

Training Products of Experts by

Minimizing Contrastive
Divergence�

Geoffrey E. Hinton

presented by Yuxiong Wang

10/21/2013

Goal
§  Learn parameters for probability distribution models of high

dimensional data
•  (Images, Population Firing Rates, Securities Data, NLP data, etc)

Mixture Model

Use EM to learn parameters

Product of Experts

Use Contrastive Divergence to learn
parameters

()
()
()∑∏

∏
=

c m
mm

m
mm

n cf

df
dp







…


θ

θ
θθ

|

|
,,| 1() ()∑=

m
mmmn dfdp θαθθ |,,| 1


…



Outline

Products of Experts 1

What & Why is CD? 2

How does CD Work? 3

More concrete Analysis 4

 Other Issues 5

Outline

Products of Experts 1

What & Why is CD? 2

How does CD Work? 3

More concrete Analysis 4

 Other Issues 5

How to combine simple density models
§  Suppose we want to build a model of a

complicated data distribution by combining
several simple models. What combination
rule should we use?

§  Mixture models take a weighted sum of the
distributions
•  Easy to learn
•  The combination is always vaguer than

the individual distributions
§  Products of Experts multiply the distributions

together and renormalize
•  The product is much sharper than the

individual distributions
•  A nasty normalization term is needed to

convert the product of the individual
densities into a combined density

p(d) = αm fm
m
∑ (d)

p(d) =
fm (d)

m
∏

fm (c)
m
∏

c
∑

mixing
proportion

A picture of the two combination methods
Mixture model:
Scale each
distribution down
and add them
together

OR operation

Soft Template

Product model:
Multiply the two
densities together
at every point and
then renormalize

ADD Operation

Soft Constraint

Products of Experts and energies
§  Products of Experts multiply probabilities together. This

is equivalent to adding log probabilities.
•  Mixture models add contributions in the probability

domain.
•  Product models add contributions in the log

probability domain. The contributions are energies.
§  In a mixture model, the only way a new component can

reduce the density at a point is by stealing mixing
proportion.

§  In a product model, any expert can veto any point by
giving that point a density of zero (i.e. an infinite energy)
•  So its important not to have overconfident experts in a

product model.
•  Luckily, vague experts work well because their

product can be sharp.

How sharp are products of experts?

§  If each of the M experts is a Gaussian with the
same variance, the product is a Gaussian with
a variance of 1/M on each dimension.

§  But a product of lots of Gaussians is just a
Gaussian
•  Adding Gaussians allows us to create arbitrarily

complicated distributions.
•  Multiplying Gaussians doesn’t.
•  So we need to multiply more complicated
“experts”.

“Uni-gauss” experts
§  Each expert is a mixture of a

Gaussian and a uniform. This
creates an energy dimple.

p(x)

E(x) = - log p(x)

r
xNxp m

mm
ππ −+= 1)|()(Σµ,

Mixing
proportion
of Gaussian

Mean and
variance of
Gaussian

range of
uniform

Gaussian
uniform

Combining energy dimples
§  When we combine dimples, we get a sharper distribution if

the dimples are close and a vaguer, multimodal distribution
if they are further apart. We can get both multiplication and
addition of probabilities.

E(x) = - log p(x) AND

OR

Generating from a product of experts

§  Here is a correct but inefficient way to generate an
unbiased sample from a product of experts:
•  Let each expert produce a datavector independently.
•  If all the experts agree, output the datavector.
•  If they do not all agree, start again.

§  The experts generate independently, but because of the
rejections, their hidden states are not independent in the
ensemble of accepted cases.
•  The proportion of rejected attempts implements the

normalization term.

Relationship to causal generative models

§  Consider the relationship between the
hidden variables of two different experts:

Causal Product
model of experts

Hidden states
unconditional
on data

Hidden states
conditional on
data

independent
(generation is
easy)

independent
(inference is
easy)

dependent
(rejecting away)

dependent
(explaining away)

Outline

Products of Experts 1

What & Why is CD? 2

How does CD Work? 3

More concrete Analysis 4

 Other Issues 5

Learning a Product of Experts

§  Let’s first trace back to the general case of
•  Probability Modeling
•  Model Parameter Learning

Probability Modeling

§  Model the probability of a data point x using
a function of the form f(x; Θ)
•  Θ is a vector of model parameters
•  p(x; Θ) must integrate to 1 over all x
•  partition function: Z(Θ)

Model Parameter Learning

§  Maximizing the probability of a training set of
data X = x1,..,K

§  Equivalently, minimizing energy E(X; Θ): the
negative log of p(X; Θ)

§  Maximum-Likelihood learning

Energy Function Minimization
§  Case I
§  Single model
§  exact minimization

•  f(x; Θ): normal distribution
•  log Z(Θ) = 0

§  Case II
§  sum-of-experts or mixture model
§  Parameters from different models couple
§  use the partial differential equations and a gradient descent method

with line search to find a local minimum of energy in the parameter
space
•  Sum of N normal distributions
•  log Z(Θ) = log N

Energy Function Minimization

§  Case III
§  product-of-experts model
§  The partition function Z(Θ) is no longer a

constant
•  product of N normal distributions
•  a model consisting of two normal distributions, both with σ = 1. If
µ1 = −∞ and µ2 = ∞ then Z(Θ) = 0, while if µ1 = µ2 = 0 then Z(Θ) =
½√π

§  Integration in Z(Θ) is not algebraically
tractable

Energy Function Minimization
§  Case III
§  New situations:
§  Need to

•  use a numerical integration method to evaluate E(X; Θ)
•  use finite differences to calculate the gradient at a given point

in parameter space
•  Use a gradient descent method to find a local minimum

§  For high dimensional data spaces the integration time is
crippling, and a high-dimensional parameter space
compounds this problem

§  This leads to a situation where we are trying to minimize
an energy function that we cannot evaluate.

Solutions---CD!!!

§  Even though we cannot evaluate the energy
function itself

§  Contrastive Divergence (CD) provides a way
to estimate the gradient of the energy
function!

Outline

Products of Experts 1

What & Why is CD? 2

How does CD Work? 3

More concrete Analysis 4

 Other Issues 5

How does CD work?

§  The partial derivative

<·>X is the expectation of · given the data distribution X.

How does CD work?

§  The first term

How does CD work?

§  This integration is generally algebraically

intractable.
§  However, here it can be numerically

approximated by drawing samples from the
proposed distribution, p(x; Θ)

§  But, wait …

How does CD work?
§  Samples cannot be drawn directly from p(x; Θ)

as we do not know the value of the partition
function

§  Use many cycles of Markov Chain Monte Carlo
(MCMC) sampling to transform our training
data (drawn from the target distribution) into
data drawn from the proposed distribution.

§  This is possible as the transformation only
involves calculating the ratio of two
probabilities p(x’; Θ)/p(x; Θ), so the partition
function cancels out

How does CD work?

§  MCMC
§  Xn represents the training data transformed

using n cycles of MCMC, such that X0 ≡ X

§  Still ….
§  Many MCMC cycles required to compute an

accurate gradient will take far too long

How does CD work?

§  Hinton’s assertion: only a few MCMC cycles
would be needed to calculate an approximate
gradient
•  After a few iterations the data will have moved from

the target distribution (i.e. that of the training data)
towards the proposed distribution

•  And so give an idea in which direction the proposed
distribution should move to better model the training
data.

§  Empirically, even 1 cycle of MCMC is sufficient
for the algorithm to converge

How does CD work?

§  Parameter update equation can be written
as

Outline

Products of Experts 1

What & Why is CD? 2

How does CD Work? 3

More concrete Analysis 4

 Other Issues 5

Brief Summary

§  Contrastive divergence is a general MCMC
gradient ascent learning algorithm particularly
well suited to learning Product of Experts (PoE)
and energy- based (Gibbs distributions, etc.)
model parameters.

§  The general algorithm:
•  Repeat Until “Convergence”

§  Draw samples from the current model starting from the training data.
§  Compute the expected gradient of the log probability w.r.t. all model

parameters over both samples and the training data.
§  Update the model parameters according to the gradient.

Sampling – Critical to
Understanding

§  Uniform
•  rand() Linear Congruential Generator

§  x(n) = a * x(n-1) + b mod M
0.2311 0.6068 0.4860 0.8913 0.7621 0.4565 0.0185

§  Normal
•  randn() Box-Mueller

§  x1,x2 ~ U(0,1) -> y1,y2 ~N(0,1)
•  y1 = sqrt(- 2 ln(x1)) cos(2 pi x2)
•  y2 = sqrt(- 2 ln(x1)) sin(2 pi x2)

§  Binomial(p)
•  if(rand()<p)

§  More Complicated Distributions
•  Mixture Model

§  Sample from a Gaussian
§  Sample from a multinomial (CDF + uniform)

•  Product of Experts
§  Metropolis and/or Gibbs

The Flavor of Metropolis
Sampling

§  Given some distribution , a random
starting point , and a symmetric proposal
distribution .

§  Calculate the ratio of densities
 where is sampled from the proposal

distribution.
§  With probability accept .
§  Given sufficiently many iterations

()θ|dp 
1−td


()1| −tt ddJ


()
()θ

θ
|
|

1−

=
t

t

dp
dpr 


td


)1,min(r
td


{ } ()θ|~,,, 21 dpddd nnn


…


++

Only need to
know the
distribution up
to a
proportionality!

Contrastive Divergence (Final
Result!)

10

loglog

θ
θθ

θ θθ

PmPm
m

mm
ff

∂
∂

−
∂

∂
∝Δ

∑∑ ∂
∂

−
∂

∂
∝Δ

∈ 1~D

)(log1)(log1

θ
θθ

θ θθ

Pc md m
m

cf
N

df
N

mm

Law of Large Numbers, compute
expectations using samples.

Now you know how to do it, let’s see why this works!

Model
parameters.

Training data
(empirical distribution).

Samples from
model.

But First: The last vestige of
concreteness.

§  Looking towards the future:
•  Take f to be a Student-t.

•  Then (for instance)

() ()
() mmm

m

dj
dfdf

m

j ααθ

⎟
⎠
⎞⎜

⎝
⎛ +

==





T
;

2
11

1

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α = .6, j = 5

1-D Student-t Expert

1/
(1

+.
5*

(jt x
))α

() ()
()⎟

⎠
⎞⎜

⎝
⎛ +−=

∂

⎟
⎠
⎞⎜

⎝
⎛ +∂−

=
∂

∂
dj

djdf
m

m

mm

m

jmm





T

T

;

2
11log2

11loglog
α

α

α
α

Dot product óProjection ó1-D Marginal

Maximizing the training data log
likelihood

§  We want maximizing parameters

§  Differentiate w.r.t. to all parameters and
perform gradient ascent to find optimal
parameters.

§  The derivation is somewhat nasty.

()
()∏ ∑∏

∏
∈ ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

D,,
1

,, |

|
logmaxarg),,|(Dlogmaxarg

11 d
c m

mm

m
mm

n cf

df
p

nn



……





…
θ

θ
θθ

θθθθ

Assuming d’s drawn
independently from p()

Standard PoE form

Over all training data.

Maximizing the training data log
likelihood

m

d
n

m

n

dp
p

θ

θθ

θ
θθ

∂

∂
=

∂
∂ ∏

∈D
1

1

),,|(log
),,|(Dlog 

…


…

∑
∈ ∂

∂=
D

1),,|(log
d

n
m

dp


…


θθ
θ

∞∂
∂=

θ
θ

θθ

Pm

ndpN),,|(log 1 …


Remember this
equivalence!

Maximizing the training data log
likelihood

=
∂

∂

m

np
N θ

θθ),,|(Dlog1 1 …

() ()

m

c m
mm

d m

mm
cf

df
N θ

θ

θ
θ

∂

∂
−

∂
∂=

∑ ∏
∑
∈





 |log
|log1

D

∏∑∏
∏

∈∂
∂

D)|(

)|(
log1

d
c m

mm

m
mm

m cf

df

N 






θ

θ

θ

() ()
∑

∑ ∏
∑

∈∈ ∂

∂
−

∂
∂=

DD

|log
1|log1
d m

c m
mm

d m

mm
cf

N
df

N 







θ

θ

θ
θ

Maximizing the training data log
likelihood

() ()

m

c m
mm

Pm

mm

cf
df

θ

θ

θ
θ

∂

∂
−

∂
∂=

∑ ∏

 |log
|log

0

() ()

m

c m
mm

d m

mm
cf

df
N θ

θ

θ
θ

∂

∂
−

∂
∂=

∑ ∏
∑
∈



 |log
|log1

D

()
()

()

m

c m
mm

c m
mmPm

mm
cf

cf
df

θ

θ

θθ
θ

∂

∂
−

∂
∂=

∑ ∏
∑ ∏









 |

|
1|log

0

log(x)’ = x’/ x

Maximizing the training data log
likelihood

()
()

()

m

c m
mm

c m
mmPm

mm
cf

cf
df

θ

θ

θθ
θ

∂

∂
−

∂
∂=

∑ ∏
∑ ∏









 |

|
1|log

0

()
()

() ()

m

mm
mj

jj
c

c m
mmPm

mm

cfcf

cf
df

θ

θθ

θθ
θ

∂

∂
−

∂
∂=

∏∑
∑ ∏

≠

||

|
1|log

0










()
()

() ()

m

mm
m

mm
c

c m
mmPm

mm
cfcf

cf
df

θ

θθ

θθ
θ

∂

∂
−

∂
∂=

∏∑
∑ ∏

|log|

|
1|log

0










log(x)’ = x’/x

Maximizing the training data log
likelihood

()
()

() ()

m

mm
m

mm
c

c m
mmPm

mm
cfcf

cf
df

θ

θθ

θθ
θ

∂

∂
−

∂
∂=

∏∑
∑ ∏

|log|

|
1|log

0










() ()
()

()∑ ∑ ∏
∏

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂
∂−

∂
∂=

c m

mm

c m
mm

m
mm

Pm

mm cf
cf

cf
df









θ
θ

θ

θ

θ
θ |log

|

|
|log

0

() ()∑ ∂
∂−

∂
∂=

c m

mm
n

Pm

mm cfcpdf



…




θ
θθθ

θ
θ |log),,|(|log

1
0

Maximizing the training data log
likelihood

() ()
∞

∂
∂−

∂
∂=

θ
θ

θ
θ

θ

Pm

mm

Pm

mm cfdf |log|log
0



() ()∑ ∂
∂−

∂
∂=

c m

mm
n

Pm

mm cfcpdf
θ

θθθ
θ

θ |log),,|(|log
1

0


…



Phew! We’re done! So:

() ()
∞

∂
∂−

∂
∂∝

θ
θ

θ
θ

θ

Pm

mm

Pm

mm cfdf |log|log
0



()
0

|log

Pm

mdpN
θ

θθ

∂
∂⇔

∞


m

np
θ

θθ
∂

∂),,|(Dlog 1 …

Equilibrium Is Hard to Achieve
§  With:

 we can now train our PoE model.
§  But… there’s a problem:

•  is computationally infeasible to obtain (esp. in
an inner gradient ascent loop).

•  Sampling Markov Chain must converge to target
distribution. Often this takes a very long time!

() ()
∞

∂
∂−

∂
∂∝

θ
θ

θ
θ

θ

Pm

mm

Pm

mm cfdf |log|log
0



m

np
θ

θθ
∂

∂),,|(Dlog 1 …

∞
θP

Solution: Contrastive Divergence!

§  Now we don’t have to run the sampling Markov
Chain to convergence, instead we can stop
after 1 iteration (or perhaps a few iterations
more typically)

§  Why does this work?
•  Attempts to minimize the ways that the model

distorts the data.

() ()
10

|log|log

θ
θ

θ
θ

θ

Pm

mm

Pm

mm cfdf
∂

∂−
∂

∂∝


m

np
θ

θθ
∂

∂),,|(Dlog 1 …

Equivalence of argmax log P() and argmin KL()

() ()
()dP
dPdPPP

d





 ∞

∞ ∑=
θ

θ

0
00 log

() () () ()dPdPdPdP
dd




∞∑∑ −= θloglog 000

= −H P0()− logPθ

∞

d()

P0

()
0

log
0

Pmm

dPPP
θθ

θθ

∂
∂−=

∂

∂ ∞∞ 

This is what
we got out of
the nasty
derivation!

 log p(D |θ1,…,θn)

Contrastive divergence
 Aim is to minimize the amount by which a

step toward equilibrium improves the data
distribution.

)||()||(1 ∞∞ −= QQKLQPKLCD

Minimize
Contrastive
Divergence

Minimize divergence
between data
distribution and
model’s distribution

Maximize the
divergence between
confabulations and
model’s distribution

 data
distribution

model’s
distribution

distribution after
one step of
Markov chain

Contrastive Divergence

−
∂

∂θm

P0 Pθ
∞ − Pθ

1 Pθ
∞() = ∂log fm


d |θm()

∂θm P0

−
∂log fm


d |θm()

∂θm Pθ
1

+ ∂Pθ
1

∂θm

∂ Pθ
1 Pθ

∞()
∂Pθ

1

∝
∂log fm


d |θm()

∂θm
P0

−
∂log fm


d |θm()

∂θm
Pθ
1

§  We want to “update the parameters to
reduce the tendency of the chain to wander
away from the initial distribution on the first
step”.

Contrastive divergence

∞

∞

><><

><><

∂
∂+

∂
∂−=

∂
∂−

∂
∂+

∂
∂−=

∂
∂−

∞

∞

QQ

QQ

EEQQKL

EEQQKL

θθθ

θθθ

1

0

)||(

)||(

1

0

1

11)||(
Q
QQKLQ

∂
∂

∂
∂−

∞

θ

changing the
parameters
changes the
distribution of
confabulations

Contrastive
divergence
makes the
awkward
terms cancel

Contrastive Divergence (Final
Result!)

10

loglog

θ
θθ

θ θθ

PmPm
m

mm
ff

∂
∂

−
∂

∂
∝Δ

∑∑ ∂
∂

−
∂

∂
∝Δ

∈ 1~D

)(log1)(log1

θ
θθ

θ θθ

Pc md m
m

cf
N

df
N

mm

Law of Large Numbers, compute
expectations using samples.

Now you know how to do it and why it works!

Model
parameters.

Training data
(empirical distribution).

Samples from
model.

A shortcut
§  Only run the Markov chain for a few time steps.

•  This gets negative samples very quickly.
•  It works well in practice.

§  Why does it work?
•  If we start at the data, the Markov chain wanders

away from them data and towards things that it likes
more.

•  We can see what direction it is wandering in after only
a few steps. It’s a big waste of time to let it go all the
way to equilibrium.

•  All we need to do is lower the probability of the
“confabulations” it produces and raise the
probability of the data. Then it will stop wandering
away.
§  The learning cancels out once the confabulations and the

data have the same distribution.

A shortcut

§  A cheaper, lower-variance alternative
§  This approximation as trading variance for bias
§  Thus, at convergence, we do not expect
§  that the estimates of the parameters are equal

to those of maximum likelihood learning, but
will be slightly biased

§  To correct this, one can increase k close to
convergence

Outline

Products of Experts 1

What & Why is CD? 2

How does CD Work? 3

More concrete Analysis 4

 Other Issues 5

Simple Cases

§  Data distributions
 that can be factorized
 into a product of
 lower-dimensional
 distributions
§  Each expert is quite
 broadly tuned on
 every dimension

Simple Cases

The Markov chain for unigauss experts

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

Each hidden unit has a binary state which is 1 if the unigauss chose its
Gaussian. Start with a training vector on the visible units. Then alternate
between updating all the hidden units in parallel and updating all the
visible units in parallel.

Update the hidden states by picking from the posterior.

Update the visible states by picking from the Gaussian you get when you
multiply together all the Gaussians for the active hidden units.

a fantasy

Restricted Boltzmann Machines
§  We restrict the connectivity to

make inference and learning
easier.
•  Only one layer of hidden

units.
•  No connections between

hidden units.
§  In an RBM it only takes one

step to reach thermal
equilibrium when the visible
units are clamped.
•  So we can quickly get the

exact value of :

∑
+

=
∈

+−
=

visi
ijij wsb

j

e

sp)(
1

1)(1

v>< jiss

hidden

visible i

j

Restricted Boltzmann Machines and products
of experts

Boltzmann
machines

Products
of experts

RBM’s

A picture of the Boltzmann machine learning
algorithm for an RBM

0>< jiss
1>< jiss

∞>< jiss

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

)(0 ∞><−><=Δ jijiij ssssw ε

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

a fantasy

The short-cut

0>< jiss
1>< jiss

i

j

i

j

t = 0 t = 1

Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it works very well.

reconstruction data

)(10 ><−><=Δ jijiij ssssw ε

Relationship to Independent and
Extreme Components Analysis

§  Noiseless Independent Components Analysis (ICA) with an
equal number of input dimensions and source distributions
can be written as a PoE model

§  Choosing the heavy tailed Student-T distributions as the
experts one obtains the general form of the ”Products of
Student-T” distribution (PoT)

Relationships to Others

§  Products of Hidden Markov Models
§  Relationship to Boosting
§  Relationship to Analysis-by-Synthesis
§ ….

Thanks!

