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Goal 
§  Learn parameters for probability distribution models of high 

dimensional data 
•   (Images, Population Firing Rates, Securities Data, NLP data, etc) 

Mixture Model 
 
 
 
 

Use EM to learn parameters 

Product of Experts 
 
 
 
 

Use Contrastive Divergence to learn 
parameters 
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How to combine simple density models 
§  Suppose we want to build a model of a 

complicated data distribution by combining 
several simple models. What combination 
rule should we use? 

§  Mixture models take a weighted sum of the 
distributions 
•  Easy to learn 
•  The combination is always vaguer than 

the individual distributions 
§  Products of Experts multiply the distributions 

together and renormalize 
•  The product is much sharper than the 

individual distributions 
•  A nasty normalization term  is needed to 

convert the product of the individual 
densities into a combined density 

p(d) = αm fm
m
∑ (d)

p(d) =
fm (d)

m
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A picture of the two combination methods 
Mixture model: 
Scale each 
distribution down 
and add them 
together 

OR operation 

Soft Template 

Product model: 
Multiply the two 
densities together 
at every point and 
then renormalize 

ADD Operation 

Soft Constraint 



Products of Experts and energies 
§  Products of Experts multiply probabilities together. This 

is equivalent to adding log probabilities. 
•   Mixture models add contributions in the probability 

domain. 
•  Product models add contributions in the log 

probability domain. The contributions are energies. 
§  In a mixture model, the only way a new component can 

reduce the density at a point is by stealing mixing 
proportion. 

§  In a product model, any expert can veto any point by 
giving that point a density of zero (i.e. an infinite energy)  
•  So its important not to have overconfident experts in a 

product model. 
•  Luckily, vague experts work well because their 

product can be sharp. 



How sharp are products of experts? 

§  If each of the M experts is a Gaussian with the 
same variance, the product is a Gaussian with 
a variance of 1/M on each dimension. 

§  But a product of lots of Gaussians is just a 
Gaussian 
•  Adding Gaussians allows us to create arbitrarily 

complicated distributions. 
•  Multiplying Gaussians doesn’t. 
•  So we need to multiply more complicated 
“experts”. 



“Uni-gauss” experts 
§  Each expert is a mixture of a 

Gaussian and a uniform. This 
creates an energy dimple. 

p(x) 

E(x) = - log p(x) 

r
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mm
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Combining energy dimples 
§  When we combine dimples, we get a sharper distribution if 

the dimples are close and a vaguer, multimodal distribution 
if they are further apart. We can get both multiplication and 
addition of probabilities.  

E(x) = - log p(x) AND 

OR 



Generating from a product of experts 

§  Here is a correct but inefficient way to generate an 
unbiased sample from a product of experts: 
•  Let each expert produce a datavector independently.  
•  If all the experts agree, output the datavector. 
•  If they do not all agree, start again. 

§  The experts generate independently, but because of the 
rejections, their hidden states are not independent in the 
ensemble of accepted cases. 
•  The proportion of rejected attempts implements the 

normalization term. 



Relationship to causal generative models 

§  Consider the relationship between the 
hidden variables of two different experts: 

Causal            Product      
model             of experts 

Hidden states 
unconditional 
on data 

Hidden states 
conditional on 
data 

independent 
(generation is 
easy) 

independent 
(inference is 
easy) 

dependent 
(rejecting away) 

dependent 
(explaining away) 
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Learning a Product of Experts 

§  Let’s first trace back to the general case of 
•  Probability Modeling 
•  Model Parameter Learning 



Probability Modeling 

§  Model the probability of a data point x using 
a function of the form f(x; Θ)  
•  Θ is a vector of model parameters 
•  p(x; Θ) must integrate to 1 over all x 
•  partition function: Z(Θ) 



Model Parameter Learning 

§  Maximizing the probability of a training set of 
data X = x1,..,K 

§  Equivalently, minimizing energy E(X; Θ): the 
negative log of p(X; Θ) 

§  Maximum-Likelihood learning 

 



Energy Function Minimization  
§  Case I 
§  Single model 
§  exact minimization 

•  f(x; Θ): normal distribution 
•  log Z(Θ) = 0 

§  Case II 
§  sum-of-experts or mixture model 
§  Parameters from different models couple 
§  use the partial differential equations and a gradient descent method 

with line search to find a local minimum of energy in the parameter 
space 
•  Sum of N normal distributions 
•  log Z(Θ) = log N 



Energy Function Minimization  

§  Case III 
§  product-of-experts model 
§  The partition function Z(Θ) is no longer a 

constant 
•  product of N normal distributions 
•  a model consisting of two normal distributions, both with  σ = 1. If 
µ1 = −∞ and µ2 = ∞ then Z(Θ) = 0, while if µ1 = µ2 = 0 then Z(Θ) = 
½√π 

§  Integration in Z(Θ) is not algebraically 
tractable 



Energy Function Minimization  
§  Case III 
§  New situations: 
§  Need to  

•  use a numerical integration method to evaluate E(X; Θ) 
•  use finite differences to calculate the gradient at a given point 

in parameter space 
•  Use a gradient descent method to find a local minimum 

§  For high dimensional data spaces the integration time is 
crippling, and a high-dimensional parameter space 
compounds this problem 

§  This leads to a situation where we are trying to minimize 
an energy function that we cannot evaluate. 



Solutions---CD!!! 

§  Even though we cannot evaluate the energy 
function itself 

§  Contrastive Divergence (CD) provides a way 
to estimate the gradient of the energy 
function! 
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How does CD work? 

§  The partial derivative 

<·>X is the expectation of · given the data distribution X. 



How does CD work? 
 

§  The first term 



How does CD work? 

 
§  This integration is generally algebraically 

intractable.  
§  However, here it can be numerically 

approximated by drawing samples from the 
proposed distribution, p(x; Θ) 

§  But, wait … 



How does CD work? 
§  Samples cannot be drawn directly from p(x; Θ) 

as we do not know the value of the partition 
function 

§  Use many cycles of Markov Chain Monte Carlo 
(MCMC) sampling to transform our training 
data (drawn from the target distribution) into 
data drawn from the proposed distribution.  

§  This is possible as the transformation only 
involves calculating the ratio of two 
probabilities p(x’; Θ)/p(x; Θ), so the partition 
function cancels out 



How does CD work? 

§  MCMC 
§  Xn represents the training data transformed 

using n cycles of MCMC, such that X0 ≡ X 

§   Still …. 
§  Many MCMC cycles required to compute an 

accurate gradient will take far too long 



How does CD work? 

§  Hinton’s assertion: only a few MCMC cycles 
would be needed to calculate an approximate 
gradient 
•  After a few iterations the data will have moved from 

the target distribution (i.e. that of the training data) 
towards the proposed distribution 

•  And so give an idea in which direction the proposed 
distribution should move to better model the training 
data.  

§  Empirically, even 1 cycle of MCMC is sufficient 
for the algorithm to converge 



How does CD work? 

§  Parameter update equation can be written 
as 
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Brief Summary 

§  Contrastive divergence is a general MCMC 
gradient ascent learning algorithm particularly 
well suited to learning Product of Experts (PoE) 
and energy- based (Gibbs distributions, etc.) 
model parameters. 

§  The general algorithm: 
•  Repeat Until “Convergence” 

§  Draw samples from the current model starting from the training data. 
§  Compute the expected gradient of the log probability w.r.t. all model 

parameters over both samples and the training data. 
§  Update the model parameters according to the gradient. 



Sampling – Critical to 
Understanding 

§  Uniform 
•  rand()        Linear Congruential Generator 

§  x(n) = a * x(n-1) + b mod M      
0.2311    0.6068    0.4860    0.8913    0.7621    0.4565    0.0185 

§  Normal 
•  randn()   Box-Mueller  

§  x1,x2 ~ U(0,1) -> y1,y2 ~N(0,1) 
•  y1 = sqrt( - 2 ln(x1) ) cos( 2 pi x2 )  
•  y2 = sqrt( - 2 ln(x1) ) sin( 2 pi x2 )  

§  Binomial(p)   
•  if(rand()<p) 

§  More Complicated Distributions 
•  Mixture Model 

§  Sample from a Gaussian 
§  Sample from a multinomial (CDF + uniform) 

•  Product of Experts 
§  Metropolis and/or Gibbs 



The Flavor of Metropolis 
Sampling 

§  Given some distribution            , a random 
starting point     , and a symmetric proposal 
distribution              . 

§  Calculate the ratio of densities 
    where     is sampled from the proposal 

distribution. 
§  With probability            accept    . 
§  Given sufficiently many iterations 
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Contrastive Divergence (Final 
Result!) 
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Law of Large Numbers, compute 
expectations using samples. 

Now you know how to do it, let’s see why this works! 

Model 
parameters. 

Training data 
(empirical distribution). 

Samples from 
model. 



But First:  The last vestige of 
concreteness. 

§  Looking towards the future: 
•  Take f to be a Student-t. 

•  Then (for instance) 
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Maximizing the training data log 
likelihood 

§  We want maximizing parameters 

 
 
 
 
 
 

§  Differentiate w.r.t. to all parameters and 
perform gradient ascent to find optimal 
parameters. 

§  The derivation is somewhat nasty. 
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Maximizing the training data log 
likelihood 
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Maximizing the training data log 
likelihood 
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Maximizing the training data log 
likelihood 
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Maximizing the training data log 
likelihood 
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Maximizing the training data log 
likelihood 
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Maximizing the training data log 
likelihood 
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Equilibrium Is Hard to Achieve 
§  With: 

    we can now train our PoE model.   
§  But… there’s a problem: 

•        is computationally infeasible to obtain (esp. in 
an inner gradient ascent loop). 

•  Sampling Markov Chain must converge to target 
distribution.  Often this takes a very long time! 
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Solution: Contrastive Divergence! 

§  Now we don’t have to run the sampling Markov 
Chain to convergence, instead we can stop 
after 1 iteration (or perhaps a few iterations 
more typically) 

§  Why does this work? 
•  Attempts to minimize the ways that the model 

distorts the data. 
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Equivalence of argmax log P() and argmin KL() 
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Contrastive divergence 
   Aim is to minimize the amount by which a 

step toward equilibrium improves the data 
distribution. 

)||()||( 1 ∞∞ −= QQKLQPKLCD

Minimize 
Contrastive 
Divergence 

Minimize divergence 
between data 
distribution and 
model’s distribution 

Maximize the 
divergence between 
confabulations and 
model’s distribution  

     data 
distribution 

model’s 
distribution 

distribution after 
one step of 
Markov chain 



Contrastive Divergence 
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Contrastive divergence 
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Contrastive Divergence (Final 
Result!) 
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Now you know how to do it and why it works! 

Model 
parameters. 

Training data 
(empirical distribution). 

Samples from 
model. 



A shortcut 
§  Only run the Markov chain for a few time steps. 

•  This gets negative samples very quickly. 
•  It works well in practice. 

§  Why does it work? 
•  If we start at the data, the Markov chain wanders 

away from them data and towards things that it likes 
more.  

•  We can see what direction it is wandering in after only 
a few steps. It’s a big waste of time to let it go all the 
way to equilibrium. 

•  All we need to do is lower the probability of the 
“confabulations” it produces and raise the 
probability of the data. Then it will stop wandering 
away.  
§  The learning cancels out once the confabulations and the 

data have the same distribution. 



A shortcut 

§  A cheaper, lower-variance alternative 
§  This approximation as trading variance for bias 
§  Thus, at convergence, we do not expect 
§  that the estimates of the parameters are equal 

to those of maximum likelihood learning, but 
will be slightly biased 

§  To correct this, one can increase k close to 
convergence 
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Simple Cases 

§  Data distributions  
  that can be factorized 
  into a product of  
  lower-dimensional  
  distributions 
§  Each expert is quite  
  broadly tuned on  
  every dimension 



Simple Cases 



The Markov chain for unigauss experts 
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t = 0                 t = 1                  t = 2                               t = infinity 

Each hidden unit has a binary state which is 1 if the unigauss chose its 
Gaussian. Start with a training vector on the visible units. Then alternate 
between updating all the hidden units in parallel and updating all the 
visible units in parallel. 

Update the hidden states by picking from the posterior. 

Update the visible states by picking from the Gaussian you get when you 
multiply together all the Gaussians for the active hidden units. 

a fantasy 



Restricted Boltzmann Machines 
§  We restrict the connectivity to 

make inference and learning 
easier. 
•  Only one layer of hidden 

units. 
•  No connections between 

hidden units. 
§  In an RBM it only takes one 

step to reach thermal 
equilibrium when the visible 
units are clamped. 
•  So we can quickly get the 

exact value of : 
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Restricted Boltzmann Machines and products 
of experts 

Boltzmann 
machines 

Products 
of experts 

RBM’s 



A picture of the Boltzmann machine learning 
algorithm for an RBM 
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t = 0                 t = 1                  t = 2                               t = infinity 
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Start with a training vector on the visible units. 

Then alternate between updating all the hidden units in 
parallel and updating all the visible units in parallel. 

a fantasy 



The short-cut 
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t = 0                 t = 1    

Start with a training vector on the 
visible units. 

Update all the hidden units in 
parallel 

Update the all the visible units in 
parallel to get a “reconstruction”. 

Update the hidden units again.  

This is not following the gradient of the log likelihood. But it works very well. 

reconstruction data 
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Relationship to Independent and 
Extreme Components Analysis 

§  Noiseless Independent Components Analysis (ICA) with an 
equal number of input dimensions and source distributions 
can be written as a PoE model 

§  Choosing the heavy tailed Student-T distributions as the 
experts one obtains the general form of the ”Products of 
Student-T” distribution (PoT) 



Relationships to Others 

§  Products of Hidden Markov Models 
§  Relationship to Boosting 
§  Relationship to Analysis-by-Synthesis 
§ …. 



Thanks! 


