. By
looking at the hit ratios of individual references (Figure 2.13), references are divided'
into two groups (hits and misses).

Figure 2.13 graphs the individual hit ratio for every reference in the benchmark
programs for a 32K LRU 4-way set associative cache. It clearly demonstrates two
preferred ratios. Over 94% of the references had individual hit ratios above 95% or
below 5%. No other region had even 1% of the references.
 The approximately one-third of the references that miss over 95% of the time
account for over 96% of the misses in all of the RiCEPS programs, (see Figure 2.14).
Unfortunately, this figure is dominated by the few programs with the most references
and therefore the most misses. When individual programs are examined, 9 of the 12
have their misses dominated by references that almost never hit.

The three programs that do not have their misses dominated by references that
never hit are LINPACKD, EULERI1 and BOAST. LINPACKD'’s most frequently ac-
cessed code occurs in a triangular loop nest (a pair of loops where the induction
variable of the outer loop is used as a bound of the inner loop iteration space) using
more than 32K of data for the first iterations and less data for the later iterations.
If the working set size of this loop nest were computed as if the loop was not trian-
gular, then the references would be marked as never hitting. This would incorrectly
calculate the overall hit ratio, but it would identify the references that cause the
majority of the cache misses. EULER] and BOAST both have a small number of
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references that miss (about 10%) because of their very high hit ratios (above 98%).
EULERI’s misses go down with larger set sizes. A large number of small to medium
size arrays are being accessed in the loop containing the misses. Arrays that map to
the same blocks are the most likely cause of the misses for these references. BOAST
may also be affected by arrays mapping onto the same blocks, but increasing the set
size to 8 (from 4) does not reduce the number of misses on each reference as it did
for EULERI.

The bimodal nature of individual references’ hit ratios and the overwhelming
percentage of the misses that occur for references that miss on almost all references
suggest that, for each program reference, the minimum working set size required to
prevent misses is constant between references during execution. If the compiler can
make an estimate of the working set size required for each variable, and knows the
cache size, then the program references that degrade overall machine performance
can be identified and improved. Chapter 3 attempts to compute the working set sizes
and Chapter 4 investigates program transformations to improve the match between
working set size and the cache size.

2.4.6 Processor Performance

Previous sections have measured the cache performance in absolute numbers. The
effectiveness of hiding the CPU from the main memory and the communications costs
involved in that hiding were given. More important is the overall impact of the cache
on processor performance. The overall performance can be broken into two categories:
delays from cache misses and peak performance as dictated by memory bandwidth
considerations.

For the test programs, reducing the cache misses can significantly improve perfor-
mance. As supercomputers have become faster in recent years the speed differences
between caches and main memories has increased. Cray now has computers (early
versions of the Cray-2 [SW88]) in which accessing the main memory requires 57 cy-
cles. When the delays to memory reach this level, reducing the misses can improve
performance by 20 to 30%. In this environment, improving cache performance can
be a very profitable optimization.
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Miss Delays

PFC-Sim generates profile data counting the number of times that every basic block
is executed. Since a basic block has no control flow, it is possible to estimate the
execution time (ignoring any memory delays) of each block. An estimate of the total
execution time, in cycles, is easily generated during execution. The total execution
time for a program would be this estimate plus any delays caused by memory misses.

The estimates of the execution time of a basic block may be parameterized to
match many machines. PFC-Sim modifies the code directly after the parser, so no
optimizations have occurred to reduce the execution time of basic blocks. In this
dissertation, we have assumed that loads, stores, and integer addition instructions,
all take 1 cycle, floating point addition takes 10 cycles, and a floating point multiply
takes 20 cycles.

Using the estimate for total execution time and the number of misses in each pro-
gram, the amount of time spent waiting on cache misses can be computed for various
distances to main memory. Figure 2.15 graphs the cost of memory performance for
each program with a 32K, LRU, 4-byte line, write-back, no prefetching cache. Even
when a cache miss takes 50 cycles to return, programs with high hit ratios (BOAST,
EULER1) spend less that 1.5% of execution time waiting on the main memory. Any
effort to improve the cache performance of these programs will have a minimal (or
counterproductive) effect.

Most of the programs fall into a second category. They spend between 2 and 5% of
the time waiting on the cache when the main memory takes 5 cycles to return a value.
Thus, effort spent on improving cache performance will have little effect on execution
time when the memory requires very few cycles to access. As the number of cycles to
memory increases, optimization of cache performance could bring noticeable benefits.
When the cache is 20 cycles away, elimination of cache delays would result in 7 to
16% faster programs. If main memory is distant (50 cycles), the improvement can be
as much as 32%. For this group of programs, attempts to remove cache delays can
significantly improve performance when a substantial delay occurs every time main
memory is accessed.

One program tested, WANALI, did not fit into the two groups. WANALL’s cache
performance was substantially poorer than any other program tested. Even when
main memory was only 5 cycles away, WANAL1 would execute 9.1% faster with no
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cache misses. When main memory was 50 cycles away, half of the execution was spent
waiting for memory references.

Data Traffic Requirements

The memory hierarchy can affect execution time of a program, more than the time
spent waiting during misses. The hardware bandwidth places an upper bound on the
amount of memory that can be moved between memory levels. To prevent saturation
of the memory bandwidth, the computer architect must provide enough bandwidth to
supply the processing elements. For supercomputers, this can be viewed as providing
enough bandwidth so that the floating point units are kept busy.

A second version of PFC-Sim counts the number of floating point operations in a
program. Seven of the twelve programs used in this chapter have been studied. (The
remaining five uncovered bugs in PFC, that were not present in the parts used for
cache simulation.) The amount of data cache traffic generated by these programs for
various caches per floating point operation should estimate the maximum sustainable
FLOPS for each program on a given architecture.

Table 2.1 shows that an average program running on an architecture with a 32K
cache with 4-byte cache lines moved 4.54 bytes from the memory to the cache for every
floating point instruction executed. This agrees with a design heuristic that one word
of main memory bandwidth per second is required for each floating point operation to
be executed per second. On average, an architecture with wide cache lines (64-byte)
required over twice as much data traffic (9.68 bytes) as one with shorter cache lines.
A write-through cache raised the average required traffic to 8.88 bytes. Thus, unless
low-traffic caches are used, the proper estimate for traffic per floating point operation
is 2-4 words per floating point operation.

Programs for which long cache lines are not an effective prefetch mechanism re-
quire a staggering amount of bandwidth for each floating point operation. SHEAR
on a cache with 64-byte lines required almost 28 words per floating point operation.
Even programs with data cache hit ratios above 90% (SHEAR - 92.6) can generate
data cache traffic per FLOP that will saturate many memory systems. In contrast,
WANALL had a hit ratio of 41%, but required fewer than 10 words per floating point
operation for every tested cache.
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RiCEPS Floating Bytes per Bytes per Bytes per
Program Point FLOP FLOP FLOP
Operations | (base cache) | (64-byte line) | (write-through)

SIMPLE 509,677,807 3.00 777 5.04
EFIE304 3,825,955 4.40 11.57 6.54
WANAL1 | 1,495,211,989 8.98 9.24 11.71
BARO 69,851,591 2.16 2.21 3.12
LINPACKD | 18,558,094 5.80 6.73 10.00
SHEAR 152,106,722 5.56 27.98 21.88
MATRIX 2,000,000 1.88 2.34 3.90

[Aversge | 321,604,508
[Average [ 321604504]  454]  oe8]  sss]

Table 2.1 Data Traffic per Floating Point Operation

These numbers are evidence that hit ratios are poor absolute measures of memory
performance. However, hit ratios have been used throughout this work because, at
an individual reference level, the hit ratio can still identify potential locations for
improvement. Individual references can be divided into two categories according to
hit ratio; the vast percentage of the misses occur for those references with poor hit
ratios.

Although a high cache hit ratio does not imply that memory bandwidth saturation
is avoided, a particular reference with a high hit ratio is not likely to cause saturation.
The remainder of this dissertation attempts to find and improve references that could
cause memory access problems.

2.5 Summary

This chapter has presented an effective mechanism to study the performance of whole
programs. PFC-Sim provides information about how various data caches perform. A
number of interesting observations have been made about the performance of the
computationally intensive programs in RiCEPS. As motivation for the remainder of
this dissertation, we to reemphasize these points.

Eliminating cache misses for supercomputers with distant memories (over 20 cy-
cles away) would be a very effective optimization. The execution time of the tested
programs could be reduced by up to 50%, if the cache misses were eliminated.

.
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Two mechanisms for prefetching data have been suggested. Long cache lines
are very effective at reducing the number of cache misses in a program. However,
the longer lines generate substantially more data traffic between the cache and the
main memory. Long cache lines may not be suitable for multiprocessors because
cache line sharing between processors increases cache coherence problems. Other
mechanisms are needed. Hardware prefetching dramatically improves some programs’
memory performance with very little additional data traffic. Unfortunately, hardware
prefetching does not improve programs that do not sequentially access arrays. Other
prefetching methods are needed.

One attractive solution to the problem of improving memory performance is to
transform the program during compilation. This approach is attractive for several
reasons. Since the dynamic behavior of source program references tends to be stable
(i.e., either a reference is a hit or a miss), the compiler has a reasonable chance of
identifying those references responsible for degraded performance. After the refer--
ences and their dependences are found, a compiler can rearrange the program. By
changing the length of dependences, it may be possible to increase the percentage
of references that are cache hits during execution. Rearranging the program to re-
duce misses has an advantage over the prefetching methods of reducing cache misses.
When a prefetching mechanism hides a miss delay, the required data traffic stays the
same or increases. A cache miss removed by code transformation will require less
traffic since the number of times a value is loaded into the cache is decreased.



Chapter 3
Static Model of Memory Performance

3.1 Introduction

The data cache performance study showed that, for a significant number of com-
putationally intensive programs, performance benefits can be obtained by reducing
the number of cache misses or overlapping memory latencies with computation. The
results further indicate that the cache misses are localized in a relatively small num-
ber of references in the program source. By developing tools for the compiler to
locate and eliminate the cache misses, faster programs could be produced. In this
chapter, we derive a method for the compiler to locate references that are likely to
be misses. Later chapters focus on methods to reduce the number of misses and to
overlap execution with remaining memory delays.

It is impossible to determine exactly which references are going to produce misses
during execution. Two different sets of input data to the same program can easily
produce misses at different references. Even if the data set is known, Bernstein
proved that determining whether arrays accessed by arbitrary functions access the
same memory location is undecidable [Ber66]. If it is impossible to determine if the
second reference uses the same memory location as the first, it is certainly impossible
to determine if the second location will be found in the cache.

Although one cannot precisely identify every reference that will produce a miss
during execution, a close approximation will suffice. If a reference is incorrectly iden-
tified as a miss when it is actually a hit, any attempt to move it closer to previous
references will not change the result of the program. Only compiler effort is wasted.
If a reference is identified as a hit when it is a miss, the compiler will not attempt
to improve the reference, leaving the original source potentially sub-optimal but still
correct. The estimate of whether a reference is a hit or a miss should also be rea-
sonably fast to generate and easy to maintain during transformations that occur in

optimizing compilers. If the estimate is slow to generate or must be regenerated for
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the entire program every time a transformation is considered, then the cost of locating
the references that miss will exceed the acceptable cost in compile time.

By easing the conservative nature of data dependences, a simple concept, the
Overflow Iteration, can be defined to help determine when a reference will be a
miss during execution.

3.2 Overflow Iteration

A dependence edge corresponds to an execution path between two references that
access the same memory location. Every time through that execution path, the same
statements will be executed. It seems reasonable to assume that each execution causes
approximately the same number of different memory blocks to be accessed between
the endpoints of a dependence. Since the number of different memory blocks accessed
between two references determines whether an access is found in cache, an edge will
normally correspond to either a series of hits or a series of misses during execution.
This is exactly the behavior that was noted in Section 2.4.5. References were found
to be either hits or misses, depending on the size of the cache and the working set
size.

To define whether an edge represents a hit or a miss, the number of memory
blocks accessed between the endpoints is determined. Dependences are defined in
terms of loops (the carrying loop and the distance), so a measure to determine how
much memory was touched between endpoints should be defined on the same basis.
The Overflow Iteration, O(i), for a particular loop is the maximum number of
iterations of that loop that can have all of the data accessed by the loop maintained
in the memory at the same time. Any edge that requires more iterations of the
loop than the overflow iteration will access more different blocks than available and
result in a series of misses during execution. Once the overflow iteration is known,
we can decide whether a given dependence edge will be a hit and use this knowledge
to estimate the hit ratio for every reference. |

To compute the overflow iteration, we determine which iteration of the loop will
access the M+1™%=*t memory block when there are only M available memory blocks.
By using the dependence graph with only must (uniformly generated) edges, estimat-
ing this iteration is possible.
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Computing the Overflow Iteration

The first iteration of a loop requires some fixed number of memory blocks to be
accessed. Each succeeding iteration uses some of those blocks and some additional
memory blocks. We first define F(i) to be the number of rnemdry blocks used by
the first iteration of the i loop and A() to be the amount of new memory used by a
succeeding iteration. The overflow iteration can be defined as

. { (M - F(i))/AG) +1 if M > F(3)
o(i) =
0 otherwise

where A(7) is constant and M is the number of available memory blocks. The overflow
iteration is calculated by determining whether the first iteration fits into the available
memory. When it fits, the remaining memory is divided by the amount required for
an additional iteration. By adding one iteration to the result of the division, the
maximum number of iterations which fit into the available memory is found.

One common coding practice that does not produce a constant A(%) is accessing
a triangular portion of an array. Rather than compute A(i) functions that vary
with the iteration number, the maximum amount of new memory accessed by any
iteration is used as A(z). This underestimates the overflow iteration. The hit or miss
prediction for edges carried by outer loops is based on the largest triangular loop.
For programs such as LINPACKD, the largest triangular sections do not fit in a 32K
cache, so edges carried by outer loops will be marked as misses. For LINPACKD
marking the references as misses even though they have approximately 50% hit ratios
allows almost every miss in the program to be included in the references that are
marked misses.

When computing F(i) and A(:), the dependence graph is trimmed of all non-
uniformly generated dependences. With this smaller graph, dependences are used to
define when a value will be used for the first time during a loop. The memory used in
the first iteration of a loop is the sum of the memory used during the first execution

of every reference in the loop, or

#refs
F(i)= ; fi(A4)

where f;(A) is the amount of memory used by reference A during the first execution
of the 7** loop.
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Similarly, the amount of additional memory used by a later iteration can be defined
in terms of §;(A), the additional memory used by reference A during a subsequent
iteration of the i** loop.

#refs
A(r) = AZ_: 6i(A)

Using the dependence graph, f;(A) can be estimated. When a reference is a sink of
a loop independent dependence whose source is contained in loop 7, then that reference
will not require any new memory locations to be accessed during its execution. An
edge satisfies these conditions if it has D = 0 (loop independent) and LC > i (carried
within this loop). If these conditions are not met, then this reference will be the first
to access some memory location or locations in this loop. If the array access is not
nested within other loops, it will execute only once, accessing at most one memory
location. When no dependences exist, every execution of the reference will access a.
new location. The number of times a reference is executed is the number of iterations
of loops nested within the loop presently being examined. If there exists a loop carried
dependence on one of the inner loops, then that loop will not access new data after

the first D(e) iterations through that loop. Combining these conditions yields

0 if 3edge e s.t. LC(e) =1, D(e) =0
fil4) = WﬁPﬂﬂ"LBz otherwise
s=i+l
where
D(e) if Jedge es.t. LC(e) =z,D(e) >0

LB,,:{

Loop bound of loop z otherwise

Note that the check for inner loop independent dependences is performed inside the
LB, calculation.

In many cases, LB will not be computable during compilation because some part
of the loop bound is symbolic. This mechanism can generate symbolic values for f
and 6. As seen in later chapters, some tuning of blocking transformations can be
delayed until the symbolic values are known during execution. In other situations,
maximum values for the symbolic terms can be determined from the declared array
bounds or from information supplied by the programmer.
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Computing § is straightforward after f is known. If a reference in the loop has a
loop carried dependence, then it will reuse a value from a previous iteration, otherwise

it will need to bring in new values.

0 if 3 edge e s.t. LC(e) =1,D(e) >0

6i(4) = { :
fi(A) otherwise

These equations provide a means to generate overflow iterations for every loop
from a uniformly generated dependence graph, as shown in Figure 3.1. Computing
the overflow iteration for every loop in a program will take O(mazimum loop nesting
depth * number of dependences in the loop) time. The innermost loop of the algorithm
is building a list of every dependence that has a pa.rticula.r statement as its sink that
is carried by the present level. If all of the dependences that have the same node
for a sink are linked together (as is done in PFC), then building the list requires
every dependence in the graph to be examined at most once for each loop in the
deepest loop nest in the program. In general, the number of loops in a loop nest is
assumed to be a small constant (5-10), and the number of dependences is a constant
times the number of references in a program. The time complexity will normally
be O(references), although the worst case is O(references®), where references is the
number of references in the program.

Using the overflow iteration to estimate the hit ratio of an individual reference only
requires a method for estimating the frequency of each of the incoming dependence
edges. Several simple methods can be used for these estimates. The simplest method
is to determine if the dependence carried by the innermost loop is a hit or miss. If
the reference is a miss, then the number of program misses can be incremented by
che product of the iteration counts of the surrounding loops. This method ignores
all edges except those on the innermost loop, since the outer loops are executed
substantially less frequently. This again corresponds to the observed behavior of
individual references.

A second, more accurate method is shown in Figure 3.2. Rather than assuming
that the reference hit pattern is completely specified by the innermost dependence
to the reference, the misses caused by every level are calculated. The misses caused
by any level can be estimated using the dependences carried by the level and the
iteration count of the appropriate loop level. If no dependences exist or if they are

misses, then every iteration of the loop will cause the same number of misses as the
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forall references A
for level = nesting of A to 1 by -1

/* initialize the amount used by the first iteration to 1 if */
/* innermost loop; otherwise, set to the amount used by all */
/* iterations of the next inner loop */
if nesting (4) = level

then fleuel(A-) =1

else flevel(A) = LB(IC‘UCI + 1) * flevel+l(A)

/* find all edges into this reference that are carried by this level */
get list | of edges such that LC(e) = level, SINK(e) =4
LB(level) = loopbound of level

/* if any edges exist, then iterations after the first do not */

/* require more space in the memory * /

if | is empty
then 6level(A) = fleuel(A)
else 51,,,31(/1) =0

/* check to see if any of the edges are loop independent — if so, */

/* the memory used by this reference was previously used by the */

/* source and this statement uses no additional memory */

for every edge in |
if D(e) =0

then fieyei(A) =0

/* LB computes the number of iterations that require memory */
/* access for this loop level — 0 if sink of loop independent */
/* edge, minimum distance if loop carried edges exist and the */
/* number of iterations if no dependence edges */
LB(level) = min(LB(level), D(e))

end

end

end

/* with f and 6, F, A and O are easily computed */
forall loops, 1, in the program

F(l) =% fi(A)

Al =2 &(A)

fMS > F(l)
then O(1) = (MS - F(I))/A(])) +1
else O(l) =0

end

Figure 3.1 Computing the Overflow Iteration, O
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procedure compute_misses(DoLoop)
for every reference A in the program

/*compute the misses arising from this statement */

miss = |

for lev = nest(A) to 1 by -1
get list, I, of edges such that LC(e) = lev and SINK(e) = A
if [ not empty

then find d such that d = min(D(e) on )

if d < O(lev)
/* edges are hits and misses only occur on iterations */
/* that occur before the dependences occur */
then miss = miss *d
/* edges are misses and every iteration must counted */
else miss = miss * iteration count of loop lev

else /* no dependence */

/* every iteration uses new memory location */

miss = miss * iteration count of loop lev
end

end
end compute_misses

Figure 3.2 Computing the Misses in a Code Segment
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first iteration. If a loop independent dependence exists (and is a hit). then no access
to this variable will be a miss. If only loop carried dependences exist (and are hits).
then only the loop iterations that occur before reuse of memory is required cause
misses. Memory reuse will start as soon as the number of iterations executed equals
the minimum distance of the dependences. This method distinguishes between the
references with hit ratios of 100% and those in the 95 to 100% category.

This method considers all dependences carried by a single loop level to be hits
or misses. Further improvement may be obtained by examining the dependences
carried by a single loop level individually and adding their contribution to the total
misses. This method requires more computation in the inner loop of the algorithm.
and experience has shown that either all of the dependences carried by a level are
misses or they are all hits. Further refinement of the method to compute misses shown
in Figure 3.2 will produce little, if any, profit.

Consider what occurs in the computation of -\ and misses when the iteration
count of the loops is not known because the loop control variables contain symbolics.
This can occur when the size of an array is a run-time constant. Both algorithms
would need some mechanism to estimate the number of iterations in the loops with
symbolic bounds. This can be done by either looking at the declared bounds of the
array or by choosing an arbitrary value.

However, by modifying the algorithms to do symbolic arithmetic, the actual com-
putation of the overflow iteration can be delayed until execution, when the symbolics
are known. When the overflow iteration is not exactly computed, it is still possible
to perform many of the transformations to improve performance. For some trans-
formations (the blocking transformations. in particular), computation of the optimal
parameters for the transformation can be delayed. For other transformations. it is
possible to determine that the transformation is profitable for a range of symbolic
values. For instance, if fusion is profitable when the loop iterates less than 20,000
times and array bounds are on the order of 100, then performing the fusion will almost

certainly improve memory performance.
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Cache performance of matrix multiplication, MATRIX (illustrated below), had some

interesting data performance results which can be predicted using the overflow itera-

A(I,J) = A(I,J) + B(I,K)*C(K,J)

tion.
(1) DO I =1, 100
(2) DO J = 1, 100
3) ACILD) =0
(4) DO K = 1, 100
(5)
(6) ENDDQ
(7 ENDDQ
(8) ENDDO

The first step is to compute F and A for each loop, numbering the references
(definition of A on line 3 - #1; definition of A on line 5 - #2; use of A on line 5 - #3:
definition of B on line 3 - #4; and definition of C on line 5 - #5).

The dependences for matrix multiply are

Dependence
Number
1

N O bW

8

Variable From

ACI,D)
ACI,D)
ACI,)
ACI,D)
A(I,J)
A(I,D)
B(I,K)
c(K,J)

1

DWW o

5

WL W

5

Type
True
Qutput
Anti
True
Output
Input
Input
Input

LC

J
J
K
K
K
K
J

I

HHHHHOOOb

The amount of storage used by each reference on the 1* iteration of the innermost

loop is 1.

fr(1) =0, since the reference is not in the K loop.

fk(2) =0, sink of dependence 3, LC(3) =K and D(3) = 0.
fk(3) =1, sink of no dependence edge, e, with LC(¢) = K and D(e) = 0.

fr(4) =1, same as fx(3).



fk(5) =1, same as fx(3).
The total storage for the first iteration loop is the sum of the individual references.
F(K) =%, fa(z) =

The amount of additional storage used by each reference on subsequent iterations s

6k(1) = 0, not in loop k

8k(2) = 0, equal to fx(2).

6x(3) = 0, sink of dependences 4 and 6 LC =K and D=1.

6k(4) = 1, equal to fx(4), since it is not a sink of a LC = K dependence.
6k(3) = 1. equal to fx(3), since it is not a sink of a LC = K dependence.

Again, summation produces the total for the entire loop A(K) =33_, éx(z) = 2.

Using the same methods on the middle or J loop, we get

fi(l)=1.nolevel LC =Jand D =0 dependence edge.

f4(2) = 0, sink of dependence 2, LC(2) =J and D (2) =0.

f4(3) =0, sink of dependence 1, LC(1) =J and D(1) =o0.

fi(4) =100, LBy since it is the sink of no LC = K, D > 0 dependence.
f1(3) = 100. LBy since it is the sink of no LC = K, D > 0 dependence.

Summing yields F(J) = ¥3_, fs(z) = 201. |

To verify these numbers: F(K) + 99 + A(K) = 201 = F(J). The total used in the
inner loop agrees with the total used by the first iteration of the middle loop; exactly
as one would expect for matrix multiply.

6k(1) = 1, equal to fx(1).

6k(2) = 0, equal to fx(2).

6k(3) = 0, equal to fx(3).

6x(4) = 0, sink of dependence 7, LC(7) = J and D(7) =
6k(3) = 100, equal to fg(5).

So A(J)=%3_,6,(z) = 101.
Continuing for the next outer loop, generates F(I) = 10200 and A(I) = 200.
Finally, F(program) = 30000.



Loop F(z) | A(z) Overflow Overflow
[teration Iteration

(32K memory) | (64K memory)

K 3 2 > 100 > 100

J 201 | 101 80 > 100

[ 10200 | 200 0 31
program | 30000 0 0 0

Table 3.1 Matrix Multiply (100 x 100) — F, A, and O

Dependence | LC | D| Overflow Hit or Miss Overflow | Hit or Miss
[teration [teration

(32K cache) | (32K cache) | (64K cache) | (64K cache)
1 J| 0 80 Hit > 100 Hit
2 J| 0 80 Hit > 100 Hit
3 K| 0 > 100 Hit > 100 Hit
4 K| 1 > 100 Hit > 100 Hit
5 K| 1 > 100 Hit > 100 Hit
6 K| 1 > 100 Hit > 100 Hit
7 Ji 1 80 Hit > 100 Hit
8 I 1 0 Miss 31 Hit

Table 3.2 Matrix Multiply — Computed Cache
Performance of Dependences
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Using these values for F and A, O(i) is computed for various memory sizes as
in Table 3.1. Looking at the dependence graph, we determine whether an edge will
cross more data blocks than are available in the various size caches (see Table 3.2).

From this table, it is obvious that a 64K cache will produce a very high hit ratio.
Every edge is a hit. A 32K cache nas one dependence that will result in dynamic
misses. Since this is the only dependence that references the C array (#3), reference
#3 has a predicted hit ratio of 0% for a 32K cache while the rest of the references
are predicted to be hits. Table 3.3 shows the actual hit ratios for this program as
generated by PFC-Sim. The only difference between the two cache sizes is the misses
on reference #4, the B array. If dependence edges are added from the entry point
to all unexposed upward uses of variables and are considered misses, then miss_count
predicts the only reference to the B array (#4) as having a hit ratio of 99%. This
exactly matches the measured value.

The overflow iteration does an excellent job of predicting the performance of a
small regular numerical program such as matrix multiplication. Its performance
on large numerical programs such as those in RiCEPS must still be determined.
Complete testing of the overflow iteration can not be done without an implementa-
tion. Performing the equations by hand on several of the most frequently executed
portions of the RICEPS programs demonstrated two traits of the method. With the
proper information, the references that were predicted to be misses were the same
references found to be misses by PFC-Sim. Loss of information at call sites with stan-
dard interprocedural information would produce very poor estimates. For overflow

iterations to be effectively generated, precise interprocedural information should be

Reference | Computed Actual | Actual | Actual
Hit Ratio | Hit Ratio Hits | Misses

1 0 0 0 10000

2 100 100 | 1000000 0

3 100 100 | 1000000 0

4 100 99 | 990000 10000

5 0 0 0 | 1000000

Table 3.3 Matrix Multiply — Computed and
Actual Hit Ratios (32K cache)
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available. At the present time, restricted regular sections [CK88],[Cal87] with bounds
information is being implemented. When completed this should provide information
about the precision required to compute an accurate overflow iteration for complex
programs.

3.3 Conclusions

The overflow iteration provides a method to determine whether a dependence will be
a hit or a miss during the execution of a program. Each reference can have its hit
ratio predicted by looking at the dependences of the reference. The effectiveness of the
overflow iteration depends on three factors: the accuracy of the overflow iteration in
locating misses, the time it takes to compute during compilation and the complexity
of its implementation.

On the simple numerical example MATRIX, the overflow iteration is an accurate
tool. When the inner loops of programs in RiCEPS were studied by hand, the over-
flow iteration was accurate whenever no information was lost at call site boundaries.
Without an implementation, the accuracy of the overflow iteration is an estimate,
but examples computed by hand are encouraging. On triangular loops, such as those
that exist in LINPACKD, the references that cause most of the misses (although they
actually have about a 50% hit ratio) are marked as misses, allowing techniques in the
later chapters of this dissertation to be applied to improve performance.

Computing the overflow iteration should not require a significant amount of com-
pile time. Only a small number of arithmetic operations need to occur for each
uniformly generated dependence in the program. The only major cost will be storage
to maintain f and 6 for every reference. This memory cost could easily be 80 bytes
per array reference in the program. In programming environments, this will be a
noticeable cost but not the largest memory consumer. In a standard compiler, f and
6 should only need to be available for the procedure being compiled. This would limit
the total memory required to keep the values to less that 100 Kbytes.

The last requirement for practical use of the overflow iteration is a reasonable
implementation. The implementation within PFC, although not complete, seems
straightforward. The algorithms are not complicated, if the information that they
use is available. PFC can already compute input dependences. It also marks de-
pendences found by the separability test as consistent. Using these as the uniformly
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generated dependences, all of the information needed to compute O(:) is available.
The accuracy of the overflow iteration depends heavily on the accuracy of interproce-
dural analysis. At the present time, regular section interprocedural analysis is being
implemented for PFC. The array sections provided by regular sections should give
enough interprocedural accuracy for good overflow iteration estimates.



Chapter 4

Program Transformation

4.1 Introduction

This chapter discusses the use of reordering transformations to maximize the number
of dependences with distances less than the overflow iteration of the loop that carries
them. If the program can be transformed into a version that makes better use of
the cache, then the number of requests to memory can be reduced, improving the
execution time. Over the years, researchers have developed optimizing compilers
that apply a number of transformations reordering computation without changing
the results. A transformation that reduces the amount of memory used between the
endpoints of a dependence edge may change a reference from a miss to a hit. Many
of the transformations examined in this chapter are already used during vectorization
or parallelization of programs in PFC. The remainder could be easily added. These
transformations could be added to other parallelizing compilers, when required.

The transformations examined in this work are loop fusion, loop distribution, loop
interchange, strip mine, unroll, two combinations of transformations peel and jam,
loop skew and interchange and three blocking transformations (strip mine and in-
terchange, unroll and jam, and wavefront blocking). All of these transformations are
loop based transformations, and can potentially change the order of execution of many
statements. Transformations are safe when no dependence is reversed by the trans-
formation [All183], [War84]. A dependence is said to be reversed by transformation
when the source and sink of the dependence edge are interchanged. When determin-
ing the safety of a transformation, true, anti and output dependence edges, including
those that are not uniformly generated must be considered. For each transformation,
we specify a mechanism to determine the transformation’s effect on memory perfor-
mance. Since these transformations can change the dependence graph, the quantities
f and 6 used in determining the overflow iteration may need to be recomputed. For

each transformation, we specify a set of conditions that describe when a reference can
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be a miss before transformation and a hit after transformation. Similar conditions
are stated for references that are hits before transformation and become misses after
transformation. With a single pass through the statements involved in the transfor-
mation, the potentvia.l benefit of the transformation can be determined.

4.2 Loop Fusion

A simple template for loop fusion is given in Figure 4.1. During fusion, the loop
induction variables, I and J for these two loops, are replaced with New, the loop
induction variable for the combined loop. The two loop bodies are merged, retaining
their original lexical order. However, fusion intermixes the iterations of the loop
bodies. Before usion, all executions of the first loop body occur before any executions
of the second loop body. After fusion, each iteration of the first loop is followed by an
iteration of the second loop. Loop fusion is safe when there are no loop independent
edges from the first loop body to the second loop body that become loop carried
dependences after fusion [Wol82].

Loop fusion is an important transformation in a parallel code generator. To find
parallel sections of a program, PFC divides a source program into as many regions as
possible, because it is usually easier to prove that a smaller region can run correctly in
parallel. Parallel startup costs are high for many processors. Thus, after determining
which regions can run in parallel, PFC tries to fuse the regions back together, reducing
the number of parallel regions and the parallel startup costs during execution.

Eventually, information about memory requirements of the various regions could
be used in deciding which regions are best to merge. When several regions could be

merged, a good heuristic is to merge the two regions that require the least amount

DOI =1, N
loop body #1 DO New =1, N
ENDDO loop body #1
DOJ =1, N loop body #2
loop body #2 ENDDO
ENDDQO

Figure 4.1 Loop Fusion
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of memory after the merge. Memory performance information can also be used to
determine the maximum parallel width during execution by estimating the amount of
memory traffic produced by each processor. Any processor added after the memory
is saturated will not decrease execution time. Thus, accurate estimates of memory
performance during loop fusion can become a useful tool in obtaining maximum
speedup during parallel execution.

Computing the Effect on Memory Performance

The dependence graph used to determine the profitability of a transformation is the
same graph used to compute the overflow iterations. It includes all uniformly gener-
ated dependences, including input dependences. Since input edges are included, it is
possible to have a dependence that reverses direction when calculating the profitabil-
ity of fusion. Changing the order of two loads will not affect the program result, so
reversing input dependences is allowed during fusion. '
Fusion does not change which statements are executed by an iteration of an outer
loop, only the order in which they are executed. Thus, the statements use the same
memory locations. This implies that the memory used by any surrounding loop will
not change during fusion. The values of F, A, f, § and O for the surrounding loops
remain unchanged after fusion. Likewise, any loop nested within the loops being
fused executes exactly as before, with no change to the overflow values, F, A, f, §,
and O. Only the overflow values of the new combined loops must be recomputed.
An initial estimate might be

F(new) = F(I)+ F(J)

A(new) = A(I) + A(J)
O(new) = (M — F(new))/A(new) + 1

Although this method is fast, it does not take into account changes in the dependence
graph caused by fusion.

By identifying dependence edges that are carried by the new fused loop, accurate
values of F(new) and A(new) can be determined. All edges carried individually by
the I and J loops will be carried by the combined loop. Edges from a statement in
the first original loop to a statement in the second original loop may be carried by
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the new loop. These edges previously were either loop carried by an outer loop or
were loop independent involving a statement in the first loop and a statement in the
second loop.

A loop carried dependence before fusion indicates that a value used in one outer
loop iteration will be used during a later outer loop iteration. The order of execution
of the outer loop does not change during fusion, so the dependences carried by the
outer loop are not changed. The statements that cause a loop independent edge from
the first loop body to the second loop body will now both be contained in the fused
loop. The order of execution of these statements may be different in the new loop.
The new edge must be recomputed to determine if it is still loop independent, carried
from the original source to the original sink, or reversed.

To compute the amount of memory required by the fused loop, the overflow values
of the previous loops are first updated to account for the new dependences generated
by the loop independent edges. .

. A statement which is not a sink for one of the new dependences in the fused loop
uses exactly the same amount of memory on each iteration as it did before fusion.
The value of f(A) in the loop that did not contain the statement before fusion is 0,
SO fnew(A) is equal to the maximum of the two original values. When a statement is
the sink of a new loop independent dependence (D(e) = 0 and A is the sink), this
reference reuses data from an earlier statement, on the first iteration.

If no loop carried dependence edges terminate at reference A, Onew(A) is equal to
fnew(A). If no new edges exist with A as their sink, &n.,(A) is equal to 6(A) of the
loop that originally contained the statement (i.e., max(&;(A), §;(A))). If an old loop
carried dependence existed before fusion, the old § will be zero; otherwise, it will be
equal to f(A). If a new loop independent edge is created, then Srnew(A) and bney
are 0. If a new loop carried edge is created, no new memory will be used on later
iterations and new(A) becomes 0. Combining the two conditions, nev,(A) is 0 when
any new edge is created.

max(fi(A),fj(A)) if 3 no new edge e s.t. D(e) =0, SINK(e) = A
0 otherwise

fnew(A) = {

Snew(A) = { max(6;(A),8;(A)) if 3 no new edge e s.t. SINK(e) = A
new - 0

otherwise
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Given the new f and § values, F(new), A(new), and O(7) are calculated a in the
normal way

To find the overall effect of fusion on memory performance, references can be
divided into three groups: references for which performance is unchanged; references
for which performance is improved and references for which performance is degraded.
A memory reference has its performance changed when the dependence edges pointing
into it cross the overflow iteration.

Fusion can not degrade memory performance if O(outer) > 0, or O(I) = 0 and
O(J) = 0 before fusion. If O(outer) > 0, then every edge carried by the inner loop
is a hit before and after fusion. Also, every original loop independent edge carried
by the outer loop must have been a hit. The amount of memory used by the entire
loop nest fits into memory, so fusion does not affect whether references are found in
memory. None of the affected edges could cross the overflow iteration. If both o(I)
and O(J) are equal to zero, then no edge carried by the inner loop is a hit before
fusion and no edge carried by the new loop after fusion will be a hit. Again, none of
the affected dependence edges can cross the overflow iteration.

The number of hits that become misses due to fusion must be determined. When
an edge that corresponded to a hit becomes a miss, the two references must have
moved further apart due to fusion. The only references that move apart are those
in statements in the same loop body. After fusion, there is an iteration of the other
loop body, where the loop bodies were previously consecutive. This causes misses to
occur whenever the overflow iteration of one of the original loops is.greater than the
distance of the edge (O(IorJ) > D(e)) and the overflow iteration of the fused loop is
smaller than the distance of the edge (O(new) < D(e)). Each iteration of the affected
loop uses fr.r;(A) memory, so the number of misses is frors(A) times the number of
iterations of the fused loop, NV (from Figure 4.1).

When two edges have moved closer together upon fusion, an edge that corre-
sponded to a miss can change to a hit. The only references that move closer are
those that are now sinks of the new dependences that replaced the loop independent
dependences between the separate loop bodies. These references can be identified by
checking which references changed 6,.,(A) after initialization. If the original loop
independent edge was a miss, then O(outer) = 0 and the new edge is a hit. If
O(new) > D(e), then the references become hits. The number of new hits is the
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amount of memory used on each iteration of the new loop, 67,rs, times the number
of iterations of the new loop, V.

An algorithm to compute the profitability of loop fusion is given in Figure 4.2.
The algorithm is divided into five parts: initializing f and §, computing changes
due to changes in loop independent edges, computing F, A and O for the fused loop,
finding the references that change from misses to hits, and finding the references that
change from hits to misses. Most of this work takes constant time for each reference
in the program. Computing the changes in the dependence graph involves checking
every loop independent edge between the two original loop bodies. Computing a
dependence is a possibly large, but constant time operation. There can be as many
as n * m edges to be recomputed, where n is the number of references in the first
original loop and m is the number of references in the second original loop. Overall,
the number of edges that must be checked is | D ||, the size of the set of affected
dependences, D. Thus, the algorithm takes O(|| D ||) time. In practice, the number.
of dependences does not actually grow quadratically with the size of the program,
but will be a (possibly large) constant. Many comopilers, including PFC, precompute
fusion information during dependence analysis. If the fusion preventing edges are
precomputed, then only the second pass through the dependences is required. The
second pass that determines if the performance of a reference changes only examines
one edge per reference, resulting in a time bound of O(#references).

Example

The example below demonstrates how fusion can improve memory performance when
the two loops being fused use the same data, but one execution of either loop flushes
the memory.

DO I =1, 10000

A = A + B(I)*C(I) DO New = 1, 10000
ENDDQO A = A + B(New)*C(New)
DO J = 1, 10000 AA = AA + B(New)+C(New)
AA = AA + B(J)+C(D) ENDDO
ENDDQ

Both loops in the original program use a total of 30,000 words or 120,000 bytes (single
precision) of cache. A cache of less than 128K, such as the Alliant F X/8 and the IBM
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/* Memory used in the new loop is equal to memory used in the old loop */
/* plus memory involved in dependences in the fused loop */
forall statements A in loop I
fnew(A) = fi(A)
end
forall statements A in loop J
fnew(A) = fJ(A)

end

/* Correcting for the new dependences */

forall loop independent dependences between loops I and J
compute new dependence edge e between endpoints
if D(e) = 0 then fnew(SINK(e)) =0
Onew(SINK(e)) = 0

end

F(new) =¥ frew
A(new) =5 6new
O(new) = (M — F(new))/A(new) + 1

/* determine if reference becomes a hit */
profit = 0
forall references A in loop new
if (6new(A) # Srors(A) /* being the sink of new edge changes § */
& O(outer) =0  /* edge was a miss */
& O(new) > D(e) /* O greater than the new edge’s distance */
then profit = profit + N * 610 7(A) '
end

/* determine if reference becomes a miss */
forall references A in loop new
if ( flors #0 and 61ory(A) =0 /* there exists a loop carried dependence */
‘ & O(IorJ) > D(e) /* edge was a hit */
& O(new) < D(e) /* now a miss */

/* profit is the net change in memory hits from fusion */

then profit = profit - N * f1o1)(A)
end

Figure 4.2 Profitability of Loop Fusion
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3090, would not have eithe~ B or C present when accessed during execution of the
second loop. After the loops are fused, the values of B and C are used in both
loop bodies before being bumped from cache. The original program produced 40,000
misses and no hits. After fusion, there were 20,000 hits and only 20,000 misses. Thus,
loop fusion reduced the number of misses in this example by 50%.

4.3 Loop Distribution

Loop distribution (Figure 4.3) is the inverse of loop fusion. Any pair of loops fused
together can be spiit into the original pair of loops by distribution. Loop distribution
is used early in PFC to break a loop into smaller sections that are hopefully easier
to vectorize and parallelize. The code generator later attempts to fuse these sections
back together.

To determine the memory performance of a pair of loops after distribution, f and
6 are determined for the new loops. Loop distribution does not affect f, §, F, A, or
O of any loop other than the one being distributed. Building the new values of f and
6 involves rebuilding the values for the references that had edges moved to the ou*=r
loop. For every dependence between the two new loop bodies, the sink values of f
and § must be recomputed from scratch.

When loop fusion causes edges to be carried by the new larger loop, loop distri-
bution pushes those dependences out to the outer loop. All dependences carried by
the original loop with both endpoints in one of the new loops will be carried by the
new loop. Any edge between the new loops and carried by the original loop can be
replaced by a loop independent edge between the endpoints.

DOI=1, N
DO 0ld = 1, N loop body #1
loop body #1 ENDDO
loop body #2 DOJ =1, N
ENDDO loop body #2
ENDDO

Figure 4.3 Loop Distribution
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The references that must have their overflow values recomputed are exactly the set
that could have introduced new misses during distribution (i.e., the set that produced
new hits during fusion). If 67,r7(A) # 8.,14(A), then the reference is no longer carried
by this loop nest and must be checked to see if distribution creates misses. The new
edges are carried by the outer loop and will be misses when O(outer) = 0.

After distribution, the edges between iterations of a single loop body span less
code than before distribution, so they may become hits. A reference can become a
hit when the new distance is greater than the O(I) or O(J) (abbreviated O(IorJ )
and less than the original O(old). The only references that can cause this to occur
are those with loop carried dependences, or 810r7(A) =0

Figure 4.4 gives the algorithm to determine the profitability of loop distribution.
Similar to loop fusion, the algorithm can be divided into five sections: initializing f
and § for the new loop, computing the effect of changed dependences, computing F
and A, counting the new hits, and counting the new misses.

Computing the effect of the changed dependence graph requires examining every
dependence, D, in the loop nest. All other sections each require a single pass over the
references in the loop. The work for each reference in each pass is constant, so these
sections will take time proportional to the number of references. The worst case time
required to compute the effect of distribution is o(ll D |))-

Example

The following loop demonstrates how distribution can improve memory performance
when the loop being split uses more data than the size of the cache and at least one
of the two new loops fits into the cache.
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forall statements A in new loop I
fi(A) = faa(A)

end

forall statements A in new loop J
fi(A) = faa(A)

end

forall dependences e between loop I and J
insert dependence edge f, LC(f) = Outer, D(f) = 0 to replace e
recompute frorj(SINK(e)) and 81,-7(SINK(e))

end

F(I)=% fi

A(l) =T ér

O(I) = (M - F(I))JA(I) + 1
F(J)=X fs

AJ) =56,

0(J) = (M - F(J))/A(J) + 1

/* determine if reference becomes a hit */
profit = 0
forall references A in loop old
if ( foid # 0 and 6,4(A) = 0 /* there exists a loop carried dependence */
& O(IorJ) > D(e) /* edge is a hit */
& O(old) < D(e) /* edge was a miss */
then profit = profit + N * fy4(A)

end

/* determine if reference becomes a miss*/
forall references A in loop old

if (8oid(A) # 61ors(A) /* is the sink of an edge between the loop bodies */
& O(outer) =0 /* edge is a miss */
& O(IorJ) > D(e) /* overflow iteration > than old edge’s distance */
then profit = profit -N * 61,.7(A))
end

/* profit is the net change in memory hits from fusion */

Figure 4.4 Profitability of Loop Distribution
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DOI =1, 100
DO 01d = 1, 100 DO K = 1, 5000
DO K = 1, 5000 A(I,K) = A(I,K)*B(K)
A(01d,K) = A(01d,K)*B(K) ENDDO
ENDDO ENDDO
DO K =1 ,5000 DO J =1, 100
AA(01d,K) = AA(01d,K)+C(K) DO K = 1, 5000
ENDDO AA(J,K) = AA(J,K)+C(K)
ENDDO ENDDQ
ENDDO

Before loop distribution, each K loop uses 10,000 elements (or 40,000 bytes single
precision). When both new loops are executed, a total of 80,000 bytes are touched.
Since this is greater than a 32K cache, the elements of B and C are pushed out before
they can be used a second time. After distribution, only 40,000 bytes are used in each’
loop, allowing B and C to be retrieved from cache after the first execution. Before
distribution, the loops executed 2,000,000 loads (all misses) and 1,000,000 stores (all
hits). After distribution, the 1,000,000 stores and 990,000 of the loads are still hits.
Thus, loop distribution raised the hit ratio from 33% to 66% for this code segment.

The profitability of fusion on the distributed loops in the example is very negative
(i.e., fusion increases the misses by 990,000). Thus, recombining parallel sections,
should not be done when the two original loops reuse array values in the cache but
the combined loop causes the values to be replaced in the cache before being reused.

4.4 Loop Interchange

As shown in Figure 4.5, loop interchange simply reverses the order of execution of a
pair of nested loops. It is used to move parallel loops out to lower levels of nesting
(increasing the parallel region size) or move vectorizable loops toward higher levels of
nesting based on the target hardware.

Loop interchange is safe when no dependence edges are reversed by the transfor-
mation. Edges can be reversed when the direction vector associated with a reference
pair has different directions for the I and J loops (for instance (<, >)or (>, <)) [AlI83]
in a nest of loops indexed by I and J.
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DOI =1, N DOJ=1, M
DOJ =1, M DOI =1, N
loop body loop body
ENDDO _ ENDO
ENDDO ENDDQ

Figure 4.5 Loop Interchange

Loop interchange does not change the statements executed during either the outer
or inner loop. F, A, and O remain unchanged for those loops during interchange;
however, the values of f and § can change for the two loops being interchanged. The
dependences carried by the two loops do not change, but the amount of memory used
by an iteration of each loop changes. Thus, new values of f and § must be computed
for both loops. .

Loop independent edges are carried by the innermost loop that contains both
endpoints after interchange. Since the innermost loop has changed, they are actually
carried by a new loop, but the dependence itself does not change. Thus, f(I) and
f(J) are both still equal to 0.

Before interchange, one iteration of the J loop causes its loop body to be executed
only one time, while one iteration of the I loop results in M executions of its loop
body. After interchange, the I loop requires only one iteration of its loop body, while
the J loop now requires N iterations of its loop body.. The new overflow iteration can
be computed from the previous values of f and §, and the number of times each loop
executes.

Since one iteration of the I loop now requires only one execution of the loop body
as one J loop did before interchange, f;,.., = fj..- If an I loop carried dependence
exists, no additional memory is required (if 6;,, = 0, then é;,,, = 0). If no I loop
carried dependence exists, then §;,,, = fi,... The new J loop values can be computed
by adding the amount of memory used by the iterations of the I loop. The amount
used by the first iteration of J is f;,,, + (N — 1)§;,... The amount used by later
iterations of J, §;,,,, equals zero, if a J loop carried dependence exists and equals
Sinews Otherwise.
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4.4.1 Example

The following loop demonstrates a situation where loop interchange can reduce the
number of cache misses.

DO I =1, 100 ’ DO J = 1, 10000
DO J = 1, 10000 DO I =1, 100
ACT,J) = B(I)*C(J) A(I,J) = B(I)*C(J)
ENDDO ENDQ
ENDDO ENDDQ

In the example, the innermost loop requires 20,001 words of memory before inter-
change. Every access to A and C will be a miss (assuming a 32K cache), although each
B will be used 10,000 times without being removed from cache. Before interchange
there are 999,990 hits and 2,000,010 misses during execution. After interchange, the
inner loop only requires 201 words of memory, easily fitting into the cache. Now each
value of C is used 100 times, without being replaced in the cache. The 100 values
of B are maintained in cache for the entire loop nest, and only A is loaded on every
iteration. After loop interchange, the number of hits increases to 1,989,990 while the
number of misses decreases to 1,010,010. In this example, loop interchange removes
about half of the delays for misses that would have occurred without interchange.

4.5 Strip Mine and Unroll

Strip mining (illustrated in Figure 4.7), groups the iterations of a loop, typically the
inner loop, into larger segments. The original loop’s step size increases to accommo-
date the increased work being done within each of its iterations. Unrolling, illustrated
in Figure 4.8, also groups the iterations of a loop, but rather than forming a new inner
loop, the loop body is replicated some number of times. Again, the loop step of the
original loop is increased.

Thus, strip mining and unrolling are two forms of the same transformation. Both
transformations take a number of iterations and package them as a single unit that
can be manipulated by other transformations. If the new loop produced by strip
mining were completely unrolled, the resulting code would be identical to the code
after unrolling the original code. Strip mining builds a new loop that contains some

number of iterations; unrolling just increases the size of the already existing inner
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DOI =1, N, SM

pDOI=1, N DO New = 0, SM - 1
loop body loop body
ENDDO ENDDO
ENDDQO

Figure 4.7 Strip Mining

DOI =1, N, UF

POI =1, N loop body 1
loop body
ENDDO loop body UF
ENDDO

Figure 4.8 Unrolling

loop. The loop structure that strip mining introduces slows the resulting code slightly.
Unrolling reduces the number of executed loop headers but increases the number of
generated instructions.

Strip mine and unroll does not change the order of execution of the modified
loop, but it can be used to increase the effectiveness of other transformations. This
combination is useful in building chunks of computation that use a specific amount
of memory. By varying the size of the chunks, these transformations can be used
to tune the results of other transformations. In the next sections, we show that by
choosing the correct chunk size, interchange or fusion can be reliably used to improve
memory performance of nested loops.

Generating the new dependences and computing f and § for the loop introduced
by strip mining is straightforward. Every loop carried dependence on the original loop
will have a matching dependence carried by the new loop with D(e) = [D(orig)/SM]
(where SM is the strip width). The memory used by the first iteration of the new
loop is equal to the memory used by SM iterations of the original loop.

fsm(A) = forig(A) + borig(A) * (SM — 1)
55M(A) = 50,-,'5(14) * SAW
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and
F(SM) = F(orig) + A(orig) * (SM — 1)
A(SM) = A(orig) » SM

Unrolling produces no new loop, but it changes the valués of f and § for the

original loop. A loop unrolled U F times accesses the same memory as the strip mine
loop, where SM = UF. So,

fUF(A) = forig(A) + 5orig(‘4~) * (UF - 1)
A 6UF(A) = orig(A) *UF

and
F(UF) = F(orig) + A(orig) x (UF = 1)

A(UF) = A(orig) * UF

Since no changes occur in actual statement order, there is no change in predicted
memory performance.

4.6 Peel and Jam

Peel and jam is a transformation that fuses loops with certain kinds of fusion pre-
venting dependence edges. Fusion preventing edges are dependences that would be
reversed by fusion. An example is when the first loop defines a value on the second
iteration and the second loop uses it in its first iteration. The two loops could not
be fused because the value would be used before it was defined. By peeling a num-
ber of iterations of the first loop body equal to the distance of the fusion preventing
dependence, the correct relationship between the references in the two loop bodies is
maintained after fusion.

In peel and jam, the first loop of a pair of loops has a small number of iterations
unrolled into a prologue. The majority of the iterations are left in a loop that can be
fused with the second loop body (see template in Figure 4.9). Peel and jam can be
viewed as aligning the loop nest. The peel step causes a number of iterations of the
first loop to be executed prior to execution of the fused loop nest and the fusion step
aligns the loop bounds of the two loops.
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DOI =1, M+l loop body#1(1)
loop body#1(I) DOI =1, M
ENDDO loop body#1(I+1)
DOI =1, M loop body#2(I)
loop body#2(I) : ENDDO
ENDDO

Figure 4.9 Peel and Jam

Unlike the other transformations discussed in this chapter, peel and jam is not
a well known transformation. As mentioned earlier, peel and jam is very similar to
loop alignment [AK88], [ACK86], [Cal87]. In these papers, loop alignment is used
to bring all accesses of a memory location to the same iteration of a loop. Callahan
[Cal87] states that fusion preventing dependence edges are equivalent to alignment
preventing edges. He presents an algorithm that fuses by aligning two loop bodies and
placing guards to guarantee that statements only execute on the correct iterations.
Peel and jam just attempts to guarantee that the dependences are not reversed when
fusion is performed. Peel and jam does not require that the references to a memory
location all occur on the same iteration, but does require that all dependences after
fusion be from a reference originally in first loop body to a reference originally in the
second loop body.

The effect of peel and jam on memory performance is exactly the same as loop
fusion. Thus, the profitability of peel and jam can be found using the algorithm
shown in Figure 4.2.

4.6.1 Safety

To ensure a safe peel and jam, the compiler must be able to show that no dependence

edge is reversed. That is, a definition of fusion preventing dependences is required.

Lemma 4.1 Fusion is illegal if there exists a statement I in loop 1 and
statement J in loop 2 such that a fused loop carried dependence would
exist from J to I after fusion. Any dependence edge that would cause

fusion to be illegal is said to be a fusion preventing dependence.
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Proof see [Wol82] a

Referring to loop in lemma 4.1, peel and jam attempts to guarantee that if [ and
J access the same location m, then after transformations J accesses m after [ accesses
m. If the access by J is after the access by I, then the ordering previous to fusion is
maintained.

Lemma 4.2 If the number of iterations that are peeled, p, is greater than
or equal to the maximum distance, d, of any fusion preventing dependence,
then peel and jam is a safe reordering transformation.

Proof After executing p iterations of the first loop body before entering the fused
loop, p is added to the iteration number of every reference in the first loop. The
distance vectors of the fusion preventing dependences that were previously (d) will
now be d —p. But p > d so the dependence is no longer from J to I. The dependence
is now from I to J and is not fusion preventing. a

The application of safe peel and jam depends on the feasibility of computing the
distance vector of the fusion preventing dependences. Uniformly generated depen-
dences can be accurately computed but often represent families of dependences. When
the family contains a single dependence, Gannon describes it as uniquely generated
[GIGS8T7]. In practice, it is likely that for peel and jam to be a useful transformation,
all of the fusion preventing edges must be uniquely generated. This will guarantee
that each dependence has a known distance and will normally imply that the distance
is less than the loop iteration count (a fact that is probably not true with families of
dependences).

4.6.2 Example

There is at least one important group of problems that are amenable to peel and jam.
This is the set of grid-based partial differential equation (pde) solvers. A typical pde
code makes numerous passes over a grid, successively smoothing the function. Each
individual pass uses the old or new values of adjoining points to compute its new
value. Since each iteration uses only nearby values, the dependences have very small
maximum distances. Also, since the induction variables tend to be easily recognizable,
the compiler can accurately compute the distances.
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To obtain a better idea of how peel and jam will work in practice, the following
two examples show parts of programs in RiCEPS. The first example illustrated in
Figure 4.10 is taken from the one-page inner loop that accounts for well over 99% of
WANALL’s execution time. The second example is from the inner loop of SIMPLE.
However, SIMPLE’s inner loop is much longer than a page, so the total improvement
is less than for WANALL.

In the WANALL example in Figure 4.10, three copies of the FI and SI arrays are
maintained, namely the current, old, and oldest arrays. Each iteration of the outer
loop recomputes the arrays. The first loop nest copies the values of the old array
into the oldest array, and the current array into the old array, in preparation for
recomputing the current values. The second loop nest computes the new value of
FI. The computation of each element of FI involves references to six other elements
(its old and oldest values and together the old values of the four adjacent points up,
down, left and right).

The two loop nests use the same arrays. Fusing the loop nests increases the locality
of reference. Moving the K loop inside the first loop nest is straightforward. The J
loop can not be fused because the Jth iteration of the second loop uses the J+1th
value of the old array, which has not yet been‘properly modified. The second loop’s
access would incorrectly use the oldest value instead of the old value.

The fusion preventing anti-dependence between the two statements is uniquely
generated with a distance of one. By peeling the first iteration of the upper loop (J),
we can safely fuse the two J loops to improve the memory locality.

Exactly the same method will allow the I loops to be fused. This eliminates the
data cache misses for three of the references in the second loop nest. When the
resulting program was tested with PFC-Sim, peel and jam eliminated 200 million
misses during a single execution of the program.

Performing the transformation on other loops, the total reduction approached 500
million data cache misses. This is well over 20% of the total misses in the program
(2.35 billion).

Figure 4.11 is a code segment from the Lawrence Livermore National Laboratory’s
abstracted hydrodynamic program SIMPLE. The two loop nests use overlapping data
but cannot be fused to improve memory performance.
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DO 30 N = 1 ,NT
DO 35 J = 0, M+1
DO 35 I =0, M+t
DO 35K = -1, 0
FI(I,J,K) = FI(I,J,K+1)
SI(I,J,K) = SI(I,J,K+1)
35 CONTINUE
c Solutions for FI
DO 40 J =1, M
DO40 I =1, M
FI(I,J,1) = 2*FI(I,J,0)-FI(I,J,-1)+P*(FI(I+1,J,O)
+FI(I-1,J,O)+FI(I,J+1,o)+FI(I,J-1,0)-4*FI(I,J,O))
40 CONTINUE
30 CONTINUE

Figure 4.10 Application of Peel and Jam to WANALIL

Before execution of this segment, LMXP is set equal to LMX + 1 and KMXP
equal to KMX + 1. Code motion can move the assignment to variable DTN2 above
the 701 loop nest, bringing the two loop nests together. Fusing the 702 and 703 loops
is also straightforward. This forms two adjacent loop nests that both use the entire
A and B arrays.

The second loop nest uses not only the present location of the A and B arrays
but also the three adjacent values. These uses prevent fusion. As in the previous
example, the fusion preventing anti-dependences that arise from these accesses are
uniquely generated and the distance is easily computed. By peeling off the first
iteration of both of the 701 loops, the two loop nests can be fused. This will allow
the accesses of A and B to be hits throughout the second loop nest.

The relative gain of peel and jam in this example is less than in the preceding
example because there are more references in the SIMPLE loops, which are not af-
fected. In the WANALL example, 3 of the 8 references were moved closer to their
previous access. The loop nest in SIMPLE has 47 references, of which only 2 are
affected. During execution of the largest sample, this resulted in the elimination of 8
million misses and increased the overall hit ratio by 1%.



C Form P+Q in a array A and RHO*AREA in B
DO 701 L=LMN,LMXP
DO 465 K=2,KMX
A(K,L) = P(K,L) + Q(K,L)
B(K,L) = RHO(K,L) * AJ(K,L)
465 CONTINUE
701 CONTINUE
DTN2 = DTN + DTN
DO 450 L = LMN, LMX
DO 702 K=2,KMX
V1i(K)=A(K,L)*(Z(K,L-1)-Z(K-1,L)) +
A(K+1,L)*(Z(K+1,L)-Z(K,L-1)) +
A(K+1,L+1)*(Z(K,L+1)-Z(K+1,L)) +
ACK,L+1)*(Z(K-1,L)-Z(K,L+1))
V2(K)=A(K,L)*(R(K,L-1)-R(K-1,L)) +
A(K+1,L)*(R(K+1,L)-R(K,L-1)) +
A(K+1,L+1)*(R(K,L+1)-R(K+1,L)) +
A(K,L+1)*(R(K-1,L)-R(K,L+1))
V3(K)=DTN2/(B(K,L)+B(K+1,L)+B(K,L+1)+B(K+1,L+1))
U(K,L)=U(K,L)-V1(K)*V3(K)
W(K,L)=W(K,L)+V2(K)*V3(K)

V4(K)=ABS(U(K,L))
V5(K)=ABS(W(K,L))
702 CONTINUE
o
DO 703 K=2,KMX
IF (V4(K).LT.0) U(K,L)=0
IF (VS(K).LT.0) W(K,L)=0
703  CONTINUE
o
450 CONTINUE

Figure 4.11 Application of Peel and Jam to SIMPLE

97
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One interesting aspect of peel and jam is that it works on the two pPrograms that
have the lowest cache hit ratios for the largest cache size examined. This is probably
not completely coincidental. Each smoothing iteration accesses each element in the
array a small number of times. The grids tend to be large to improve the accuracy of
the solution. This causes very large working sets and poor data cache performance
when the workings sets exceed the data cache size.

4.7 Loop Skew and Interchange

Like the “peel”, in “peel and jam”, the “loop skew”, in “loop skew and interchange”
has no actual effect on the computation to be performed. The effect is to change the
iteration space in a manner that allows another transformation to be applied safely.

Loop skewing modifies the shape of a DO loop’s iteration space. A rectangular
array access pattern (N rows of M elements) is turned into a trapezoidal access pattern
(i.e., the first M rows have increasing length {1 to M}, the middle row has M elements
and the last M rows have decreasing length { M to 1}).

Loop skewing [Wol87] is a derivation of the wavefront method (Lam74] for paral-
lelization. Wolfe uses loop skewing to align a loop nest so that it can be interchanged
for parallel execution. In particular, loop skewing (Figure 4.12) eliminates the in-
terchange preventing attribute of direction vectors between various references in the
loop nests to be interchanged.

Wolfe states [Wol87] that J can be skewed with respect to I by a scale factor of f

by
® replacing the lower bound of the J loop, LBJ, with the expression (LBJ+I*f)
® replacing the upper bound of the J loop, UBJ, with the expression (UBJ+I*f)

e replacing all occurrences of J in the loop with the expression (J-I*£)

Safety

Loop skewing is always safe. Thus, the safety of this combination focuses on the
safety of loop interchange after skewing. In peel and jam, the single loop before
jamming was peeled to modify the distance vector by one before fusion. The fusion
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DOI=1, N DO J = 2, M+N
pDOJ=1, M DO I = max(1,J-N), min(N,J-1)
Loop body(I,J) Loop body(I,J+I)
ENDDQ ENDDQ
ENDDO "~ ENDDO

Figure 4.12 Loop Skew

was then safe if the number of peeled iterations was equal to or greater than the
fusion preventing dependence’s distance. The scale factor, f, of loop skew performs
the same function for allowing loop interchange.

Conjecture 4.1 If the skew factor, f, is greater than or equal to the
maximum distance, d, of any interchange preventing dependence, then

loop skew and interchange is a safe reordering transformation.

Example

Data cache management can benefit from loop skewing, similar to the benefits of
peel and jam. A small change to the example used in loop interchange produces the
following example, which cannot be interchanged without skewing the loops.

DOI =1, 100 DO J = 2, 10000+100
DO J = 1, 10000 DO I = max(1,J-100), min(100,J-1)
A(I,J) = A(I+1,J-1) + B(J) A(I,J-I) = A(I+1,J-I-1) + B(J-I)
ENDDO ENDO
ENDDO ENDDO

Before the loop skew and interchange, every access in the loop is a miss (for a 32 K
cache). Between iterations of the I loop, 10,000 different A’s and B’s are loaded, easily
flushing the cache. Overall, the loop would cause 3 million misses at execution time.
After loop interchange, the loop performs much better. During each iteration of the I
loop, at most 100 B values are loaded, (normally in the range J—1 to J—100). During
the next iteration of the J loop, 99 of the B’s are reused and only one is loaded. The
total number of references to B that are misses is 10,000 when boundary conditions

are taken into account. During each iteration of the loop, the store to A uses a
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location that was loaded in the previous iteration. This is easy to verify by adding
one to I in both subscript positions (I+1 and J —(I+1)) resulting in the subscripts
of the right side. Every store to A will be a hit, so the only misses occur when it is
loaded. Since there are 1 million elements in A, every iteration must bring in a new
value. The total number of misses for this loop nest after loop skew and interchange
is 1,010,000, about one-third of the number of misses before transformation.

4.8 Blocking Transformations

Finding a blocking size that allows the inner loops to fit into the memory is crucial
to effective blocking. Tuning the block size to fit into memory will allow the mini-
mum number of misses to occur and generate the least traffic between the memory
levels. This section describes how the overflow iteration can be used to determine the
blocking factor that most effectively improves memory performance. Three blocking
transformations (strip mine and interchange, unroll and jam, and wavefront blocking)
are examined. Methods to find the maximum sized blocks that still fits into memory
are described.

4.8.1 Strip Mine and Interchange

Strip mine and interchange can improve codes such as matrix multiplication where
there are references with hit ratios determined by dependences carried by the outer
loop, and which are misses in spite of small distances. The goal is to strip the inner
loop into pieces such that the new inner loop fits entirely into memory. The newly
created middle loop is then moved to the outer loop (Figure 4.13). The original outer
loop will now have F(mid) < Memory Size, allowing references that have dependence
edges with small distances to be hits.

The new values of f, 6, F, A, and O can all be determined by treating strip
mine and interchange as two consecutive transformations and using the algorithms
in the previous sections. The first step is to compute the values for the new strip
mined loop. With these new values, the loop interchange algorithm can be executed
to determine the effect of moving the strip mine loop to become the outer loop.

To block most effectively with strip mine and interchange, the compiler needs to
calculate the optimal strip size. When the distances of dependences are relatively
small, the best strip size will be the largest strip that still allows the outer loop’s
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DO New = 1, N, SM

DOI =1, M DOI=1, M
DOJ=1, N DO0J =0, SM-1
loop body loop body
ENDDO » ENDDO
ENDDO ENDDO
ENDDO.

Figure 4.13 Strip Mine and Interchange

dependences to become hits. This moves the fewest inner loop references to the new
strip mined loop. When the outer loop dependence distances are not computable,
the optimal value may leave some outer loop dependences as misses. The common
assumption is that dependences almost all have very short distances (less than 4 or
5). Under this assumption, the optimal strip mine width will be the width that causes
tae fewest iterations to be moved out and allows all of the outer loop dependences to
become hits.

For strip mine and interchange to be an effective transformation, dependences
carried by the inner loop of a perfectly nested loop pair must be hits, and the depen-
dences carried by the outer loop must be misses. If dependence distances are small,
this will be approximately equivalent to requiring O(inner) > 0 and O(outer) = 0.
In addition, there must be a reference in the loop body which has no dependences
carried by an inner loop. Strip mine and interchange will block the inner loop into
sections that fit into the available memory. Once the interchange occurs, the old
outer loop (which is now in the middle) will have an overflow iteration greater than
zero. Dependences carried by the new middle loop may now be hits.

We must find the strip width that pushes the fewest iterations to the outer loop,
and still allows every reference with dependences carried by the middle loop to become
a hit. That is, the maximum strip mine width, SM, must have O(mid) > max
dependence distance carried by the middle loop, d;.
MemorySize — F(mid)

A(mid)
Both F' and A depend on the selected SM width. The memory used in the first
iteration is the memory used by the first iteration of the inner loop. (i.e., F(J) +

d,' < O(Mld) = +1
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SM-1 *A(J) where J is the original inner loop). To calculate A(mid), we calculate the
part of A(mid) that does not depend on the strip mine width and the part of A(mid)
that does depend on the strip mine length. This involves summing the equivalent
of F and A for references that do not have dependences carried by the middle loop
(6mia(A) = frmia(A) when the dependence is not carried by the middle loop).
forall statements A in the loop body
if 6:(A) #0
then { BASE += f;(A)
INCR += §;(A)}

end

A(mid)= BASE + (SM-1)+xINCR
Replacing F(mid) and A(mid) produces
MemorySize — (F(J) + (SM — 1) « A(J))
BASE+(SM -1)«INCR

Solving for SM generates the largest strip mine width that allows the dependences
carried by the middle loop to be hits.

d; <

+1

MemorySize — F(J) - d; * BASE + 1
SM < INCR+A(J)

The optimal strip mine width is the largest integer that satisfies the above equa-
tion. Every reference in the loop is examined to compute BASE and INCR. Finding
the maximum effective strip mine width can be done in constant time, after BASE
and INCR are available. Overall, computing the strip mine width takes time O(#refs
in the loop).

+1

Example

Strip mine and interchange is a profitable transformation when there exists a loop nest
where the inner loop requires slightly more memory than is available and references
are misses due to outer loop carried dependences. The number of references carried
by the inner loop must be less than SM times the number of references carried by
the outer loop.
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DO N = 1,100,50

DO I =1, 100 DO I =1, 100
DO J = 1, 100 DO J =0, 49
AT, = 0 _ ACI,J+N) = 0
DO K = 1, 100 DO K = 1, 100
ACI,I) = A(LD) + ACI,J+N) = A(I,J+N) +
B(I,K) * C(X,D) B(I,K) * C(K,J+N)
ENDDO ENDDO
ENDDO ENDDO
ENDDG ENDDO

Strip mine and interchange substantially reduces the misses in the classic numer-
ical problem, matrix multiplication illustrated above. When a 32K cache is used, the
references to the C array are misses. Combined with the initial loads of the A and B
arrays, the original program will miss an 8-way set associative cache 1,020,000 times.
In the strip mine and interchange version, the J loop uses 5,000 elements of the C
array (instead of 10,000). If the array is single precision, a 32K cache holds the C
array between iterations of the I loop. Each iteration of the new N loop requires
that values be brought back into the cache. Overall, the ne« program produces only
40,000 misses. For matrix multiplication, strip mine and interchange can remove up
to 96% of the generated misses.

Symbolic Computation

Many programs have loops with iteration counts controlled by a value that is input
to the program during execution. The computation of optimal strip mine width does
not depend on the iteration counts of the involved loops. It is possible that values of
F(J) and A(J) have symbolic terms for loops nested within the J loop. Fortunately,
the presence of symbolic values does not prevent the application of strip mine and
intercha;nge. The example in Figure 4.14 shows how a matrix multiplication with
symbolic loop bounds would be transformed by delaying the computation of the strip
mine width until execution.

Delaying the computation of the strip mine width until execution time requires
adding a three line (| YJRTRAN) prologue. The first line of the prologue computes
the maximum strip mine width. It is important to remember that integer division in
FORTRAN truncates the result. Thus, the first statement takes an implicit floor of
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INT.TMP1 = (8192 - 2#N3)/(2+N3) + 1
INT.TMP2 = (N2 / INT.TMP1) + 1
INT_TMP3 = N2 / INT.TMP2

DO L = 1,N2,INT_TMP3

DO I =1, N1 : DOI =1, N1
DO J =1, N2 DO J = 0, INT_TMP3
A(ILY) =0 A(I,J+L) = 0
DO K =1, N3 DO K = 1, N3
A(I,Y) = A(T,0) + A(T,J+L) = A(I,J+L) +
B(I,K) * C(X,J) B(I,K) * C(K,J+L)
ENDDO ENDDQO
ENDDO ENDDO
ENDDO ENDDQ

Figure 4.14 Strip Mine Width Computed during Execution

the result, guaranteeing that INT_TMP1 is less than the actual result of the division.
In the example, a 32K byte cache and single precision floating point array values
are assumed. These values would be known during compilation and are adjusted for
the target hardware. Different hardware appears as a different magic number for the
number of elements in cache (for example, 32K divided by 4 or 8). The next two
instructions compute the maximum integer value that evenly divides the loop bound.

Since even the final INT_.TMP3 may not divide the loop bound evenly, the loop
body must have any potentially remaining iterations peeled off the top of the loop
nest. The number of iterations to be peeled is N3 - (INT.TMP2*INT_TMP3).

Optimal block sizes can be computed whenever all the inner loops execute a
number of iterations that can be determined during compilation. This is true even
if the loop being strip mined has an unknown number of iterations. When the loop
bounds of the inner loops are unknown, the computation of block size can be delayed
until execution time when the iteration counts are known.

4.8.2 Unroll and Jam

Strip mine and interchange takes an inner loop, blocks it and moves some of the
iterations to outer loops, in an effort to allow dependences carried at the outer level

to become hits. Unroll and jam moves blocks inward, Figure 4.15, blocking the outer
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loop and pushing computation into the inner loop. The goal is to have dependences
carried by the outer loop move to the inner loop so they can become hits. This should
be done without lowering the inner loop’s overflow iteration below the distance of the
edges currently carried by the inner loop. The transformation is actually unrolling
followed by fusion, but “unroll and jam” is the term created by Callahan, Cocke and
Kennedy [CCK87] and better describes the global transformation.

The profitability of unroll and jam can be determined by applying the two separate
transformations (unroll followed by loop fusion). As in strip mine and interchange,
the blocking factor should be tuned to produce the fewest misses. For unroll and jam,
the fewest misses occur when the maximum number of iterations is unrolled without

causing the inner loop carried dependences to become misses, or

MemorySize — F(Jpew)
A(Jnew)

dj < O(Jnew) = +1

F(Jnew) and A(Jnew) both depend on the number of unrolled loops. For each reference
in the program, we can determine the portions of F and A that depend on the number
of unrolled loops and the remaining parts of F and A. The amount of memory used in
the first loop iteration after the transformation is equal to the amount of memory used
before the transformation, plus the new memory used by each unrolled iteration. The
new memory used by one iteration is equal to that used originally by one iteration,
less the amount added by a reference that is the sink of an I loop carried dependence.
The memory used by later iterations of the new inner loop is equal to the old total,
plus the unroll factor times the amount used by each reference that is not the sink of

an [ loop carried dependence. That is,

DOI =1, M, UF

DOI =1, M DO J=1,N
DOJ=1, N loop body 1
loop body
ENDDQO ‘ loop body UF
ENDDO ENDDO
ENDDO

Figure 4.15 Unroll and Jam
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forall statements A in the loop body
if 6;(A) # 0
then { BASE += f;(A)
INCR += 6;(A)}
end
F(Jnew) = F(Joa) + (UF-1)BASE
A(Jnew) = A(Joid) + (UF-1)INCR

Using this form for F and A, the previous equation can be solved for UF.

UF < MemorySize — F(J,q) — (dj = 1) * A(Jq)
(dj =1)*INCR + BASE
Determining the optimal amount of unrolling before jamming requires the com-
putation of the same BASE and INCR required to determine the optimal strip mine
width. Calculating the optimal blocking requires O(#refs in the loop).

+1

Both “strip mine and interchange” and “unroll and jam” block the computation
into bounded regions that are sized to allow near optimal use of limited sized memory
structures. The difference between the two transformations is the loop that gets
blocked. In strip mine and interchange, the inner loop is blocked and moved outward.
Unroll and jam blocks the outer loop and moved it inward.

Example

Unroll and jam is profitable when there are references depending on outer loop de-
pendences (with distances smaller than the unroll factor), and the unrolling does not
cause inner loop references to become misses. In practice, the code explosion that
occurs with large unroll factors limits unroll and jam to cases where the overflow
iteration of the inner loop is small.

In' the example, Figure 4.16, each execution of the K loop uses almost 8K. The
overflow iteration for the J loop will be 4 (32K cache). The use of the A array will be
a miss 9,900,000 times. The B array will be a hit except to load each element (99,000
misses). The original program has 9,999,000 misses. Unroll and jam increases the
amount of memory used by the J loop to almost 32K, reducing the overflow iteration
to 1. The J loop carried dependences have a distance of one and remain hits. The
first use of A remains a miss, but the second and third uses become hits because
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DOI =1, 99, 3
DOI =1, 99 DO J = 1, 100
DO J =1, 100 DO K = 1, 1000
DO K = 1, 1000 A(J,K) = A(J,K) + B(I,K)
A(J,K) = A(J,K) + B(I,K) ENDDO
ENDDO DO K =1 ,1000
ENDDO ACJ,K) = A(J,K) + B(I+1,K)
ENDDO ENDDO
DO K 1,1000
AC(J,K) = A(J,K) + B(I+2,K)
ENDDO
ENDDO
ENDDO

Figure 4.16 Unroll and Jam Example

the dependence is now loop independent. Only 3,300,000 of the misses on A remain.
Combined with the 99,000 misses from loading the B array, the unrolled and jammed
version has 3,399,000 misses, just slightly over one-third of the original total.

Symbolic Computation

Like strip mine and interchange, unroll and jam can delay computation of the blocking
factor until run-time to handle symbolic bounds. Delaying unroll and jam decreases
the effectiveness of the transformation. Since new instructions can not be generated
inside the loop during execution, the transformation is slightly changed. The blocked
loop must maintain its bounds and is not actually unrolled. A symbolic version of
the previous example, as shown in Figure 4.17, demonstrates the differences between
the transformation at compile time vs. run time.

The inner loop is re-rolled if the computation of the final blocking factor will be
delayed past compile time. This is slightly less efficient for several reasons. There
is extra loop overhead, and the compiler loses some opportunities to optimize across
iteration boundaries. The computation to determine the proper unrolling almost

exactly parallels the computation for strip mine and interchange.
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INT_TMP1 = (8192 - 2*N3) / (N3) + 1
INT_TMP2 = (N2 / INT_.TMP1) + 1t
INT_-TMP3 = N2 / INT.TMP2

DO I =1, 99, INT_TMP

DOI =1, N1 - DO J =1, 100
DO J =1, N2 DO K = 1, 1000
DOK =1, N3 DO L =1, INT.TMP
A(J,K) = A(J,K) + B(I,K) : A(J,K) = A(J,K) + B(I+L,K)
ENDDO ENDDO
ENDDO ENDDO
ENDDO ' ENDDQO
ENDDO
ENDDO

Figure 4.17 Unroll Factor Computed during Execution

4.8.3 Wavefront Blocking

The previous two blocking techniques both use non-reordering transformations to
block data accesses into groups that a second transformation reorders in order to
improve the data cache performance of the processor. The resulting memory accesses
reuse a square block of data, and hopefully reuse each element before it is pushed
from the cache.

Two other combinations of transformations were discussed earlier, namely, peel
and jam and loop skew and interchange. Peeling and skewing are non-reordering
transformations that allow loops with dependences that would otherwise prevent fu-
sion or interchange to be transformed. By merging the sets of transformations, a
very powerful pair of blocking transformations is produced, strip mine, skew and in-
terchange and unroll, peel and jam. Both of these transforming combinations access
the data in a pattern that resembles the hyperplanes (or wavefronts) that Lamport
described in [LamT74|, for parallelization. For parallelization, every element in the
wavefront must have all of its inputs computed before the wavefront is executed
(since there is no guaranteed order of computation). For blocking, the wavefronts are
executed sequentially. Thus, dependences that lie along the wavefront are allowed.
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Due to the similarity with wavefronts, this class of transformations is called wavefront
blocking. '

Figures 4.18 and 4.19 show the two wavefront blocking transformations. The
profitability of the two wavefront blocking methods can be found using the same
methods as their square blocking Counterparts.

By performing a loop skew in the middle of strip mine and interchange, the block
being accessed is no longer square. Computing the bounds of the resulting trapezoidal
region is more complicated than for blocking transformations. Taking vertical slices
out of the trapezoid, results in slices of increasing length until the maximum width is
achieved. As various columns are completed the slices will decrease in length. Strip
mine, skew and interchange accomplishes the changing slice length by intersecting
two regions. The first region is the iteration space of the original outer loop (I in
the example). The second region the tilted iteration space of the loop created by
the strip mine transformation. Computing the intersection is done by taking the
maximum value of the two lower edges and the minimum value of the two upper
edges. Figure 4.18 shows a generic example of strip mine, skew and interchange.

Unroll, peel and jam also generates a trapezoidal access pattern. Unrolling the
original outer loop (I in the example), produces a number of copies of the inner loop
(J). To fuse the first copy with the second copy, one iteration of the first loop must be
peeled. To fuse the first loop with the UF copy of the loop, UF - 1 iteration of the first
loop must be executed before the fused loop. This produces the large prologue seen
in Figure 4.19. Since the loops must all execute the same number of total iterations,
an epilogue completing each copies iterations is also generated. The amount of code
generated grows rapidly as the unroll factor increases. The prologue and epilogues

DO New = 2,N+(M/SM)

DOI =1, N DO I = max(1,New-N),min(N,New-1)
DO J =1, M DO J = 1, SM
loop body(I,J) loop body(I,J+SM*(New-I-1))
ENDDO ENDDO
ENDDQ ENDDO
ENDDO

Figure 4.18 Wavefron: .locking: Strip Mine, Skew and Interchange



DOI=1,N
DOJ=1, M
loop body

ENDDO
ENDDO
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DOI =1, N, UF

DO J =1, UF-1
loopbody 1
ENDDO

DO J = UF-1, UF-1
loopbody UF-1

ENDDO

DO J =UF, M
loopbody 1
loopbody 2

loopbody UF
ENDDO
DO J = M+1, M+1
loopbody 2
ENDDQ

DO J = M+1, M+UF
loopbody UF
ENDDO

ENDDQO

Figure 4.19 Wavefront Blocking: Unroll, Peel and Jam
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can be fused into the main loop by using guards to control the execution of the various
loop bodies on each iteration. This substantially reduces the code explosion, but adds
overhead to each loop body during execution. It may also reduce the opportunities
for scalar optimization between the various copies of the loop body.

The wavefront blocking transformations allow us to block any loop nest where the
dependence distances can be bounded from below. The transformations are tedious
to implement correctly by hand, but can be done during compilation. The problems
of implementing these transformations at compile time deal with the accuracy of the
dependence graph and the presence of extraneous dependence edges introduced by
the programmer. Section 4.9 determines whether the memory performance of the
programs in RiCEPS could be improved by these transformations.

4.8.4 Choosing the Proper Blocking

A pair of perfectly nested loops, where one iteration of the inner loop body fits into
the memory, but dependences carried by the outer loop are misses, is a good candidate
for blocking transformations to improve memory performance. The previous sections
derived the optimal blocking factor for strip mine and interchange, as well as unroll
and jam. To decide which blocking transformation is most effective, we calculate the
profit from each transformation.

Optimal strip mine and interchange causes dependences carried by the outer loop
to become hits, but moves a fraction of the inner loop carried dependences outward,
where they will be misses. For each reference with an inner loop carried dependence,
there will be a dependence carried by the strip mine loop. The number of misses after
strip mine and interchange can be computed from fsps(A) for each reference in the
program.

The number of misses after optimal unroll and jam can also be determined by
looking at each reference. Every dependence carried by the inner loop is unchanged
by unroll and jam. The dependences carried by the outer loop that now reside in
the same iteration are hits. If a loop is unrolled UF times, then a dependence with
distance of one would now be a hit for each iteration except the first. Likewise, a
dependence with length of two will miss on the first two iterations, but the third

iteration will use the same location as the first, which is still present in the cache.
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/* Compute BASE and INCR for optimal blocking width calculation */
forall statements A in the loop body
if6;(A) =0
then BASE = f;(A)
- INCR = §;(A)-
end

/* Calculate the optimal blocking widths UF — for Unroll and Jam */
/* and SM — for Strip Mine and Interchange */

MS—F(J)=(d,-1)«A(J
UF = | 5= ad + 1

| MS—F(J)-d;BASE+1
SM = | TNCR+a(J) +1]

/* For each reference in the program, calculate the number of misses */
/* after blocking, keeping a relative profitability count */

forall statements A in the loop body

if (6;(A)=0 & f;(A)#0) /* misses — Strip mine and Interchange */
/* there exists a J loop carried dependence that carries data */
then
/* if there exist an I loop carried dependence, only the first */
/* access misses, if not every iteration of the strip mine loop */
/* misses on every value used by the I loop */

if (6:(A) = 0) then misses = f;(A)
else misses = SM x N * §;(A)
endif
profit = profit - misses

if (6:(A)=0 & f;(A)#0) /* misses — Unroll and Jam */
/* there exists an I loop carried dependence that carries data * /

then
/* The edges that remain misses are the edges * /
/* that span the unrolled loop’s edges */
find distance d of the I loop carried dependence into A
misses = Ud'F' * fi(A)
endif
profit = profit + misses
end

if (profit > 0) then return(“unroll and jam”)
else return( “strip mine and interchange”)

Figure 4.20 Profitability of Blocking
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The total number of misses at each reference is % of the executions of each reference
that depend on an outer loop carried dependence.

The algorithm in Figure 4.20 counts the misses that remain after computing the
optimal blocking factor for each transformation and returns the blocking factor and
type of transformation that should be applied to the loop nest. Identifying the correct
blocking transformation to apply to a loop nest requires that the distance of the outer
loop carried dependences be determined for every reference. This could be computed
and saved from an earlier pass through the dependence graph, but can involve re-
examining each dependence edge that terminates in the loop.

4.9 Effectiveness

Using the programs in RiCEPS, a study of the effectiveness of the transformations
described in this chapter was conducted. The profiler in PFC-Sim was used to identify
the most frequently executed statements, since these basic blocks contain the refer-
ences that dominate the overall memory performance. An automatic system should
not restrict its focus on these basic blocks, but most of the improvement will occur
from transformations to these inner loops.

The programs were first examined to see whether an automatic system built on
a parallelizing compiler could be expected to noticeably increase the performance of
supercomputer applications. For those programs where transformations could not
reduce the number of data cache misses, the programs were analyzed to determine
if the problem was inherent in the algorithm or if it was a function of the program
itself.

In this study, the programs divided into three groups: the transformable, the
semi-transformable, and the non-transformable based on the success of automatic

transformation in improving cache performance.

4.9.1 Transformable Programs

Transformable programs are programs that a compiler could automatically transform
to improve cache performance. This group includes two whole programs (MATRIX
and WANALL) and parts of two other programs (ONEDIM and SIMPLE).

The precision of interprocedural information did not affect the analysis of the
tested programs since the transformations affected code segments that included no
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procedure calls. However, the presence of interprocedural array analysis is important
for several of the semi-transformable programs.

The misses in MATRIX can be almost eliminated by strip mine and interchange
of the outer two loops, as was shown in the example at the end of the strip mine and
interchange section. If the middle loop is split in half and moved to the outside, the
number of misses (for a 32K 4-byte line cache) falls from 932,576 to 40,000. Since
the loop uses 30,000 different values, proper blocking almost completely eliminates
values being pushed from the cache prematurely.

WANALI had 2.35 billion misses before transformations. Figure 4.10 shows the
innermost loop. The loop interchange, moving the K loop inside the I and J loops,
reduces the misses by 336 million. About 230 million more misses were removed by
that one application of peel and jam. Another 250 million misses were removed by
first distributing the top loop, and peeling and jamming the loop that initializes the
SI array with the loop nest that computes the new values of SI. Variable renaming of
a summation variable allowed fusion of three loops, eliminating another 200 million
misses. Overall, almost half of the misses could be eliminated from the program
giving the lowest hit ratio of the tested programs.

Figure 4.11 shows a segment from SIMPLE. Peel and jam eliminated half of the
misses that occurred in the loop nests that were transformed. Unfortunately, while
almost all of the computation in WANALL was in the loops that could be fused, only
a small fraction of SIMPLE’s computation is contained in the jammed loop nests.
Peel and jam still increased the hit ratio by 1%, from 77% to 78%.

Approximately 60% of the misses in ONEDIM occur in three matrix multiply
operations. Strip mine and interchange of the three loop nests is identical to that
used in the MATRIX program. This should allow the hit ratio (for a 32K cache) to
increase from 79% to about 91%. The remaining misses occur in a loop nest that can
not be improved and will be discussed in the next section.

Overall, the results of applying transformations to improve memory performance
are at best mixed and possibly even disappointing. Only about four programs (out of
twelve) could be improved at all, and only three of those were improved significantly.
The overall average hit ratio for a 16K cache increased by about 5% to 76%. For a
32K cache, the average hit ratio increased to 81%. Larger caches did not see as much
increase (since MATRIX and later ONEDIM fit into the cache), but 64K and 128K
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caches still had their average hit ratio raised by 3.5%. A 256K increased 3% to 94%.
The effect of transformations to increase memory performance is to effectively double
the cache size provided by the hardware. The improved programs use a 16K cache
almost exactly as well as the original programs used a 32K cache.

Effectively doubling the cache size of any computer is a worthwhile result, but the
fact that only one-third of the programs could be modified was disappointing. The
following two sections discuss the results of examining each program to determine
why transformations were not possible.

4.9.2 Non-transformable Programs

Only two programs (LINPACKD and EFIE304) and part of a third (ONEDIM) had
fundamental algorithmic reasons for their inability to be blocked into versions with
better memory performance. In all three cases, the problem is pivoting for numerical
stability.

Figure 4.21 is an example abstracted from LINPACKD that will serve as an ex-
ample of pivoting. Some statements that do not affect the ability to apply transfor-
mations have been removed. Since L is compﬁted in the loop, there is no effective
method to determine how A(L,*) interacts with A(K,*). This causes dependences
with distances that can not be computed.

Algorithmically, the various rows can be interchanged at any time before the
Gaussian elimination is completed. The compiler is therefore correct in its assessment
of the dependences. The values are potentially reused and the distance between the
reuses is not computable.

Even with a system that automatically blocks the program, fusion does not seem
possible in these programs. Since the dependence distances between the columns can
be bounded, a future system may be possible to do some transformations with this
program. The variable L is limited in the range from K+1 to N. This allows direction
vectors to be accurately computed. By defining the range of dependences to be a box
that resembles the letter L, partial pivoting may be divided into loops that access a
specific amount of data.

Pivoting is most likely not the only algorithm that demonstrates a dependence
nature that will prevent transformations. It is the only one in this initial version of
RiCEPS. In Gaussian elimination, the program could replace the pivoting with a QR
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DO 60 K = 1,NM1

Find L = Pivot element
L = IDAMAX(N-K+1,A(K,K), 1) + K + 1
Interchange if necessary
IF (L .EQ. X) GOTO 10

T = A(L,K)

A(L,K) = A(K,K)

AK,K) =T
CONTINUE
Compute Multipliers
T = -1.0D0/A(K,K)
CALL DSCAL(N-K,T,N,A(K+1,K),1)
Row Elimination with Column Indexing
DO 30 J = K+1, N

T = A(L,D)

IF (L .EQ. K) GOTO 20

ALY = AK,D)

AKK,J) =T
CONTINUE
CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
CONTINUE
CONTINUE

Figure 4.21 LINPACKD — Pivoting Preventing Transformation
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factorization, which is amenable to blocking, easier to parallelize, and demonstrates
better stability. This kind of algorithm revision may be very appropriate for pro-
grams that run on supercomputers. Any algorithm that prevents parallelization at
outer levels will probably severely limit performance as the number of processors in

a supercomputer increases.

4.9.3 Semi-transformable Programs

The largest group of the tested programs are semi-transformable. Automatic tech-
niques to improve memory performance of these programs do not work due to the
way that the program was written. The problems fall basically into two groups: code
that is too unstructured for a compiler to analysis well, and code that contains a
construct that inhibits transformation.

The best example of ugly code is found in a library routine, FTRVMT called
by both MHD2D and SHEAR. Figure 4.22 shows a single loop nest taken from the
subroutine FTRVMT. In both programs, a large fraction of the total references occur
inside this routine. The programmer of the library routine linearized the references
to the array DATA. Although linearization is one method suggested for dependence
analysis of multiple subscripted arrays [BC86], linearization, in this case, obscures
the actual array access pattern. If other parts of the program are examined, it can
be determined that neither NSKIP or MSKIP are constants during compilation.

Since the value of MSKIP is unknown, the distances that arise during dependence
analysis are symbolic. The presence of symbolic distance values complicates the
application of transformations. If the loop were written without linearization, it may
be possible to determine that MSKIP is actually accessing a column of the array in
a single step manner. With this knowledge, the loops could be blocked.

FTRVMT has been vectorized (the inner loop is preceded by a CRAY vector
directive). Although it may perform as well as any other program written for the
same machine and compiler, it can not be effectively ported. It is not only machine
dependent, but it is also dependent on the intelligence of the compiler vectorization.
When this program was first written (pre-1985), the CRAY compiler did not do a very
good job of automatic vectorization. As the compiler has improved, and continues to
improve, the linearization (and resulting symbolic distance vectors) inhibit any sort

of transformation to the surrounding program.
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DO 109 JL = 1 ,I2K
IF (JL-1) 102,102,104
102 EXJ = (1.,0.)
DO 103 JJ = JL, NPTS,2*I2K
DO 103 MM = 1,MTRN

JS = (JJ-1)*NSKIP + (MM-1)*MSKIP + 1
H = DATA(JS) - DATA(JS+I2K*NSKIP)
DATA(JS) = DATA(JS) + DATA(JS+I2K*NSKIP)
DATA(JS+I2K*NSKIP) = H

103 CONTINUE
/* two more equivalent loops */
109 CONTINUE

Figure 4.22 FTRVMT — Linearization Preventing Transformation

BOAST and EULERI have very high hit ratios (99+ for a 32K cache), making it
difficult to determine where misses, other than the initial loading of the cache, occur.
The most heavily executed portions of BOAST are two short (5 and 14 lines) subrou-
tines. The subroutines are passed arrays and access a fixed portion of these arrays.
Knowing that the access always remains in a column will be critical in determining
that a surrounding loop nest could be wavefront blocked. One major loop nest in
the program could be wavefront blocked, if a series of writes on each iteration were
removed or reordered. Maintaining the order of write statements and guaranteeing
that the right values are present at each write inhibits the transformation of several
loop nests.

A second program that would require very precise interprocedural analysis to
transform is BARO. The work in its inner loop is broken into three pieces. The
smallest segment is contained in the procedure with the loops and the other two
segments occur in separate subroutines. To block the loops, information about the
access pattern of the arrays in the subroutines must be gathered.

Transforming BARO would be a difficult task. Rather than separating the bound-
ary iterations of the grid from the other iterations, the main body of the loop is an
intertwined jumble of checks to see if this iteration is on the boundary, followed by
jumps to the appropriate code segments. After the boundary iterations are separated
(by the compiler or by hand), the program still could not be parallelized. BARO
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is a partial differential equation program that needs to maintain both old and new
values of arrays. Rather than copy an array from a current array into an old array
at every iteration, an extra array dimension is declared. Every access to the array
that wants an old value uses the variable JQ3, and every access to the current value
uses the variable JQ4. When it is time to copy the current value into the old array
and compute a new current value, JQ3 is set equal to JQ4 and JQ4 is set equal to 3-
JQ3. This effectively copies the array with only two assignments and one subtraction.
Compilers will have a difficult job determining that JQ3 is never equal to JQ4. More
importantly for blocking, it is difficult to recognize that the values that were loaded
into JQ4 on the previous iteration are being accessed on the current iteration using
JQ3. BAR appears to use the values within two grid points to determine the next
iteration. It appears that wavefront block angled by two iterations would successfully
block the access, improving the memory performance significantly.

SIMPLE is another partial differential equation solver that is amenable to a wave-
front blocking technique. Again, present compliers would have difficulty automatically
performing the transformations. The problem stems from statements that are inside
IF statements and execute only when a run-time debugging variable is set. Aggressive
scalar expansion would be required in addition to a way to determine the exit branch
leaving the infinite loop is in fact implementing a standard inductive loop (e.g., DO
I =1 to NMAX).

The programs in the semi-transformable group cannot be modified by a compiler,
or probably even a programming environment, to improve the memory performance.
However, they could be rewritten in a style that would make them amenable to
transformation. After they are modified, the resulting code could be ported between
machines without further modification.

4.9.4 Automatic Blocking (and Parallelization)

One of the goals of automatic vectorization and parallelization has been the trans-
formation of “dusty deck” FORTRAN programs into equivalent vector or parallel
versions. A number of vectorizing compilers do a good job of locating loops that can
be vectorized. The success of “dusty deck” vectorization has suggested that automatic
parallelization can eventually be achieved.
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To be most effective at blocking or parallelization, transformations must be per-
formed on large code segments. To manage memory, the compiler attempts to manip-
ulate the entire program in such a way that a value is never pushed from cache until
a computation using it has completed. To achieve minimum parallel computation
time, the compiler examines whole programs and attempts to find maximal parallel
sections. This contrasts with vectorization which normally examines smaller code
segments.

Investigating the applicability of automatic blocking of supercomputer programs
has uncovered a basic problem with whole program, automatic techniques. The prob-
lem is that nearly all large programs (particularly true in RiCEPS, but also in other
programs) have some number of constructs that prevent transformation. Some of the
constructs are included as performance tricks (like declaring a single array and using
pointers to access it, so that only the pointers need to be swapped). Some constructs
are attempts to generate fast code with mediocre compilers (linearizing the arrays
for vectorization). Some constructs are unpredictable end conditions (programs that
check for convergence after every iteration).

Although existing programs may be difficult to transform, the transformations
examined in this chapter could be applied to a program that implements the same
algorithms without the use of transformation inhibiting constructs. The resulting
programs could be automatically optimized for a wide class of processors. The present
technique of program optimization for each new class of supercomputers requires the
programmer to manually tune the program to the machine. This is a time-consuming
process which may be avoidable as present-day state-of-the-art compiler techniques
become widespread. Instead of tuning each program for each machine, the program
could be modified a single time. The single modification would be aimed at removing
the unnecessary constructs that inhibit the compiler from performing transformations.
The compiler would then perform the required tuning for each new type of machine.

What does the transformable program look like? These studies have found that
better structured programs are more likely to be transformable. Compiler technology
has reached a level of sophistication where structured coding practices can be encour-
aged not only for readability and maintenance, but to reduce the effort involved in
porting programs to a new supercomputer.



121

4.10 Conclusions

This chapter presented some powerful transformations to be exploited during compiler
memory management. These transformations include loop fusion, loop distribution,
loop interchange, loop skew, strip mine, unroll, strip mine and interchange, and unroll
and jam. Additionally, several new transformations, peel and jam and wavefront
blocking, have been defined. Their effects on memory performance have been studied.

The new transformations allow otherwise untransformable loop nests to be trans-
formed into loops that are more amenable to increased memory performance. Peel
and jam allows two loops to be fused, in spite of the presence of fusion-preventing de-
pendences (whose distances can be computed). A number of applications can benefit
from peel and jam, including many grid based partial differential equation solvers.
The two wavefront blocking techniques are extensions of the two blocking transfor-
mations strip mine and interchange, and unroll and jam. Wavefront blocking includes
skewing and peeling with the blocking transformations, allowing the blocking of loop
nests that contain interchange or fusion preventing dependences. Wavefront block-
ing seems to be applicable to a number of the basic algorithms of the programs in
RiCEPS.

Compiler memory management of existing programs is hampered by the desire to
transform whole programs. Many existing programs contain constructs that prevent
the compiler from improving the program. Some of the constructs are derived from
random access of memory in the algorithm itself, but a larger number are introduced
by the programmer.

Transformations of whole programs will require extensive interprocedural analy-
sis. To block (or parallelize) a program over call sites, accurate information about
the behavior of accesses across procedure boundaries is required. With the block-
ing techniques in this chapter, we believe that state-of-the-art compilers (including
programming environments) are sophisticated enough to produce executables from
“nice” programs which execute as fast or faster than hand tuned programs. The
“nice” programs will remain near optimal after compilation on a different machine
(assuming an equivalent compiler).



Chapter 5

Software Prefetching

5.1 Introduction

Software prefetching attempts to increase the hit ratio for all programs while min-
imizing the additional required data traffic required. In experimental study, caches
with very long cache lines obtained significantly higher hit ratios. For programs with
data cache hit ratios below 90%, a cache line of 16 words eliminated 65 - 80% of
the misses during execution. Most programs had hit ratios over 95% with 16-word
cache lines, although the hit ratios of two programs only reached 90%. However, the
amount of memory traffic increased substantially with long cache lines. A 16 word
cache line, on average, required three times as much data from the main memory
as a l-word cache line. Thus, long cache lines do not seem to be a good choice for
multiprocessors. In addition to generating more traffic, cache coherency conflicts are
more common with long cache lines. Lee, Yew and Lawrie (LYL87b] found that the
optimal multiprocessor cache line was one or two words for most of the routines that
they tested.

We found that hardware prefetching was very successful at reducing the number
of misses for almost half the programs in RiCEPS. For most of the programs, the
amount of additional generated memory traffic was negligible. Only one program
produced more than 15% additional memory traffic and most required less than 1%.
The prediction strategy is fixed in the hardware and works when the programs access
memory in the assumed manner sequentially (for FORTRAN by columns), but a
significant number of the programs accessed data in other patterns (by rows, diagonals
or randomly).

When examining the programs for which memory performance was not improved
by hardware prefetching, we discovered that many had patterns of array access that
could be detected during compilation or execution. Every program showed some type

of access pattern in the inner loops. Since many of these patterns were detectable at
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compile time, a mechanism that allows a compiler to manage prefetching is likely to be
effective. This chapter studies the cost and effectiveness of a very simple addition to
the hardware, a cache load instruction, to allow software management of prefetching.
Using this instruction, a straightforward heuristic is used to bring data into the cache
before the actual load occurs. The effectiveness of the algorithm for eliminating
misses, while positioning the prefetches a substantial distance from actual loads, is
studied.

5.2 Cache Load Instruction

For the compiler to assist the processor in prefetching, the compiler must have a
mechanism to inform the cache that a memory address will be needed. A cache load
instruction is probably the simplest mechanism for both the compiler writer and the
hardware designer to use for prefetching. A cache load instruction can be viewed as
a no-wait load to a nonexistent register. .

A cache load should have all of the address modes of a machine’s regular load
instruction. The prefetch for an address looks just like a normal load except no
register is specified as a destination. To the program, a cache load looks like a NO-
OP. The only effect on execution is that one cycle is expended and the instruction
counter increments. On machines that allow multiple instructions to be issued during
a cycle, the cache load would only use one of the slots.

A no-wait load forces the architect to build a cache that can have multiple out-
standing requests. Even if it was acceptable to queue the prefetches so that they were
serviced sequentially by the main memory, it would be necessary to allow multiple
requests. If the prefetching failed to prevent a miss, the hardware certainly should
not wait for a prefetch to complete before issuing the required load.

Caches that allow more than one outstanding request are being designed [SD88]
and implemented [GM87]. Scheurich and Dubois present the design for a lockup-free
cache for hiding the delays involved in accessing remote locations in a distributed
memory multiprocessor. In their paper, one of the methods described for improving
processor performance uses a special cache load instruction. RISC architectures, in
their attempt to make every instruction be one cycle and make that cycle as short as
possible, have already implemented non-blocking load instructions (e.g., IBM RT).
Since the nearest memory is more than one machine cycle away, by not blocking on
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memory, other computations not involving the load can be executed in cycles that
would otherwise be dead. Thus, the hardware problems involved in the design and
implementation of a no-wait cache load instruction seem to be manageable problems.

A more difficult question for the architect and compiler designer is how to handle
run-time faults on the cache load instructions. The hardware could be constructed so
that a fault on a cache load would not be reported and the load aborted. It remains
to be seen how difficult this is to implement. When the hardware cannot prevent
faults, the compiler will have to prevent cache loads from generating either memory
protection faults or page faults that would not otherwise occur. Most of the faults
can be prevented by attempting to guarantee that prefetching does not occur for
iterations that will not execute. If the last iterations of every loop that attempted
prefetching were unrolled, most programs would not generate faults on the cache
loads that would not occur on later loads.

As defined, a cache load instruction does not represent a major addition to the
complexity of a processor. For some processors (like the IBM RT that already al-
lows more than one outstanding load), it may be possible to add the instruction in
microcode with no changes to the silicon. A cache load can be used in the compiler
like a regular load instruction at any point previous to the actual load. In partic-
ular, VLIW and RISC architectures with non-blocking loads and delayed branches
may have many NO-OPs that can be replaced with cache loads, making the cache
prefetching free.

5.3 Insertion of Cache Load Instructions

We now outline a simple method for identifying data to prefetch. The code that can
cause the most accesses during execution are the inner loops. The references with the
greatest possibility of generating a large number of misses are array references within
the inner loop that use different elements on each iteration. Any array subscript
that uses the innermost loop induction variable will be accessing different values on
every iteration of the inner loop. These are the likely candidates for prefetching. For
prefetching to be effective at reducing miss delays for the processor, the prefetch must
precede the actual load by enough time to allow the load from memory to cache to
complete, but not so far that the cache flushes the data back out to memory.
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forall statements S in program
if Sisa DO
then .
innermost induction variable = loop induction variable
innermost step = loop step
end
forall array references R in statement S
if innermost induction variable appears in subscript of R
then
insert prefetch instruction with reference R incremented
end
end

Figure 5.1 Insert Prefetch Instructions

The algorithm (Figure 5.1) for software prefetching is simple, based on the obser-
vation that a single loop iteration should provide enough execution time to allow a
cache load to complete, but one iteration is unlikely to access enough data to cause
the cache to flush. The heuristic is: if the innermost induction variable is present
anywhere in an array subscript, then add the 106p step to the innermost induction
variable and issue a cache load instruction for the resulting expression.

The preprocessor for PFC-Sim was modified to perform prefetching, using a cache
load instruction and the described heuristic algorithm. There are two important de-
tails of the implementation. In a single pass over the program, any array subscript
that used the induction variable associated with the textually last DO loop is consid-
ered to a array access that could profit from prefetching. This causes initialization
in an outer loop to generate prefetches (since there is yet no knowledge of the inner
loops), but cleanup after an inner loop does not cause prefetches to be generated
(since the inner loop is now the most recently defined). An important detail is the
placement of the cache load in the loop. Every statement that requires a cache load
is immediately followed by its prefetch. This effectively predicts that if loop iteration
I follows a certain control flow path through the inner loop, then iteration I + 1 will
follow the same path.

Figure 5.2 shows PFC-Sim output with prefetches for matrix multiplication. The
only three generated prefetch instructions are in the innermost loop for the next
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values of the B and C arrays and in the middle loop for the next element of A (the
prefetch of A shows a situation where PFC-Sim has yet to detect the inner loop). A
second example, Figure 5.3 (from the subroutine FFTB in SHEAR), demonstrates
the placement of prefetches in IF clauses It also has a redundant prefetch. A loop
carried input dependence, with distance of two, exists between the accesses of array
E. On the third iteration of the loop, the value accessed by the first load will be
exactly the value fetched during the first iteration by the second load. Except the
first iteration, cache loads issued to prefetch for the first instruction will discover the
value to be in the cache already.

A minor modification to the prefetching algorithm allows successful prefetching of
values that neither long cache lines or hardware prefetching mechanism can predict. In
particular, when induction variables are located in subscripts of nested array accesses,
the correct value to prefetch can be calculated. The correct increment to add to the
induction variable in the prefetch instruction is the depth of the array. This allows
the subscript, which is itself an array reference, to be prefetched one iteration before
it is used. One common example of this behavior is index arrays. The code fragment
in Figure 5.4 demonstrates prefetching of nested array references.

Software prefetching can prefetch any value for which a pattern of access can be
determined. This can allow successful prefetching of values that long cache lines and
hardware prefetching would prefetch. Both methods are likely to bring lines into the
cache that will never be accessed (unless the mechanism is lucky) when confronted
with programs that use one array to determine the location in a second array. As the
example shows, software prefetching accurately prefetches even in these cases.

5.4 Effectiveness

To be effective, software prefetching must succeed in two ways. It must eliminate
misses, and there must be enough computation between each prefetch a.nd the actual
load for the data to arrive from the main memory.

5.4.1 Hit Ratio

The effectiveness of software prefetching was tested on the programs in RiCEPS.
Figure 5.5 compares the hit ratios of three caches for each program: a 32K LRU 4-
way set associative with 4-byte cache line, the same cache with hardware prefetching,
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DOI=1,N
DOJ =1, N
CALL STORE(A(I,J),4,TIME,1)
CALL PREFETCH(A(I,J+1),4,TIME,2)
ACT,J) =0
DOK=1, N
CALL LOAD(A(I,J),4,TIME,3)
CALL LOAD(B(I,K),4,TIME,4)
CALL PREFET(B(I,K+1),4,TIME,S)
CALL LOAD(C(K,J),4,TIME,6)
CALL PREFET(C(K+1,J),4,TIME,7)
CALL STORE(A(I,J),4,TIME,8)
A(I,J) = A(I,]) + B(I,K)*C(K,J)
ENDDO
ENDDO
ENDDO

Figure 5.2 PFC-Sim with Prefetching — Matrix Multiplication

DO I = 2, NXP1
IF (I .LT. NXP1) THEN
CALL LOAD(E(NVAR,I-1),8,TIME,766)
CALL PREFET(E(NVAR,I+1-1),8,TIME,765)
CALL LOAD(E(NVAR,I+1),8,TIME,764)
CALL PREFET(E(NVAR,I+1+1),8,TIME,763)
EDIFF = E(NVAR,I+1) - E(NVAR,I-1)
ENDIF
IF (I .EQ. NXP1) THEN
EDIFF = 0.0DO
ENDIF
ENDDO

Figure 5.3 PFC-Sim with Prefetching - a portion of SHEAR
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DOL =1, N
DOI=1,M
CALL LOAD(A(INDEX(I),L),8,TIME,364)
CALL PREFET(A(INDEX(I+1),L),8,TIME,363)
CALL PREFET(INDEX(I+2),4,TIME,362)
CALL LOAD(B(I),8,TIME,361)
CALL PREFET(B(I+1),8,TIME,360)
B(I) = A(INDEX(I),L)
ENDDQO
ENDDO

Figure 5.4 PFC-Sim with Prefetching — Index Array

and the same cache with software prefetching. 10 of the 12 programs have hit ratios
of over 98% for caches with software prefetching. Software prefetching does at least as
well as hardware prefetching on every program and successfully prefetches on many
programs with non-sequential array accesses. Software prefetching even generates
higher hit ratios than very long cache lines for many of the programs and is within a
small percentage for the other programs.

One program where software prefetching did not work as well was MED2D. Closer
examination of this program indicated that one loop was responsible for a majority of
the misses. In this loop, the programmer had performed his own address generation
for the array subscripts. Otherwise, the generated address would have been identified
as a loop induction variable during loop induction substitution. Once identified as a
reference to the loop induction variable, software prefetching would have eliminated
almost every miss in the loop, and MHD2D would have had a hit ratio similar to the
rest of the programs.

Another program where software prefetching was not completely successful was
MCMB. A large number (about three-quarters) of the misses with prefetching were
caused by programmer defined auxiliary induction variables. One loop nest incre-
ments J every time through the inner loop and uses J to access arrays. Two loops
define an auxiliary induction variable to implement a loop that counts down, rather
than using a negative induction step. If PFC-Sim had been invoked after PFC’s in-
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duction variable substitution, all of these loops would have had prefetch instructions.
The number of misses would have been approximately 3%.

Even without catching all of the induction variables, the average miss ratio for
a prefetching cache was 95.6%. Excluding the two programs that used alternative
induction variables, the average hit ratio would be 99.5%. Thus, prefetching array
values one loop before they are needed is very effective for computationally intensive

programs, particularly if loop induction variables are identified. Data cache misses
can eliminated almost completely.

5.4.2 Time Between Prefetch and Load

If cache loads always immediately precede actual loads, then the actual loads will
never cause a memory transfer. However, every load would have to wait for the
memory latency of the prefetch. Moving the prefetches one loop iteration away from
the actual load provides some amount of execution time to hide the memory latency.

In the run-time routines for PFC-Sim, every prefetch was marked with the program
execution time at which it was issued. Whenever a load used a value that had a time
field, it recorded how much time had elapsed between the cache load and the actual
load. After recording the difference, the time field was zeroed to prevent later accesses
from recording their delays.

Figures 5.6 and 5.7 show the number of cycles by which the cache load preceded
the register load for all of the programs in RiCEPS. Figure 5.6 shows the percentage
of all references in RiCEPS. Several programs have significantly more references than
the other programs and dominate this graph. Less than 0.1% of the references were
less than 50 cycles away from their prefetch. Miss delays on the references that were
successfully prefetched occurred very rarely.

If we normalize each program’s results and weigh every program equally, the
distribution of time between prefetches and loads changes, as shown in Figure 5.7.
This graph has about 1% of the prefetches occurring between 20 and 50 cycles before
the load. These prefetches may not complete on some machines before the actual
load is reached. But over 95% of the prefetches are over 100 cycles ahead of the first
use. Loading values one iteration prior to use successfully hides delays due to cache

misses for most of the array accesses in RiCEPS on current memory architectures.
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We have seen that software prefetching one loop ‘‘eration before use is an effective
method for eliminating miss delays on sequential prc essors. For the heuristic to work
on multiprocessors, either multiple loop iterations r:. :st be scheduled as a unit or the
parallelism must be at the outer loop iterations. All parallelizing tools attempt to
move parallel loops outward to reduce synchronization overhead. Software prefetching
should be equally effective for those parallel programs.

5.5 Costs

Software prefetching would virtually eliminate miss delays for the computationally
intensive programs in RiCEPS. If prefetching were free, this could decrease the exe-
cution time of programs by up to 50%. For computers with memory approximately 50
cycles away, the average decrease would be over 20%. However, software prefetching

is not free. It requires additional traffic and adds instructions to the program.

5.5.1 Data Traffic

One of the reasons for examining the effectiveness of software prefetching was the
excellent bandwidth behavior of hardware prefetching. Figure 5.8 compares the data
traffic used in software prefetching with that used normally and that used w/'ith hard-
ware prefetching.

For most of the programs, hardware prefetching produced between 0 and 2%
more memory traffic than a cache with no prefetching. For these programs, soft-
ware prefetching required slightly more data (fractions of a percent) than hardware
prefetching. Software prefetching also requires the same amount of data traffic as
hardware prefetching for EULERI, the single program that required 50% more mem-
ory accesses. On SHEAR, where hardware prefetching used 15% more data, software
prefetching did much better and issued less than 5% more requests to the main mem-
ory than when no prefetching occurred.

In summary, software prefetching maintains the good traffic behavior of hardware
prefetching and eliminates miss delays. The major cost of software prefetching will
be the amount of time required to issue the requests.
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5.5.2 Run-time Overhead

A second overhead associated with software prefetching is the additional execution
time to perform the cache loads. There are two types of statements added to pro-
grams: cache loads and address generation. Each prefetch requires a single cache load
instruction. For each array, there is some amount of address generation that must
occur. This can range from a single addition to a complicated arithmetic expression,
possibly including more than one integer multiplication.

If every prefetch brought data into the cache, determining the profitability of
any individual prefetch would be relatively simple. The prefetch would be profitable
whenever the address generation and prefetch take less time than accessing memory.
The prefetching mechanism implemented in this work generates many prefetches for
memory locations that are already present in the cache (or are already on their way
to the cache) or locations that will not be accessed (at least before the location is
bumped from the cache). These kinds of prefetches are overhead that successful
prefetching must cover.

For the simple prefetching strategy, Table 5.1 shows that slightly less than one-
third of the prefetches cause an actual cache miss and force a value into the cache
that is used later. For prefetching to be profitable, memory latency should be greater
than 3 times the cost of address generation. Unless memory latencies are very high,
the address generation overhead will completely overshadow the overlapping of miss
delays with execution. It does not decrease execution time to overlap a memory
latency with computation that was added to compute the addresses to be prefetched.

The additional execution time required for address computation was estimated
with a minor modification to PFC-Sim. As previously stated, the execution time of
the program was estimated. By changing the estimated time per execution to include
an additional statement for every prefetch instruction, the amount of additional time
spent by prefetching is measured. Each prefetch instruction was assumed to require
one load (the offset from the previous load), one integer addition, and the prefetch
instruction itself. For most programs, the offset is present in registers, reducing the
computed overhead values. This estimate is intended to be a reasonable upper bound
on the required time.

Table 5.2 shows that the average overhead incurred by a program was 28%.
MHD2D had a substantial amount of computation for every prefetched value, result-



Program Total Multiple Never
Prefetches | Useful | Prefetches | Present Used
LINPACKD 57,425,219 | 24.6% 23.3% | 52.1% | 0.0004%
WANALL | 4,004,374,064 | 58.2% 0.25% | 41.1% | 0.45%
BOAST 6,946,236 | 1.7% 47% | 936% | 0.01%
MCMB 13,279,100 | 31.0% 17.5% | 51.2% 0.3%
MATRIX 2,010,000 | 46.4% 0.5% | 53.1% | 0.01%
SIMPLE | 1.161,833,428 | 22.2% 20.6% | 57.1% 0.1%
EFIE304 7,666,945 | 32.6% 30.8% | 36.2% 0.4%
BARO 71,061,469 | 32.3% 18.1% | 49.5% | 0.0002%
EULER1 37,154,789 | 2.3% 2.0% | 95.6% | 0.02% |
SHEAR | 372,373,352 | 26.8% 24.7% | 47.9% 0.6%
MHD?2D 46,461,504 | 35.1% 39.8% | 24.8% 0.3%
ONEDIM | 152.004,856 | 27.4% 19.6% | 33.0% | 0.08%
Average 28.4% 16.8% | 54.6% 0.19%
Table 5.1 Useful Prefetches
Program Execution Execution Software
Time Time | Prefetching
No Prefetching | Software Prefetching | Overhead
LINPACKD | 1,430,861,530 2,118,18,166 48%
WANALL | 101,160,305,128 165,554,339,949 41%
BOAST 466,316,232 618,891,848 33%
MCMB | 1,004,950,150 1,218,560,362 21%
MATRIX 179,561,215 227,801,218 27%
SIMPLE | 63,214,137,900 91,090,378,256 44%
EFIE304 562,538,201 666,180,569 18%
BARO | 4,794,353,360 6,500,549,985 36%
EULERI | 2,417,980,290 2,849.928.149 18%
SHEAR | 74,578,049,200 82,369,454,612 10%
MHD2D | 14,531,562,400 15,335,199,095 6%
ONEDIM | 2,417,980,290 2,849,928 149 34%
Average 28%

Table 5.2 Execution Time with and without Software Prefetching
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ing in a very minimal overhead. Other programs, like LINPACKD, performed little
computation per reference. Adding prefetching to these programs greatly increased
the execution time (up to 48%).

With overhead of 28%), software prefetching is very unlikely to reduce the execution
time of programs. For software prefetching to be effective, methods to reduce the costs
will be required. Methods to reduce the overhead of software prefetching are discussed
in the next section.

5.6 Methods to Reduce Costs

The compiler can reduce the costs of software prefetching in two different ways. The
dependence graph and overflow iterations can be used to prevent prefetching of values
already present in the cache. Also, the address in a register can be saved between
the prefetch and actual load, eliminating the extra address generation. Using these
techniques, software prefetching may be profitable for any processor with a cache.
The amount of overhead in software prefetching may be reduced to the point that it
can be entirely hidden in a VLIW architecture, or any other architecture that tends

to have unused instruction slots where cache loads could be placed.

5.6.1 Prediction of Misses

A large percentage of the overhead for the simple software prefetch algorithm is due
to generating prefetches for values that are already present in the cache. A better
prefetching strategy is to only prefetch references that will be misses (see Figure 5.9).

The overflow iteration was computed by hand for several of the shorter programs
in RiICEPS. Table 5.3 compares the hit ratio and the amount of overhead for the two
prefetching strategies. For the tested programs, the overflow iteration did a good
job of separating the references that should be prefetched from those that should
not.! The two programs that still had a high percentage of unuseful prefetches were
EULERI1 and LINPACKD. When the hit ratio was very high, very few prefetches
occurred. The overflow iteration version of EULER1 performed about one-third the

1When computing the overflow iteration by hand, I have assumed good interprocedural information.
If information less exact than regular sections with bounds information is used, the overflow iterations
would be less accurate and the number of unnecessary prefetches would be higher.
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forall statements S in program
if S is a DO Statement
then
innermost induction variable = loop induction variable
innermost step = loop step
end
forall array references R in statement S
if R is a miss and
innermost induction variable appears in subscript of R
then
insert prefetch instruction
with R’s subscripts incremented
end
end

Figure 5.9 Insert Prefetch Instructions (Estimated Misses Only)

Program Hit Ratio : Useful Prefetches
No All Limited All Limited
Prefetch | Prefetched | Prefetched | Prefetched | Prefetched
LINPACKD 75.7% 99.9% 99.9% 24.6% 36.9%
WANALI1 41.4% 99.5% 99.4% 58.2% 98.7%
EULERI 99.1% 99.5% 99.7% 2.3% 2.2%
BARO 71.3% 99.8% 99.7% 32.3% 56.2%
MATRIX 76.7% 99.9% 99.7% 46.4% 91.4%
"EFIE304 72.4% 97.6% 97.1% 32.6% 70.0%
Average 99.4% 99.3% 32.7% 59.2%

Table 5.3 Useful Prefetches — After Using Overflow Iteration
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total number of prefetches, so the total overhead was low, although the percentage
of useful prefetches fell only slightly. LINPACKD has triangular loop nests which
are hits early and misses after some number of iterations. Prefetching those array
references kept the hit ratio for the program high (99.9).

Using the overflow iteration to limit the number of generated prefetches increased
the likelihood that any given prefetch actually caused a useful cache load. With every
possible value being prefetched, less than one-third of the prefetches caused useful
data to be moved into the cache. When the overflow iteration was used to reduce the
number of prefetches, almost six out of ten remaining prefetches prevented a later
cache miss.

The overflow iteration removed over 54% of the prefetches from the six test pro-
grams. This reduced the overhead for the prefetching instructions on the six programs
from 31+% to 14+%. If the other programs had shown equivalent reductions, the
overhead of software prefetching would be reduced by 12%. This reduction in overhead.
resulted in a negligible decrease in hit ratio (0.1%). At only 12% overhead, software
prefetching begins to be an attractive alternative for computers with memory on the
order of 20 cycles from the processor.

Examining several thousand lines of code to determine which references are misses
indicated several observations about the calculation of the overflow iteration. In gen-
e: 1, it is very easy to look at a small to medium loop and roughly determine the
overflow iteration by hand, but it is easy to overlook references. In the first modifi-
cation of WANALL, prefetches to two references were incorrectly eliminated. Those
two references lowered the total program hit ratio by 6%. Although the algorithm
can be implemented by hand, the consistency provided by compiler implementation
is preferable.

5.6.2 Register Allocation

Eliminating prefetches for memory locations already in the cache effectively reduces
the overhead of software prefetching. The overhead for the remaining prefetches
can also be reduced. As defined in the simple prefetching strategy, every prefetch
generates its own address, and then the load also generates an address. When the
right value is being prefetched, these two addresses will be the same. By keeping the
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value in a register between the cache load and the actual load, the second address
generation is avoided.

By saving the address in a register between the two loads, the cost of a cache load is
reduced to a single (possibly hidden) cache load. However saving the address between
the two loads greatly increases the lifetime of the address temporary. Increasing
the lifetime of temporaries increases the register pressure in the program and can
cause more values to be spilled from registers during execution. When the address
temporary is spilled, the cost of the cache load is a register store, a register load
and the single cache load instruction. To measure the impact on register allocation,
several programs were modified and ported to the R™ environment. The R™ compiler
does graph coloring register allocation [CAC*81], [Cha82] and estimates the amount
of spilling that will occur during execution.

Every program ported to R™ had every prefetchable reference subscript replaced
by a temporary variable. The temporary for the next iteration was then calculated
in the statement after its use. This caused the address temporary to have a lifetime
of one full iteration of the loop, the amount of time that occurs during software
prefetching. The overflow iteration had already been used to reduce the number of
prefetches that occurred before porting to R™ .

The six programs consisted of a total of 62 routines. The R" compiler is still
under development, and attempting to compile actual programs uncovered a number
of bugs. Only 38 of the routines could successfully pass through register allocation.
The original versions of the routines resulted in 223 variables being spilled at an
estimated cost of 221,892 cycles. After prefetching address variables were added, the
number of spills increased by 58 to 281, and the estimated cost was 708,623 cycles.
When all optimizations were activated in the compiler, the number of spills in the
original program increased to 387 requiring 353,875 cycles. Prefetching required an
additional 74 register spills and 940,813 cycles.

Prefetching increased the number of spills by less than 25% for both the optimized
and non-optimized code. The spills tended to occur in more nested loops, increasing
the overall cost of spilling by 320% for the non-optimized code and 266% for optimized
code. The total cost of spilling is minimal when compared to the number of accesses
that actually occur in the programs. WANALLI alone generates trillions of references.
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Unfortunately, the longer routines were less likely pass through the register allo-
cator. For every routine that did pass through the compiler, the estimated spill cost
was less than the number of prefetches. Since the cache should maintain any scalar
that is used on every iteration, the cost of software prefetching is less than three cache
memory operations.

The cost of eliminating duplicate address generation, by saving addresses in reg-
isters across iterations is unclear from the experiments. Many routines could not be
measured, and the exact correlation between cycles as estimated by R™ and measured
by PFC-Sim is unknown. However, an estimate of the likely effect can be derived.
The additional spills from software prefetching are likely to be relatively small (on
the order of 20 to 50% more spill sites), but are likely to be in more heavily executed
sections of the program (spill costs climbed over 200%).

In summary, using registers to maintain addresses between the prefetch and the
actual load may or may not substantially reduce the overhead involved in prefetching.

This preliminary study is encouraging, but inconclusive.

5.7 Conclusions

A compiler can almost eliminate cache misses by prefetching the values. A very simple
algorithm to perform the prefetching reduced the data cache misses to less than 1%
of the register loads in RiICEPS. On machines that do not have empty instruction
slots, the cost of prefetching may outweigh the benefits.

In conjunction with an optimizing compiler, the simple method presented here
can be modified to produce less than half the previous prefetches with no noticeable
performance degradation. This is accomplished by using the overflow iteration to
estimate which prefetches are redundant (values already present in the cache) and
eliminating them. This reduces the overhead of software prefetching to approximately
12%. The average amount of execution time spent waiting on memory exceeded this
when memory was about 20 processor cycles from main memory. The overhead may
be further reduced by aggressive register allocation.

Software prefetching appears to be an attractive option on computers where mem-
ory is distant and bandwidth is limited. This is an accurate description of most shared

memory multiprocessors.



Chapter 6

Conclusions

6.1 Overview

In the introduction, program execution time was divided into two components, T,
the amount of time required to perform the computation and, T}, the amount of time
spent waiting for data to arrive. The goal of this dissertation was to examine the size
of and develop methods to reduce T, in particular, Tnmain the time spent waiting on
data cache misses.

In measuring Tpn,,,;,, We used several new tools, PFC-Sim and RiCEPS. RiCEPS
is a collection of typical supercomputer applications gathered at Rice University to
be used for compiler benchmarking. A better understanding of supercomputer per-
formance can be obtained by using a benchmark that resembles actual work loads.
To measure the cache performance of the programs in RiCEPS, a new simulation
tool, PFC-Sim, was designed and built for this dissertation. PFC-Sim is a program-
driven-event tracing facility. By executing concurrently with the program that is
being measured, the need to save trace files is eliminated. PFC-Sim was used to
examine the cache performance of programs with billions of cache requests. These
traces are hundreds of times longer (thousands, in some cases) than any previous
cache study has attempted to use.

Since PFC-Sim is program driven, it was possible to examine the behavior of
individual references in the original program. When the average hit ratio of the
individual references was plotted, a bimodal distribution appeared. The references
were either always hits ( 70% of the references) or always misses ( 30%). Since a
program’s misses are concentrated into a small percentage of the actual references,
methods to improve cache performance during compilation can be effective.

Before the compiler can attempt to reduce T}, it must have a mechanism to locate
memory requests. Using the dependence graph and the memory size, the overflow
iteration was defined to describe the maximum number of iterations of a loop that can
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fit into memory. The simple method for estimating whether a reference will be a hit
or a miss involves a comparison of the dependences that terminate at a reference and
the overflow iteration. If the dependences have distances greater than the overflow
iteration (or no dependences exist), the reference will be a miss; otherwise, it will be a
hit. When computed by hand for a large percentage of the loops in RICEPS, we found
this test to be an accurate estimate of actual performance. The only problem with this
method of identifying hits and misses occurs with triangular loops. Triangular loops
are the most common example of where individual references do not have hit ratios
of either 0% or 100%. The wide part of the triangular section causes data misses,
but the narrow section does not. Thus, the proposed estimating method concludes
that the reference misses entirely. This causes the reference to be considered by the
compiler for potential improvement of memory performance. .

The first mechanism to improve memory performance is program transforma-
tion. Program transformations that move consecutive uses of a memory location.
closer together can increase the number of times a value is used before it is replaced.
Reasonably fast algorithms to estimate whether a transformation will improve or
degrade memory performance have been presented for a large number of transfor-
mations. The transformations include peel and jam which is a new mechanism to
automatically fuse loops with fusion-preventing dependences that have known dis-
tance vectors. Two blocking transformations were extended to increase the number
of programs that may be blocked. Strip mine, skew and interchange allows block-
ing of loops that could not otherwise be interchanged during the blocking process.
Similarly, unroll, peel and jam successfully blocks loops that would otherwise fail to
fuse back together during blocking.

Using the transformations defined in Chapter 4, it is possible to block most of the
algorithms in RiCEPS. Unfortunately, it is also true that present compiler technology
will not succeed in automating the blocking process on more than a fraction of the
“dusty deck” programs. Current compilers would almost completely block two of the
twelve test programs and block a substantial portion of a third. The lack of success
is due to the scope of the required transformations. To effectively block a program’s
data cache, the transformations encompass most of the input programs. This means
that if at any point in the program, a construct (which may have been introduced
for speed on mediocre compilers, for incremental checkpoints, or just because it was
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easy to program) inhibits dependence analysis from obtaining an accurate view of the
program, blocking cannot be performed. It should be possible to construct a coding
guideline, which if followed, would allow most programs to be rewritten, and allow
compilers or programming environments to automatically parallelize and otherwise
tune the programs for any type of computer. Many programs have been rewritten
to improve their performance on vector processors. It should be possible to avoid
rewriting programs for every new supercomputer architecture, by removing unneces-
sary constructs which defeat dependence analysis.

When the number of cache misses cannot be reduced, the only way to reduce 7},
is to reduce the average memory latency. One method is to design faster memories.
This is expensive and may be impossible. A second method to is to overlap the
latency with computation. Software prefetching separates register loads from cache
loads. By moving the cache load of a reference that causes cache misses away from
the register load, the memory delay involved in moving the value into the cache can
be hidden. Simulation has shown that the strategy of retrieving values one iteration
before they are actually required can effectively mask any memory delay for over 99%
of the array references in a program.

6.2 Future Work

This dissertation has assumed that only one processor is working on a problem and
that only one memory exists at a level of the memory hierarchy. Neither of these
assumptions is likely to be valid for the next generation of supercomputers. Extending
this work will be important to generate the best code for supercomputers.

6.2.1 Multiprocessors

An mcreasmgly popular method of increasing processing power is to supply multiple
processors to perform the work. Understanding the memory performance of multi-
processors introduces several important problems not present for uniprocessors.

PFC-Sim is not suited to handle multiple processors. Extensive modifications
will be required to accurately simulate the interactions possible between processors.
The most important addition will be some method of modeling cache coherency pro-
tocols. Correct simulation of memory invalidation traffic will be crucial to correct
multiprocessor memory simulation.
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Including memory invalidation traffic in the dete::ion of memory references that
miss will be a difficult and required task for a compiler trying to minimize multi-
processor memory traffic. Since invalidation traffic may be expensive, methods that
detect excessive invalidations and eliminate them will be important.

A third problem to be solved for multiprocessors is whether to transform to im-
prove memory performance or parallelism. The transformations used by paralleliza-
tion and memory management both work best when applied to the outer loops of a
program. Finding rules to guide the spreading of data (to limit traffic between paral-
lel tasks) and the packing of data (to improve cache memory performance). Methods
to pack data without reducing parallelism are needed.

6.2.2 Multiple Levels of Cache

Projects like CEDAR are using multiple levels of cache to improve average memory
latency. Introducing new levels of the memory hierarchy will require the compiler to
tune the program to each level. Iterating of a program source once for each memory
level is probably unacceptable. Methods to tune for the entire memory at one time
will be desired. Tuning for multiple levels in one pass may be much more efficient
than the multiple passes approach.

If two memory levels exist such that the misses of the smaller memory (after
tuning) are approximately equal to the misses of the larger memory. The overhead
of additional loops may cause the tuning at the outer level to produce slower code.
When a single pass is used, it should be possible to detect the marginal improvement
and skip tuning of that level.

When multiple levels of cache are present, it is common to make at least one of the
caches completely under software control. Local memories require different control
methods than described in this work. Using a true cache allowed us to ignore the
aliasing problem. If two elements were actually the same, the cache would perform
the correct sharing. Local memories do not provide that protection. Allocation into
a local memory can not be as aggressive as blocking into a cache.
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