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Abstract— This paper proposes a Linear Matrix Inequality 

(LMI) based Η  robust controller design employing Wide 

Area Measurement (WAM) based stabilizing signals as 

generator speed. A Three-input, Single-output (TISO) 

controller is designed for a Thyristor Controlled Series 

compensator (TCSC) in order to mitigate small signal 

oscillations in a multimachine power system. The controller 

design has been carried out based on the Η mixed-sensitivity 

formulation in a LMI framework with pole-placement 

constraint. The small signal performance of the test system has 

been examined employing eigenvalue analysis as well as time 

domain response. The designed controller is found to be robust 

against disturbances like varying generations as well as load 

power demand. 

 

Index Terms— H∞ Robust Controller, Linear Matrix 

Inequality, Small Signal Oscillations, Thyristor Controlled 

Series Compensator, Wide Area Measurement  

I. INTRODUCTION 

  The problem of low frequency (0.2-1.0 Hz) 

electromechanical oscillations is inherent in electric power 

systems. These oscillations may sustain and may grow to 

cause severe system outage if adequate damping is not 

available [1]. Traditionally, potential benefits of using Power 

System Stabilizer (PSS) to damp these oscillations for 

enhancing power system stability are well known [2]. With 

the development of power electronics, Flexible Alternating 

Current Transmission System (FACTS) devices [3] have 

gathered much attention from the researchers in this issue. 

Thyristor Controlled Series Compensator (TCSC), a series 

controlled FACTS device, is increasingly applied [4] for this 

purpose in long transmission lines of modern power systems. 

 It is well known that the conventional damping controller 

design synthesis is simple but tends to lack of robustness even 

after careful tuning. Attempts have been made in [5] to design 

a new PSS for damping power system oscillations focusing on 

inter-area modes using global signals. In [6] it has been 

reported that an optimum and weighted combination of local 
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and global signals could successfully be used for controller 

design of PSS and TCSC. A mixed-sensitivity based LMI 

approach using H∞ techniques has been applied in [7] to 

design inter-area damping controller employing a 

Superconducting Magnetic Energy Storage (SMES) device. 

A Multiple-input, Single-output (MISO) robust controller 

design has been proposed in [8] for a TCSC to improve the 

damping of the inter-area modes. The recent advances in 

Wide Area Measurement (WAM) technologies using 

Synchronized Phasor Measurement (SPM) units with PSS 

and FACTS devices have been implemented for various 

problems in modern power systems [9]-[10]. 

Thus, there is a strong need to develop new controllers 

which are robust and can use system-wide multiple input 

signals from remote nodes and have satisfactory contribution 

on small signal oscillations. This paper addresses this 

problem and a Three-input, Single-output (TISO) WAM 

based H∞ controller for a TCSC has been designed in LMI 

framework in order to robust damping of small signal 

oscillations of a multimachine power system. The 

transmission delay [11] associated with the wide area 

measurement signals are also incorporated in the design. 

The paper is organized as follows; section II describes the 

general small signal modeling of multimachine system with 

TCSC device. The theory of mixed-sensitivity based robust 

controller design in LMI framework is explained in section 

III. The identification of critical swing mode prior to 

application of controller and the design procedure of robust 

damping controller for a TCSC have been illustrated in 

section IV and subsequently robust performance of the 

controller is examined in this section. In section V, theory of 

the Wide Area Measurement (WAM) has been introduced 

briefly.   

II. SYSTEM MODELING  

A. Multimachine small signal model with TCSC  

The small signal modeling of a multimachine system with 

IEEE-Type I exciter has been described in [12]. The 

linearized dynamic model of the system for eigenvalue 

analysis are represented by the following state-space 

equations 

   UEVBIBXAX gg ΔΔΔΔΔ 1211                   (1)       

      VgDIDXC g ΔΔΔ0 211                  (2)        

      lgg VDVDIDXC ΔΔΔΔ0 5432                  (3) 

      lg VDVD ΔΔ0 76                                   (4) 
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Here equations (1) and (2) represent the linearized differential 

equations and linearized stator algebraic equations of the 

machine, while equations (3) and (4) correspond to the 

linearized network equations pertaining to the generator buses 

and the load buses. The variable X  contains machine states 

and the state corresponding to PSS.  

The basic TCSC configuration consists of a fixed series 

capacitor bank C in parallel with a Thyristor Controlled 

Reactor (TCR) as shown in Fig. 1. The series reactance of the 

TCSC [13] is adjusted through appropriate variation of the 

conduction angle (σ) to keep the specified amount of active 

power flow across the series compensated line. With the 

installations of a TCSC device, the TCSC power flow 

equations are to be additionally included with the network 

equation (4). The TCSC linearized power flow equations at 

the node s can be obtained by the following expression 
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where )sincos(2
ststststtsstsst bgVVgVP       (6) 

and  )cossin(2
ststststtsstsst bgVVbVQ       (7) 

Similarly, the linearized power flow equations for the node 

t can be obtained by replacing t for s. 
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where TCSCX  is the TCSC equivalent reactance. 
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 is true for the line 

between node s and t where TCSC is installed. The expression 

for 


 stg
 and 



 stb
 can be obtained from (8).  

Eliminating gI from (1)-(4), the overall system matrix 

for an m-machine system can be obtained as  
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Fig. 1 TCSC module between node s and t 

][ 2
1

1341 DDDDK


 and ][ 1
1

1322 CDDCK


 . 

Therefore, linearized state-space model of the 

multimachine system including TCSC power flow equations 

can be obtained as 

UEXAX TCSC  1Δ                       (11) 

   XCY Δ                       (12) 

III. PROBLEM FORMULATION 

A.  Mixed-Sensitivity Based Robust Controller Design:  an 

LMI Approach 

The closed-loop system together with the H∞ controller 

based on the standard mixed-sensitivity problem is proposed 

in Fig. 2. The problem is to minimize a weighted 

mixed-sensitivity transfer function S(s) = [I - G(s)K(s)]
-1

, 

which ensures disturbance rejection and K(s)S(s) = K(s)[I - 

G(s) K(s)]
-1 

that handles the robustness issues and minimizes 

the control effort. This mixed-sensitivity design approach 

associated with H∞ control theory gives an internally 

stabilizing controller K(s) which meets the following 

requirement [14]  

                     


)()()(

)()(

2

1

sSsKsW

sSsW
                  (13) 

where γ is the bound on H∞ norm. W1(s) and W2(s) are weights 

for shaping the characteristics of the closed-loop plant. 

The state space description of the augmented plant is 

represented by 

 uBdBxAx 2p1pppp                    (14) 

 uDdDxCz 12p11pp1p                 (15) 

uDdDxCy 22p21pp2p                 (16) 

where px  is the state vector of the plant G(s), u is the plant 

input, y is the measured signal modulated by the disturbance 

input d and z is the controlled output.  

The controller K(s) can be realized by the following state 

space form 

yˆˆ kk BxAx                         (17) 

yˆ kk DxCu                      (18) 

The state space representation of the closed-loop plant is 

then given by 

dBχAχ clcl                     (19) 

dDCz clcl                           (20) 

 

Fig. 2 The closed-loop system along with mixed-sensitivity 

output disturbance attenuation based H∞ controller 
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The objective of the mixed-sensitivity problem is to find an 

internally stabilizing controller K(s) that minimizes the 

transfer function between‘d’ to ‘z’ and is given by 

   
zdT                                                          (22) 

In an LMI formulation, the equivalent objective (22) can be 

achieved in the sub-optimal sense if there exist a solution 
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is satisfied and the resulting controller design problem 

reduces to an LMI problem. 

In an LMI frame work a class of convex region of the 

complex plane called LMI region can be assigned by 

clustering all the closed-loop poles inside a conic sector (Fig. 

3) which ensures that the damping ratio of poles lying in this 

sector is at least
2

cos  . The problem therefore reduces to 

minimization of γ under LMI based H∞ control with pole 

placement constraints. Pole clustering in LMI regions can be 

formulated as an LMI optimization problem, a convex 

semidefinite programming that is easily tractable with 

interior-point optimization technique [17]. 

It is shown in [18] that the state matrix, Acl of the closed 

loop plant, has all its poles inside the conical sector if and only 

if there exists Xc = Xc
T  

> 0 such that 
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or equivalently this can be expressed in Kronecker product 

form as shown in (25) 

0][  T
clc

T
ccl AXηXAη                     (25) 

 

 
Fig. 3 Conic sector LMI region of closed loop poles 

where 




















2

θsin
2

θcos

2

θcos
2

θsin
η  

The inequalities in (23) and (25) are not jointly convex as 

the solutions Xcl ≠ Xc. The convexity can be accomplished by 

seeking a common solution, Xcl = Xc = Xd. It is to be noted that 

the inequalities in (23) and (25) contain non-linear terms Acl 

Xd and CclXd (Acl and Ccl contain unknown matrices of the 

controller in (17)-(18)) and the resulting problem therefore 

cannot be handled by LMI optimization directly. To convert 

the problem into a linear one, a change of controller variables 

is necessary. The detailed analysis of this transformation has 

been shown in [18]-[19] which give the following simplified 

LMI’s in terms of new controller variables: 
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The new controller variables are defined in [18] as 
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where Q, S, M and N are submatrices of Xd. The LMIs in 

(26)–(28) are solved for Â , B̂ , Ĉ and D̂  employing 

interior-point optimization methods. Once Â , B̂ , Ĉ and D̂ are 

obtained the controller variables kA , kB , kC and kD are 

recovered from Â , B̂ , Ĉ and D̂  by solving (29)-(32). 

IV. RESULTS AND PERFORMANCE STUDY 

A. Computation of Eigenvalues Prior to Application of H∞ 

TCSC controller 

The power system under consideration (Fig. 4) is widely 

used in literature [12] for study of small signal oscillations. 

The proposed system has a total 21 numbers of eigenvalues 

for the base case and is listed in Table I. Here 2 numbers of 

eigenvalues (mode #1) are identified as electromechanical 

swing modes [20]. It is evident that the damping ratio of this 



 

LMI Based Wide Area TCSC Controller in Mitigating Small Signal Oscillations 

142 

swing mode #1 is smallest compared to other modes and is 

referred to as the critical swing mode.  

 
Fig. 4.  WSCC 3 machine, 9 bus system with TCSC controller 

Therefore, behavior of this mode is of prime concern for the 

study of the small signal oscillation problem of the system. 

The TCSC has been installed in a line between bus #5 and # 7.  

The compensation of the TCSC was calculated to be 56%.  

B. Design of Robust Damping Controller  

The LMI formulation described in section III is now 

applied to the WSCC 3 machine, 9 bus study system. The 

original system has a total of 28 states including one state for 

the TCSC delay and three states for the transmission delay 

blocks. The corresponding LMI based controller would be of 

a higher order than this. The plant model is hence reduced to a 

6-th order equivalent using square-root balanced truncation 

technique [15]. Applying standard mixed-sensitivity problem 

guidelines, the weights W1(s) and W2 (s) are worked out to be: 

15150
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TABLE I 

EIGEN VALUES AT NOMINAL CASE 

# 
Eigen value  

(  ) 

Frequency 

( f ) Hz 

Damping 

ratio  (  ) 

1 -2.4892 ± j10.8650 1.7290 0.2233 

2 -5.1617 ± j11.2755 1.7943 0.4162 

3 -5.3063 ± j10.3299 1.6438 0.4569 

4 -5.6837 ± j10.3601 1.6486 0.4810 

5 -5.5957 ± j10.3330 1.6443 0.4762 

6 -2.5226 0 1.0000 

7 0.0000 0 1.0000 

8 -0.4087 ± j 0.8293 0.1320 0.4421 

9 -0.4759 ± j 0.5616 0.0894 0.6465 

10 -0.4164 ± j 0.6618 0.1053 0.5325 

11 -3.2258 0 1.0000 

12 -1.8692 0 1.0000 

13 -1.6667 0 1.0000 

 

The multiobjective H∞ synthesis program for disturbance 

rejection and control effort optimization feature of LMI was 

accessed by suitably chosen arguments of the function hinfmix 

of the LMI Toolbox in MATLAB [21]. The pole placement 

objective in LMI (24) has been achieved by defining the 

conical sector with o
2

5.67 , which provides a desired 

minimum damping 39.0  for all the closed-loop poles. 

 The order of the controller obtained from the LMI solution 

was equal to the reduced plant order plus the order of the 

weights, which was quite high posing difficulty in practical 

implementation. Therefore, the controller was reduced to a 

fourth-order one by the balanced truncation without 

significantly affecting the frequency response. The state 

variable representation of the three-input, one-output 

controller for the TCSC is given in the Appendix A.1. This 

reduced-order controller has been tested on the full order 

system against varying generations and load power changes.  

C.  Robust Performance Evaluation of the WAM Controller 

To examine robust performance of the WAM controller, an 

eigenvalue analysis of the system has been carried out under 

different operating scenarios. At first, the real and reactive 

power demand at bus #5 is increased to 20 % and next to 50 % 

from its nominal value. It has been observed that with this 

variation of load, damping ratio is reduced significantly but a 

satisfactory enhancement of damping has been achieved with 

installation of the WAM based TCSC controller. Secondly, 

the effect of generation drop on small signal oscillations of the 

system has been investigated by reducing the total real power 

generation of Gen #2 and # 3 together to 20 % and further to 

40%. It has been found that the damping ratio and hence the 

stability of the system has been deteriorated with generation 

drop and improved adequately in the presence of the 

controller. Table II contains the results for both without and 

with control conditions.  

The performance robustness of the controller is further 

demonstrated by plotting the angular speed response of 

machine #2 for simulation time 7 sec (Fig. 5). It has been 

observed that the obtained LMI based WAM TCSC controller 

imparted acceptable settling time for both the cases of 

disturbances. Therefore, the performance of the designed 

TCSC controller appears to be robust and adequate against 

varying operating conditions. 

TABLE II 

DAMPING RATIO OF THE CRITICAL SWING MODE  

WITHOUT AND WITH WAM CONTROLLER 

Power system disturbances 

Damping ratio 

Without 

control 

With WAM 

TCSC 

controller 

Load 

increase 

20 % 

(PL= 1.50 , 

QL= 0.6) 

0.21856 0.27482 

50 % 

(PL= 1.87, 

QL= 0.75) 

0.20899 0.2509 

Generation 

drop 

Total 20 % 0.21126 0.26594 

Total 40 % 0.19489 0.23227 
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Fig. 5 (a) Dynamic response for load increase 50 %   

at bus #5 

 

Fig. 5 (b) Dynamic response for gen. drop total 40 % of 

Gen #2 & Gen #3 

V. THEORY OF WIDE AREA MEASUREMENT (WAM) 

The wide area signals measured form remote power system 

substation can be transmitted to the centralized TCSC 

controller by fibre optic or Ethernet communication with 

secure and reliably. One of the major concerns of wide area 

communication is the transportation delay. The delays for the 

remote signals were modelled here by a first-order filter in the 

controller feedback and incorporated with the system states. 

In this work a uniform delay of value maximium 0.5s has been 

assumed for all remote signals. 

It is to be noted that this communication delay is overcome 

nowadays by synchronizing wide area measured signals with 

Global Position Satellite System (GPS) technology. The 

measured synchronized speed signals (Δω) form remote 

substations may be transmitted over a dedicated 

communication line through the modems to the centralized 

controller. A 4800 or 9600 baud communication line can 

support the transmission at the rate of about every 2-5 cycles 

(40 – 100 msec) of the fundamental frequency (50 Hz). 

Considering that the usual power system dynamic phenomena 

fall in the range of 0.2 - 2.5 Hz, it is possible to observe and 

control in real-time the power system dynamic phenomena 

with high fidelity at the control centre.   

VI. CONCLUSIONS 

In this paper the design of a mixed-sensitivity based H∞ 

controller in LMI framework is proposed for robust damping 

of a critical swing mode of a multimachine power system. The 

wide-area measurement based TSO robust damping controller 

is designed for a TCSC considering remote inputs as machine 

speed. The signal transmission delays for the remote 

measurement signals were incorporated by modelling it to an 

equivalent first-order filter. The robust performance of the 

controller has been verified through eigenvalue as well as the 

time domain analysis against small and wide variations of 

power system disturbances. The proposed technique can be 

implemented for the design of other WAM based FACTS 

controllers. 

 APPENDIX A 

A.1 LMI based WAM TISO TCSC controller 

The state-space representation of the three-input, 

one-output WAM controller for the TCSC  
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A.2 Parameters of PSS and TCSC module 

PSSK = 10 (PSS gain); 
PSS

T1 = 0.4 sec. (lead time);    

PSS
T2 = 0.15 sec. (lag time);  XL = 0.00491 pu;  

XC = 0.02835 pu; TCSCT =17 ms. (TCSC internal delay). 
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