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Preface

When I was a graduate student in applied mathematics at the California Institute
of Technology, we solved many differential equations (both ordinary differential
equations and partial differential equations). Given a differential equation to
solve, I would think of all the techniques I knew that might solve that equation.
Eventually, the number of techniques I knew became so large that I began to
forget some. Then, I would have to consult books on differential equations to
familiarize myself with a technique that I remembered only vaguely. This was a
slow process and often unrewarding; I might spend twenty minutes reading about
a technique only to realize that it did not apply to the equation I was trying to
solve.

Eventually, I created a list of the different techniques that I knew. Each
technique had a brief description of how the method was used and to what types
of equations it applied. As I learned more techniques, they were added to the
list. This book is a direct result of that list.

At Caltech we were taught the usefulness of approximate analytic solutions
and the necessity of being able to solve differential equations numerically when
exact or approximate solution techniques could not be found. Hence, approximate
analytical solution techniques and numerical solution techniques were also added
to the list.

Given a differential equation to analyze, most people spend only a small
amount of time using analytical tools and then use a computer to see what
the solution “looks like.” Because this procedure is so prevalent, this edition
includes an expanded section on numerical methods. New sections on sympletic
integration (see page 780) and the use of wavelets (see page 784) also have been
added.

In writing this book, I have assumed that the reader is familiar with differen-
tial equations and their solutions. The object of this book is not to teach novel
techniques but to provide a handy reference to many popular techniques. All of
the techniques included are elementary in the usual mathematical sense; because
this book is designed to be functional it does not include many abstract methods
of limited applicability. This handbook has been designed to serve as both a
reference book and as a complement to a text on differential equations. Each
technique described is accompanied by several references; these allow each topic
to be studied in more detail.

It is hoped that this book will be used by students taking courses in differential
equations (at either the undergraduate or the graduate level). It will introduce
the student to more techniques than they usually see in a differential equations

XV



xvi Preface

class and will illustrate many different types of techniques. Furthermore, it should
act as a concise reference for the techniques that a student has learned. This book
should also be useful for the practicing engineer or scientist who solves differential
equations on an occasional basis.

A feature of this book is that it has sections dealing with stochastic differ-
ential equations and delay differential equations as well as ordinary differential
equations and partial differential equations. Stochastic differential equations and
delay differential equations are often studied only in advanced texts and courses;
yet, the techniques used to analyze these equations are easy to understand and
easy to apply.

Had this book been available when I was a graduate student, it would have
saved me much time. It has saved me time in solving problems that arose from
my own work in industry (the Jet Propulsion Laboratory, Sandia Laboratories,
EXXON Research and Engineering, The MITRE Corporation, BBN).

Parts of the text have been utilized in differential equations classes at the
Rensselaer Polytechnic Institute. Students’ comments have been used to clarify
the text. Unfortunately, there may still be some errors in the text; I would greatly
appreciate receiving notice of any such errors.

Many people have been kind enough to send in suggestions for additional
material to add and corrections of existing material. There are too many to
name them individually, but Alain Moussiaux stands out for all of the checking
he has performed. Thank you all!

This book is dedicated to my wife, Janet Taylor.

Boston, Mass. 1997 Daniel Zwillinger
zwillinger@alum.mit.edu

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




Introduction

This book is a compilation of the most important and widely applicable methods
for solving and approximating differential equations. As a reference book, it
provides convenient access to these methods and contains examples of their use.

The book is divided into four parts. The first part is a collection of trans-
formations and general ideas about differential equations. This section of the
book describes the techniques needed to determine whether a partial differential
equation is well posed, what the “natural” boundary conditions are, and many
other things. At the beginning of this section is a list of definitions for many of
the terms that describe differential equations and their solutions.

The second part of the book is a collection of exact analytical solution
techniques for differential equations. The techniques are listed (nearly) alpha-
betically. First is a collection of techniques for ordinary differential equations,
then a collection of techniques for partial differential equations. Those techniques
that can be used for both ordinary differential equations and partial differential
equations have a star (%) next to the method name. For nearly every technique,
the following are given:

the types of equations to which the method is applicable
the idea behind the method

the procedure for carrying out the method

at least one simple example of the method

any cautions that should be exercised

notes for more advanced users

references to the literature for more discussion or more examples

The material for each method has deliberately been kept short to simplify
use. Proofs have been intentionally omitted.

It is hoped that, by working through the simple example(s) given, the method
will be understood. Enough insight should be gained from working the example(s)
to apply the method to other equations. Further references are given for each
method so that the principle may be studied in more detail or so more examples
may be seen. Note that not all of the references listed at the end of a method
may be referred to in the text.

The author has found that computer languages that perform symbolic manip-
ulations (e.g., Macsyma, Maple, and Mathematica) are very useful for performing
the calculations necessary to analyze differential equations. Hence, there is
a section comparing the capabilities of these languages and, for some exact
analytical techniques, examples of their use are given.

xvii



xviil Introduction

Not all differential equations have exact analytical solutions; sometimes an
approximate solution will have to do. Other times, an approximate solution
may be more useful than an exact solution. For instance, an exact solution
in terms of a slowly converging infinite series may be laborious to approximate
numerically. The same problem may have a simple approximation that indicates
some characteristic behavior or allows numerical values to be obtained.

The third part of this book deals with approximate analytical solution tech-
niques. For the methods in this part of the book, the format is similar to that
used for the exact solution techniques. We classify a method as an approximate
method if it gives some information about the solution but does not give the
solution of the original equation(s) at all values of the independent variable(s).
The methods in this section describe, for example, how to obtain perturbation
expansions for the solutions to a differential equation.

When an exact or an approximate solution technique cannot be found, it may
be necessary to find the solution numerically. Other times, a numerical solution
may convey more information than an exact or approximate analytical solution.
The fourth part of this book is concerned with the most important methods for
finding numerical solutions of common types of differential equations. Although
there are many techniques available for numerically solving differential equations,
this book has only tried to illustrate the main techniques for each class of problem.
At the beginning of the fourth section is a brief introduction to the terms used
in numerical methods.

When possible, short Fortran or C programs' have been given. Once again,
those techniques that can be used for both ordinary differential equations and
partial differential equations have a star next to the method name.

This book is not designed to be read at one sitting. Rather, it should be
consulted as needed. Occasionally we have used “ODE” to stand for “ordinary
differential equation” and “PDE” to stand for “partial differential equation.”

This book contains many references to other books. Whereas some books
cover only one or two topics well, some books cover all their topics well. The
following books are recommended as a first source for detailed understanding of
the differential equation techniques they cover; each is broad in scope and easy
to read.
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Introduction to the
Electronic Version

This third edition of Handbook of Differential Equations is available both in print
form and in electronic form. The electronic version can be used with any modern
web browser (such as Netscape or Explorer). Some features of the electronic
version include

e Quickly finding a specific method for a differential equation

Navigating through the electronic version is performed via lists of meth-
ods for differential equations. Facilities are supplied for creating lists of
methods based on filters. For example, a list containing all the differential
equation methods that have both a program and an example in the text
can be created. Or, a list of differential equation methods that contain
either a table or a specific word can be created. It is also possible to apply
boolean operations to lists to create new lists.

e Interactive programs demonstrating some of the numerical methods

For some of the numerical methods, an interactive Java program is sup-
plied. This program numerically solves the example problem described in
the text. The parameters describing the numerical solution may be varied,
and the resulting numerical approximation obtained.

e Live links to the internet

The third edition of this book has introduced links to relevant web sites
on the internet. In the electronic version, these links are active (clicking
on one of them will take you to that site). In the print version, the URLSs
may be found by looking in the index under the entry “URL.”

e Dynamic rendering of mathematics

All of the mathematics in the print version is available electronically, both
through static gif files and via dynamic Java rendering.

XX



How to Use This Book

This book has been designed to be easy to use when solving or approximating
the solutions to differential equations. This introductory section outlines the
procedure for using this book to analyze a given differential equation.

First, determine whether the differential equation has been studied in the
literature. A list of many such equations may be found in the “Look-Up” section
beginning on page 179. If the equation you wish to analyze is contained on one
of the lists in that section, then see the indicated reference. This technique is the
single most useful technique in this book.

Alternatively, if the differential equation that you wish to analyze does not
appear on those lists or if the references do not yield the information you desire,
then the analysis to be performed depends on the type of the differential equation.

Before any other analysis is performed, it must be verified that the equation
is well posed. This means that a solution of the differential equation(s) exists, is
unique, and depends continuously on the “data.” See pages 15, 53, 101, and 115.

Given an Ordinary Differential Equation

e It may be useful to transform the differential equation to a canonical
form or to a form that appears in the “Look-Up” section. For some
common transformations, see pages 128-162.

e If the equation has a special form, then there may be a specialized
solution technique that may work. See the techniques on pages 275,
278, and 398.

e If the equation is a

Bernoulli equation, see page 235.
Chaplygin equation, see page 511.
Clairaut equation, see page 237.
Euler equation, see page 281.
Lagrange equation, see page 363.
Riccati equation, see page 392.

e If the equation does not depend explicitly on the independent vari-
able, see pages 230 and 411.

e If the equation does not depend explicitly on the dependent variable
(undifferentiated), see pages 260 and 409.

xxi



xxii How to Use This Book

e If one solution of the equation is known, it may be possible to lower
the order of the equation; see page 389.

e If discontinuous terms are present, see page 264.

e The single most powerful technique for solving analytically ordinary
differential equations is through the use of Lie groups; see page 366.

Given a Partial Differential Equation

Partial differential equations are treated in a different manner from ordi-
nary differential equations; in particular, the type of the equation dictates
the solution technique. First, determine the type of the partial differential
equation; it may be hyperbolic, elliptic, parabolic, or of mixed type (see
page 36).

e It may be useful to transform the differential equation to a canonical
form, or to a form that appears in the “Look-Up” Section. For
transformations, see pages 146, 166, 168, 173, 456, and 467.

e The simplest technique for working with partial differential equations,
which does not always work, is to “freeze” all but one of the inde-
pendent variables and then analyze the resulting partial differential
equation or ordinary differential equation. Then the other variables
may be added back in, one at a time.

e If every term is linear in the dependent variable, then separation of
variables may work; see page 487.

e If the boundary of the domain must be determined as part of the
problem, see the technique on page 311.

e See all of the exact solution techniques, which are on pages 428-508.
In addition, many of the techniques that can be used for ordinary dif-
ferential equations are also applicable to partial differential equations.
These techniques are indicated by a star with the method name.

e If the equation is hyperbolic,

— In principle, the differential equation may be solved using the
method of characteristics; see page 432. Often, though, the
calculations are impossible to perform analytically.

— See the section on the exact solution to the wave equation on
page 501.

e The single most powerful technique for analytically solving partial
differential equations is through the use of Lie groups; see page 471.

Given a System of Differential Equations

e First, verify that the system of equations is consistent; see page 43.
e Note that many of the methods for a single differential equation may
be generalized to handle systems.

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




How to Use This Book xxiii

e By using differential resultants, it may be possible to obtain a single
equation; see page 50.
e The following methods are for systems of equations:

— The method of generating functions; see page 315.

— The methods for constant coefficient differential equations; see
pages 421 and 449.

— The finding of integrable combinations; see page 334.

e If the system is hyperbolic, then the method of characteristics will
work (in principle); see page 432.

e See also the method for Pfaffian equations (see page 384) and the
method for matrix Riccati equations (see page 395).

Given a Stochastic Differential Equation

e A general discussion of random differential equations may be found
on page 91.

e To determine the transition probability density, see the discussion of
the Fokker—Planck equation on page 303.

e To obtain the moments without solving the complete problem, see
pages 568 and 572.

e If the noise appearing in the differential equation is not “white noise,”
the section on stochastic limit theorems might be useful (see page 629).

e To numerically simulate the solutions of a stochastic differential equa-
tion, see the technique on page 775.

Given a Delay Equation

See the techniques on page 253.

Looking for an Approximate Solution

e If exact bounds on the solution are desired, see the methods on pages
545, 551, and 560.

e If the solution has singularities that are to be recovered, see page 582.

e If the differential equation(s) can be formulated as a contraction
mapping, then approximations may be obtained in a natural way;
see page 58.

Looking for a Numerical Solution

e It is extremely important that the differential equation(s) be well
posed before a numerical solution is attempted. See the theorem on
page 723 for an indication of the problems that can arise.
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e The numerical solution technique must be stable if the numerical so-

lution is to approximate the true solution of the differential equation;
see pages 683, 688, and 692.

e It is often easiest to use commercial software packages when looking

for a numerical solution; see page 654.

e If the problem is “stiff,” then a method for dealing with “stiff”

problems will probably be required; see page 770.

e If a low-accuracy solution is acceptable, then a Monte-Carlo solution

technique may be used; see pages 810 and 844.

e To determine a grid on which to approximate the solution numeri-

cally, see page 675.

e To find an approximation scheme that works on a parallel computer,

see page 755.

Other Things to Consider

Does the differential equation undergo bifurcations? See page 19.

Is the solution bounded? See pages 551 and 560.

Is the differential equation well posed? See pages 15 and 115.

Does the equation exhibit symmetries? See pages 366 and 471.

Is the system chaotic? See page 29.

Are some terms in the equation discontinuous? See page 264.

Are there generalized functions in the differential equation? See pages
318 and 330.

Are fractional derivatives involved? See page 308.

e Does the equation involve a small parameter? See the perturbation

methods (on pages 586, 590, 598, 605, 610, and 614) or pages 538,
642.

e Is the general form of the solution known? See page 415.
e Are there multiple time or space scales in the problem? See pages

538 and 605.

e Always check your results!

Methods Not Discussed in This Book

There are a variety of novel methods for differential equations and their

solu

Al .

tions not discussed in this book. These include

Adomian’s decomposition method (see Adomian [1])
Entropy methods (see Baker-Jarvis [2])

Fuzzy logic (see Leland [5])

Infinite systems of differential equations (see Steinberg [6])
Monodromy deformation (see Chowdhury and Naskar [3])
p-adic differential equations (see Dwork [4])
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2 ILA  Definitions and Concepts

1. Definition of Terms

Adiabatic invariant When the parameters of a physical system vary
slowly under the effect of an external perturbation, some quantities are
constant to any order of the variable describing the slow rate of change.
Such a quantity is called an adiabatic invariant. This does not mean that
these quantities are exactly constant but rather that their variation goes
to zero faster than any power of the small parameter.

Analytic A function is analytic at a point if the function has a power
series expansion valid in some neighborhood of that point.

Asymptotic equivalence Two functions, f(z) and g(x), are said to be
asymptotically equivalent as © — xo if f(x)/g(x) ~ 1 as x — x, that is:
f(x) =g(z)[1+ o(1)] as © — x¢. See Erdélyi [4] for details.

Asymptotic expansion Given a function f(z) and an asymptotic se-
ries {gx(z)} at xo, the formal series Y ;- argr(z), where the {as} are
given constants, is said to be an asymptotic expansion of f(z) if f(x) —
> oro akgr(x) = o(gn(x)) as @ — xq for every n; this is expressed as f(z) ~
ZZO:() argr(x). Partial sums of this formal series are called asymptotic
approximations to f(x). Note that the formal series need not converge.
See Erdélyi [4] for details.

Asymptotic series A sequence of functions, {gx(x)}, forms an asymp-
totic series at xg if gp1(x) = o(gr(x)) as © — xo.

Autonomous An ordinary differential equation is autonomous if the in-
dependent variable does not appear explicitly in the equation. For example,
Yzax + (Y2)? = y is autonomous while y,, = z is not (see page 230).

Bifurcation The solution of an equation is said to undergo a bifur-
cation if, at some critical value of a parameter, the number of solutions
to the equation changes. For instance, in a quadratic equation with real
coefficients, as the constant term changes the number of real solutions can
change from 0 to 2 (see page 19).

Boundary data Given a differential equation, the value of the depen-
dent variable on the boundary may be given in many different ways.

Dirichlet boundary conditions The dependent variable is pre-
scribed on the boundary. This is also called a boundary con-
dition of the first kind.

Homogeneous boundary conditions The dependent variable van-
ishes on the boundary.

Mixed boundary conditions A linear combination of the depen-
dent variable and its normal derivative is given on the boundary,
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1.  Definition of Terms 3

or one type of boundary data is given on one part of the bound-
ary while another type of boundary data is given on a different
part of the boundary. This is also called a boundary condition
of the third kind.

Neumann boundary conditions The normal derivative of the de-
pendent variable is given on the boundary. This is also called a
boundary condition of the second kind.

Sometimes the boundary data also include values of the dependent variable
at points interior to the boundary.

Boundary layer A boundary layer is a small region, near a boundary,
in which a function undergoes a large change (see page 590).

Boundary value problem An ordinary differential equation, where
not all of the data are given at one point, is a boundary value problem.
For example, the equation y” 4+ y = 0 with the data y(0) =1, y(1) = 1 is
a boundary value problem.

Characteristics A hyperbolic partial differential equation can be de-
composed into ordinary differential equations along curves known as char-
acteristics. These characteristics are themselves determined to be the
solutions of ordinary differential equations (see page 432).

Cauchy problem The Cauchy problem is an initial value problem for
a partial differential equation. For this type of problem there are initial
conditions but no boundary conditions.

Commutator If L[] and H[] are two differential operators, then the
commutator of L[-] and H[-] is defined to be the differential operator given
by [L,H):= Lo H— HoL = —[H, L]. For example, the commutator of the
operators L[] = 2L and H[| =1+ & is

d d d d d
See Goldstein [6] for details.

Complete A set of functions is said to be complete on an interval if
any other function that satisfies appropriate boundedness and smoothness
conditions can be expanded as a linear combination of the original func-
tions. Usually the expansion is assumed to converge in the “mean square,”
or Ly sense. For example, the functions {u,(z)} := {sin(nmx), cos(nmz)}
are complete on the interval [0, 1] because any C[0, 1] function, f(z), can
be written as

f(z) =ao+ i (an cos(nmx) + by, sin(nm;))

n=1

for some set of {an,b,}. See Courant and Hilbert [3, pages 51-54] for
details.
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Complete system  The system of nonlinear partial differential equa-
tions: {Fg(z1,...,2Zr, 4y, p1,-.-,0r) = 0] k =1,...,s}, in one dependent
variable, y(x), where p; = dy/dx;, is called a complete system if each
{Fj, Fy}, for 1 < 5,k <r, is a linear combination of the {Fj}. Here {, }
represents the Lagrange bracket. See Iyanaga and Kawada [8, page 1304].

Conservation form A hyperbolic partial differential equation is said to
be in conservation form if each term is a derivative with respect to some

variable. That is, it is an equation for u(x) = u(x1,x2,...,z,) that has
the form %";x) + e %ﬁ’x) = 0 (see page 47).

Consistency There are two types of consistency:

Genuine consistency This occurs when the exact solution to an
equation can be shown to satisfy some approximations that have
been made in order to simplify the equation’s analysis.

Apparent consistency This occurs when the approximate solution
to an equation can be shown to satisfy some approximations that
have been made in order to simplify the equation’s analysis.

When simplifying an equation to find an approximate solution, the derived
solution must always show apparent consistency. Even then, the approxi-
mate solution may not be close to the exact solution, unless there is genuine
consistency. See Lin and Segel [9, page 188].

Coupled systems of equations A set of differential equations is said to
be coupled if there is more than one dependent variable and each equation
involves more than one dependent variable. For example, the system {y’ +
v=0, v +y =0} is a coupled system for {y(z),v(z)}.

Degree The degree of an ordinary differential equation is the greatest
number of times the dependent variable appears in any single term. For
example, the degree of 3 + (v")?y +1 = 0 is 3, whereas the degree of
y"y'y? + 2%y = 1 is 4. The degree of y’ = siny is infinite. If all the terms
in a differential equation have the same degree, then the equation is called
equidimensional-in-y (see page 278).

Delay equation A delay equation, also called a differential delay equa-
tion, is an equation that depends on the “past” as well the “present.” For
example, y”(t) = y(t — 7) is a delay equation when T > 0. See page 253.

Determined A truncated system of differential equations is said to be
determined if the inclusion of any higher order terms cannot affect the
topological nature of the local behavior about the singularity.

Differential form A first order differential equation is said to be in
differential form if it is written P(x,y)dz + Q(z,y)dy = 0.

Dirichlet problem The Dirichlet problem is a partial differential equa-
tion with Dirichlet data given on the boundaries. That is, the dependent
variable is prescribed on the boundary.
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Eigenvalues, eigenfunctions Given a linear operator L[] with bound-
ary conditions B[], there will sometimes exist nontrivial solutions to the
equation L[y] = Ay (the solutions may or may not be required to also
satisfy Bly] = 0). When such a solution exists, the value of X is called
an eigenvalue. Corresponding to the eigenvalue X there will exist solutions
{yxr(z)}; these are called eigenfunctions. See Stakgold [12, Chapter 7, pages
411-466] for details.

n 2
Elliptic operator The differential operator Z aijL is an elliptic
=1 6:&6%
differential operator if the quadratic form xTAx, where A = (a;;), is
positive definite whenever x # 0. If the {a;;} are functions of some
variable, say ¢, and the operator is elliptic for all values of ¢ of interest,
then the operator is called uniformly elliptic. See page 36.

Euler—Lagrange equation If u = u(z) and Ju] = [ f(v/,u,z)dz,
then the condition for the vanishing of the variational derivative of J with
respect to u, g—i = 0 is given by the Euler-Lagrange equation:

If w=w(z) and J = [ g(w”,w',w,x)dz, then the Euler-Lagrange equa-
tion is

0 4o 0N .

dw  drow dzzow’ )T

If v = v(z,y) and J = [[ h(vy,vy,v,2,y) dz dy, then the Euler-Lagrange

equation is
o0 _d0 doN,_,
ov  dxdv, dyOvy

See page 418 for more details.

First integral: ODE  When a given differential equation is of order n
and, by a process of integration, an equation of order n — 1 involving an
arbitrary constant is obtained, then this new equation is known as a first
integral of the given equation. For example, the equation y” 4+ y = 0 has
the equation (y')? +y? = C as a first integral.

First integral: PDE A function u(x,y, z) is called a first integral of
the vector field V = (P,Q, R) (or of its associated system: % = dy — dz)

Q R
if at every point in the domain V is orthogonal to gradu, i.e.,
Ju Ju ou
V. =P_— — +R—=0.
v ox +Q dy + 0z

Conversely, any solution of this partial differential equation is a first integral
of V. Note that if u(z,y, 2) is a first integral of V, then so is f(u).
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Fréchet derivative, Gateaux derivative The Gateaux derivative of
the operator N[-], at the “point” u(x), is the linear operator defined by

Lz(x)] = lim L0t ezl = Nl

e—0 €
For example, if N[u] = u® +u” + (u')?, then L[z] = 3u?z + 2" + 2u/2". If,
in addition,
L UINu B~ Nl - Lunl]
12|10 IRl

0

(as is true in our example), then L[u] is also called the Fréchet derivative
of N[]. See Olver [11] for details.

Fuchsian equation A Fuchsian equation is an ordinary differential
equation whose only singularities are regular singular points.

Fundamental matrix The vector ordinary differential equation y’ =
Ay for y(x), where A is a matrix, has the fundamental matrix ®(z) if ®
satisfies ® = A® and the determinant of ® is nonvanishing (see page 119).

General solution Given an nth order linear ordinary differential equa-
tion, the general solution contains all n linearly independent solutions, with
a constant multiplying each one. For example, the differential equation
y” +y = 1 has the general solution y(z) = 1+ Asinz + Bcosz, where A
and B are arbitrary constants.

Green’s function A Green’s function is the solution of a linear differ-
ential equation, which has a delta function appearing either in the equation
or in the boundary conditions (see page 318).

Harmonic function A function ¢(x) is harmonic if it satisfies Laplace’s
equation: VZ¢ = 0.

Hodograph In a partial differential equation, if the independent vari-
ables and dependent variables are switched, then the space of independent
variables is called the hodograph space (in two dimensions, the hodograph
plane) (see page 456).

Homogeneous equation Used in two different senses:

e An equation is said to be homogeneous if all terms depend linearly on
the dependent variable or its derivatives. For example, the equation
Yze + xy = 0 is homogeneous whereas the equation y,, + zy = 1 is
not.

e A first order ordinary differential equation is said to be homogeneous
if the forcing function is a ratio of homogeneous polynomials (see
page 327).
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Ill posed problems A problem that is not well posed is said to be
ill posed. Typical ill posed problems are the Cauchy problem for the
Laplace equation, the initial/boundary value problem for the backward
heat equation, and the Dirichlet problem for the wave equation (see page
115).

Initial value problem An ordinary differential equation with all of
the data given at one point is an initial value problem. For example, the
equation y” 4+ y = 0 with the data y(0) = 1, ¢/(0) = 1 is an initial value
problem.

Involutory transformation An involutory transformation 7' is one
that, when applied twice, does not change the original system; i.e., T? is
equal to the identity function.

L; function A function f(z) is said to belong to Ly if [ |f ()| dx is
finite.

Lagrange bracket If {F;} and {G,} are sets of functions of the inde-
pendent variables {u, v, ...} then the Lagrange bracket of u and v is defined

to be oF; 0G oF; 0G
— 97 9% 9N 9 )
{”’U}_Z(au v v au) {o -

J
See Goldstein [6] for details.

Lagrangian derivative The Lagrangian derivative (also called the ma-
terial derivative) is defined by % = %—f + v - VF, where v is a given
vector. See Iyanaga and Kawada [8, page 669].

Laplacian  The Laplacian is the differential operator usually denoted
by V2 (in many books it is represented as A). It is defined by VZ¢ =
div(grad ¢), when ¢ is a scalar. The vector Laplacian of a vector is the
differential operator denoted by £x (in most books it is represented as V?).
It is defined by £xv = grad(divv) — curlcurl v, when v is a vector. See
Moon and Spencer [10] for details.

Leibniz’s rule Leibniz’s rule states that

a
dt

Lie algebra A Lie algebra is a vector space equipped with a Lie bracket
(often called a commutator) [z,y] that satisfies three axioms:

9(t) 9 gp,
[ heo d<> — g Ohlt.0) - FOhe SO + [ S dc
f(@®) f(@®)

e [z,y] is bilinear (i.e., linear in both z and y separately),
e the Lie bracket is anti-commutative (i.e., [z, y] = —[y, z]),
e the Jacobi identity, [z, [y, 2]] + [y, [z, z]] + [2, [z, y]] = 0, holds.

See Olver [11] for details.
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8 ILA  Definitions and Concepts

Limit cycle A limit cycle is a solution to a differential equation that is
a periodic oscillation of finite amplitude (see page 78).

Linear differential equation A differential equation is said to be linear
if the dependent variable appears only with an exponent of 0 or 1. For
example, the equation 23y"”’ 4y’ + cosx = 0 is a linear equation, whereas
the equation yy’ =1 is nonlinear.

Linearize To linearize a nonlinear differential equation means to ap-
proximate the equation by a linear differential equation in some region. For
example, in regions where |y| is “small,” the nonlinear ordinary differential
equation y” + siny = 0 could be linearized to 3" +y = 0.

Linearizable Partial differential equations that can be solved either by
an appropriate inverse scattering scheme or by a transformation to a linear
partial differential equation are said to be linearizable.

Lipschitz condition If f(z,y) is a bounded continuous function in a
domain D, then f(z,y) is said to satisfy a Lipschitz condition in y in D if

|f(33,y1) - f($,y2)| < Ky|y1 - y2|

for some finite constant K, independent of x, y;, and yo in D. If, for some
finite constant K, f(x,y) satisfies

|f($1,y) - f($27y)| S K$|x1 - x2|

independent of z1, xo, and y in D, then f(z,y) satisfies a Lipschitz con-
dition in = in D. If both of these conditions are satisfied and K =
max(K,, Ky), then f(z,y) satisfies a Lipschitz condition in D, with Lip-
schitz constant K. This also extends to higher dimensions. See Coddington
and Levinson [2] for details.

Maximum principle There are many “maximum principles” in the
literature. The most common is “a harmonic function attains its absolute
maximum on the boundary” (see page 560).

Mean value theorem This is a statement about the solution of Laplace’s
equation. It states, “If V2u = 0 (in N dimensions), then u(z) = [;udS/ [ dS
where S is the boundary of a N-dimensional sphere centered at z.” For
example, in N = 2, we have, “In 2 dimensions, the value of a solution
to Laplace’s equation at a point is the average of the values on any circle
about that point.” See Iyanaga and Kawada [8, page 624].

Metaparabolic equation A metaparabolic equation has the form L[u]+
Mu:] = 0, where u = u(x,t), L[] is a linear differential operator in x of
degree n, M[] is a linear differential operator in x of degree m, and m < n.
If, conversely, m > n, then the equation is called pseudoparabolic. See
Gilbert and Jensen [5] for details.
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Natural Hamiltonian A natural Hamiltonian is one having the form
H=T+4YV, where T = %22:1 p? and V is a function of the position
variables only (i.e., V=V (q) =V(q1,---,qn))-

Near identity transformation A near-identity transformation is a
transformation in a differential equation from the old variables {a, b, ¢, ...}
to the new variables {«, 8, 7,...} via

a=a+ Ala, B,7,...),
b:ﬁ+B(a7577a"')v
C:7+C(a’ﬂ777"')7

where {A,B,C,...} are strictly nonlinear functions (i.e., there are no
linear or constant terms). Very frequently {4, B,C,...} are taken to be
homogeneous polynomials (of, say, degree N) in the variables a, 3,7, ...,
with unknown coefficients. For example, in two variables we might take

n

A0,B) =Y Ay B Blasf) = Y Biuojal 8,

i=0 =0
for some given value of n (see page 86).

Neumann problem  The Neumann problem is a partial differential
equation with Neumann data given on the boundaries. That is, the normal
derivative of the dependent variable is given on the boundary. See Iyanaga
and Kawada [8, page 999].

Normal form An ordinary differential equation is said to be in nor-
mal form if it can be solved explicitly for the highest derivative; i.e.,
y™ = Gz, y, v,...,y" V). A system of partial differential equa-

tions (with dependent variables {uy, ua, ..., u;, } and independent variables
{z,y1,92,...,yx}) is said to be in normal form if it has the form
0"uj ouq 0" Yu,, Oouy 0" U,

:Fj <xvyla--~7yk;u1;--~7um7

axr %,...,W,...,a—yl,...,aykr

for j =1,2,...,m. See page 86 or Iyanaga and Kawada [8, page 988].

Normal type An evolution equation is of normal type if it can be written
in the form w¢ = u, + h(u, u1, ..., un) where n > m and u; = &’u/0z7.

Nonlinear A differential equation that is not linear in the dependent

variable is nonlinear.

Nonoscillatory  The real solution y(x) of y.. + f(x)y = 0 is said to be
nonoscillatory in the wide sense in (0, 00) if there exists a finite number ¢
such that the solution has no zeros in [¢, 00].

CD-ROM Handbook of Differential Equations (©)Academic Press 1997

)



10 LA Definitions and Concepts

Order of a differential equation The order of a differential equation is
the greatest number of derivatives in any term in the differential equation.
For example, the partial differential equation tzpze = e + v° is of fourth
order whereas the ordinary differential equation v, +z2v® +v = 3 is of first
order.

Orthogonal Two vectors, x and y, are said to be orthogonal with
respect to the matrix W if xTWy = 0 (often, W is taken to be the identity
matrix). Two functions, say f(z) and g(z), are said to be orthogonal with
respect to a weighting function w(x) if (f(x) =[f(x (x)dx =
0 over some appropriate range of mtegratlon Here an overbar 1nd1cates
the complex conjugate.

Oscillatory  Consider the equation y” + f(z)y = 0 and the number of
zeros it has in the interval [0, 00]. If the number of zeros is infinite, then
the equation (and the solutions) are called oscillatory.

Padé approximant A Padé approximant is a ratio of polynomials. The
polynomials are usually chosen so that the Taylor series of the ratio is a
prescribed function. See page 582.

Particular solution Given a linear differential equation, L[y] = f(x),
the general solution can be written as y = y, + >, C;y; where y,, the
particular solution, is any solution that satisfies L[y] = f(x). The y; are
homogeneous solutions that satisfy L[y] = 0, and the {C;} are arbitrary
constants. If L[-] is an nth order differential operator, then there will be n
linearly independent homogeneous solutions.

Poisson bracket If f and g are functions of {p;, ¢;}, then the Poisson
bracket of f and ¢ is defined to be

[f.9] =Z (a—fa—9 —8—f_a—g_) Za L]J,p] =—1g.f]-

0q; Op;  Op; Og;

The Poisson bracket is invariant under a change of independent variables.
See Goldstein [6] or Olver [11] for details.

Quasilinear equation Used in two different senses:

e A partial differential equation is said to be quasilinear if it is linear in
the first partial derivatives. That is, it has the form Y~;'_, Ay (u,x) aaw
B(u,x) when the dependent variable is u(x) = u(z1,...,z,) (see
page 432).

e A partial differential equation is said to be quasilinear if it has the
form uy = g(u)ugy(n) + f(U, Uz, Yu(2)s - - -, Uz(n—1)) for n > 2.

Radiation condition The radiation condition states that a wave equa-
tion has no waves incoming from an infinite distance, only outgoing waves.
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For example, the equation u;; = V2u might have the radiation condition
u(x,t) ~ A_exp(ik(t — x)) as  — —oo and u(z,t) ~ Ay exp(ik(t + x))
as  — +oo. This is also called the Sommerfeld radiation condition. See
Butkov [1, page 617] for details.

Riemann’s P function Riemann’s differential equation (see page 186)
is the most general second order linear ordinary differential equation with
three regular singular points. If these singular points are taken to be a, b,
and ¢ and the exponents of the singularities are taken to be «,a’; 3,3;
v,v" (where a4+ o’ + 3+ '+ v+~ = 1), then the solution to Riemann’s
differential equation may written in the form of Riemann’s P function as

a b ¢
yx)=Pla B v =
a/ /6/ ,Y/

Robbins problem An elliptic partial differential equation with mixed
boundary conditions is called a Robbins problem. See Iyanaga and Kawada
[8, page 999].

Schwarzian derivative If y = y(z), then the Schwarzian derivative of
y with respect to z is defined to be

oy = (VY 1wy v s vy
U\ 2\ vy 2\y )
2
If y = y(x) and z = z(x), then {z,2} = {z,y} (Z—‘Z) + {y,z}. Therefore,

2
{z,y} = — (Z—z) {y,x}. Note also that {y,z} is the unique elementary

function of the derivatives, which is invariant under homographic transfor-

axr+b
Y, cx+d

constants with ad — bc = 1. See Ince [7, page 394].

mations of x; that is, {y,z} = { }, where (a,b,c¢,d) are arbitrary

Semi-Hamiltonian A diagonal system of equations having the form
A;(u)0ru; = B;(u)0,u; is called semi-Hamiltonian if the coefficients satisfy
B0, A = A;0y, By, for i # k.

Semilinear equations A partial differential equation is said to be
semilinear if it has the form w; = wugn) + f(U, Uz, Y (2)s - - - » Up(n—1)) fOr
n > 2.

Shock A shock is a narrow region in which the dependent variable under-
goes a large change. Also called a “layer” or a “propagating discontinuity.”
See page 432.

Singular point Given the homogeneous nth order linear ordinary dif-
ferential equation

Y™+ g1 (2)y ™Y + g o (2)y™ D o)y =0,

the point x( is classified as being an
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Ordinary point: if each of the {¢;} are analytic at = xy.

Singular point: if it is not an ordinary point.

Regular singular point: if it is not an ordinary point and (z —
70)'q;(x) is analytic for i = 0,1,...,n.

Irregular singular point: if it is not an ordinary point and not a
regular singular point.

The point at infinity is classified by changing variables to t = 2! and then
analyzing the point ¢t = 0. See page 403.

Singular solution A singular solution is a solution of a differential
equation that is not derivable from the general solution by any choice of
the arbitrary constants appearing in the general solution. Only nonlinear
equations have singular solutions. See page 623.

Stability  The solution to a differential equation is said to be stable
if small perturbations in the initial conditions, boundary conditions, or
coeflicients in the equation itself lead to “small” changes in the solution.
There are many different types of stability that are useful.

Stable A solution y(z) of the system y’ = f(y,z) that is defined
for x > 0 is said to be stable if, given any ¢ > 0, there exists
a 6 > 0 such that any solution w(z) of the system satisfying
|[w(0) — y(0)] < § also satisfies |w(z) — y(z)| < e.

Asymptotic stability The solution u(x) is said to be asymptoti-
cally stable if, in addition to being stable, |w(z) — u(x)| — 0 as
x — o0.

Relative stability The solution u(z) is said to be relatively stable
if |[w(0) — u(0)| < ¢ implies that |w(z) — u(z)| < eu(z).

See page 101 or Coddington and Levinson [2, Chapter 13] for details.

Stefan problem A Stefan problem is one in which the boundary of
the domain must be solved as part of the problem. For instance, when a
jet of water leaves an orifice, not only must the fluid mechanics equations
be solved in the stream, but the boundary of the stream must also be
determined. Stefan problems are also called free boundary problems (see
page 311).

Superposition principle If u(x) and v(x) are solutions to a linear
differential equation (ordinary or partial), then the superposition principle
states that au(x)4Gv(x) is also a solution, where a and 3 are any constants
(see page 413).

Total differential equation A total differential equation is an equation
of the form: )", ap(x)dz, = 0. See page 384.

Trivial solution The trivial solution is the identically zero solution.
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Turning points  Given the equation y” + p(z)y = 0, points at which
p(z) = 0 are called turning points. The asymptotic behavior of y(x) can
change at these points. See page 645 or Wasow [13].

Weak solution A weak solution to a differential equation is a function
that satisfies only an integral form of the defining equation. For example,
a weak solution of the differential equation a(z)y” —b(x) = 0 only needs to
satisfy [gla(x)y” — b(x)]de = 0 where S is some appropriate region. For
this example, the weak solution may not be twice differentiable everywhere.
See Zauderer [14, pages 288-294] for details.

Well posed problems A problem is said to be well posed if a unique,
stable solution that depends continuously on the data exists. See page 115.

Wronskian  Given the smooth functions {y1, y2, . .., ¥n }, the Wronskian
is the determinant

Y1 Y2 cee Yn
Y1 Yoo oo Y
ygn—l) yén—l) o y’gn—l)

If the Wronskian does not vanish in an interval, then the functions are
linearly independent (see page 119).
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2. Alternative Theorems

Applicable to Linear ordinary differential equations.
Idea

It is often possible to determine when a linear ordinary differential
equation has a unique solution. Also, when the solution is not unique,
it is sometimes possible to describe the degrees of freedom that make it
non-unique.

Procedure

Alternative theorems describe, in some way, the type of solutions to
expect from linear differential equations. The most common alternative
theorems for differential equations were derived by Fredholm.

Suppose we wish to analyze the nth order linear inhomogeneous ordi-
nary differential equation with boundary conditions

2.1
Bi[u] =0, fori=1,2,...,n, (2.1)

for u(z) on the interval x € [a, b]. First, we must analyze the homogeneous
equation and the adjoint homogeneous equation. That is, consider the two
problems

Lu] =0,
| (2.2)
Bi[u] =0, fori=1,2,...,n,
and
L*[v] = 0,
o . (2.3)
B! [v] =0, fori=1,2,...,n,

where L*[] is the adjoint of L[], and the {B}[]} are the adjoint boundary
conditions (see page 95). Then Fredholm’s alternative theorem states that

1. If the system in (2.2) has only the trivial solution, that is u(z) = 0,
then

(a) the system in (2.1) has a unique solution.
(b) the system in (2.3) has only the trivial solution.
2. Conversely, if the system in (2.2) has k linearly independent solutions,
say {u1,ug, ..., ur}, then

(a) the system in (2.3) has k linearly independent solutions, say
{v1,v2, ..., vk}
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(b) the system in (2.1) has a solution if and only if the forcing
function appearing in (2.1), f, is orthogonal to all solutions to
the adjoint system. That is (f,v;) := f:f(a:)vl(x) dx = 0 for
i=1,2,... k.

(¢) the solution to (2.1), if 2(b) is satisfied, is given by u(z) =
u(z) + Z;C:Z cjuj(x) for arbitrary constants {c;}, where u(z) is
any solution to (2.1).

Example 1
Given the ordinary differential equation for u(x)
!/
+u=f(z),
u +u= f(z) (2.4)
u(0) =0,
we form the homogeneous system
u 4+ u=0,
(2.5)
u(0) =0.

Because (2.5) has only the trivial solution, we know that the solution to
equation (2.4) is unique. By the method of integrating factors (see page
356), the solution to (2.4) is found to be u(x) = [ f(t)e'~“dt.

Example 2
Given the ordinary differential equation for u(x)
u 4+ u=f(x),
7(x) 0
u(0) —eu(1) =0,
we form the homogeneous system
u 4+ u=0,

2.7
u(0) —eu(1) = 0. 2.7)
In this case, (2.7) has the single non-trivial solution u(x) = e~*. Hence,

the solution to (2.6) is not unique. To find out what restrictions must
be placed on f(x) for (2.6) to have a solution, consider the corresponding
adjoint homogeneous equation

v —v =0,

—ev(0) +v(1) = 0. (2:8)

Since (2.8) has a single non-trivial solution, v(z) = €®, we conclude that
(2.6) has a solution if and only if

/1 f(t)etdt = 0. (2.9)
0
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If equation (2.9) is satisfied, then the solution of (2.6) will be given by

u(z) =Ce™ " + /90 f(t)e'~"dt
0

where C' is an arbitrary constant.

Example 3
The solution(s) to zy” — (1 4+ z)y’ + y = 0 depends on the boundary
conditions as follows:

1. With y(1) = 1, /(1) = 2, the solution is y = 3e*~! — (1 + z).

2. With y(0) =1, ¥'(0) = 2, there is no solution.

3. With y(0) = 1, ¢’(0) = 1, there are infinitely many solutions of the
formy=C(e® —1—x)+1+uz.

Notes
1. Epstein [1, pages 83 and 111] discusses the Fredholm theorems in the
general setting of a Banach space and a Hilbert space.
2. Interpretation of alternative theorems is usually straightforward when
the underlying physics are understood. For example, the system

—u"=f(z), 0<z<l dO)=a, —u(1)=a

must satisfy the relation fol f(z)dx = a1 + az. This states that for a
rod experiencing one-dimensional heat flow, a steady state is possible
only if the heat supplied along the rod is removed at the ends.

3. A generalized Green’s function is a Green’s function (see page 318)
for a differential equation that does not have a unique solution. See
Greenberg [2] for more details.

4. The Sturm-Liouville problem for u(z) on the interval z; < x < x5

i () + e = @) (2.10)
—p(z)u (21) + riu(z) =0 p(x2)u’ (x2) + rou(xs) = 0
can be written as

/T - [p(u(t) + g (0)] dt -+ riu(es) + rou?(es)

= /m F®)u(t) dt + gru(zy) + gou(z2).

Hence, if p(x) is positive, g(x), r1, and ro are non-negative and if
[o2 F(H)u(t) dt+gru(a:)+gau(ez) = 0, then there is a unique solution
to (2.10).

5. See also Haberman [3, pages 307-314] and Stakgold [4, pages 82-90,
207-214, and 319-323].
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3. Bifurcation Theory

Applicable to Nonlinear differential equations.
Idea

Given a nonlinear differential equation that depends on a set of pa-
rameters, the number of distinct solutions may change as the parameters
change. Points where the number of solutions change are called bifurcation
points.

Procedure

Although bifurcations occur in all types of equations, we restrict our
discussion to ordinary differential equations. Consider the autonomous
system

dx
i f(x; ), (3.1)

where x and f are n-dimensional vectors and a is a set of parameters.
Define the Jacobian matrix by

df (8]2

:d_X_ 8xj

J(x; o) : (x;a)|i,j:1,...,n). (3.2)
Note that J(x; )z is the Fréchet derivative of f, at the point x (see page
6). Using the solution x(¢, &) of equation (3.1), the values of a@ where one
or more of the eigenvalues of J are zero are defined to be bifurcation points.
At such points, the number of solutions to equation (3.1) may change, and
the stability of the solutions might also change.

If any of the eigenvalues have positive real parts, then the correspond-
ing solution is unstable. If we are concerned only with the steady-state
solutions of equation (3.1), as is often the case, then the bifurcation points
will satisfy the simultaneous equations

f(x;a) = 0, and det J = 0. (3.3)

Define the eigenvalues of the Jacobian matrix defined in equation (3.2)
to be {\; | i = 1,...,n}. We now presume that equation (3.1) depends
on the single parameter a. Suppose that the change in stability is at the
point o = @, where the real part of a complex conjugate pair of eigenvalues
(A1 = \2) pass through zero:

RA(@) =0, SM@) >0, RN@) #£0,

and, for all values of o near &, Ro\;(a) <0 fori=3,...,n.
Then, under certain smoothness conditions, it can be shown that a
small amplitude periodic solution exists for o near &. Let ¢ measure the
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Figure 3.1: A bead on a spinning semi-circular wire.

amplitude of the periodic solution. Then there are functions p(e) and
7(€), defined for all sufficiently small, real €, such that u(0) = 7(0) = 0
and that the system with @« = @ + p(e) has a unique small amplitude
solution of period T' = 27 (1 + 7(¢)) /SA1(@). When expanded, we have
p(e) = poe? + O(e?). The sign of uo indicates where the oscillations occur,
ie., for a < @ or for a > a.

Example 1
The nonlinear ordinary differential equation
d
d—::‘t =g(u) = u® = A\u— Xy (3.4)

has steady-state solutions that satisfy g(u) = u?> — \ju — Ay = 0. These
steady-state solutions have bifurcation points given by

Z—Z =2u — )\1 =0.
Solving these last two equations simultaneously, it can be shown that the
bifurcation points of the steady-state solutions are along the curve 4y +
A? = 0. Further analysis shows that equation (3.4) will have two real
steady-state solutions when 4\y + A? > 0, and it will have no real steady-
state solutions when 4\y + \? < 0.

Example 2

Consider a frictionless bead that is free to slide on a semi-circular hoop
of wire of radius R that is spinning at an angular rate w (see figure 3.1).
The equation for 6(t), the angle of the bead from the vertical, is given by

d?0  gsind Ww’R
&2 1— 0) = .
I + 7 < P cos 9) 0, (3.5)
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where g is the magnitude of the gravitational force. We define the param-
eter v by v = g/w?R. We will analyze only the case v > 0.
The three possible steady solutions of equation (3.5) are given by

forv>0, 6(t)=06, =0,
for v <1, 6(t) =6y =cos ‘v,
forv <1, 6(t) =603 =—cos 'v.

Therefore, for v > 1 (which corresponds to slow rotation speeds), the only
steady solution is 6(t) = 6. For v < 1, however, there are three possible
solutions. The solution 6(t) = #; will be shown to be unstable for v < 1.

To determine which solution is stable in a region where there are multi-
ple solutions, a stability analysis must be performed. This is accomplished
by assuming that the true solution is slightly perturbed from the given
solution, and the rate of change of the perturbation is obtained. If the
perturbation grows, then the solution is unstable. Conversely, if the per-
turbation decays (stays bounded), then the solution is stable (neutrally
stable).

First we perform a stability analysis for the solution 0(¢) = ;. Define

0(t) = 0, + ed(t), (3.6)

where € is a small number and ¢(t) is an unknown function. Using (3.6) in
equation (3.5), and expanding all terms for € < 1, results in
d?¢ v—1
@Iy

6 = O(e). (3.7)

The leading order terms in equation (3.7) represent the Fréchet derivative
of equation (3.5) at the “point” 6(t) = 61, applied to the function ¢(¢).
The solution of this differential equation for ¢(t), to leading order in ¢, is

¢(t) = Acosat + Bsin at, (3.8)

where A and B are arbitrary constants and a = /g (”%1) If v > 1, then

« is real, and the solutions for ¢(¢) remain bounded. Conversely, if v < 1
then o becomes imaginary, and the solution in (3.8) becomes unbounded
as t increases. Hence, the solution 6(t) = 6, is unstable for v < 1.

Now we perform a stability analysis for the solution () = 6. Writing
0(t) = 2+ €p(t) and using this form in equation (3.5) leads to the equation
for ¢ (t):

d*y 1— 12

e T,

¢ = 0(e). (3.9)

The leading order terms in equation (3.9) represent the Fréchet derivative
of equation (3.5) at the “point” 8(¢) = 62, applied to the function ¢ (¢). The
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Figure 3.2: Bifurcation diagram for equation 3.6. A branch with the label
“S” (“U”) is a stable (unstable) branch.

solution of this differential equation for v (t) is ¥ (t) = Acos Bt + Bsin f3t,
where A and B are arbitrary constants and § = 4/g (1;”2). If v < 1, then

[ is real and the solutions for ¥ (¢) remain bounded. Therefore, the solution
0(t) = 6 is stable for ¥ < 1. In an exactly analogous manner, 8(t) = 63 is
stable for v < 1.

From what we have found, we can construct the bifurcation diagram
shown in figure 3.2. In this diagram, the unstable steady solutions are in-
dicated by a dashed line and the letter “U”, and the stable steady solutions
are indicated by the solid line and the letter “S”. In words, this diagram
states:

e For no rotation (w = 0 or v = 00), the only solution is 8(¢) = 6; = 0.

e As the frequency of rotation increases (and so v decreases), the solu-
tion 6(t) = 61 becomes unstable at the bifurcation point v = 1.

e For v < 1, the are two stable solutions, 0(t) = 62 and 0(t) = 03. In
this example, there is no way to know in advance which of these two
solutions will occur (physically, the bead can slide up either side of
the wire).

The formula in (3.3) can be applied to equation (3.5) to determine the lo-
cation of the bifurcation point without performing all of the above analysis.

If we define 1 = 0 and x5 = Z—f, then equation (3.5) can be written as the

system of ordinary differential equations

d 1| _ _ o
dt |:!E2:| =fx) = {—gsinml (1 - —Coizl)} ’

which has the Jacobian matrix

L ) ]
T dx gcosxl—I—%(cosle—sianl) 0"
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If v > 1, then no choice of (z1,z2) will allow both f and det J to be zero
simultaneously. For v = 1, however, x1 = x2 = 0 make both f and det J
equal to zero. Hence, a bifurcation occurs at v = 1.

Example 3

Abelson [1] has developed a computer program in LISP that automat-
ically explores the steady-state orbits of one-parameter families of period-
ically driven oscillators. The program generates both textual descriptions
and schematic diagrams.

For example, consider Duffing’s equation in the form & + 0.1& + 23 =
p cost, where the parameter p is in the range [1, 25] and only those solutions
with —5 <2 < 5and —10 < & < 10 are considered. The program produced
the graphical output shown in figure 3.3, along with the following textual
description:

The system was explored for values of p between 1 and 25, and
10 classes of stable periodic orbits were identified.

Class A is already present at the start of the parameter range
p = 1 with a family of order-1 orbits Ag. Near p = 2.287,
there is a supercritical-pitchfork bifurcation, and Ag splits into
symmetric families A; ¢ and A, 1, each of order 1. A; o vanishes
at a fold bifurcation near p = 3.567. A;; vanishes similarly.

Class B appears around p = 3.085 with a family of order-1
orbits By arising from a fold bifurcation. As the parameter
p increases, By undergoes a period doubling cascade, reaching
order 2 near p = 4.876, and order 4 near p = 5.441. Although
the cascade was not traced past the order 4 orbit, there is ap-
parently another period-doubling near p = 5.52, and a chaotic
orbit was observed at p = 5.688.

Class J appears around p = 23.96 as a family of order-5 orbits
Jo arising from a fold bifurcation. Jy is present at the end of
the parameter range at p = 25.

This program is capable of recognizing the following types of bifur-
cations: fold bifurcations, supercritical and subcritical flip bifurcations,
supercritical and subcritical Niemark bifurcations, supercritical and sub-
critical pitchfork bifurcations, and transcritical bifurcations.

Notes

1. There are many different types of bifurcations. See figure 3.4 for
diagrams of some of the following bifurcations:
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Figure 3.3: Graphical output generated automatically from the Bifurcation
Interpreter in Abelson [1]. For Duffing’s equation, the evolution of 10
classes of families of periodic orbits and their bifurcations has been traced.
The p values along the horizontal axis indicate the parameter value at which
the bifurcations occur. (Reprinted with permission from Comp & Maths.
With Appls. 20, 8, Abelson, H., The bifurcation interpreter: A step towards

the automatic analysis of dynamical systems, Copyright 1990, Pergamon
Press.)

e Hopf bifurcation: a stable steady solution bifurcates into a stable
oscillatory solution. That is, there are no stable steady solutions
in that particular region of parameter space. This occurs by
having some of the eigenvalues of the Jacobian in (3.2) become
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Figure 3.4: Diagrams of some types of bifurcations. Unstable solutions are
indicated by dashed lines; stable solutions are indicated by solid lines.

purely imaginary.

Fold bifurcation: on one side of the bifurcation point a stable
and an unstable periodic point (of the same order) coexist. On
the other side of the bifurcation point, both periodic points have
vanished.

Flip bifurcation (supercritical): a stable periodic point of order n
transitions to a stable periodic point of order 2n and an unstable
periodic point of order n.

Flip bifurcation (subcritical): an unstable periodic point of or-
der 2n and a stable periodic point of order n transition to an
unstable periodic point of order n.

Niemark bifurcation (supercritical): a stable periodic transitions
to an unstable periodic point and a stable limit cycle.

Niemark bifurcation (subcritical): a stable periodic point and
unstable limit cycle transition to an unstable periodic point.
Pitchfork bifurcation (supercritical): a stable periodic point tran-
sitions to two stable periodic points and an unstable periodic
point, all of the same order.

Pitchfork bifurcation (subcritical): a stable periodic point and
two unstable periodic points transition to an unstable periodic
point.

Transcritical bifurcation: a stable periodic point and an unstable
periodic point exchange stabilities; on the other side of the
bifurcation point, the extrapolated stable point is now unstable,
and vice-versa.

2. For a differential equation that is not autonomous, bifurcations can
also occur from time-dependent solutions to other time-dependent
solutions.

. For the general finite dimensional mapping, G(x), from R™ to R™,
the Jacobian J(x) := % need not be square. In this case, the critical
points (which include the bifurcation points) are in the set C, with

C:={x|xeR™, rank J(x) < min(m,n)}.
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The reqular points are R™ — C. The critical values are the values in
the set G(C) :={y |y € R",y = G(x) for some x € C}. The regular
values are R — G(C).

Sacks [8] describes the program POINCARE, which classifies bifur-
cation points and constructs representative phase diagrams for each
type of behavior. The program is available directly from Sacks.
Numerical methods for computing bifurcations are described in Guck-
enheimer et al. [3] and Jepson and Spence [6].
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4. A Caveat for Partial
Differential Equations

Idea

To solve partial differential equations correctly, a good understanding
of the nature of the partial differential equation is required. This requires
more than a knowledge of the “physics” of the problem: a thorough under-
standing of the type of partial differential equation is needed. From Collatz
[1, page 260]:

That an investigation of the situation is absolutely essential is
revealed even by quite simple examples; they show that formal
calculation applied to partial differential equations can lead
to false results very easily and that approximate methods can
converge in a disarmingly innocuous manner to values bearing
no relation to the correct solution.

Example
Suppose we wish to solve the following wave equation (this example is
from Collatz [1])

Ugax = Utt,

u(z,0) = cosz, for |z| < 7/2,

0 0 R
du(z,0) = cosz, for |z| < w/2, (4.1.2-d)
ot
U (:I:g,t) =sint, fort > 0.

We will attempt to solve (4.1) by looking for a series solution of the form

u(z,t) = Z A t". (4.2)

n,m=0

Using (4.2) in (4.1.a), we find that

(m+2)(m+1)
maergm. (43)

Um,n+2 =

To satisfy (4.1.b), we require ag,; = 0. To satisty (4.1.c), we also require

0, k = odd,
aro = (4.4)
(=1)?/(2q)!, k= even = 2q.
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Figure 4.1: Depiction of the characteristics and the range of validity of the
solution found for equation 4.1.

Evaluating equation (4.2) at = 0 and using equations (4.3) and (4.4), we
find that

u(0,t) = Z ag t" = Z %tw = cost. (4.5)
k=0 q=0 9

Now the conclusion in equation (4.5) is correct but only for 0 < t < 7/2.
This is because the characteristics (see page 432), t = w/2 £ x, emanating
from the points (7/2,0) and (—7/2,0) do not allow «(0, t) to be determined
directly for t > /2.

See figure 4.1 for a graphical representation of the characteristics of
(4.1) and the region of validity for the solution in (4.5).

References

[1] CorLATZ, L. The Numerical Treatment of Differential Equations. Springer—
Verlag, New York, 1966.

[2] Rassias, J. M. Counter Ezamples in Differential Equations and Related
Topics. World Scientific, Singapore, 1991.

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




5.  Chaos in Dynamical Systems 29

5. Chaos in Dynamical
Systems

Applicable to Nonlinear differential equations.
Yields

Information on whether or not a system is chaotic.

Idea

Chaos is a phenomenon that can appear in solutions to nonlinear dif-
ferential equations. Chaos is easily defined and can be easily (numerically)
found in some equations.

Procedure
For simplicity, we focus on deterministic systems modeled by coupled,
autonomous, first order, ordinary differential equations of the form

dx;
L =gi(x;q) fori=1,2,...,n (5.1)
dt
where x = (21, 22, . .., Zy,) is the state-space vector and q = (g1, 92, - -, Gm)

is a set of parameters. This equation determines a set of solutions, each
specified by their initial values. We can specify the solution corresponding
to the initial condition p by x(¢; p).

Consider a set of initial conditions contained in a vanishing small volume
V. Under the action of equation (5.1), the volume will change as a function

of t. Precisely,
dv =~ g
%‘/”'/(1 8) dzy - diz,
1% =

The summation term is the generalized divergence of g and is called the Lie
derivative. Dissipative systems are characterized by contracting volumes;
this is equivalent to dV/dt < 0. Conservative or Hamiltonian systems, in
which equation (5.1) are Hamilton’s equations, obey Liouville’s theorem:
dV/dt = 0.

Any trajectory of a dissipative system as t — oo will approach a
bounded region of phase space called an attractor. An attractor has zero
volume in phase space. Attractors include points, limit cycles, and tori.
For example, consider an unforced damped pendulum. The attractor for
this is a point in phase space, the stable configuration with the pendulum
hanging straight down. In this case, starting the pendulum swinging with
slightly different initial conditions will lead to close paths in phase space
and the same final state.
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For nonlinear systems exhibiting chaos, the separation of two nearby
trajectories increases exponentially with time. This is referred to as sensi-
tive dependence on initial conditions. For dissipative systems, a stretching
in one direction has to be accompanied by a more-than-compensating
contraction in other directions, so that the volume of an arbitrary droplet of
initial conditions will contract with time. The phase-space trajectories for
a chaotic system asymptotically approach a strange attractor, an attractor
with a fractional dimension (i.e., a fractal).

Lyapunov exponents are a measure of the rate of divergence (or conver-
gence) of initially infinitesimally separated trajectories. The ith Lyapunov
exponent, \;, can be found by considering the evolution of a vanishingly
small set of initial conditions that form a hyperellipsoid. We define

ve i [ (Go) o

where p;(t) is the length of the ith principal axis of the hyperellipsoid at
time t, for i« = 1,2,...,n. An attractor is chaotic if it has at least one
positive Lyapunov exponent.

The Lyapunov exponents can be determined by analyzing the linearized
equations corresponding to equation (5.1). For illustrative purposes, we
specialize to n = 3 for the rest of this section. Consider the two close initial
points: po = (xo,¥o0, 20) and p1 = po + 0x = (2o + dz,yo + dy, 20 + §2).
We want to find the evolution of the difference a(t) := x(¢; p1) — x(¢; Po)-
Using Taylor series

da;  d[r1(t;p1) — 1(t;po)]  dg1(x(t; po + %)) — g1(x(¢; Po))]

dt dt dt
dg1 on on
~ =0 — —4
Or v Jy vt 92 *

where the partial derivatives are evaluated at x(¢; pp). In general

991 9q1  d¢

ox oy Oz
da _ (x)a= |22 92 dn|,
dt - - ox Jy 0z )

995 993 9gs
ox Jy 0z

where M is the Jacobian of the vector g. The Lyapunov exponents are
related to the eigenvalues of the matrix M.

In special situations, analytical methods can be used to obtain the
Lyapunov spectra, while numerical methods must be used in general. When
there is a stationary solution given by Cfi—’t‘ = g(x) = 0, the Jacobian matrix
is time independent, and we can analytically obtain the (possibly complex)
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Figure 5.1: Duffing equation with I' = 0.20. (Period 1 solution.)
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Figure 5.2: Duffing equation with I' = 0.28. (Period 2 solution.)

eigenvalues, from which the Lyapunov exponents may be found. In general,
there are no stationary solutions and the equations 2 = g and 92 = M (x)a
must be numerically solved simultaneously. See Wolf et al. [12] for a
numerical technique for computing Lyapunov exponents.

Example
Consider the Duffing equation: & + ki —z + 23 = I'coswt. This can be
converted to an autonomous system as follows:

dx d |* Y
—=—ly|=|-ky+ax—a2>+Tcosz|. (5.3)
dt dt w

Figures 5.1-5.3 show the different behavior of this system (x(¢) versus ¢t and
x(t) versus y(t)) when k = 0.3, w = 1.2, and T’ takes on the values 0.20,
0.28 and 0.50. For the numerical simulations shown, the initial conditions
used were xo = (1.3,0,0), and we began plotting the results when ¢ = 50
to remove any initial transients. From deeper analysis, it can be shown
that the system has a period 1 (2, 4, 5, 2, 1) solution when I' = 0.20 (0.28,
0.29, 0.37, 0.65, 0.73). The solution is chaotic when I" = 0.50.

A different set of parameters is shown in figure 5.4. This figure has
a plot of the three Lyapunov exponents of equation (5.3) when w = 1.0,
k = 0.5, and T" is varied from 0.2 to 0.9. At low values of I', the system is
periodic because the largest Lyapunov exponent is zero. The system follows
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1_

Figure 5.3: Duffing equation with I" = 0.50. (Chaotic solution.)
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Figure 5.4: The three Lyapunov exponents for Duffing’s equation with
w = 1.0 and k¥ = 0.5 when I is varied from 0.2 to 0.9. (From De Souza-
Machado, S., Rollins, R. W., Jacobs, D. T., & Hartman, J. L. Studying
chaotic systems using microcomputer simulations and Lyapunov exponents.
Amer. J. Physics 58, 4, April 1990, 321-329.)

a period doubling route to chaos at I' ~ 0.36, when the largest Lyapunov
exponent becomes greater than zero. The system remains chaotic until the
driving force gets very large (I' > 0.84) except for windows of periodicity,
which occur throughout the chaotic regime.

Notes
1. There are at least three scenarios in which the regular behavior of a
system becomes chaotic. A standard route is via a series of period-
doubling bifurcations. Two other routes to chaos that are fairly well
understood are via intermittent behavior and through quasiperiodic
solutions.
2. Many equations have been shown to be chaotic:

e Hale and Sternberg [4] have shown that the differential delay

equation d”fi—(tt) = az(t) + b% is chaotic for certain pa-

rameter regimes.
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Figure 5.5: The canonical piecewise-linear circuit and the voltage-current
characteristic of the nonlinear resistor Gy .

e The equations defining the Lorenz attractor are

z =10y — 10z,
y=—y—xz+ 28z, (5.4)
z=uxy — §Z

e The Rossler equations are

y=x+ay, (5.5)

Z=b+xz —cz.

When a = 0.343, b = 1.82, and ¢ = 9.75, this generates the
“Rossler funnel.” When a = 0.2, b = 0.2, and ¢ = 5.7, this
generates “the simple Rossler attractor.”

3. For an autonomous electronic circuit to exhibit chaos, it must contain
at least three energy storage devices. (Otherwise, the Poincaré—
Bendixson theorem states that the limiting set will be a point or
a limit cycle, not a strange attractor.) A simple circuit with three
energy storage devices that produces chaos is in Matsumoto [7].
The circuit given in Chua and Lin [2] (see figure 5.5) is almost as
simple as that given by Matsumoto and can simulate (by choosing
different values for the nonlinear resistor) different chaotic phenomena
in a large three-dimensional state space. This circuit contains only six
two-terminal elements: Five of them are linear resistors, capacitors,
and inductors; and one element (Gy) is a three-segment, piecewise-
linear resistor.

4. Different types of dynamical systems can have greater or lesser de-
grees of randomness. A simple classification of the amount of ran-
domness in dynamical systems is as follows:

e FErgodic systems: this is the “weakest” level of randomness, in
which phase averages equal time averages.
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e Mizring systems: here, no time averaging is required to reach
“equilibrium.”

o K-systems: systems with positive Kolmogorov entropy. This
means that a connected neighborhood of trajectories must ex-
hibit a positive average rate of exponential divergence.

o (-systems: every trajectory has a positive Lyapunov exponent.

e Bernoulli systems: these systems are as random as a fair coin
toss.

See Tabor [11] for details.

. A technical definition of the Lyaponuv exponents is as follows: When

A(t) is a bounded coefficient matrix, consider the n-dimensional linear
system y' = A(t)y(t). Consider n linearly independent solutions of
this in the form y; = Y (¢)p;, where Y'(¢) is a fundamental solution
matrix with Y (0) orthogonal, and the {p;} form an orthonormal
basis. The characteristic numbers are defined as

, 1
Ai = Jim sup = log ([Y (t)pil])

When the sum of the characteristic numbers is minimized, the or-
thogonal basis {p;} is called normal and the {\;} are the Lyapunov
exponents.

. There are many software packages for numerically computing Lya-

punov exponents. See, for example, Parker and Chua [8] and Rollins
[9].

. In this section we have focused on chaos appearing in coupled, first-

order, ordinary differential equations. Chaos can also appear in
partial differential equations and stochastic equations.

. The papers by Ablowitz and Herbst [1], Lorenz [6], and and Yamaguti

and Ushiki [13] describe and illustrate how numerical discretizations
of a differential equation can lead to discrete equations exhibiting
chaos.

. By long-term integration of the equations governing the solar system

on speical purpose computers, researchers have found that Pluto’s
orbit is chaotic, the motion of the Jovian planet subsystem is chaotic,
and the motion of comet Halley is chaotic. See, for example, Sussman
and Wisdom [10].
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6. Classification of Partial
Differential Equations

Applicable to Partial differential equations.
Yields

Knowledge of the type of equation under consideration.

Procedure

Most partial differential equations are of three basic types: elliptic,
hyperbolic, and parabolic.

Elliptic equations are often called potential equations. They result from
potential problems, where the potential might be temperature, voltage, or a
similar quantity. Elliptic equations are also the steady solutions of diffusion
equations, and they require boundary values in order to determine the
solution.

Hyperbolic equations are sometimes called wave equations, because they
often describe the propagation of waves. They require initial conditions
(where the waves start from) as well as boundary conditions (to describe
how the wave and the boundary interact; for instance, the wave might be
scattered or absorbed). These equations can be solved, in principle, by the
method of characteristics (see page 432).

Parabolic equations are often called diffusion equations because they
describe the diffusion and convection of some substance (such as heat).
The dependent variable usually represents the density of the substance.
These equations require initial conditions (what the initial concentration
of the substance is) as well as boundary conditions (to specify, for instance,
whether the substance can cross the boundary or not).

The above classification is most useful for second order partial differen-
tial equations. For second order equations, only characteristic curves need
to be considered. For equations of higher degree, characteristic surfaces
must be considered, see Whitham [8, pages 139-141] or Zauderer [10, pages
78-85 and 91-97] for more details. After two special cases, we specialize
the rest of this section to second order partial differential equations.

Special Case 1
The most general second order linear partial differential equation with
constant coefficients

Z a”@xﬁmj +;b  teu=d

,j=1

may be placed in the form

Uggy + 0+ Uge, + Au =0,
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if the equation is elliptic or may be placed in the form
Ugy g, — Ugyep = — Ugue, T AU=0,

if the equation is hyperbolic, for some value of A. See Garabedian [3, pages
70-76] for details.

Special Case 2
The (real valued) second order partial differential equation in n dimen-
sions

” ou ou
Z: 8%8% +f( 8—3;1,...,8%) =0, (6.1)

for u(x) = w(x1,...,2,), where a;; = aj;, may be classified at the point
xo as follows. Let A be the matrix (ai;(x0)). By means of a linear
transformation, the quadratic form g* Ag may be reduced to the form

Agi + A2gs + -+ Anga.

The values of {\;}, which are the eigenvalues of A, determine the nature
of the partial differential equation (6.1). Because A has been assumed to
be symmetric, all of the eigenvalues will be real. The classification at the
point Xg is then given by

1. If all of the {\;} are of the same sign, then equation (6.1) is elliptic
at xg.

2. If any of the {\;} are zero, then equation (6.1) is parabolic at xg.

3. If none of the {\;} are zero and they are not all of the same sign,
then equation (6.1) is hyperbolic at xg.

4. If none of the {\;} are zero and there are at least two that are
positive and at least two that are negative, then equation (6.1) is
ultrahyperbolic at xq.

If an equation is parabolic along a smooth curve in a domain D, and
the equation is hyperbolic on one side of the curve and elliptic on the other
side of the curve, then the equation is of mized type. The smooth curve is
called the curve of parabolic degeneracy.

Special Case 3

We further specialize here and restrict ourselves to second order equa-
tions in two independent variables. Consider partial differential equations
of second order in two independent variables, of the form

0%u 0%u 0%u Jdu Ou

where ¥ need not be a linear function.
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B2 —4AC >0 hyperbolic
If | B2 —4AC = 0| at some point (z, y), then equation (6.2) is | parabolic
B? —4AC <0 elliptic

at that point. If an equation is of the same type at all points in the domain,
then the equation is simply said to be of that type.

Equation 6.2 can be transformed into a canonical form for each of the
three types mentioned above. The procedures are as follows.

Hyperbolic Equations

For hyperbolic equations we look for a new set of independent variables
¢ =((z,y) and n = n(x,y) for which equation (6.2) may be written in the
standard form

uCn = QS (U, U’nv U’Ca m, C) . (63)

Utilizing this change of variables, we can calculate

Uz = UpMy + UcCay

Uy = UnTly + UGy,
Ugz = UnyNaTe + 2UncNzCa + UccCaola + UnNza + UcCaz,
Uy = UnyNaTly + 2un¢ (MCy + NyCe) + uccCaly + Untay + uclay,
Uyy = UnyTlyTy + 2UncTlyGy + UccCySy + Untyy + UcCyy,

to find that equation (6.2) transforms into

Au¢e + Buey + Cgy = @ (u, up, ue,m,C), (6.4)
where
A= AG + By + O,
B = AGane + B(Catly + Cytia) +2C¢ymy,

C = An? + Bngny + Cni.

Setting A = C' = 0, we can find the following partial differential equations
for ¢ and 7

G —B++vB? - 4AC

Cy 24 6.5.a.b
1. —B-yB?—1AC (65.-0)
Ny 2A '

These equations may be readily solved (in principle) by the method of
characteristics. For example, to solve equation (6.5.a) we only need to

solve
dy —B+ VB2 —4AC
dx 2A
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for Q(z,y) = R, where R is an arbitrary constant. Then ¢ will be given by
After ¢ and 7 are determined, then the original equation must be trans-
formed into the new coordinates (see page 168). The resulting equation
will then be in standard form.
Note that another standard form for hyperbolic equations (in two in-
dependent variables) is obtained from equation (6.3) by the change of
variables

a=n-¢(  B=n+( (6.6)

This results in the equation
1 1
Una — UgE = @ u,ua—u5,ua+u5,§(64—&),5(6—&) )

Example 1

Suppose we have the equation
Vg, — x2uyy = 0. (6.7)

We recognize this equation to be hyperbolic away from the lines = 0 and
y = 0. To find the new variables ¢ and 7, we must solve the differential
equations in (6.5). For this equation, we have {4 = y?, B =0, C = —z?}.
Therefore (6.5) becomes

G oy omy oy
with the solutions ¢ = y?—12?%, = y?+22. In these new variables, equation
(6.7) becomes

Uy = C 1
CTRAC-) " 2AC )

If the change of independent variable in (6.6) is made, then (6.8) becomes

U (6.8)

1 1
Uaa — UBB = %Uﬁ — %Ua.
Parabolic Equations

For parabolic equations, we look for a new set of variables ¢ = {(x,y)
and n = n(z,y) in which equation (6.2) can be written in one of the
standard forms

UCC = ¢ (’LL, un7 UC, , C) ’ (69&)
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or

Uny = ¢ (U, Up, uc, N, C) - (6.9.b)

Utilizing equation (6.4), we see that we need to determine ¢ and 7 in such
a way that

B=0=C, corresponding to (6.9.a), (6.10.a)
or

B=0=A4, corresponding to (6.9.b), (6.10.b)
If A #0, then equation (6.10.a) corresponds to the single equation

& B

Cy __ﬂ7 (6118.)

while, if C' # 0, then equation (6.10.b) corresponds to the equation

& B

=" (6.11.b)

In either case, we have only to solve a single equation to determine . The
variable 7 can then be chosen to be anything linearly independent of ¢. As
before, once ¢ and 7 are determined, then the equation needs to be written
in terms of these new variables

Example 2
Suppose we have the equation

YPUzz — 20Ylgy + T2y, + uy = 0. (6.12)

Since {A =y, B = —2xy, C = 2”}, we find that B> —4AC = 0 and so this
equation is parabolic. In this case we choose to make B = C' = 0. From
equation (6.11.a) we must solve e — %, which has the solution ¢ = y?+ 2.

Cy
We choose n = x. Using these values of n and ¢, we find that (6.12)
becomes 2C +1) )
+n
Upy = uc + Up.
nm C—n2 ¢ C—n2 "

Elliptic Equations

For elliptic equations we look for a new set of variables a = a(z,y) and
B = B(x,y) in which equation (6.2) can be written in the standard form

Uaa +ugs = ¢ (U, Ua, ug, @, () .
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The easiest way in which to find o and [ is to determine variables
¢ =(¢(z,y) and n = n(z,y) that satisfy (6.5) and then form o = (n+()/2,
B = (n—¢)/2i (where, as usual, i = v/—1). Note that in this case, the
differential equations in (6.5) are complex. However, since ¢ and 7 are
conjugate complex functions, the quantities o and 3 will be real.

Example 3

Suppose we have the equation
y2um + x2uyy =0.

We recognize this equation to be elliptic away from the lines x = 0 and
y = 0. To find the new variables ¢ and 7, we must solve the differential
equations in (6.5). For this equation, we have {A = y?, B =0, C = z?}.
Therefore (6.5) becomes

Ce T Ne 1T

Gy y’ ny Y’

with the solutions ¢ = y? —ix?, n = y? + ix?. Forming o and [ results in

_ntC_ o _n=C_
a——2 =y”, 8= 5 = x”.

In these new variables, equation (6.7) becomes

Uga + UG = —%uo‘ — %Uﬂ
Notes
1. Equations of mixed type are discussed in Haack and Wendland [4]
and Smirnoff [6].
2. Given a partial differential equation in the form of equation (6.1), the
characteristic surfaces are defined by the characteristic equation

3 w0 5:) () -0

4,j=1

The solutions to this equation are the only surfaces across which u(x)
may have discontinuities in its second derivatives.

3. The Notes section of the characteristics method (see page 432) de-
scribes how to determine when a system of partial differential equa-
tions is hyperbolic.

4. See also Farlow [2, pages 174-182 and 331-339], Moon and Spencer
[5, pages 137-146], Stakgold [7, pages 467-482], and Young [9, pages
60-70].
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7. Compatible Systems

Applicable to Systems of differential equations.
Yields

Knowledge of whether the equations are consistent.

Procedure 1

The two equations f(x,y,z,p,q) = 0 and g(z,y,2,p,q) = 0 for z =
z(z,y) (where, as usual, p = 2z, and ¢ = z,) are said to be compatible if
every solution of the first equation is also a solution of the second equation,
and conversely. These two equations will be compatible if { f, g} = 0, where

o(f.g) , 9(f.g)  9O(f.g) , 9(fg)
g} = + + + ,
st =56 tPap) T 9w T o)
and where g((ZZ)) = | % 2 | = uqvp — vauyp is the usual Jacobian.

Procedure 2

The conditions for consistency of a system of simultaneous partial dif-
ferential equations of the first order, if the number of equations is an exact
multiple of the number of dependent variables involved, is given in Forsyth
[3, Part IV, pages 411-419]. To write the consistency conditions, let the
unknown dependent variables be {z; | ¢ = 1,...,m}, let the independent
variables be {z; | j = 1,...,n}, and define p;; = 9z;/0x;. We presume
the system has rm equations (with » < n) and that these equations can be
solved with respect to the p;;. That is

pis = ;’;‘— — i (e L) (o))

have introduced the notation (a,b) to be the sequence of numbers a,a +

1,a+2,...,b.) Then, for consistency, the following conditions must be
satisfied
Ofii  0fia  ~ Ofij Ofia
0z, Ox; + ); Pra 0z Y 0z
o~ N~ (0fij Ofsa aﬁaaﬁj>
+ —
;pgl (8p5“ 0z,  Ops, Oz, (71)

m n m 8f1] 8fsa B 8fm afsj _
P IPIDS Kapw D2n  Opay 022 ) P T

s=1 p=r+1 =1
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where i = (1,m), a= (j +1,r), j = (1,r — 1), and

i (afm 8fsa _ 8f1'a 8fsj + 8f1] 8fsa _ 8,fia 8fsj) _ 0
apsu 8pk7— 8psu 8pk7— 8ps-r apku 8ps-r 3]%“ ’ (72)

s=1
where i,k = (I,m), a={(j+ 1,7, p,7=(r+1,n), j=(1,r—1).

Special Case 1

In the special case of m = 1, we have one dependent variable (which we
call z) and r equations. Let p; = 02/0x; = fj(z,21,...,Zn, Drg1, - Dn)-
In this case, equation (7.2) is automatically satisfied while equation (7.1)

becomes N
dfj dfa+ (8fj dfa afa%) —0
p=r+1

dz,  dz;

Op, dx,,  Op, dx,

fora = (1,7 — 1), j = (1,r), where we have defined i = 8%3 +ps%.

Special Case 2

In the special case of r = n, the system of mn equations becomes

pij = fij(21,. .., Zm, T1,...,2,) and the consistency conditions become
Ofii  0fia  ~ 0fij Ofia
_ u _ . =0
0z, Ox; + ); A 0z Y 0z

for i = (1,m), a = (1,5 — 1) and j = (1,n). These are known as Mayer’s
system of completely integrable equations.

Special Case 3

Consider the special case of r = 1, with {F}; =0, F» =0, ..., F,, =0},
where each F; = p; — fj(z,21,...,%n, Pr41, ..., Pn) is analytical in each of
its arguments. A necessary and sufficient condition for the set of equations
to be consistent is that [F;, F;] = 0, for all combinations of ¢ and j. Here,
[, ] represents the usual Poisson bracket.

Example
Suppose we have the two following nonlinear partial differential equa-
tions for z(z,y):

TZp = Yzy, 2(xzg + yzy) = 22y. (7.3)
From (7.3) we identify

f(z,y,2,p,q) = xp — yq, 9(x,y,2,p,q) = z(zp + yq) — 22y.
(7.4)

Using (7.4) we can easily calculate

o(f,9)
d(z,p)
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a(f,9) a(f,9)

a) N B

Therefore, computing { f, g}, we find it to be zero. Hence, the two equations
in equation (7.3) have identical solution sets.

Because the equations in (7.3) are compatible, we can combine them
without changing the solution sets. Solving the equations in (7.3) simulta-
neously for p and ¢ to obtain {z, = p = y/z, 2z, = ¢ = x/z}. These last
two equations can be easily solved we obtain z? = C' 4 2xy, where C is an
arbitrary constant.

Notes

1. Jacobi’s method (see page 464) takes a given partial differential equa-
tion and creates a compatible equation and then uses elimination
between these two equations.

2. If it is known that a linear homogeneous ordinary differential equa-
tion of order n has solutions in common with a linear homogeneous
ordinary differential equation of order m (with m < n), then it is
possible to determine a differential equation of lower degree that has,
as its solutions, these common solutions. If the linear homogeneous
ordinary differential equations Lq[u] = 0 and Ls[u] = 0 are defined
by

Li:=poD" +p1 D" '+ 4+ pp_1D + py,
Ly :=qoD" + @ D™ '+ + g1 D + g,

where D represents d/dx and each of the functions {p;, ¢;} depends
on z, define the ordinary differential equation R;[u] = 0 by

Rl = ,r,Oanm + Tanimil + -+ rnfmle + Tn—m,
where the {r;} are defined by

Po = Toqo,

n—m\ ,
pP1="7190 + 70 1 Q + a1,

n—m-—1\ ,
P2 =T2q0 + 71 1 9+ a1

n—m\ , n—m\ ,
+ 7o 9 qy + 1 q + 92|,

1
Pn—m = Tn—m4qo + Tn—m—1 |:<1>q6 + q1:|

2\ , 2\ , 2
+ Tn—m—2 9 q0+ 1 q1+ 0 q2 +7

= Tn—m4qo + rn—m—1 [Q6 + fh] + rn—m—2 [qé)l + 2q,1 + q?] +....
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Then the order of the operator Ls := Ly — R1Ls will be depressed
as much as is possible (the order of L3 will not exceed m — 1). Note
that only a finite number of rational operations and differentiations
are required to determine the {r;}. From the definition of Lz, we
see that all solutions common to both Li[u] = 0 and to Lo[u] = 0
will also be solutions to Lz[u] = 0. If Ls is identically zero, then we
have found a factorization of L; (see page 294). See Ince [4, pages
126-128] or Valiron [6, pages 320-322] for details.

3. Differential resultants can also be used to derive consistency condi-
tions. See Berkovich and Tsirulik [2] for details.

4. Wolf [7] describes an algorithm that determines if an overdetermined
system of two equations for one function has any solution. An imple-
mentation in FORMAC is mentioned.

5. See also Ames [1, pages 54-65] and Sneddon [5, pages 67-68].
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8. Conservation Laws

Applicable to Partial differential equations.
Yields

Quantities that remain invariant during the evolution of the partial
differential equation.

Procedure
Given an evolution equation, which is a partial differential equation of
the form

ur = Fu, ug, Uggy .. . ), (8.1)
a conservation law is a partial differential equation of the form
0 0
2rute) + 2x(tn) <o :
o u(z,t)) + o u(z,t) 0 (8.2)

which is satisfied by all solutions of equation (8.1). We define T'(-) to be
the conserved density and X (-) to be the fluz. An alternative statement of

equation (8.2) is that
/ 7 (ufa. 1)) da (8.3)

is independent of ¢, for solutions of (8.1) such that the integral converges.

More generally, a partial differential equation of order m in the n
independent variables x = (x1, 23, ..., ;) and a single dependent variable
u is in conservation form if it can be written as

; %Fi(x, u, Ou, 0*u, ..., 0™ tu) = 0. (8.4)

Here &7u represents all jth order partial derivatives of u with respect to x.

Example 1

The Korteweg—de Vries equation
Ut = Ugge + Uly (8.5)

has an infinite set of conservation laws. The first few, in order of increasing
rank, have the conserved densities

T=u,
T = u?,
T =u® — 3u?

x?

T =5u* — 60uu2 — 36U Uz,
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2

To demonstrate, for instance, that 7' = u* is a conserved density, we

compute
or  o(u?)
ot ot
where we have used the defining equation in (8.5) to replace the u; term.
Now we must determine a flux X such that equation (8.2) is satisfied. In

this case, we find X = u2 — 2uu,, — %u3.

= 2uU; = 2UUgpy + 2u2u$,

Example 2
The Schrodinger equation
0%u Ou

can be expressed in the form of equation (8.2) with

T =iv(x)u,
X = v@) 2~/ (a)
=v(@) 5 x)u,
where v(x) is defined by v/ (z) = V(x)v(x).

Notes

1. Conservation laws allow estimates of the accuracy of a numerical
solution scheme (because the quantity in (8.3) must be invariant in
time).

2. Not all partial differential equations have an infinite number of con-
servation laws; there may be none or a finite number.

3. A conservation law for an evolution equation is called trivial if T is,
itself, the z derivative of some expression. If equation (8.1) has an
infinite sequence of nontrivial conservation laws, then the equation is
formally integrable. Infinite sequences of nontrivial conservation laws
are given by Cavalcante and Tenenblat [2] for the following equations:
Burgers, KdV, mKdV, sine-Gordon, sinh—Gordon.

4. If a given partial differential equation is not written in conservation
form, there are a number of ways of attempting to put it in a con-
served form. Bluman er al. [1] have a short list of techniques.

5. If equation (8.4) is satisfied, then there exists an (n — 1)-exterior
differential form F such that equation (8.4) can be written dF = 0.
This implies that there is an (n — 2)-form ¢ such that F = d¢. This,
in turn, means that there exists an antisymmetric tensor of rank n,
1, such that

. 2 m—1 _ J J i—1 J
Fi(x,u,0u,0%u, ..., 0™ "u) = | g (-1) —(%cj + E ‘(—1) —(%cj ,
i<j<n 1<)<i

fori=1,2,...,n.
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6. A computer program in REDUCE for determining conservation laws
is given in Ito and Kako [6]. In Gerdt et al. [4] is the description of a
computer program in FORMAC that determines conservation laws,
determines Lie-Backlund symmetries, and also attempts to determine
when an evolution equation is formally integrable.

7. Torriani [10] shows how the terms appearing in the expression of the
densities and the fluxes for the Korteweg-de Vries equation may be
found by combinatorial methods.

8. El-Sherbiny [3] proves that unless a;/ag is a multiple root of order
three of the algebraic equation agA® — asA? 4+ asA — az = 0, then
the class of nonlinear evolution equations u; + ug, + ajuu, + asuus +
A3Uzzr + Q4lzet + a5Ug + aguzs = 0 with the {a;} real numbers
has a finite number of conservation laws; otherwise, the class has an
infinite number of conservation laws.

9. See also Olver [9, Chapter 4, pages 246-291].
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9. Differential Resultants

Applicable to Two polynomial ordinary differential equations.
Yields

One ordinary differential equation in one independent variable.

Idea

Given two polynomial equations (in, say, « and y), the classical method
of resultants is as follows: The equations can always be written as the
system of linear equations Aw = 0, where A = A(y) and w = w(x) # 0.
Because this system must have det A = 0, a polynomial equation only in
y may be determined. The technique for polynomial differential equations
is very similar.

Procedure
Resultants have classically been used to eliminate one variable between
two polynomial equations. For example, suppose we have the two equations
2% — 3y*r? + o+ 5y* =0, (9.1)

23+ 5y?a® —x + 32 =0. )

These equations may be multiplied by powers of x to obtain the system of
equations:

x® — 3yt + x> + by?z? = 0,
zt — 3y’ o+ 2 + 5y’z = 0,
2 — 3y + r + 5y¥= 0,
>+ by*a? — r + 3yP= 0,
z* 4+ By’ — 2 + 3y’z = 0,
x® 4+ bylxt — x>+ 3y’z? =0
This system can be written in matrix form as
1 —3y? 1 512 0 071 [2° 0
0 1 =3y 1 502 0 | |2* 0
0 0 1 =3y 1 5y |2 0
0 0 1 502 —1  3y%| |22| ~ |0 (9:2)
0 1 592 —1 32 0 x 0
1 52 -1 3y? 0 0 1 0

This last equation is a 6 x 6 system of the form Aw = 0. Because w # 0
(because, at least, the last component of w is non-zero), the determinant
of A must vanish. Taking the determinant of the matrix in equation (9.2),
we find that y must satisfy the equation

32¢%(289y®% + 169 + 1) = 0. (9.3)
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All the different values of y, from the solutions of (9.1), must satisfy (9.3).

Differential resultants are the analogue of resultants applied to differ-
ential systems. There are two steps analogous to multiplying the original
equations by powers of x. They are

e differentiating one of the equations,
e multiplying one of the equations by some term that may involve the
independent and/or the dependent variables.

Although there are algorithms published on how to proceed in any given
case, as in Mishina and Proskuryakov [3], they are generally written in the
language of abstract algebra.

Example
Suppose we have the following two coupled differential equations for

{y(@), 2(2)}

A: 3yz+z—y, =0,
B: —z+22+y*+y=0.

We seek a single differential equation involving only z(z). Note that we
could solve equation (A) for y(z) (by integrating factors) and then substi-
tute this result in equation (B), but this creates an algebraic mess. This,
in turn, makes it difficult to obtain a single simple equation for z(x).

If we form the equations {A, B,yA, yB, y. B, 0,B,yd, A}, then we ob-
tain the system

[0 0 -1 0 O 3z z IR ZE 0]
1 0 0 0 O 1 22 — 2, Y3 0
3z 0 0 -1 0 z 0 Yo 0
1 1 0 0 O 22— 2, 0 Yy | = |0
0 0 22—2, 1 1 0 0 yQyz 0
0 O 1 2 0 0 2220 — Zypw Y 0
10 0 0 1 2 22zp — Zpe 0 I 0]

Taking the determinant of the matrix above, we conclude that z(z) is a
solution of the single ordinary differential equation

ziw + (=162, + 1222 — 3) 224, + 64z22320 + (23 — 962%)2%2,
+ (362% — 1722 4+ 2)22 = 0.

Notes

1. This technique applies directly to systems of partial differential equa-
tions and to higher order equations.
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2. There are specific technical requirements for when the classical method

of resultants (when applied to polynomials) will work. There are
similar requirements for when differential resultants will work. See
Mishina and Proskuryakov [3] for details.

3. Rubel [5] proves the following theorem, which indicates that elimina-

tion is not always possible, at least for algebraic differential equations
(ADEsS, see page 720):

There exists a system of two ADEs, in the two dependent
variables u and v which possesses a real-valued C™™ so-
lution w, ¥ on a certain open interval I, but which has no
solution u, v on I for which v satisfies an ADE that does
not involve u or any derivative of w.

4. By taking equations pairwise a system of, say, 10 equations in 10

different independent variables could, if fortunate, be reduced to a
single equation in a single independent variable.

5. The two differential equations considered do not both have to be

polynomial for this reduction scheme to work. The two equations
have only to be polynomials in one of the dependent variables (the
one that will be removed).

6. Any linear second order ordinary differential equation system can be

interpreted as the resultant of the elimination of a dependent variable
from a pair of conjugate first order Hamilton’s equations. See Tolstoy
[7] for details.
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10. Existence and
Uniqueness Theorems

Applicable to Differential equations of all types.
Yields

Knowledge of whether a solution exists and, if so, if the solution is
unique.

Idea

There are theorems available for many cases of interest.

Procedure

Corresponding to the difficulty of the subjects involved, there are more
theorems applicable to: ordinary differential equations than partial dif-
ferential equations, linear equations than nonlinear equations, and initial
value problems than boundary value problems. In the following we indicate
some of the simple theorems that are frequently useful.

The last theorem is applicable to partial differential equations; the rest
are applicable to ordinary differential equations. The first and last two
theorems are for vector systems; the other theorems are for scalar equations.

Theorem Consider the initial value problem: dx/dt = F(t,x) with x(t9) =
X0, where x = x(t) = [z1(t) 22(t) ... 2,(t)]". If each of the functions

{F;} and { OF; } are continuous in a region R of (¢, x) space containing

ox;
the point x¢, then there is an interval |t — to| < h in which there exists
a unique solution to the problem.

Theorem Consider the initial value problem: y’ = f(xz,y) with y(zo) =
yo. Let the functions f be continuous in some rectangle a < x < b,
¢ < y < d containing the point (xp,yo). Assume that f(x,y) satisfies
a Lipschitz condition in y. Then, in some interval zo—h < z < x¢o+h
contained in a < z < b, there is a unique solution to the given
problem.

Theorem Consider the initial value problem: y' = f(z,y) with y(xg) =
yo. Let the functions f and 9f/dy be continuous in some rectangle
a <z <b, c<y <dcontaining the point (zg,yo). Then, in some
interval xg —h < & < g+ h contained in a < x < b, there is a unique
solution to the given problem.

Theorem Consider the initial value problem: y"” = f(x,y,y’) with y(x¢) =
Yo, ¥'(xo) = yi. Let the functions f, f,, and f,, be continuous in
an open region R of three-dimensional (x,y,y’) space. If the point
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(%0, Y0, ¥0) is in R, then there exists some interval about zo for which
there is a unique solution to the given problem.

Theorem Consider the initial value problem:

y™ 4+ pi(x)y " i (@)Y + pi(2)y = (),
with

y(zo) =yo, ¥'(w0)=vp, --- y(nfl)(l’o) = y(()n_l)-

If the functions {p;(z)} and ¢(x) are continuous on the open interval
a < x < b, then there exists a unique solution to the problem.

Theorem Consider the initial value problem:

= flx,y,t), ¥ =gyt

with z(tg) = o, y(to) = yo. If f and g satisfy a Lipschitz condition
(with respect to x and y) in the region {|t — to] < A, |z — 20| < B,
|y —yo| < C}, then the problem has a unique solution in some interval
a <t < b about the point #.

Theorem Consider the boundary value problem:

2’ = f(t,z,2), 0<t<l,
2(0) =4, (1) =B.

If f and f, are continuous and f, > 0, then there exists a unique
solution.

Theorem Consider the initial value problem

y' + f(z,y,9') =0,
Bily] = v'(a) + Ay(a) — C1 =0, (10.1)
Baly] = y'(b) + By(b) — C2 =0,

where f satisfies a Lipschitz condition, and f, and f,, are bounded
for x in the interval [a, b] and for values of (y,y’) of interest. Consider
the two comparison equations

ui + hy(z,ur,uy) =0, Bilui] =0, Bslui] =0,
ug + hQ(JJ, U9, UIQ) =0, Bl[U/Q] =0, BQ[U/Q] =0,

with hi(z,y,y") < f(z,y,9") < ha(z,y,y"). We assume that the
and wg problems have unique solutions. Then there exists at least
one solution to (10.1) in the given region, and every solution has the
property uq(z) < y(x) < ug(x). (This theorem is one of the major
results of the theory of differential inequalities.)
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Cauchy—Kowalewski Theorem If the vector u = [ul U2 ... Up

satisfies
w = A(u)u,, u(0,z) = h(x),

where ur = ug(x,t), A(u) is an analytic matrix, and h(z) is an
analytic function, then a neighborhood of ¢ = 0 can be found in
which there is a unique solution u, with each ux being analytic.

Example 1

The first order initial value problem
v =1yl ylzo) =0 (10.2)

has a right-hand side that is not Lipschitz continuous at y = 0. This
equation, in fact, has an infinite number of solutions. Let x1 and x5 be any
two numbers such that ;1 < zg < x2. Then the following function

—(%)3/2 (1 —x)%2, if x < @,
0, if 21 <z < xa,
(%)3/2 (z — x9)3/2, if zo <z,

is a solution to equation (10.2).

Example 2

The nonlinear second order equation
/
(u'?’) 1241 —u) =0, w(0)=1, «(0)=0,

has at least three solutions: u(t) = 1, u(t) = 1 —t2, and u(t) = 1 + ¢%.
Notes

1. Differential equations with discontinuities (see page 264) and delay
equations (see page 253) do not meet the requirements of the above
theorems. They must be investigated separately.

2. It is often possible to determine when a linear ordinary differential
equation has a unique solution. When the solution is not unique, it
is sometimes possible to describe the degrees of freedom that make it
non-unique using alternative theorems (see page 15).

3. Fixed point theorems are a specific method that can be used to
prove the existence of a solution (see page 58). The section on well
posed differential equations contains some results on existence and
uniqueness (see page 115).

4. Bobisud and O’Regan [2] consider existence questions for some second
order initial value problems of the form y"”+ F(t,y,y’) = 0, where F is
allowed to be suitably singular. For example, F(t,y,1') = t~1/2y~1/2
is allowed.
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. The existence of solutions to a differential equation can be critically
dependent on the size of the coefficients in the equation. For example,
Coddington and Levinson [3] show that the problem

" / /N3
e =—y — ()",
y(0)=4, y(1)=B  (A#B)
does not have a solution for small enough € > 0.
. The classical problem

—V2u=uP inQ, u=0 on 09,

where Q is a bounded domain in RV, with smooth boundary 952, has
the interesting existence property (see Peletier [8]):

o If p < %, then existence of a solution is assured for any
domain 2;
o If p > %, then there exists no solution in any star-shaped

domain.

Similar results are available for the equation u; = V2u+uP; existence
of a global positive solution depends on whether p is greater than
14 2/N (see Fujita [5]).

. A classic result of Lewy [7] is that the equation

— Uy — ZUy + 2(237 - y)uz = F(x7y7 Z)a

where F(x,v,2) is of class C°°, has no H'-solution, no matter what
open (z,y, z) set is taken as the domain of existence.
. Waterhouse [11] has the theorem:

Theorem: Consider the homogeneous linear differential equa-
tion involving only derivatives of even order and even functions
as coefficients, (D*" +a1D*" 2 + .- 4 a,,) f = 0 with a;(z) =
a;(—z) and having the symmetric homogeneous boundary con-
ditions B1(D)f(s) = -+ = Bp(D)f(s) = 0 = B1(D)f(—s) =
If this boundary value problem has a non-trivial solution, and
if each of the vectors (b;o — bi1,bi2 — bi3,...) is in the span
of the vectors (bl(); b11,b12,.. ) and (bQQ, b21,bao, . .. ), then this
problem has a nontrivial solution that is either even or odd.

. Agarwal and Sheng [1] provide necessary and sufficient conditions for
the existence and uniqueness of solutions of general nth order non-
linear differential equations satisfying Abel-Gontscharoff boundary
conditions. These are boundary conditions of the form y(* (aiy1) =
A1 for0 <i<n—1where —co<a<a; <as <---<a, <b< .
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11. Fixed Point Existence
Theorems

Applicable to Differential equations of all types.
Yields

A statement about the existence of the solution.

Idea

If the statement concerning the existence of a solution to a differential
equation can be interpreted as a statement concerning fixed points in a
Banach space, then a fixed point theorem might be useful.

Procedure
The Schrauder fixed point theorem states:
Let X be a non-empty convex set in a Banach space and let

Y be a compact subset of X. Suppose Y = f(X) maps X
continuously into Y. Then there is a fixed point z* = f(z*).

By interpreting a given differential equation as a continuous function in
a Banach space, the above theorem indicates the existence of a solution.

Example
Suppose we wish to determine whether a solution exists to the nonlinear
boundary value problem

7 —u(x)

u’ = —e ,
(11.1)
u(0) = u(l) =0,
on the interval x € [0,1]. We first note that the problem
U// = _Qb(m)a
v(0) =v(1) =0,

has the solution )
v(z) = / Gz, 2)(2) d=,
0

where G(z, z) is the Green’s function (see page 321)

Gla,2) = (1—x)z, for0<z<ux,
=2z, forz<z<1

Hence, we can write equation (11.1) in the form of an equivalent integral
equation

1
u(z) = fu(zx)) E/O G(x,z)e "?) dz. (11.2)
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To apply Schrauder’s fixed point theorem to equation (11.2), we need
to carefully define the Banach space B and the sets X and Y. If we define

B = space of continuous functions on (0, 1),
X ={u(z) | 0 <u(z) < 1,u(x) is continuous},

then we can apply the theorem. Note that in this example, X is not
compact but Y is. Note also that the bounds in X were derived after some
analysis of equation (11.1). Finally, then, we conclude that equation (11.1)
has a solution.

Notes

1. In the example above we used a fairly standard linearization trick
that can be described in more generality. Suppose that an expression
D(f,g) (which could involve derivatives of f and/or g) is linear in
f. Suppose also that the linear differential equation D(f,g) = 0 has
a unique solution f = T'[g] for each g in some function space. Then
to find a solution, in that function space, of the (possibly nonlinear)
equation D(f, f) = 0 is equivalent to finding a fixed point of the
mapping 7. Thus a particular nonlinear differential equation can
be studied by means of a more general linear differential equation,
together with a fixed point problem.

2. Once a differential equation has been formulated as a fixed point
statement, numerical methods that search for fixed points in a func-
tion space can be used. See, for example, Allgower [1].

3. Interval techniques (see page 545) may also be used to bound the
solution of a fixed point statement. See Moore [7, Chapter 15, pages
97-102] for details.

4. A contraction mapping is a functional iteration, say yn+1 = N(yn],
that converges to the solution of the fixed point equation y = F[y].
The Picard iteration (see page 618) is such a mapping.

5. Another fixed point theorem that is of use in differential equations is
Krasnoselskii’s theorem (see Franklin [3] for details):

Consider the fixed point equation x = f(x) + g(x) for x in a
Banach space B. Let X be a non-empty closed convex set in B.
Let f(x) map X continuously into a compact subset Y C X. Let
g(x) be a contraction mapping on X (note that the range of g
need not be compact). If it is assumed that y + g(x) € X for
y €Y and x € X, then there is a fixed point of x = f(x) + g(x).

6. Another fixed point theorem that is of use in differential equations is
the Tihonov fixed point theorem (see Iyanaga and Kawada [6, pages
542-543] for details):
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Let R be alocally compact topological linear space, A a compact
convex subset of R, and T" a continuous mapping sending A into
itself. Then T has fixed points.

7. Existence theorems for solutions for differential equations may be
found on page 53.

8. See also Burton [2, Chapter 3, pages 164-196], Hale [4, Appendix,
pages 171-172], Hartman [5, Chapter 12, pages 404-449], Smart [8,
Chapter 6, pages 41-52], and Stakgold [9, pages 243-259].
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12. Hamilton—Jacobi Theory

Applicable to Conservative dynamical systems.
Yields

A reformulation of a system of ordinary differential equations.
Idea

A change of variables may lead to more tractable equations.

Procedure
A conservative dynamical system has a Lagrangian L defined by L =
T — V, where T(V) is the kinetic (potential) energy. If the generalized

coordinates in this system are q = (¢1,¢2,---,qn), then the equations of
motion are given by
d (0L OL
=)= 20, fori=1,2,...,n, (12.1)
dt \ 0g; 9q;

where a dot denotes differentiation with respect to t. The equations in
(12.1) are called Lagrange’s equations. If we define the generalized mo-
menta by p; = g—qLi and the Hamiltonian by H = pTq — L, then Lagrange’s

equations become

) |
Gi = op

OH
S 12.2
Di 90 (12.2)
oL _ _9H
ot ot

These equations are called Hamilton’s equations. If we change from the
(H,p,q) variables to the (J, P, Q) variables via the canonical transforma-
tion defined by the generating function S(P,q,t) (see page 132), then

08
pi = R
as
22 12.3
Qi= o (12.3)
oS
J(P.Q.t) = H(p(P,Q.1).q(P, Q.1),1) + 5.
In these new variables, Hamilton’s equations may be written
. oJ
Qi = a5
op;
. 97 (12.4)
P=- .
Qs
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If the canonical transformation is chosen so that J = 0, then (12.4) says
that P and Q are constant. To have J vanish identically, we require (from
(12.3))

H((’?S as a8 7qn,t> as

- 92 _y.
0q1’ 0qo Oqn a1 * ot

This last equation is known as the Hamilton-Jacobi equation. The proce-
dure is to solve the Hamilton—Jacobi equation for the generating function
S, make a canonical change of variables using this generating function, and
then solve Hamilton’s equation in these new coordinates. This will yield a
solution to Lagrange’s equations.

Example
Suppose we want to solve the linear constant coefficient ordinary differ-
ential equation

j+w?q=0. (12.5)

This differential equation comes from the Hamiltonian H = % (p2 + w2q2),
which, in turn, corresponds to the following Hamilton—Jacobi equation:

1/8S\° 4.,
2 [(a—c) e
To solve for S(q,t), we use separation of variables (see page 487), and look
for a solution in the form S(q,t) = a(q) + b(t), for some unknown functions
a(q) and b(t). Using this form for S in equation (12.6) and making the

usual argument about which terms must depend upon which variables, we
determine that a(q) and b(t) must satisfy

. da\?
b= —aq, (—) +w?¢? = 2a,
dq

oS
+ 5 =0. (12.6)

where « is a separation constant. Hence, S = —at + [ 1/2a —w?¢?dq. If
we call a = P, then we can compute from equation (12.3)

_ﬁ__ 2. 2N\=1/2 5 l-_1 wq
Q_8P_ t+/(2P wq”) dq = t—l—wsm 5B )

which may be inverted to yield g = V2P g [w(H— Q)} , which is the solution

to equation (12.5).
Notes

1. Lagrange’s equations can be interpreted as the variational or Euler—
Lagrange equations for the functional J = [ Ldt (see page 418).
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. The functions f and ¢ are said to be in involution or to Poisson
commute if the Poisson bracket [f,g] is identically equal to zero.
Liouville’s theorem states that a function F' is a first integral of a
system with Hamiltonian function H if and only if H and F are in
involution. See Abraham et al. [1, page 471] for details.

. Poisson’s theorem states that the Poisson bracket of two first integrals
of a Hamiltonian system is again a first integral. See Goldstein [2,
Chapter 9, pages 273-317] for details.

. Any function A(p, q) defined along the trajectories of equation (12.2)

satisfies
dA 0AOH 0AOH
T=AH =) (TT - TT)
; q; Op; Pj 04;
where the square brackets denote the Poisson bracket.
. A general form for a non-conservative system is often taken to be

i oC , oD

Opi 04 (12.7)
,_ 0C oD
pi= 0q;i  Op;

Where C(p, q) and D(p, q) are called the conservative and dissipation
functions. For D = 0, this reduces to equation (12.2). For C = 0,
this becomes a gradient system. Any function A(p,q) defined along
the trajectories of equation (12.7) satisfies

dA

— =VA-VD+[AC].

dt
Choosing A = C and A = D, we obtain the evolution equations for
the conservative and dissipative functions

dc
E—VC'VDa
dD

Note that V2D equals the divergence of the vector field of equation
(12.7) and that the system is dissipative when V2D < 0.

. Given the equations of motion: ¢; = f;(q,q,t), the inverse problem
of classical mechanics is to determine whether these equations are
equivalent to the Euler-Lagrange equations based on a Lagrangian L.
That is, a matrix w = w(q, q,t) is desired so that

.. d (0L oL
wij (G = f;) = 5 (6@) e
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The necessary and sufficient conditions for the existence of w and L
are called the Helmholtz conditions, they are

8’[1)1']‘ 8wik

aik - Gij ’ Wig = Wit
SSPE SO ) S S 1
Y 2 "oi; 2 770y
1 (wfi w%) ) S
2 ! Gx'j J 6:@ ! axj J 8$i

with D = %—'_Zm (;tm% + fm%). See Hojman and Shepley [4].

7. The KdV equation, uy = —ugq,+6uu,, can be treated as a Hamilton-

ian system, u; = {u, H}, with the Hamiltonian and Poisson brackets
defined by

H=-< /uz(x) dx {u(z),u(y)} = [-0° + 4ud + 2u,] 6(z — y)

8. See also Haar [3, Chapter 6, pages 121-145] and Nayfeh [5, pages

179-189).
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13. Integrability of Systems

Applicable to Systems of differential equations.
Yields

Information about whether a Hamiltonian system is completely inte-
grable.

Idea

The Painlevé test performs a singular point analysis, which gives infor-
mation about integrability.

Procedure

An autonomous Hamiltonian system is called (Liouville) integrable if
there exists another function I such that [H, I] = 0. This function must be
functionally independent of H, it must exist globally and be single valued,
and it must be a complex analytic function of its variables.

If the Hamiltonian system has N degrees of freedom it is called com-
pletely integrable if it possesses N independent single valued analytic first
integrals {I} that commute with respect to the Poisson bracket

N
oI, d1,, 01, 0I,,

I?’ijm - - -

| ] ; (5%‘ Op;  Ops 5%‘) 0

One of these first integrals will be the Hamiltonian itself.

Given a Hamiltonian system, there is no known systematic method for
determining whether or not that system is integrable. Much recent work
has focused on the Painlevé test. The test asserts that an equation is
integrable if every ordinary differential equation that arises as a similarity
reduction of an integrable partial differential equation has the Painlevé
property; that is, it has no movable singularities except poles, perhaps
after a transformation of variables. For the Painlevé test to be effective, it
is necessary to determine the complete symmetry group of the differential
equation under consideration. If it passes the test, then it is believed
that the original partial differential equation will be solvable by inverse
scattering methods (see page 460). The Painlevé test also has applications
in determining the stability of systems of ordinary differential equations.

Roughly speaking, a partial differential equation is said to possess the
Painlevé property if the only singularities of the general solution on arbi-
trary non-characteristic surfaces are poles. Singular point analysis is used
to determine if differential equations have the Painlevé property. The test
consists of substituting

u(@) =Y un(e — 20)**?,

n=0
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for @ < 0, into the tested equation in the vicinity of a singular point xg
and investigating whether this expansion is compatible with the equation
and contains a sufficient number of undetermined coefficients for the ap-
proximation of a general solution.

Example
The motion of the N particle lattice is described by the Hamiltonian

N N
1 -
H(p,a) =5 pf+) et (13.1)
==

where gn+1 = ¢1 (which corresponds to cyclic boundary conditions). If
{a;,b;} are defined by

1 1
aj == _e(qj*qjﬂ)/?7 bj = §pj7
then the equations of motion are
a;- = aj(bj - bj+1)7 b; = 2(&?71 - CL?) (132)
If the following N x N matrices are defined:
[ b1 al 0 e 0 anN T
ap by az 0 0
0 as b3 0 0
L= .
0 0 O bnv-1 an-1
_aN 0 0 anN—1 bN i
[ 0 —ai 0 .o 0 an i
aiq 0 —as9 0 0
0 as 0 0 0
A= . )
0 0 0 0 —aN-1
_—CLN 0 0 anN—1 0 i

then equation (13.2) may be written in the form

dL

T [A,L] = AL — LA.
d(L%)

dt

this it follows that the trace of the matrix L* is constant. Hence, the
traces { tr (L), tr (L?), ..., tr (L¥),...} are first integrals for (13.2). They
turn out to be independent and in involution of each other. Hence, the
Hamiltonian in equation (13.1) is completely integrable.

Note we also have = [A, L¥] for any positive integer k. From
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Notes
1. Several definitions of “integrability” are in use in the literature. For
example, the PDE N(z,t,u) = 0 with u(x,0) = f(x) is called com-
pletely integrable if there is an integral equation for K of the form

K(z,y:t) + F(z,y,:1) + / K(x,z:6)H(zy; t) dz = 0

called the Gelfand—Levitan equation, such that

e I and H are uniquely determined from f(x)
e the solution of the PDE is given by u(z,t) = K (x, z;t).

2. Completely integrable PDEs are known to possess several remarkable
properties including:

e the existence of soliton solutions (see page 626)

e the existence of an infinite number of independent conservation
laws (see page 47)

e a Lax representation (see page 460)

e Bicklund transformations (see page 428)

3. In general, linear equations only have fixed singularities while non-
linear equations can have both fixed and movable singularities.

e Consider the linear equation y” + p(x)y’ + ¢(x)y = 0 which has
the general solution y(z) = Ayi(z) + Bya(z) where A and B
are arbitrary constants. The location of the singularities of y(z)
depend only on p(z) and ¢(z), not on A or B. The singularities
of this equation are fized, since they do not depend upon the
constants of integration.

e Consider the nonlinear equation y'+y? = 0 which has the general
solution y(z) = (x —x¢)~! where g is an arbitrary constant. In
this case y(x) has a singularity, a pole, which is movable since it
depends on the constant of integration xg.

4. For first order equations of the form y’ = F(y, x), where F' is rational

in y and analytic in z, the only equation which has no movable
singularities other than poles is the Riccati equation y' = po(z) +
pi(2)y + p2(2)y>.
For second order equations of the form y”’ = F(y,y’,z), where F
is rational in y and ¥’ and analytic in z, Painlevé et al. (see Ince
[8]) showed that there are only 50 canonical equations which have
no movable singularities except poles. Of these, 44 are integrable
in terms of known functions (such as elliptic functions) and the re-
maining 6 defined new transcendental functions, called the Painlevé
transcendents (see page 128).

2 2 2
5. The three-particle Toda lattice has the Hamiltonian H = % +
V' with the potential energy V = eP17P2 4 eP27P3 4 eP37P1 The sys-
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Parameters Invariant
b=2c (22 — 202)e*?

1 2 3
b=0,0= % (—mc2 + ng + 3y + 2%z — 1;104) ett/3

b=1,r=0 (y2+z2)62t

1
b=4,0=1 (4(1—r)z+7‘a:2+y2—2xy+x2z— Zx4) et
b=10=1 (—rx2—|—y2—|—z2) e?t

b=60-—2, (20—1)2 2 2 2 L4\ a0t
90 — 1 ( . z°+y°— (4o —2)zy + a2 e )e

Table 13.1: First integrals for the Lorenz equations.

tems admits three independent integrals, for instance, the functions

Ii =p1+p2+Dp3
I> = p1ps + pap3 +p3p1 — V

Is = p1paps — p1e”* 7P — paeP* Pt — pgelt P2

These integrals are in involution and they are independent.
6. Consider the Hamiltonian H = (p2 + p3)/2 +V:

e For the Hénon—Heiles potential V' = §y3 + 22y, the system is
integrable for p =1, 6, and 16.

e For the Holt potential V = £y%/3 4 22y=2/3 the system is
integrable for p =1, 6, and 16.

e For the quartic potential V' = ax* + bx?y? + cy*, the system is
integrable if a : b : ¢ have the ratios a:0:c, 1:2:1, 1:6:1, 1:12:16,
16:12:1, 1:6:8, or 8:6:1.

7. The Lorenz equations (see page 199)

have known first integrals for several possible values of the parameters
{o,r,b}. For example, the first integrals in table 13.1 are known.

8. Clarkson et al. [4] state that the only third-order semilinear par-
tial differential equations that are linearizable are equivalent to the
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following six equations:

Ut = Ugge + YUz,
Ut = Ugge + Uly + YUy,

_ 2
Ut = Uggy + U U + YUy,

1
Up = Uggy — —us + (€™ + Be™™) Uy + Vg,

8
3 2 2y-1 3 2
Ut = Uggr = SUally (1+ul) - §P(u)(uz + Dug + yug,
_ 3 19 13 2
Ut = Usge — HUy Upg + au,, 2P(u)uz + YUy,

where P(u) is the Weierstrass elliptic function and satisfies

2
(‘fi—P) =4P% — 5P —¢.
U

Clarkson et al. [4, page 1205] show that the PDE

® U = Uz, + h(u)ug, where h(u) is a rational function of u, can
pass the Painlevé test only if h(u) is a linear function of w.
3

o Up = Upyy + (Ulgy +u2) + 5(a— 1)u?u,, where « is a constant,

can pass the Painlevé test only if « = 0, 3/, or 3.

Hereman and Angenent [7] and Rand and Winternitz [13] describe
Macsyma programs for determining whether a nonlinear ordinary
differential equation has the Painlevé property. (The differential
equation must be a polynomial in both the dependent and indepen-
dent variables and in all derivatives.)

The only equations of the form wu,; = f(u), where f(u) is a linear
combination of exponentials, which pass the Painlevé test are: the
sine-Gordan equation u,; = sinu, the Liouville equation u,; = e",
and the Bullough-Dodd equation ug; = e* — e~ 2%,

Polynomial potentials arise in many problems, particularly when
truncated Taylor series are used to facilitate analytical study. It is
useful to examine the integrability of such potentials. In two dimen-
sions there are only three independent integrable cubic potentials;
they are 2 + 3xy? + ay?, 22° + 2y?, and 162> + 3xy?; see Cleary [5].
The Mathematica package DSolveIntegrals can compute complete
integrals of non-linear PDEs. For example, given yu, = u+ z?u2 the
integral is determined to be u = (—a? 4 4by — 2alog x — log® ) /4.
The following equations are known to be completely integrable: sine—
Gordon equation, Doff-Bullough, Ernst equation, axisymmetric sta-
tionary Einstein—-Maxwell equation.

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




70

LA Definitions and Concepts

References

(1]

2]

[13]

[14]

ALBRECHT, D. W., MANSFIELD, E. L., AND MILNE, A. E. Algorithms for
special integrals of ordinary differential equations. J. Phys. A: Math. Gen.
29 (1996), 973-991.

BUCHLER, J. R., IPSER, J. R., AND WiLL1AMS, C. A., Eds. Integrability in
Dynamical Systems. New York Academy of Sciences, New York, 1988.
CHANG, Y. F., TABOR, M., AND WEISS, J. Analytic structure of the
Henon—Heiles Hamiltonian in integrable and nonintegrable regimes. J. Math.
Physics 23, 4 (April 1982), 531-538.

CLARKSON, P. A., Fokas, A. S., AND ABrowIiTz, M. J. Hodograph
transformations of linearizable partial differential equations. STAM J. Appl.
Math. 49, 4 (August 1989), 1188-1209.

CLEARY, P. W. Nonexistence and existence of various order integrals for
two- and three-dimensional polynomial potentials. J. Math. Physics 31, 6
(June 1990), 1351-1355.

GERDT, V. P., ZHARKOV, A. Y., SVINOLUPOV, S. I., AND SHABAT, A. B.
The use of computer algebra to investigate the integrability of non-linear
evolution systems. U.S.S.R. Comput. Maths. Math. Phys. 28, 6 (1988), 50—
57.

HEREMAN, W., AND ANGENENT, S. The Painleve test for nonlinear ordinary
and partial differential equations. Macsyma Newsletter (January 1989), 11—
18.

INCE, E. L. Ordinary Differential Equations. Dover Publications, Inc., New
York, 1964.

MEeL'NIKOV, V. K. New method for deriving nonlinear integrable systems.
J. Math. Physics 81, 5 (May 1990), 1106-1113.

PRELLE, M. J.; AND SINGER, M. F. Elementary first integrals of differential
equations. Trans. Amer. Math. Soc. 279, 1 (September 1983), 215-229.
PROGREBKOV, A. K. On the formulation of the Painleve test as a criterion
of complete integrability of partial differential equations. Inverse Prob. 5
(1989), L7-L10.

RaMANI, A., Dorizzi, B., GRAMMATICOS, B., AND BounTis, T. Inte-
grability and the Painleve property for low-dimensional systems. J. Math.
Physics 25, 4 (April 1984), 878-883.

RanD, D. W., AND WINTERNITZ, P. ODEPAINLEVE — a Macsyma
package for Painleve analysis of ordinary differential equations. Comput.
Physics Comm. 42 (1986), 359-383.

ROEKAERTS, D., AND SCHWARZ, F. Painleve analysis, Yoshida’s theorems
and the direct methods in the search for integrable Hamiltonians. J. Phys.
A: Math. Gen. 20 (1987), L127-L133.

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




14. Internet Resources 71
14. Internet Resources

Applicable to Many topics related to differential equations.

Procedure
Much information about differential equations is available through the
internet. We list next some of these resources:

Symbolic software packages
1. There are a multitude of commercial computer packages available
for symbolically solving differential equations (see page 240). These

include
e AXIOM http://wuw.nag.co.uk:80
® Derive http://www.derive.com
e Macsyma http://www.macsyma.com
e Maple http://wuw.maplesoft.com
e Mathematica http://wuw.wolfram.com
e REDUCE http://www.rrz.uni-koeln.de/REDUCE

2. The program CONVODE will symbolically solve ordinary and partial
differential equations across the internet. For example, sending

depend y,Xx;
CONVODE( {df (y,x,2)+4xy=0}, {y}, {x}, {}, {english});

to convode@riemann.physmath.fundp.ac.be will have the solution
of y” + 4y = 0 returned via email with comments in English (the de-
fault is French). See http://www.physique.fundp.ac.be/physdpt/
administration/convode.html.

3. MathServ provides an interface between the user and Mathematica (a
symbolic computational engine). Templates for twelve different types
of ODEs are available; the user can specifiy the functions appearing
in them. The results are returned directly to your browser. See
http://math.vanderbilt.edu/ pscrooke/detoolkit.html.

Numerical software packages

There are a multitude of commercial computer packages available for
numerically solving differential equations (see page 654). In particular, the
Guide to Available Mathematical Software (GAMS) has a taxonomy of
software classes, with many representatives of most classes. See http://
gams.nist.gov. This section lists a few packages that currently may be
used freely for non-commercial purposes.

e Diffpackis a collection of C++ class libraries aimed at the numerical
solution of partial differential equations. The Diffpack home page
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int main() {
real r0=.5, ri=1., x0=0., y0=0., theta0=0., thetal=1.; // parameters

AnnulusMapping annulus(r0O,r1,x0,y0,theta0,thetal); // annulus mapping
MappedGrid mg(annulus); // MappedGrid for an annulus
mg.update(); // create default variables
realMappedGridFunction u(mg); // declare grid function on the grid
u=1.; // initial condition u=1
MappedGridOperators op(mg); // difference operators and BCS
u.setOperators (op) ; // associate with a grid function

real t=0, dt=.005, a=1., b=1., nu=.1; // problem parameters
for( int step=0; step<100; step++ ) { // loop for number of time steps

}

return O;

}

u.display("solution"); // print out the solution
ut=dt*((-a)*u.x()+(-b)*u.yOQ+nux(u.xx()+u.yy())); // forward Euler step
t+=dt;
u.applyBoundaryCondition(0,BCTypes: :dirichlet ,BCTypes: :allBoundaries,0.);

u.finishBoundaryConditions() ; // fix up corners, periodic update

// apply Boundary condition u=0

Program 14.1: Overture program for a reaction diffusion problem

is http://www.oslo.sintef .no/avd/33/3340/diffpack. The code
can be downloaded from http://www.oslo.sintef.no/diffpack/
publ.4 or from Netlib at http://www.netlib.org.

DsTool is A Dynamical System Toolkit with an Interactive Graphical
Interface. It computes Poincaré sections and bifurcation diagrams
and is easily extensible. It was created at Cornell University and
runs under X windows. The program and documentation can be
obtained via ftp from macomb.cam. cornell.eduin the /pub/dstool
directory.

KASKADE is a C++ package that solves elliptic partial differential
equations. It is an adaptive multilevel-code for linear scalar elliptic
and parabolic problems in 1, 2, and 3 space dimensions. It includes
examples for nonlinear methods used in obstacle, porous media, and
Stefan problems. It can be obtained via ftp from elib.zib-berlin.de
in the directories /pub/kaskade/3.xand /pub/kaskade/Manuals/3.0.

Overture is a high level object oriented framework for solving PDEs
on structured grids and overlapping grids using finite difference and fi-
nite volume methods. Overture is freely available and can be obtained
fromhttp://wuw.c3.lanl.gov/ henshaw/Overture/Overture.html.
For example, the entire program to solve the problem u;+au, +buy =
V(Ugg + Uyy) in an annulus A, with u(t = 0,4) =1 and u |8A =0,
using forward Euler’s method, is in program 14.1.
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Electronic journals

The Electronic Journal of Differential of Equations (EJDE) is dedi-
cated to the rapid dissemination of high quality research in mathematics.
Publications are available as PostScript, TEX, and DVI files. All topics
related to differential equations and their applications are considered for
publication. Research articles are refereed under the same standards as
those used by the finest-quality printed journals. EJDE may be found at
http://ejde.math.swt.edu.

Other resources

e Cx0DE*E is the acronym for the Consortium of ODE FExperiments.
Their goal is to share the rapidly growing wealth of computational in-
struction techniques with teachers of differential equations. The Con-
sortium publishes a newsletter designed to provide a regular source
of ideas, inspiration, and experiments for instructors of ODEs. The
newsletter is available on-line and in print format. Their URL is
http://www.math.hmc.edu/codee.

e IDEA is the acronym for Internet Differential Equations Activities.
This is an interdisciplinary effort to provide students and teachers
with computer based activities for differential equations in a wide
variety of discplines. This is sponsored by the NSF. It includes a
glossary of terms and many other features. Their URL is http://
wuw.sci.wsu.edu/idea.

e The American Mathematical Society maintains materials organized
by mathematical subject classification at http://www.ams.org/mathweb/
mi-mathbyclass.html. In this classification, category 34 is “Or-
dinary differential equations” and category 35 is “Partial differen-
tial equations.” The AMS Preprint Server for these categories may
be found at http://www.ams.org/preprints/34/msc34-page.html
and http://www.ams.org/preprints/35/msc35-page.html.

e Los Alamos maintains a web site on “Exactly Solvable and Integrable
Systems”, see http://xxx.lanl.gov/archive/solv-int.

e The Norwegian University of Science and Technology maintains a
“Conservation Laws Preprint Server” at http://www.math.ntnu.no/
conservation.

e The “Mathematics Archives,” see http://archives.math.utk.edu,
is supported by the NSF, the State of Tennessee, Calvin College,
and the University of Tennessee, Knoxville. Their repository of links
related to ordinary differential equations and partial differential equa-
tions may be found at http://archives.math.utk.edu/topics/
ordinaryDiffEq.htmland http://archives.math.utk.edu/topics/
partialDiffEq.html.
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e The Math/CS Department of Nebraska Wesleyan University has a
differential equations resource page documenting course materials
(labs and projects) developed as part of an NSF/ILI grant. The
URL is http://brillig.nebrwesleyan.edu/delabs.

e The Math Department at Oregon State University has developed a
web-based study guide for several of its courses. The URL for the
ODE home page is http://iq.orst.edu.mathsg/ode/ode.html.

Note
1. The URLs in this section are subject to change.
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15. Inverse Problems

Applicable to Inverse problems.
Yields

Information about parameters appearing in a differential equation.

Idea

There are theorems that can be used to determine which inverse prob-
lems may be solved.

Procedure
The field of inverse problems is filled with specialized theorems that are
useful for specific applications.

Example 1
Consider the eigenvalue problem
—u" + q(x)u = Au, for0 <z <1,
u(0) cosa + u'(0) sina = 0, (15.1)

u(1) cos B+ u'(1)sin 8 = 0,

where A is a complex parameter, g(z) is a real-valued function that is
integrable on the interval [0,1], and « and (3 are values in the interval
[0, 7).

One common inverse problem consists of determining the function g(x)
from the eigenvalues of equation (15.1). There are many different results
in this area. For example

Theorem Suppose that («, 3, ¢(z)) give rise to the eigenvalues {\,}
and suppose that (@, 3,q(x)) give rise to the eigenvalues {\,}. If
An = A, forn=0,1,...; g(z) = q(z) for z € (0,1); and o = @, then
q(z) = g(x) almost everywhere on the interval (0,1).

Another typical theorem is the following:

Theorem Let \y < A\; < A2 < ... be the eigenvalues of the problem
—y" + q(x)y = Ay with 3/(0) = ¢/ (7) = 0, where g(x) is a real-valued
continuous function. If A, = n? for n =0,1,2,..., then ¢(z) = 0.

Example 2

One common technique to show uniqueness for an inverse problem is to
investigate a mapping between the solutions of two equations with different
values for the parameter(s) of interest. We have, for example (see Rundell

[11]):
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Theorem Let u(x) and v(x) satisfy

Ut = Uy — a(x)u, uz(0,t) =0,
UVt = Vg — a(2)V, v,(0,t) =0,
for()<a:<1and0<t<T If u(0,t) = v(0,t), then v(z,t) =
u(z, t)+ [ K(z, s)u(s, t) ds, where K (z, s) satisfies the Goursat
problem

Kss — Kyt = (a(s) —a(z)) K(z, s), for0<s<z<1,
Ky (x,0)=0 for0<z <1,
1

K(x,x)zi/oz(a(r)—a(r)) dr for0 <z <1.

In this case it is possible to show that if [ K (z,s)f(s) ds = 0 for some
positive function f(z), then a = a.

Notes
1. The numerical methods used to solve inverse problems tend to result
in ill-conditioned systems.
2. If the spectra {\;} and {y;} are known for the following two problems

(with H # H):
—y" +q(z)y = Ny, = +q( Y = py,
y'(0) — hy(0) = 0, y'(0) — hy(0) =0,
y'(1) — Hy(1) =0, y' (1) — Hy(1) =0,
then {q(z),h, H, H} are all uniquely determined. See Rundell and
Sacks [12].
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16. Limit Cycles

Applicable to Systems of nonlinear autonomous differential equa-
tions.
Yields
Knowledge of whether or not there exist limit cycles.
Idea

Knowing that limit cycles exist for a differential system allows global
characterizations of the differential system.

Procedure

A non-constant solution of the system fli—’t‘ = f(x) is called a cycle (or
a limit cycle) if there is a positive number T (called the period of the
cycle) such that x(t +7') = x(t) for all ¢. It is easy to show that inside of
every cycle is at least one critical point (i.e., a point where f(x) = 0, see
page 526).

In many systems it is not only true that there are finitely many cycles
but also that all solutions tend to one of these cycles. This knowledge
permits a concise characterization of the phase plane.

Example 1
The nonlinear autonomous system
dx
o = ytal -2t =y,
d
Y ppy-at g

becomes, under the change of variables { = rcosf, y = rsinf}, the

uncoupled system

dr o

— =r(l -7 — =1
a =g
These new equations have the solution
1
r(t) = 0(t)=t+ B,

it Ace

where A and B are arbitrary constants. Hence, the solution of the original
system is
t) cos(t + B) t) sin(t + B)
€T = — e
V1+ Be=2t Y V1+ Be=2t

This states that all solutions tend to the circle 22 (t) + 3%(t) = 1 as t — oo.

Of course, in most circumstances it is not possible to construct explicitly
the limit cycle. Generally theorems (such as those below) are used to prove
the existence of a limit cycle.
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Example 2
The Van der Pol equation

d’z

d

with g > 0 has limit cycles. For this equation, there is negative damping
for small values of x and positive damping for large values of . Hence the
value of = increases when x is small and it decreases when x is large.

Notes
1. Given a limit cycle I" and a positive number a, define the annulus
centered on T to be {x | distance from x to I is less than a} where
the distance from x to I' is defined to be Illlaenrﬂx —ul.

A cycle T is called isolated if there is a positive number a for which
the annulus centered on I' contains no other limit cycles. A cycle is
non-isolated if every annulus centered of I' contains at least one other
limit cycle. The system

fl—f:xsin(xQ—l—yQ)—y, %:ysin(xQ—i—yQ)—i—x
has infinitely many isolated cycles whereas the system {2’ =y, ¢y =
—z} has infinitely many non-isolated cycles.

2. Part of Hilbert’s 16th problem asked for the maximum number of
limit cycles of the system {2’ = A(x,y),y’ = B(z,y)} where A and
B are polynomials. If A and B are polynomials of degree n, then
the maximum number is known as the Hilbert number or the Hilbert
function, H,,. It is known that Hy = 0, H; = 0, Hy > 4, H3 > 8,
H, > ";1 if n is odd, and H,, < oo.
The example that demonstrates that Hy > 4 (found by Songling [12])
is

' =ax —y— 102> + (5 + by + 2,
y =z + 2%+ (8c — 25 — 9b)xy,

where @ = —10720°, p = —107'3, and ¢ = —107°2. See also James
and Lloyd [4].
3. Neto [8] has the two results:
Theorem The equation 2’ = azz?+a17+ag, where the {a;} are

continuous functions on [0, 1], has at most two closed solutions,
if not all solutions in [0, 1] are closed.

and

Theorem The equation 2’ = asx® + asx? + a1 + ag, where the
{a;} are continuous functions on [0, 1], has at most three closed
solutions.
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4. If f(z) and g(z) are continuous, have continuous derivatives, and

satisfy the conditions:

e zg(x) >0 for x #0,

e f(x) is negative in the interval a < x < b (with a < 0 and b > 0)

and positive outside of this interval,
0o 0

. fo flx)de = [~ f(z)dr = oo,

then every nontrivial solution of Liénard’s equation
d*x dx

ﬁ+f(a:)a +g(x)=0 (16.1)

is either a limit cycle or a spiral that tends toward a limit cycle as
t — o0o. See Birkhoff and Rota [1, pages 135-137] for details.

. Liénard’s theorem states

If f(z) and g(z) are continuous and satisfy the conditions
F(z) := [ f(z)dz is an odd function,

e F(x) is zero only at x =0, © = a, = —a, for some a > 0,
e F(z) — oo monotonically for z > a,

e g(z) is an odd function, and g(z) > 0 for z > 0,

then equation (16.1) has a unique limit cycle.

For details, see Jordan and Smith [5]. Note that Van der Pol’s
equation (see example 2) satisfies Liénard’s theorem and, hence, has
a unique limit cycle.
. Bendixson’s theorem states (see Simmons [11, pages 338-352])
If %—I; + % is continuous and is always positive or always negative
in a certain region of the phase plane, then the autonomous

system

dx dy
E - F(Zli,y), E - G(Zli,y)

has no limit cycles in that region.

For example, the equation for the Lewis regulator

d’x dx
- 1— - =
2 +( |x|)dt +z =0,

which is equivalent to

dx dy
- fey=y -

=G(z,y) = —v — (1= |z))y,
has %—5 + %—fj = |z|— 1. Hence, the Lewis regulator has no limit cycles
in the strip —1 < z < 1.

. Another statement of Bendixson’s theorem, regarding periodic solu-
tions or limit cycles, can be stated as follows:
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Consider x = f(x) in a simply connected domain D (in two
dimensions). If the gradient of f is not identically zero over any
subregion of D and does not change sign in D, then D contains
no closed trajectory.

8. The Levinson—Smith theorem states (see Hagedorn [3, page 143])

For the differential equation
2+ f(z,2")2’ + g(x) =0 (16.2)

if the following conditions are satisfied:

xg(x) > 0 for all z > 0,

fooo g(x) dx = oo,

f(0,0) <0,

there exists an xp > 0 such that f(z,2’) > 0 for |z| > =0,

for every z/,

e there exists a constant M > 0, such that f(x,z') > —M for
|z < zo,

e there exists an x1 > x¢ such that f;ol f(z,v(x))dr > 10Mxy,

where v(x) is any arbitrary positive and monotonically de-

creasing function of z,

then equation (16.2) has at least one limit cycle.

9. Sedaghat [9] shows that factorable planar systems (i.e., systems of the
form ' = f(z)h(y) and ¢y = k(x)g(y)) do not have limit cycles.
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17. Natural Boundary
Conditions for a PDE

Applicable to Partial differential equations.
Yields

A proper set of boundary conditions.

Idea

Given a partial differential equation it is not always clear what the
“correct” boundary conditions are. This is especially true for nonlinear
partial differential equations. However, most partial differential equations
that arise in mathematical physics have been obtained from a variational
principle (see page 418).

If we start with the variational principle, then “natural” boundary
conditions will be generated while deriving the equation we started with.
These boundary condition are, in a sense, the most appropriate bound-
ary conditions for the original equation if there is no physical reason for
imposing other conditions.

Procedure
The variational principle that is most often used is §J = 0, where §
represents a variation and J is a functional given by

J¢] = //L(¢, br, ) dt dx.
R

Here L(-) is a linear or nonlinear functional and ¢(x,t) is the unknown
function to be determined. This variational principle states that the inte-
gral J[¢] should be stationary to small changes in ¢. If we let h(x,t) be a
continuously differentiable function, that is “small” in magnitude, then we
can form

T+ =916 = [ [ {Lohi+ Lo, ho, + Lo} drax-+ O,
R

where subscripts on L denote partial derivatives. The variational principle
requires that §.J := J[¢ + h] — J[¢] = 0, or that

// {L@ht + Lo, ha, + L¢} dt dx = 0. (17.1)
R

If R is assumed to be a parallelpiped, then let D; (D,;) denote the two
parts of the boundary of R on which ¢ (z;) is constant. By integration by

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




84 LA Definitions and Concepts

parts, equation (17.1) can be written as

) )
// {—gL@ = o, L¢} hdt dx = 0, (17.2)
R

where we have assumed that

Ly

=0, L,

=0. (17.3)

t
Dy

g

Now h(x,t) was assumed to be arbitrary, so from equation (17.2) we
conclude that

0 0
—Lg, + —4L¢

o 5 —Ly=0. (17.4)

5

We conclude that if we can write a given partial differential equation in the
form of equation (17.4) for some operator L(-), then equation (17.3) gives
the “natural” boundary conditions.

Example
Given the partial differential equation

Dit — 012V2¢ + ﬁ2¢ =0, (17.5)

where V2¢ = Z;\;l ¢z ;2;, we find that

P BPE WS g
L(g, 1, 6x) = 507 — 507 )3, — 55%¢ (17.6)
j=1

makes equations (17.4) and (17.5) identical. Therefore, the “natural”
boundary conditions for equation (17.5) are, using equation (17.6) in (17.3),

=0, .| =0 (17.7)

D,
J

Equation (17.7) states that the partial differential equation (17.5) requires
both initial and boundary conditions. This was to be expected because
equation (17.5) is a hyperbolic equation.

For example, if N =1 and R is the region [0,T] x [0,00), then D; =
{t=0}U{t =T} and D,, = {1 =0} U {21 = c0}. Hence, the natural
boundary conditions for equation (17.5) require that {¢:(0,21), ¢+(T,x1),
¢z, (t,0), ¢z, (t,00)} be specified.
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Notes

1. Finding the operator L(-) or, equivalently, finding the variational
principle d.J, is a non-trivial task in general. Also, very often one
wants a vector variational principle that will encompass, simultane-
ously, several separate equations.

2. See the section on variational equations (on page 418) for more ex-
amples.

3. See also Kantorovich and Krylov [1, Chapter 4, pages 241-357] and
Whitham [2].
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18. Normal Forms:
Near-Identity
Transformations

Applicable to Systems of ordinary differential equations.
Yields

A reformulation of the differential equations.

Idea

Find a change of variables in the form of an infinite series, so that the
original system of differential equations goes into a “normal” (or “simple”
or “canonical”) form. The normal form is the simplest member of an equiv-
alence class of differential equations, all exhibiting the same qualitative
behavior. Normal forms are often useful for stability analyses.

Procedure
Start with the system x’ = f(x) such that (without loss of generality)
x = 0 is a critical point. Expand this system to obtain

x' = Ax + H(x),

where H(x) has strictly nonlinear functions (i.e., there are no linear or
constant terms).

If H(x) has nonlinear terms of at least degree m, then make a near-
identity transformation using polynomials of degree n with unknown coef-
ficients. By appropriately choosing the unknown coefficients in the near-
identity transformation, the original differential equations, when written in
the new variables, will have increased the degree of the nonlinear terms by
one.

We can summarize the procedure as follows:

e We are given the system of ordinary differential equations x’ = f(x) =
Ax + H(x), which we wish to analyze near the point x = 0.

e We make the near-identity transformation from x to u via x = u +
g(u), where g() is a strictly nonlinear function.

e This change of variables produces the new equation

u = [+ J] Hu+g() = Au+ K(u), (18.1)
where I is the identity matrix and J = g—i is the Jacobian of the
transformation.

e The function g() is chosen to eliminate the nonlinear terms in the
equation for u that are of least order.

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




18.  Normal Forms: Near-Identity Transformations 87

This procedure can be iterated.

If the critical point is “hyperbolic” (all eigenvalues have non-zero real
parts), then the nonlinear terms can always be removed (i.e., one order at
a time). Also, the topological nature does not change. See Guckenheimer
and Holmes [7, Section 3.3].

Example 1
Suppose we have the system of equations
dz oy
=y
dt Yy,
dy
E =Y + xy.

Defining x = [a: y}T, this system has the form

Ccli_); - [(1) (1)] X+ [i;] = Ll) (1)] x + H(x), (18.2)

where H(x) has quadratic nonlinearities. We now choose to make the
near-identity change of variables (of second order)

2 2
T =u -+ agou” + aj1uv + aggv”,

18.3
Yy = ’U+b02U2 —|—b11uv—|—b20v2, ( )

where u and v are functions of t. Combining equation (18.2) and equation
(18.3) we find

d m

d_T: =u+ (1 — ag2)v? — ajuv — agou® + higher order terms,

d

_dlt) = v — boov? + (1 — b1y )uv — boou? + higher order terms, (18.4)

where “higher order terms” means terms that are of order O(u?, u?v, uv?, v3).

To eliminate the second order terms in equation (18.4), we take {ag2 = 1,
ajl = 0, a0 = 0, b()z = 0, b11 = 1, bQQ = 0} With these values, the
transformation in equation (18.3) becomes

r=u-+ u2,

Y =v+uUv

so that the original differential equations in (18.2) becomes

d

d—l; = u + higher order terms,
dv .

i v + higher order terms.

This new system now has cubic nonlinearities.
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Example 2
The system of ordinary differential equations for z(t) and y(¢):
2=y + Fl(z,y),
Tyt F@) (18.5)
y = Gl(z,y),

where F'() and G() are strictly nonlinear, has the normal form

0 =1+ Dyr* + Dor* + Dar® + ...,
= Byr®+ Byr® + Byr’ + ...,

where 4 = rcosf, v = rsiné, and {u,v} are related, via a near-identity
transformation, to {z,y}. In this example, the linear equations are not
sufficient to determine the local behavior. Knowledge of B is needed to
determine stability (unless it is zero, in which case Bj is needed, etc.).

For example, if equation (18.5) has the form

x2 y2 x3 ny
T 2 3
+ Py + Fuyg 4o

2 2 1‘3

2
€T Y 7y

2 3
Ty y
+ Gwny +nyy€ +..

then we find (see Takens [12] for details)

= GyyGay + FrpFoy + Foy By

Example 3
The system of ordinary differential equations for z(t) and y(¢):

' = —y+ F(z,y),

18.6
y'= z+Glx,y), (180
where F'() and G() are strictly nonlinear, has the normal form
u=v+ Z byu™, v = Z anu”, (18.7)
n=2 n=2
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where {u, v} are related, via a near-identity transformation, to {x,y}. For
example, if equation (18.6) has the form

2

3
x
= —y+ Fm7 + Fpyay + Fy

2 2
Y £ 7y
vyt 6 i
2 3
Ty Y
+F$yy—2 —I—Fyyyg—i—...,

22 y2 23 9523/

2 3
ry Y

"‘Gwyy 2 "‘nyyg"f""7

then we find that

1 1
w=uv+ 3 (Gay + Frz) u? + = (GayGyy — FuuGly,y

12
, 1 , 1 5 (18.8)

where C is an arbitrary constant. See Takens [12] for details.
Another normal form for equation (18.6) is given by

U =v,
U = i a,U" + i nb, U™ 1,
n=2 n=2

where {U, V'} are related, via a near-identity transformation, to {x, y}. See
Guckenheimer and Holmes [7] for details.

Notes

1. If ag # 0, then the flow of the system in equation (18.7) is topologi-
cally equivalent to the flow of the system {u’ = v, v’ = aou?}, which
can be integrated in terms of elliptic integrals. If as = 0, then other
conclusions are possible; see Rand and Keith [11] for details.

2. To avoid computing the matrix inverse in equation (18.1), it is suffi-
cient to expand (I +.J) ' into I —J + J% —---+ (=J)" ! if only the
nonlinear terms of order n are to be removed.

3. The concept of normal forms does not require that the transforma-
tions used be near-identity ones, but they are the ones most often
used in practice.

4. The computations needed for this technique quickly become unman-
ageable unless a computer algebra system is used. Macsyma programs
for performing the necessary computations are given in Chow et al. [3]
and in Rand and Keith [10].

5. Abraham and Marsden [1, page 489] have the theorem
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Consider the system described by the Lagrangian L = K —
V where K = %Z” mi;gi¢; and V. = %Z” ¢ij¢;q; and the
matrices m;; and ¢;; are symmetric (this is no loss of generality)
and m;; is positive definite. Then there is a linear change of
coordinates Q; = >_; a;;q; and Q; :723‘ aijg; such that the
Lagrangian in the new coordinates is L = K — V where K =

130 mi(Q)% V =13, ¢:Q:Q;, and m; > 0.

The new coordinates {Q1, . .., Qn, Q}, e, Qn} are called normal modes
and Lagrange’s equations become @; + \?2Q; = 0 (for i = 1,...,n)
where \? = —c¢;/m,;.
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19. Random Differential
Equations

Applicable to Differential equations involving random terms.

Idea

While randomness can appear in differential equations in many ways,
most often it appears through “white noise” terms.

Procedure

Suppose that z(t) is a random process that satisfies the stochastic
differential equation

dx(t) = alz(t),t] dt + blx(t), t] dw(¢), (19.1)

where w(t) is a standard Wiener process. The Wiener process is a Gaussian
random process that has a mean given by its starting point, E [w(t)] =
wo = w(tp), a variance of E [(w(t) — wg)?] =t — to, and a covariance of
E [w(t)w(s)] = min(t, s). The sample paths of w(t) are continuous but not
differentiable. If we define

Ob(x, t)
ox ’

oz, t) = a(, t) - %b(m, ) (19.2)

then the solution to the stochastic differential equation, z(t), can be shown
to satisfy (see Gardiner [5])

x(t) = z(to) —|—/t afz(s), s]ds + S/t blz(s), ] dw(s). 93

where ¢ | represents the Stratonovich stochastic integral. Hence, an under-
standing of stochastic integration is required to understand the solutions
to stochastic differential equations.

If w(t) is a Wiener process and G(t,w(t)) is an arbitrary function, then
the stochastic integral I = ftto G(s,w(s)) dw(s) is defined as a limiting sum.
Divide the interval [to, t] into n sub-intervals: tog <3 < -+ <t,_1 <t, =
t, and choose points {7;} that lie in each sub-interval: ¢;_1 < 7; <t;. The

stochastic integral I is defined as the limit of partial sums, I = lim, o Sy,
with Sn = Z;Z:l G(Ti,w(n))[w(ti) - U}(tifl)].
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Consider, for example, the special case of G(t) = w(t). Then the
expectation of S, is computed as

n

B[S, =B | > w(m)w(t;) — w(ti1)]

i=1
n
= Z[min(n,ti) — min(n,ti,l)]
i=1
n
= Z(Tz ti 1)
i=1

If we take 7; = at; + (1 — a)t;—1 (where 0 < a < 1), then E[S,] =
S (ti — ti—1)a = (t — tg)a. Hence, the value of S,, depends on a. For
consistency, some specific choice must be made for the points {7;}.

e For the Ito stochastic integral (indicated by , [), we choose 7; = t;_1
(i.e., @ = 0 in the above). That is

G(s,w(s)) dw(s) = ms-lim {Z G(ti—1,w(ti—1))[w(t;) — w(ti_l)]} ,

n— o0
Z Jto i=1

(19.4)
where ms-lim refers to the mean square limit.

e For the Stratonovich stochastic integral (indicated by 4 [), we choose
7i = (ti +t;—1)/2 (i.e., « = 1/» in the above). That is (see Schuss [7])

s ) G(w(s), z) dw(s) (19.5)

— ms-lim {Z G <ti1,w <%>) fw(t;) — w(t“)]} .

i=1

. The difference in these twotintegrals can be seen in the evaluation of
J,, w(s) dw(s). We find that ; [, w(s) dw(s) = [w?(t) —w?(to) — (t —t0)] /2
while g [ w(s) dw(s) = [w(t) — w?(t)] /2.

Notes

1. This book contains several sections for dealing with differential equa-
tions containing random terms:

e To determine the transition probability density, see the discus-
sion of the Fokker—Planck equation on page 303.

e To obtain the moments without solving the complete problem,
see pages H68 and 572.
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e If the noise appearing in the differential equation is not “white
noise,” the section on stochastic limit theorems might be useful
(see page 629).

e To numerically simulate the solutions of a stochastic differential
equation, see the technique on page 775.

2. It can be shown that the Stratonovich integral has the usual proper-
ties of integrals, such as the fundamental theorem of integral calculus:

. / £ (w(s)) du(s) = F(w(t) — f(w(to)).

3. For arbitrary functions G, there is no connection between the Ito and
Stratonovich integrals. However, when z(t) satisfies (19.1), then (see
Gardiner [5, page 99])

t _ 1 Obla(s), 5]
sty = [ blato) slauto) g [ biate), 4G s

7z Jto

4. The Black—Scholes PDE for option pricing is obtained using stochas-
tic differential equations (see Black and Scholes [1]). Let S represent
the price of a share of stock, and assume S follows a geometric
Brownian motion dS = p.S dt+0S dw, where t is time, p is a constant,
and o is the volatility constant. Let V' (.S, t) be the price of a derivative
security whose payoff is only a function of S and ¢. Construct a
portfolio consisting of V' and A shares of stock. The value P of
this portfolio is P = V 4+ AS. The differential of P is given by
dP = dV + AdS. Substituting for dV (using Ito’s lemma), and
replacing dS' by its assumed form results in

oV oV 1 0%V 19)%
P=|— - s A - A .
d ( t—l—,uS S—|—2O'S S2—|—u S>+<US S—|—cr S)dw

The random component of the portfolio increment can be removed by
choosing A = —‘g—‘g. The concept of arbitrage says that dP = rP dt,
where r is the (constant) risk-free bank interest rate. Combining the
above results in the Black—Scholes PDE

v av 1 %
v +rS—=+ —02528—

ot 95 2 a5z V=0
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20. Self-Adjoint
Eigenfunction
Problems

Applicable to Linear differential operators.
Yields

Information that may be used to show completeness of a set of functions.

Procedure

Many of the differential equations of mathematical physics are related to
self-adjoint eigenfunction problems. As a special subcase, Sturm-Liouville
equations are often self-adjoint eigenfunction problems. (Sturm-Liouville
problems are discussed in more detail on page 103.)

Let L[] be the nth order linear operator defined by

dr n—1

+ P (@)Y

dxnfl

where the {p;(z)} are complex valued and analytic and p,(x) # 0 on the
interval z € [a,b]. Define n boundary conditions by

n d(kil)y d(kil)y .
Bj[y] ::Z<Mjkm(a)+Njkm(b)> =0, ji=1,...,n,
k=1

Lly] = pn(=) + -+ po(z)y,

dx™

where the {Mj, Nji} are given complex constants.
The problem we consider is

Llyl=Xy,  Bly| =0, (20.1)

where B[y] = 0 is a shorthand notation for {B;[y] =0]j=1,...,n}. The
system in equation (20.1) will always have the trivial solution, y(z) = 0.
But, for certain values of A, called eigenvalues, the system in equation (20.1)
will have non-trivial solutions. Corresponding to the specific eigenvalue A,
will be one or more eigenfunctions, that is, non-trivial solutions to (20.1)
when \ = \,.

We represent the complex conjugate of g by g. Define the inner prod-
uct of f(x) and g(x) by (f,g) = f;’f(t)g(t) dt and the norm of f(z) by
NSl == (f, f). If (f,g) =0, then f and g are said to be orthogonal. If
{f1, f2,..., fu} are a set of functions with (f;, f;) = 0 when ¢ # j, then the
{fi(z)} are an orthogonal family.

The adjoint operator to L[], called L*[-], is defined by

n ™ [Pn(2)y] + (_1)?1—1 dn—1 [Pr—1(2)y]
dx (™) dx(n=1)

L*[y] == (-1) + -+ + Doy
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Let u(z) be a solution to the system {L[u] = 0, Blu] = 0}, and let v(x) be
a solution to the adjoint system {L*[v] = 0, B*[v] = 0}, where {B*[y] = 0}
is a shorthand notation for {B}[y] =0]j = 1,...,n} and the B[] are, for
the moment, unspecified. Using the definitions of u(z) and v(x), we can
calculate

vL[u] — uL*[v] = %J(u,v), (20.2)

where J(u,v) is called the bilinear concomitant and is defined by

” [ d¥ v
Juov)=Y" Y (-1 @(pmu) a7 )
m=1 j+k=m—1 (20.3)
Integrating equation (20.2) results in

/b (vLu] — uL*[v]) dx = J(u,v) |Z = J(u(b),v(b)) - J(u(a)m(a)).
a (20.4)

We now define the B[] to be those boundary conditions for which the
right-hand side of equation (20.4) vanishes.

If L = L*, then L is said to be formally self-adjoint. If L = L* and
B = B*, then L is said to be self-adjoint. Note that if L[] is formally
self-adjoint, then n = 2r and L[-] must be of the form

= g () o iy () oo

As we now record, self-adjoint operators have some very useful proper-
ties. If L[] is self-adjoint, then

e The eigenvalues \,, of equation (20.1) are real.

e The eigenvalues are enumerable (with no cluster point).

e The eigenfunctions y,(x) corresponding to distinct eigenvalues are
orthogonal.

o If f(z) is any analytic function that satisfies the boundary conditions
in equation (20.1) (i.e., Bj[f] = 0, for j = 1,...,n), then, on the

interval [a, b], we have the representation f(z) = Z (/,9¢) yi ().

=0 (Yks )

That is, the {yx(z)} are complete. It is this last statement that is of par-
ticular importance in solving differential equations. The method suggested
by this statement, the method of eigenfunction expansions, is described on
page 268.

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




20.  Self-Adjoint Eigenfunction Problems 97

Example 1
Suppose we have the linear differential operator
d? d?y d dy
Llyl= -5 (7“2(33)@) + (rl(x)%) + ro(z). (20.6)

Because of the form of the operator, we know that L[-] will be formally self-
adjoint (see equation (20.5)). For this operator, we can evaluate J(u,v) at
the upper and lower limits (from equation (20.3)) to find

J(u,v) |Z = {v(mu”)' —v'rou” + rov” v — u(rov”) + 7y (v’ — uv')} |Z )

(20.7)

To determine whether L[] is self-adjoint or not, we need to specify B[y].
Because equation (20.6) is a fourth order operator, four boundary condi-
tions are required. We will consider three separate cases:

e Case 1 If B[y] is defined by

Bily] = y(a),
B — 1 ,
2[y] = y"(a) (208)
BB[y] =Y b)7
Bulyl =y"(b),
then J(u,v) can be evaluated and equation (20.7) can be simplified
to yield
rov”u’ + riou’ ‘Z : (20.9)

If we choose B = B* (i.e., Bf[y] = B;[y]), then the quantity in (20.9)
is identically zero. Hence, L[], as defined by equations (20.6) and
(20.8) is self-adjoint.

e Case 2 If B[y is defined by

Bily] = y(a),

Balyl = v/ (a),
2yl =y'(a) (20.10)

Bs[y] = y(b),

B[yl = y/'(b),
then J(u,v) can be evaluated and equation (20.7) can be simplified

to yield

v(rou) —v'rou” |Z : (20.11)

Once again, if we choose B = B*, then the quantity in (20.11)
is identically zero. Hence, L[], as defined by equations (20.6) and
(20.10) is self-adjoint.
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e Case 3 If B[y is defined by
(20.12)

then J(u,v) can be evaluated and equation (20.7) can be simplified
to yield

v(rau”) = v'rgu” + rov"u — u(rv”) + i (vu’ —wv') | _, .
(20.13)

If, in this case, we choose B = B*, then the quantity in equation
(20.13) does not vanish. If B = B*, then no information has been
given at the boundary x = b, and the quantity in (20.13) is indeter-
minate. Hence, L[], as defined by equations (20.6) and (20.12), is
not self-adjoint. An initial value problem can never be self-adjoint.

Example 2
The operator

2] = g (@3 ) +a@ 5 + a@)

with the boundary conditions

(a),
(),

is self-adjoint. See the section on Sturm—Liouville theory (page 103).

)
Y

Example 3
A third order linear ordinary differential equation is formally self-adjoint
if it has the form

L (PoR) + 1 (P@EY) + 2 (@) + @) -

The general third order linear ordinary differential equation

(20.14)
d3y d?y
A TS+ B T

dx3
will be formally self-adjoint if and only if B = 2A’ and D = 1 (C — %B’)/.
The self-adjoint third order equation (20.14) has the first integral

+ 0@+ D) =0,

P (2yy” — (¥')*) + P'yy’ 4+ Qy* = constant.
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Example 4

The general fourth order linear ordinary differential equation
A(x)y™ + B(x)y" + C(x)y” + D(x)y’ + E(z)y = 0,

will be formally self-adjoint if and only if B =2A" and D = (C — lB’)/.
Notes

1. Some of the conditions above can be relaxed, and the main results for
self-adjoint operators will still be true. See, for instance, Coddington
and Levinson [3, Chapter 7].

2. For partial differential equations there are many results analogous to
those mentioned above for ordinary differential equations. We enu-
merate some of them for the Helmholtz equation in two dimensions:
For the equation V2¢ 4+ A¢ = 0, in a region R, with the boundary
conditions a¢ + bV¢ -n = 0, given on the entire boundary of R (here
n represents the unit normal):

e All the eigenvalues {);} are real.

e There are an infinite number of eigenvalues. There is an eigen-
value of least magnitude but no largest one.

e The eigenfunctions {¢;(x,y)} form a complete set: Any analytic
function can be represented in the form f(z,y) =Y, a;di(x,y),
for some set of constants {a;}.

e Eigenfunctions belonging to different eigenvalues are orthogonal.

R

e An eigenfunction ¢ is related to it’s eigenvalue A by the Rayleigh
quotient

—$ Ve -nds+ [[|Ve|]> dzdy
R

A= [T 6% du dy
R

3. Many other partial differential equations have very similar properties.
See Haberman [5, pages 214-219] for details.

4. Partial differential equations can also be self-adjoint. The elliptic
equation augg +ctyy +dug+euy+ fu = g(z, y) is said to be essentially
self-adjoint when N, = M,, where

Ni—=d-2  M—e-%
a c
In this case, an integrating factor is given by e?, where ¢, = N,
¢y = M. Multiplying the original equation by this factor puts the
equation in self-adjoint form. For example, the equation

Ugz + Uyy + U + yPuy +u =0
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has N = 22, M = y?, which leads to ¢ = % (x3 + y3). Multiplying
the equation by e® results in the self-adjoint form of the equation:

[e<w3+y3>/3ur}

x

n [e(w3+y3)/3uy} 4@+ /3y .
y

5. See Birkhoff and Rota [1, Chapters 10-11], Butkov [2, Chapter 9,

pages 332-404], Dunford and Schwartz [4], Ince [6, Chapters 9-11,
pages 204-278], and Stakgold [7, Chapter 3].
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21. Stability Theorems

Applicable to Differential equations of all types.
Yields

Knowledge of whether or not there are stable solutions.

Idea

There are theorems available for most cases of interest.

Procedure

There are many theorems that can be used to determine whether the
solutions to a differential equation are stable. For example, useful simple
theorems include

Theorem Consider the equation y’ = Ay + f(¢,y), where A is a real
constant matrix whose eigenvalues all have negative real parts. Let
f be real, continuous for small |y| and ¢ > 0, and f(¢t,y) = o(|]y|) as
ly| — 0, uniformly for ¢ > 0. Then the identically zero solution is
asymptotically stable.

Theorem If

1. Every solution of y’ = Ay approaches zero as t — oo,

2. [|f(@)l/]|z]| — 0 asz — 0,

3. 117 () = f()I| < erllg — ]| for [[za]] and [|z]| less than ¢,
where ¢; — 0 as co — 0,

then z = 0 is a stable solution of y' = Ay + f(y).

Example
Consider the equation y' = —2y + f(¢). Using the second theorem the
solution y = 0 is stable for f(y) = y™ when n > 1.

Notes

1. Stability is required if a differential equation is to be well posed (see
page 115).

2. Floquet theory and Lyapunov functions are two techniques that can
determine whether an equation has stable or unstable solutions (see
pages 523 and 551).

3. Note that solutions to the equation y’ = A(t)y can be increas-

ing even if all the eigenvalues of A(t) have negative real parts for
any fixed value of ¢. For example, consider the matrix A(t) =

—ﬁ ﬁ . . . -1+
! 1 . This matrix has the eigenvalues A\ o = ———

1 4(1+1) 4(1 "‘t)’

| CD-ROM Handbook of Differential Equations (©)Academic Press 1997 |




102 LA Definitions and Concepts

yet the general solution to y' = A(t)y is given by

- (14t)=3/4 (141)=3/*1og(1 +t)
Y(t)_o‘[—g(ut)l/‘*} ﬁ[(1+t)1/4 (1—3log(1+1))]’

where o« and (§ are arbitrary constants.
4. There are many different technical definitions of stability. For the
equation

y =1f(t,y), (21.1)

defined when t > tg, the solution is said to be

o Stable if for each € > 0 there is a corresponding = d(e) > 0
such that any solution y(¢) of equation (21.1) that satisfies the
inequality |y (to) — y(to)| < € exists and satisfies the inequality
[¥(t) —y(t)] < d for all ¢ > tg. A solution that is not stable is
said to be unstable.

o Asymptotically stable if, in addition to the above stability re-
quirements, |y(¢) — y(t)] — 0ast — oo, whenever |y (to) — y(¢o)|
is sufficiently small.

e Uniformly stable if for each € > 0 there is a corresponding § =
d(e) > 0 such that any solution ¥(¢) of equation (21.1) that
satisfies the inequality |¥(to) — y(to)| < ¢ for some t; > ty exists
and satisfies the inequality |y(¢) — y(¢)| < € for all ¢ > ¢;.

o Uniformly asymptotically stable if, in addition to the require-
ments for asymptotic stability, there is a g > 0, and for each € >
0 a corresponding T = T'(¢) > 0 such that if |¥(t1) — y(t1)| < do
for some t1 > tg, then |¥(t) —y(t)| <eforallt >t; +T.

e Strongly stable if for each ¢ > 0 there is a corresponding § =
d(e) > 0 such that any solution y(¢) of equation (21.1) that
satisfies the inequality |y (to) — y(to)| < d for some 1 > tg exists
and satisfies the inequality |¥(¢) — y(t)| < € for all ¢ > to.
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22. Sturm—Liouville Theory

Applicable to Second order linear ordinary differential operators.
Yields

Information about whether an operator is self-adjoint.

Procedure

Many of the differential equations of mathematical physics are Sturm—
Liouville equations. Sturm—Liouville equations arise naturally, for instance,
when separation of variables (see page 487) is applied to the wave equation,
the potential equation, or the diffusion equation.

The Sturm—Liouville operator, L, is defined by

L= (~ o] + o) (221)

where p, p’, ¢, and s are real and continuous and s(xz) > 0 and p(z) > 0 on
the interval (a,b). The Sturm-Liouville equation is defined by

Lly(@)] = —\y(), (22.2)
or, equivalently,
—%;P@ﬁ%]+ﬂ@y+kd@y:0, (22.3)

for € [a,b]. The parameter A is an eigenvalue of the equation. Given
a specific set of boundary conditions, there may be specific values of A
for which equation (22.2) has a non-trivial solution. For different types of
boundary conditions, different types of behavior are possible.

Many facts are known about Sturm-Liouville systems:

e L, as defined by equation (22.1), is formally self-adjoint (see page
95), with the inner product, (f,g)s := [ s(x)f(x)g(x) dx.
e [ is self-adjoint (see page 95) when

— The boundary conditions are unmized (or separated). That is,
they are of the form

ary(a) + Ay’ (a) = 0,

asy(b) + By’ (b) = 0.

— The boundary conditions are periodic. That is, they are of the
form

(22.4)
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e When the boundary conditions are given as in equation (22.4), and,
in addition, p(z) > 0, ¢(x) > 0, a1/61 > 0, aa/P2 > 0, then

— L is a positive definite operator (i.e., (Lu,u) > 0, for all u # 0).
— The eigenvalues are simple (i.e., each eigenvalue has a single
eigenfunction associated with it).

e When the operator L is not self-adjoint then

— If X is a complex eigenvalue of £, then ) is an eigenvalue of £*,
the adjoint of L.
— Eigenfunctions of £ are orthogonal to those of L*.

If the interval [a,b] is finite and p(x) and s(z) are positive at the
endpoints, then the problem is said to be reqular. Otherwise, it is said to be
singular. For singular Sturm-Liouville problems, problems are subdivided
into two cases, the limit-circle case and limit-point case. Consider equation
(22.2) when one of the endpoints is regular and the other singular. Define
the s-norm of a function u(x) by

b
l[ulls = (u,u)s = / s(z)|u(z)|? d.

If, for any particular complex number A, the solution to equation (22.2)
satisfies

e ||y||s < oo, then L is said to be of the limit-circle type at infinity. In
this case, all solutions of equation (22.2) will satisfy ||y||s < oo, for
any value of \.

e ||y||s = oo, then L is said to be of the limit-point type at infinity.

If both endpoints are singular, we introduce an intermediate point [,
a < I < b and then classify £ as being of the limit-point type or the
limit-circle type at each endpoint according to the behavior of solutions in
a<z<landin! <z <b (the classification is independent of the choice
of 1).

For a given real A, the problem in equation (22.2) is

e Oscillatory at © = a if and only if every solution has infinitely many
zeros clustering at a.

e Nonoscillatory at x = a if and only if no solution has infinitely many
zeros clustering at a.

The classification is mutually exclusive for a fixed A but can vary with .
If £ is in the limit-point case at infinity, then there is the following
completeness theorem:

Theorem If g(\) = [, f(2)¥(z, ) dz, then f(z) = [*_g(A) ¥(z, A) dp())
for a (computable) density function p(\).
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A completeness theorem is required for a proof that a separation of
variables calculation (see page 487) has been done correctly.

The following theorem and corollaries may help decide the type of the
operator L:

Theorem Let M be a positive differentiable function, and let k; and
ko be two positive constants such that for large z,

q(x) = —k1M(x),

| w2 de =,
[p"/2(2) M (2)M 32 (2)| < ke,
then £ is in the limit-point case at infinity.

Corollary If g(x) > —k, where k is a positive constant, and
[°p~1/2(t) dt = oo (where n is any finite number), then £ is in the
limit-point case at infinity.

Corollary If p(z) = 1 for 0 < z < oo and ¢(x) > —ka? for some
positive constant k, then £ is in the limit-point case at infinity.

Example 1
The differential equation and boundary conditions
_(my/)/ = )\xyv
u(1) =0,
u(2) =0,

correspond to the Sturm-Liouville operator in equation (22.1) with p(x) =
z, q(z) = 0, and s(x) = x. This is a regular Sturm-Liouville problem on
the interval [1,2]. The eigenvalues and eigenfunctions are readily computed
(see Stakgold [6, page 423]. If we define \,, = r2, then the r,, are determined

from
Jo(r)  No(rn)

Jo(2rn)  No(2rn)’
and the corresponding eigenfunction is given by
B T do(2ry)

ﬁ\/JO(T7L)2 - JO(2TTL)2

Example 2

The differential equation with boundary conditions

[Jo(rn)No(rpx) — Jo(rnz)No(rs)].

—(2%y) = M =0,
u(1) =0,
u(e) =0,
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for x € [1, €] is a regular Sturm-Liouville problem with unmixed boundary
conditions, so the eigenfunctions are complete. In this case we find

1
Ap =n’m? + > Yn = 12
22.1 Classification of Sturm-Liouville Problems
Pruess et al. [5] have devised a classification scheme and taxonomy for

Sturm-Liouville problems on the interval (a,b). They define:

sin(nm log ).

Category 1: Problem (22.2) is nonoscillatory at © = a and z = b.
The spectrum is simple, purely discrete, and bounded below.
Category 2: Problem (22.2) is nonoscillatory at one endpoint. At the
other endpoint, it is nonoscillatory for A € (—o0,to) and oscillatory
for A € (tg, 00).
The spectrum is simple and bounded below. The point spectrum (if
any) is in (—oo, tg) whereas (to,00) is the continuous spectrum.
Category 3: Problem (22.2) is nonoscillatory at one endpoint. At the
other endpoint it is limit-circle and oscillatory.
The spectrum is simple, unbounded both above and below, and purely
discrete.

Category 4: Problem (22.2) is nonoscillatory at one endpoint. At the
other endpoint, it is limit-point and oscillatory.
The spectrum is simple and purely continuous; the continuous spec-
trum is the entire real line.

Category 5: Problem (22.2) is limit-circle and oscillatory at = a. It is
limit-point and oscillatory at « = b.
The spectrum is simple, unbounded both above and below, and purely
discrete.

Category 6: Problem (22.2) is limit-point and oscillatory at = a. It is
limit-point and oscillatory at x = b.

The nature of the spectrum is unknown; a continuous spectrum is

likely.

Category 7: Problem (22.2) is limit-point and oscillatory at one endpoint
(x = a or x = b). At the other endpoint, it is limit-circle and
oscillatory.

The spectrum is simple and purely continuous; the continuous spec-
trum is the entire real line.

Category 8: Problem (22.2) is limit-circle and oscillatory at one endpoint
(x = a or x = b). At the other endpoint, it is nonoscillatory for
A € (—00,1p) and oscillatory for A € (¢g,00).
The spectrum is simple; the point spectrum (if any) is unbounded
below but bounded above by to. The continuous spectrum is in
(to, OO)
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Category 9: Problem (22.2) is limit-point and oscillatory at one endpoint
(r = a or x = b). At the other endpoint, it is nonoscillatory for
A € (—o00,tp) and oscillatory for A € (g, 00).
The spectrum may be nonsimple.

Category 10: At x = a problem (22.2) is nonoscillatory for A € (—oo, tp)
and oscillatory for A € (fp,00). At x = b, it is nonoscillatory for
A € (—o00,t1) and oscillatory for A € (¢1,00).
The spectrum may be nonsimple. The point spectrum (if any) is in
the interval (—oo, min(tg,t1)) and is bounded below. The continuous
spectrum is in (min(tg, t1), 00).

Notes

1. For transformations of equation (22.3), see page 157.

2. The regular Sturm—Liouville equation, written in the form
d?z
dt?

with the boundary conditions z(0) = z(L) = 0, has the asymptotic
eigenvalues and eigenfunctions

—r(t)z+ Az =0,

2 . /nm 1
0= 7on (Fe) +0 ().
n27T2

as n — 00. (See the Priifer method on page 150.)

3. For the Sturm-Liouville equation L[y] = —(py')’ + qy — Awy = 0 on
[a, 0], define 0 and ¢ to be solutions satisfying {6(a) = 0, pb’ |$:a =
1} and {¢(a) = —1, p¢’ |I:a = 0}. The Titchmarsh-Weyl function
m(A) is defined to be the functions {my}, defined on the upper and
lower half planes, such that [*[0(z, A) +m4(N)¢(z, \)|? da < oo for
all strictly complex values of .

4. See also Birkhoff and Rota [1, Chapters 10-11], Coddington and
Levinson [2, Chapters 7-12], Levitan and Sargsjan [4, Chapter 6,
pages 139-182 and Chapter 12, pages 324-340], Stakgold [6, Chapter
7, pages 411-466], and Zauderer [7, pages 136-159].
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23. Variational Equations

Applicable to Differential equations that arise from variational
principles.

Yields

A variational principle.

Procedure

Most differential equations that arise in mathematical physics have been
obtained from a variational principle. The variational principle that is most
often used is dJ = 0, where § represent a variation and J is a functional
given by

T = / / L(x, 0y, u(x) dx. (23.1)
R

Here, L(-) is a linear or nonlinear function of its arguments, and u(x) is the
unknown function to be determined. This variational principle states that
the integral J[u] should be stationary to small changes in u(x). If we let
h(x) be a “small,” continuously differentiable function, then we can form

Ju+h] — Ju] = // {L(x,0,,)(u(x) + h(x)) — L(x, 05, )u(x)} d();B )
S :

By integration by parts, equation (23.2) can often be written as
T )= Il = [ [ NG00, utx) i+ Ol
R

plus some boundary terms (see page 83). The variational principle requires
that 6.J := J[u + h] — J[u] vanishes to leading order, or that

N(x,0z;)u(x) = 0. (23.3)

Equation (23.3) is called the first variation of equation (23.1) or the Euler—
Lagrange equation corresponding to equation (23.1). (This is sometimes
called the Fuler equation.) A functional in the form of equation (23.1) de-
termines an Euler—Lagrange equation. Conversely, given an Euler—Lagrange
equation, a corresponding functional can sometimes be obtained.

Many approximate and numerical techniques utilize the functional asso-
ciated with a given system of Euler-Lagrange equations. See, for example,
the Rayleigh-Ritz method (page 638) and the finite element method (page
734).
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The following collection of examples assumes that the dependent vari-
able in the given differential equation has natural boundary conditions (see
page 83). If the dependent variable did not have these specific boundary
conditions, then the boundary terms that were discarded in going from
equation (23.2) to equation (23.3) would have to be satisfied in addition to

the Euler—Lagrange equation.

Example 1

The Euler-Lagrange equation for the functional

Jly] = /]%F(x,y,y’,...,y(")) dz,

where y = y(z) is
8_F_i 8_F _|_d_2 8_F _..._|_(_1)"d_n 8_F
dy dx \ 9y dz? \ Oy" dan \ Oy

For this equation the natural boundary conditions are given by

y(@o) = vo, ¥'(x0) =vh s Yy D (wo) =y,
y@) =i, y@)=vi, .., y* V(@) =y".
Example 2

The Euler—Lagrange equation for the functional

J[’LL] = // F(xa Y, Uy Ugy Uyyy Uy Uy uuu) dx dy,
R
where u = u(z,y) is
OF 0 (0P 0 (0P 0 (or
Ou  Ox \ Ouy Oy \ Ouy 0x2 \ Ouyy
+8—2 a_F + 8_2 8_F =0
020y \ Ougy oy2 \Ouy, )
Example 3
The Euler-Lagrange equation for the functional

J[u] :// la (%)2+b<g—z>2+cu2+2fu

D (YLD
oz \ " ox oy \ 0y =7

dzx dy,

is

(23.4)

= 0.
(23.5)

(23.6)

(23.7)

(23.8)

(23.9)
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Example 4
For the 2mth order ordinary differential equation (in formally self-
adjoint form)

m k ku

> o (o)t ) = f@)
k=0

u(a) =u'(a) = --- = u™V(a) =0,
u(b) =u'(b) = - = ul™ D (b) =0,

a corresponding functional is
2
/ <Zpk (d—k) - 2f(x)u(x)> dz.
a (23.11)
Example 5

Consider the system of n second order ordinary differential equations
for the unknowns {ug(z) |k =1,...,n}

_Z{ <ka Ciiuk>+%k() }:fj(m)’ (23.12)

uj(a) = u;(b) =0,

for j =1,2,...,n. If pjr = prj, ¢jx = qij, if the matrix {p;z} is bounded
and positive definite, and if the matrix {g;x} is bounded and non-negative
definite, then a functional corresponding to equation (23.12) is

(23.10)

n

b
du; du
J[u]:/ Z {pjk(x)d—xjd—;—kq]k u]uk] ij (z) | dx.

Ph=t (23.13)
Example 6
If A;;(x) is a symmetric and positive definite matrix, so that the partial
differential equation for u(x) = u(z1,...,Tm)
- i C , 23.14
Zax(a )+ Cu = ) (2314)

is elliptic in Q, C(x) > 0, and there are Dirichlet boundary conditions

Uy, =0, (23.15)

then a corresponding functional is

“ ou 0
o\ .5 I o Ox;
7,j=1 (2316)
where (23.16) is to be minimized over those functions that satisfy equation
(23.15).
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Example 7
If A;;(x) is a symmetric and positive definite matrix, so that the partial
differential equation for u(x) = u(x1, ..., Tm),
0 ou
— — | Ayj=— C = , 23.17
> (1455 ) + € = £ (2317)

is elliptic in Q, C'(x) > 0, and there are the boundary conditions

Z Aija—u cos(v, z;) + ou =0, (23.18)
6xj

ij=1 00

where v is normal to 02 and o is a positive function on 91, then a
corresponding functional is

J[U]Z/ ZAijg—uaa—u—i—Cug—qu dx—l—/ ou?ds,
Q \ij=1 Ti O o0 (23.19)

where (23.19) is to be minimized over those functions for which equation
(23.18) is satisfied.

Notes

1. Note that two different functionals can yield the same set of Euler—
Lagrange equations. For example, § [ Jdz = ¢ [(J+y+ay’) dz. The
reason that 6 [(y + 2y’) dz = 0 is because the integrand is an exact
differential (i.e., [(y+ay')dx = [ d(xzy)). Hence, this integral is path
independent; its value is determined by the boundary conditions. The
Euler-Lagrange equations for the two functionals [ ugzu,, dz dy and

[ (ty)? dady are also the same.

2. If a differential equation can be derived from a variational princi-
ple, then admittance of a Lie group is a necessary condition to find
conservation laws by Noether’s theorem.

3. Even if the boundary conditions given with a differential equation
are not natural, a variational principle may sometimes be found.
Consider

x2
Ju] = / F(z,u,u)dx — g1(z,u) |I:I1 + ga(z, u) |r:z2 ,
z1
where g1(x,u) and go(x,u) are unspecified functions. The necessary

conditions for v to minimize J[u] are (see Mitchell and Wait [5]).

oF 4 oF _
ou drou

OF dg| OF 0g|

o’ + |, 0 o’ + |, 0
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If g1 and g7 are identically zero, then we recover the natural boundary
conditions. However, we may choose g1 and gs to suit other boundary
conditions. For example, the problem

' + f(z) =0,
v+ au |w:w1 =0, u' + Bu |$:w2 =0
corresponds to the functional
211 2 Bu? au?
Ju] = W) - de + 22 _ o
o= [ (5007 - son aes | )

. This technique can be used in higher dimensions. For example,
consider the functional

J[u] ://F(m)y7u7u17uy)uzz;uzy,uyy) dmdy
R

+ G(z,Y, U, Uy, Uge, Un ) do,
OR
where /00 and 9/0n are partial differential operators in the direc-
tions of the tangent and normal to the curve OR. Necessary condi-
tions for J[u] to have a minimum are the Euler-Lagrange equations
(given in equation (23.7)) together with the boundary conditions:

oF 9 or _[or 0 oF
Ouy, O Ougy Y

0 oF OF 1[0 OF

o (= 25 |+ 3 | (a2 = 32)

OUgy - Oy 2 %auzy

AR ()
2 [\ 0z Qugy )~ ° Oy Ougy v (23.20)

0 0G  9* 0G

Ouy 0y Ouy,y

M il = e
8_G+ oF 2+8Fm2+8Fx =0
Bun | Buza T Bugy 0 T Bugy oY T

where 2, = 2 and y, = Z—g. See Mitchell and Wait [5] for details.

. Mathematica has the package VariationalMethods which can deter-
mine the Euler equations for a general integrand.

. See also Butkov [1, pages 573-588], Collatz, [2, pages 540-541], Far-
low, [3, pages 362-369], and Kantorovich and Krylov [4, Chapter 4,

pages 241-357].
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24. Well Posed Differential
Equations

Applicable to Ordinary and partial differential equations.
Yields

Knowledge of whether the equation is intrinsically well posed.

Idea

Before an attempt is made to determine or approximate the solution of
a differential equation, it should be checked to determine if the differential
equation problem is intrinsically well posed.

Procedure
A well posed differential equation is one in which

e The solution exists.

e The solution is unique.

e The solution is stable (i.e., the solution depends continuously on the
boundary conditions and initial conditions).

If the differential equation is not well posed, it is called an ill posed or
improperly posed problem. For such problems, there may not be a solution,
there may be more than one solution, or whatever solution is determined
(by an approximate scheme) may be unrelated to the actual solution.

For partial differential equations, the third condition (concerning sta-
bility) is generally the easiest to check.

Example
Consider the initial value problem for the unknown function wu(z,t),

Utt = Ugzzx,

u(z,0) = g(x). (24.1)

We will show that the solution to this problem is not stable. Suppose
that equation (24.1) has a solution, say ug(x,t). Assume that € is a fixed
number, much smaller than one in magnitude, and define uq(x,t) by

ul(ma t) = Uo(ﬂf, t) + eeikredtv

where k and o are also constants. At ¢t = 0, u;(z,0) differs from g(x) by a
quantity that has magnitude €, an arbitrarily small amount.

However, using ui(x,t) in equation (24.1), we determine that wy(x,t)
will satisfy the equation if ¢ = +k%. Therefore, at any fixed value of ¢,
say t = T, there exists a solution ug(x,7T") and an approximation to the
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solution ui(z,T) = uo(x,T) + eeh*ek*T  The approximation satisfies the
same differential equation that the true solution satisfies. But because k is
arbitrary, the approximate solution can be arbitrarily larger than the true
solution by making k arbitrarily large. Because two different expressions
satisfy the same differential equation and initially were arbitrarily close and
are arbitrarily different in magnitude at any future time, we conclude that
the problem is ill posed.

Note that, with the proper boundary conditions and initial conditions,
equation (24.1) would have a unique solution. But the solution would be
unstable because the equation is intrinsically ill posed as an initial value
problem. Hence, there would be, for instance, no easy way to numerically
approximate the solution.

Notes

1. For a discussion of existence and uniqueness theorems, see page 53.
For a discussion of stability theorems, see page 101.

2. A standard example of an ill posed problem is Laplace’s equation with
initial data. For example, the equation V2u = 0 with the initial data
g—;(x, 0) = L sinna has the solution u(z,y) = - sinnzsinhny. As
n — oo, the initial data are becoming arbitrarily small in magnitude
whereas the solution (for y > 0) is becoming arbitrarily large.

3. Certain classes of equations have been well studied. We can state

e For Laplace’s equation and elliptic equations in general, the
Dirichlet problem is well posed. Also, the Neumann problem
does not have a unique solution but is otherwise well posed.

e For the two-dimensional wave equation and hyperbolic equations
in general, both are well posed as an initial value problem. Both
are, generally, ill posed as boundary value problems.

e For the heat equation and diffusion equations in general, both
are well posed when given Dirichlet data and the time variable
is increasing; both are ill posed when the time variable is de-
creasing. See Beck et al. [2] for numerical schemes related to a
specific ill posed problem.

4. A backward heat equation (a parabolic equation with decreasing
time) is ill posed. It may be made well posed, however, by requiring
the solution to satisfy a suitable constraint. Typically, one asks for
non-negative solutions or for solutions that satisfy an a priori bound,
which is obtained from physical considerations.

5. Payne [9] contains the following non-exhaustive list of methods that
have been proposed and used in treating various types of improperly
posed Cauchy problems:

e Function theoretic methods
e Figenfunction methods
e Logarithmic convexity methods
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Weighted energy methods

Lagrange identity methods

Quasireversibility methods

Restriction of data methods

Numerical and programming methods

Concavity methods

Stochastic and probabilistic methods

Method of generalized inverse in reproducing kernel spaces
Comparison methods

Payne [9] illustrates several of these methods on a backward heat
equation.
As Fichera [4] shows, finding the correct boundary conditions for a
degenerate problem (one in which the type changes) can be difficult
in general. Fichera shows, for example, that the first order equation
for u(x,y)

a(‘r? y)uw + b(x7 y)uu teu=f

in the rectangle R = {—a < z < «o,—03 < y < 3}, when a and b
satisty

has mo boundary conditions! However, the equation,
—CL(.’E7 y)uw - b(x7 y)uy +eu = f7

in R, with the same conditions on a and b, requires that u be given
on the entire boundary of R.

See also Garabedian [5, pages 450-457] and Zauderer [10, pages 103—
113].
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25. Wronskians and
Fundamental Solutions

Applicable to Linear ordinary differential equations.
Yields

A formulation of a linear ordinary differential equation as vector system

Idea
An nth order linear ordinary differential equation can be written as a
first order ordinary differential equation for a n element vector.

Procedure
Let L[-] be the linear nth order ordinary differential operator

d(n_l)y
dx(nfl)

d’ny

= + - an(2)y.

+ al(x)

Lly]

The vector equation associated with the linear equation L[y] = 0 is given
by (see page 146)

y = A(@)y, (25.1)
wherey =[y o " ... y(”_l)}T and A is the matrix
[0 1 0 0 0 ]
0 1 0 0
0 0 0 1 0
A =
: : : : (25.2)
0 0 0 0 1
|—an —QGp-1 —Ap-2 —Apn-3 ... —an |

If {y1,y2,...,Yn} is any set of n solutions to the equation L[y] = 0, then
the matrix

yl y2 P yn

7 Yo o U

O(z) = : ; . ;
y%n—l) yén—l) . y7(L7L—1)

is a solution matriz for equation (25.1). It is also called a fundamental
solution. This matrix satisfies the differential equation & = A®.

The determinant of this matrix, det ®(z), is called the Wronskian of
L[y] = 0 with respect to {y1, Y2, - - ., Yn } and is denoted by W (y1, y2, . - ., Yn)-
Note that the Wronskian is a function of x.
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If ®(x) satisfies @’ = AD, then |®(z)|' = |®|trA(¢), where tr A denotes
the trace of the matrix A. Hence,

x

det B(z) = det B(zo) exp ( / r A(s) ds) .

0

For the matrix in equation (25.2), we have tr A = —a; so that

W (Y1, yn)(x) = exp <_ /r: al(s)ds) Wgs:- s 3u)(wo)- (25.3)

This is sometimes called Liouville’s formula.

From equation (25.3), we conclude that either W(z) vanishes for all
values for z, or it is never equal to zero. If the Wronskian never vanishes,
then the set {y1,y2,...,Yn} is said to be linearly independent. A set of n
linearly independent solutions to L[y] = 0 is called a basis or a fundamental
set.

Alternately, given a set of n linearly independent continuous functions,
{y1,y2,---,Yn}, it is possible to find a unique homogeneous differential
equation of order n (with the coefficient of y™ being one) for which the
set forms a fundamental set. This differential equation is given by

W(yay17y27 .. 7yn)
Wyt 2., yn)

(—1)" =0. (25.4)
Example 1

Given the second order linear ordinary differential equation
y' +y=0, (25.5)

the set {sinz, cosz} forms a fundamental set because each element in this
set satisfies equation (25.5) and also the Wronskian is given by

sinx Ccos T

W (sinz, cosz) = )
cosz —sinz

= —1’

which does not vanish. Because the Wronskian is constant, we have ver-
ified that ai(z) = 0 in equation (25.5) (the ai(z) term in this equation
corresponds to the first derivative term).

Example 2

If we choose the two functions y; = sinx and y2 = x, we can determine
the linear second order equation that has these solutions as its fundamental
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set by constructing equation (25.4). Here, n = 2 so we find

Yy x sinz

y 1 cosx

(_1)2W(y,a:,sinm) _ y" 0 —sinz
W (z,sinz) z sinz
1 cosz

(xcosz —sinx)y” + (rsinz)y’ — (sinx)y

)

(xcosx — sinx)

" rsinx , sinz

=y + : y = : Y-
(xcosx — sinx) (xcosz — sinx)

Notes

1. Given the linear partial differential equation

Llu] = Z axlé)xj Zb

ij=1

for u(x), let ' = T'(x,&) = I'(€,x) be the geodesic distance between
the points x and &. (For a rectangular coordinate system, I'(x, £) =
Ix—&||=/(z1 —&)2+ -+ (zn — &,)2.) A fundamental solution,
S(x, &), satisfies L[S] = 0 and, near x = £, has the form S = Flm +
Viegl' + W, where U, V, and W are analytic functions and m =
(n —2)/2. For example, for Laplace’s equation in n dimensions with
n > 2, V2u = 0, a fundamental solution is given by

S = nl_Q, with 7= /(z1 —&)2+ -+ (z, — &n)2.

r

See Garabedian [3, pages 152-153] for details.

2. The canonical form of a self-adjoint third order linear homogeneous
differential equation is y”" + 2Ay’ + A’y = 0 (see pages 98 and 163).
A fundamental set of solutions for this equation is {u?, uv, v?}, where
u(x) and v(x) are any two linearly independent solutions of the second
order differential equation u” 4+ £ Au = 0.

3. Similar to the second example, it is possible to find a single differential
equation whose solutions include the products of the solutions of two
given linear homogeneous differential equations; see Spigler [6].

4. See also Boyce and DiPrima [1, pages 113-126], Coddington and
Levinson [2, pages 67-84], Ince [4, pages 116-121], and Simmons [5,
pages 76-80].
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26. Zeros of Solutions

Applicable to Linear ordinary differential equations.
Yields

Statements about the zeros of the solutions.

Idea
There are several standard theorems about the zeros of solutions of
differential equations.

Procedure
Consider the following equations:

d dy
= (r0 ) +atary =0 (26.1)
and
d2
d—g +p(x)y =0
’ (26.2.a-b)
Ly +q(z)y =0
dx?
and
d d
— pl(ff)—y +qi(x)y =0
dx dx
(26.3.a-b)

2 (n0E) + ey =

1. Consider the self-adjoint equation (26.1) in which p(z) > 0 and p(z)
and ¢(z) are continuous. Sturm’s separation theorem states

Theorem Let u and v be linearly independent solutions of
(26.1). If o and § are successive zeros of u, then v has one
and only one zero in the interval (a, 3).

This has been extended by Makay [3] to be
Theorem Consider the second order equation
Fy" v y,x) =0, (26.4)

where F' is continuous. If the two conditions are satisfied

e If y is a solution of (26.4), then so is cy, for all real c.
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e The solution of (26.4) as an initial value problems is unique.

then the results of Sturm’s theorem apply to equation (26.4).
2. We have the following result about the interlacing of zeros:

Theorem Let u(x) and v(z) be linearly independent solutions
of equation (26.2.a) and assume u(z) has at least two zeros in
the interval (a,b). Then, if 1 and x2 are two consecutive zeros
of u(x), the function v(z) has one, and only one, zero in the
interval (z1,z2).

Theorem Let p(x) in equation (26.2.a) be continuous in (a, b)
with 0 < m < p(z) < M. If the solution u(x) of (26.2. a) as
two successive zeros x1 and xo, then S <x9g—x1 < —.

VM Vm

3. We have the following results about oscillatory solutions:

Theorem Consider the self-adjoint equations in (26.3.a-b). If

o All the solutions of (26.3.a) are oscillatory as z — oo.
e g2(x) > ¢q1(z) are continuous functions,
e pa(x) > pi(x) > 0 are continuous functions,

then all solutions of equation (26.3.b) are oscillatory.

Theorem If p(x) > (1 + €)/4t? and € > 0, then all solutions to
equation (26.2.a) are oscillatory.

Theorem If all the solutions to equation (26.2.a) are oscillatory,
and if ¢(z) > p(z), then all solutions of equation (26.2.b) are
oscillatory.

And we have the converse:

Theorem If ¢(z) > p(z) and some solutions to equation (26.2.b)
are nonoscillatory, then some solutions of equation (26.2.a) must
be nonoscillatory.

4. The Sturm comparison theorem is

Theorem Consider the self-adjoint equations (26.3.a-b). Let
pi(xz) > pe2(x) > 0 and ¢1(z) > g2(x) be continuous functions.
Then between any two zeros of a nontrivial solution of equa-
tion (26.3.a), there will be at least one zero of every nontrivial
solution of (26.3.b).

5. Considering equation (26.1), let p(z) > 0, and let p and ¢ be contin-
uous on [0, c0]. Then
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Theorem If [ % and [ q(x) dz both diverge, then every

solution to equation (26.1) has infinitely many zeros on the inter-
val [1, 00]. If, in addition, fol % and fol q(z) dz both diverge to
~+00, then every solution to equation (26.1) has infinitely many
zeros on the interval [0, 1].

Theorem If [ % converges and if | [ ¢(s) ds| is bounded
by a constant for a < z < oo, then every non-trivial solution
to equation (26.1) has at most a finite number of zeros on the

interval [a, oo].
6. We also have the following nonoscillation results:

Theorem If lim sup z%p(z) = v* and lim inf 22p(x) = v, then
the solution of equation (26.2.a) is

e Nonoscillatory if v* < 1/4

e Oscillatory if 1/4 < 7.

Theorem For the equations in (26.2): If P(z) = = [ p(t) dt,
Q(z) =z [ q(t)dt, 0 < Q(z) < P(x), and equation (26.2.a)
is nonoscillatory in the wide sense, then equation (26.2.b) is
nonoscillatory in the wide sense.

Theorem Consider (26.2.a) and define lim sup (z [ p(s) ds) =
P* and lim inf (z " p(s)ds) = P, then

o A necessary condition that the solution to equation (26.2.a)
be nonoscillatory is that P, < /4 and P* < 1.

o A sufficient condition that the solution to equation (26.2.a)
be nonoscillatory is that P* < 1/,.

Notes
1. Makay’s [3] theorem applies to equations such as 3" (y')? + y> = 0.
2. For the eigenvalue problem Llu] = A,u, let N(\) count the number
of eigenvalues less than A. In one dimension the asymptotics of N ()
can be easily determined because the nth eigenfunction has n zeros.
For example, for the Schréedinger equation —V21, +q(x), = A\utby

NQns)  NOw) L /[/\n —q(@)){*de +0 (%)

2 2 T
ify >0
where [y]4+ = 4 1 =" The generalization of this formula to &
0 ify<0O

dimensions is (see Newell [4])
140(1 1
NO) = sy [P @l a0 ().
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27. Canonical Forms

Applicable to The ordinary differential equations:

%”GJ“f)%JF(%ﬂL%H)y:O, (27.1)
% +2(e+ fx)j—z + (p2® + 2qx + 1)y = 0, (27.2)
(a+ ﬂx)% +(b+ mx);l—gyc + (¢ +na)y =0, (27.3)

% - F<%9x> (27.4)

Idea

Each of these equations has certain canonical forms. When approxima-
tions and numerical values for these equations are reported in the literature,
it is generally for the canonical forms.

Procedure 1
By changing the dependent and independent variables from y = y(x)
to v = v(z), via
y(z) = vzreo(z),
x = Kz,

for some choice of the constants {v, \, i, K}, equation (27.1) will take the
form of one of the following four canonical forms:

dv A 2
Z21iBluv=
d22+<z2+z+ )v 0,

d2v+ A+2 _o
dz? 2 )Y

d?v A
—+ ;—'—1 ’UZO,

a2
v A
a2 T 20

where A and B are constants.
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Procedure 2
By changing the dependent and independent variables from y = y(x)
to v = v(z), via
y(@) = ve!Hu(z),
r=Kz+mn,

for some choice of the constants {v, u, &, 5, n}, equation (27.2) will take the
form of one the following four canonical forms:

%—!—(zQ—i—J)v:O,
%—vz:o,
%4—@:0,

2

where J is a constant.

Procedure 3

By changing the dependent and independent variables, equation (27.3)
can be reduced to Weiler’s canonical form (this is also known as a Kummer
equation)

d2v

dv
z@—l—(b—z)——avzo. (27.5)

dz

The transformation used to produce equation (27.5) from equation (27.3)
has several different forms depending on the numerical values of the coef-
ficients in equation (27.3), see Bateman [2] for details.

Procedure 4

A critical point is called a moving critical point (or singularity) if its
location depends on the initial conditions for the differential equation (and
so the location of the critical point is not fixed solely by the coeflicients of
the differential equation). For example, the nonlinear differential equation
y' = (y’)2% has the general solution y(x) = tan [log(Ax + B)], where A
and B are arbitrary constants. The initial conditions determine A and B
and thus determine the location of the singularities of y(x).

Given an ordinary differential equation in the form of equation (27.4),
if F(y',y,x) is rational in 3/, algebraic in y, and analytic in z, and if all of
the critical points are fixed, then a change of variables of the form

az(x) +b

yl(z) = cz(z) +d’
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where a, b, ¢, d, and w are some functions of x, will transform the equation
to one of 50 standard forms. Each of these 50 differential equations is for
the unknown function z(x).

Of these standard forms, six have solutions in terms of the Painlevé
transcendents and all the others have first integrals that are equations of
first order or have elementary integrals. The equations that define the six
Painlevé transcendents are

stant.

2
Y = 6y? + ,
2
24 =2 + 2y + o,

d? dy\? d
TH=1(%) - 124 Lo +8) + i+ 2,

2 2 3
ng:L(d_g) + 3 4 4ay? +2(2? — @) +§,

2y Y
d’y 1 1 ) - b o B8 Ty
WZ(@+yT1 (7 “zd T2 (ay+y)+7‘
+ 5yy(j1)7
dy _1(1 1 1 iy 1 1 1) d
dw—g—i(gﬂLﬁﬂLyﬂ) (ﬁ) _<5+E+y7w)£
U (o4 B a2

In the above equations, all of the parameters are assumed to be con-

Notes

1.

2.

3.

The first three transformations may be found in Bateman [2, pages
75-79].

The transformations for equation (27.4) may be found in Ince [4,
Chapter 14, pages 317-355].

Even though the Painlevé equations do not have elementary solutions
in general, some choices of the parameters will lead to equations
solvable in terms of elementary functions. For example, y = —1/x
is a solution of the second Painlevé equation when o = 1, and
y = —1/x + 322/(2® + 4) is a solution of the same equation when
a = —2. See Airault [1] for details.
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28. Canonical Transformations

Applicable to A system of ordinary differential equations that
arise from a Hamiltonian.

Yields

A different system of ordinary differential equations that arise from a
different Hamiltonian.

Procedure
A Hamiltonian H(p,q), with p = (p1,...,pn) and q = (¢1,---,Gn),
defines the system of ordinary differential equations

OH

R

P 0q; @
OH

.7; = = H .

4 Opi b

where a dot denotes differentiation with respect to the independent variable
t (see page 61). The {p;,q;} are called the coordinates of the Hamiltonian.
The transformation to the new system of coordinates {P;, Q;} via

Di = pl(Pa Q)a

7 = ¢(P,Q), (28.)

is (commonly) said to be canonical if Hamilton’s equations remain in-
variant. That is, there exists a new Hamiltonian K (P, Q) such that the
equations

Pi = _KQN

. (28.2)
Qi = KPN
are valid.
Canonical transformations can be defined implicitly by a generating
function. For instance, for almost arbitrary S(p, Q,t), a canonical trans-
formation is given by

P, =-5g,,
qi = _Spiv (28.3.&-(3)
K(PvQ) = H(paq) =+ St7

where equations (28.3.a) and (28.3.b) must be solved to obtain explicit
expressions for q(P, Q), p(P, Q). Note that, for the S; term, the derivative
is taken with respect to the explicit dependence of S on ¢.
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Other functional forms for the generating function are also possible.
For example, a function of the form S(q,P,t) gives rise to the canonical
transformation

P (28.4.a-c)

Example
Given the Hamiltonian

1
H=3 (p* +a*(t)q?), (28.5)
Hamilton’s equations are {p = —a?q, ¢ = p}, which can be combined to
yield
j+a’*q=0. (28.6)

Hence, the Hamiltonian in (28.5) defines the second order ordinary differ-
ential equation (28.6). Now consider the canonical transformation induced
by the generating function S(q, P,t) = ¢ P. From equation (28.4) we find

I
N

p = 2qP,
Q 2

K(Q.P)= Q

(p2+a2q2) =3 (4P2+a2).

N | =

The equations corresponding to the new Hamiltonian are

.1
P=—-(4P% + @
p (4P +a%), (28.7.a-b)

Q = 4PQ.

Equation (28.7.a) is a nonlinear first order ordinary differential equation for
P(t). After P(t) is determined, equation (28.7.b) can be used to determine
Q(t) by quadrature. Hence, this change of variable has changed a second
order linear ordinary differential equation into two successive first order
ordinary differential equations.

Notes
1. Canonical transformations are sometimes called contact transforma-
tions. See page 249 for the correct definition of a contact transfor-
mation.
2. Technically, and in more generality, a transformation of the 2n vari-
ables {z;,p; | j = 1,...,n} to the 2n variables {X;,P; | j = 1,...,n}
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is a canonical transformation if the differential form Z?:l(Pj aX; —
pjdx;) is exact, i.e., there exists a function U = U(x, p) such that

(deXj —pjdxj) =dU. (288)
1

n

=

3. The section on Hamilton—-Jacobi theory (see page 61) utilizes canon-
ical transformations to derive the Hamilton—Jacobi equation.

4. Tolstoy [7] shows that any nonlinear ordinary differential equation
may be transformed, in principle, by a variable transformation into
a linear differential equation or a system of such equations. This is
the reverse of the process that was seen in the example.

5. The set of all canonical transformations forms a group.

6. Fouling transformations are canonical transformations in which the
p coordinates in configuration space are preserved (i.e., P =p, Q =
Q(p,q)). See Gelman and Saletan [4] for details.

7. A transformation, given by equation (28.1), which allows equation
(28.2) to be written, and may or may not satisfy (28.8) is technically
called a canonoid transformation. The lack of distinction between
canonical and canonoid has occasionally led to ambiguity in the lit-
erature. See Currie and Saletan [3] or Negri et al. [6] for details.

8. See also Caratheodory [1, Chapter 6, pages 79-101], Chester [2, pages
197-206], and Goldstein [5, Chapter 8, pages 237-272].
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29. Darboux Transformation

Applicable to Linear second order ordinary differential equations,
a single equation or a system.
Yields

A reformulation of the problem.

Procedure
Given the equation

y"' = (f(z) +r)y (29.1)

for y(z), we say that the transformation
2(x) = A(z, Ny + B(z,\)y'

is a Darboux transformation if z(z) satisfies a differential equation of the
form

2" = (g(x) + \)z. (29.2)

For example, if w(z) is a known solution of equation (29.1), then a Darboux
transformation is given by

w/

2=y — Y (29.3)

In this case, if y satisfies equation (29.1), then z(x) satisfies equation (29.2)
with
f(x) = g(z) = 2[log w(x)]".

That is to say, this transformation changes the potential function appearing
in equation (29.1) from f(x) by df = —2[logw(z)]”, where w(z) is an
arbitrary solution of equation (29.1). The usefulness of this technique is
that equation (29.2) might be easy to solve for z(z); then y(x) may be
found from equation (29.3) by a single integration.

For the system of second order ordinary differential equations

y" = D(2)y, (29.4)
where D(z) is the matrix
d11 (CE) dlg(x) e dln (ﬁ)
d21 (33) dgz (33) e dgn (33)
D(z) = : : : '
dpa(z) dpa(z) ... dpn(x)
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we say that
z(z) = A(z)y + B(2)y’, (29.5)

where A and B are matrices, is a Darboux transformation if z satisfies an
equation of the form

7z = F()z, (29.6)

where F'(z) is a new matrix. Sometimes Darboux transformations of this
type can be used to decouple systems of differential equations. See Humi
[2] for details.

Example 1

If the solution of the differential equation

y" = (f(z) + Ny (29.7)

is known for each value of A (call the solutin y)), and w(z) = y,(z) is the
solution when A = p, then the general solution of the differential equation

Y e E

for z(x) is given by (see equation (29.3))

w'(x)

w(z)

z2 =1\ —Ur , (29.9)

for A # p. In particular, if we take f(x) = 0 in equation (29.7), then
yo(z) = Az+ B when A = 0 and y(z) = eXV2* for A # 0. If we take 1 = 0
and w(x) = z, then equation (29.8) becomes

2
prie. <—2+)\> z,
x

with the solution given by equation (29.9); that is,
1

2(z) = eFVA® (:I:\/_ — —) :
x

Example 2
This example is from Humi [2]. Suppose we wish to decouple a system
of symmetric equations in the form of equation (29.4) with

_jm@)+A d(x)
D(z) = [ 1d(x) uQ(ﬁc)—i-/\]'
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If we apply a Darboux transformation, we can hope to obtain the form of
equation (29.6) with F'(z) given by

)+ A 0

_ |u
F(z) =" 0 va(x) + A|°

(29.10)

If we choose B = I in equation (29.5), then to obtain equation (29.6), we
require

A"+ D' + AD = FA,

2+ D =F.
In our case, with D(x) given by equation (29.7) and F'(x) given by equation
(29.10) we require that the elements of the matrix A(x) satisfy

2a}, = 2ak, = —d,

2a7, +ui(z) = v (2), (29.11)

2aby + uz(x) = vo(x).
It is a simple matter to integrate these equations to obtain

a12(z) =az1(x) = c(z),

a1 (2) :2% <%d(x) Vat I> 7

a9 (2) :% <%d(m) —a+ 1) ,

where « is an arbitrary constant and
1 xT
ola) =3 / d(t) dt,
I(z) = / o(t)fua(t) — u ()] dt.

This solution is valid if the consistency constraint

a\'" 1/d\> 1
=92¢2 — [ = = — 1)?
UL+ up = Ze <2c> +2<20> t 5zt )

(29.12)
is satisfied. This constraint was derived in the solution of equation (29.11).

Stated another way, we can choose d and u; — us as arbitrary functions
and then use equation (29.12) to compute the corresponding u; + us for
which the resulting system of equations can be decoupled by the use of a
Darboux transformation.

Note
1. See Ince [3, page 182] and Lamb [5, pages 38-41].

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




138 I.B  Transformations

References

[1] DARBOUX, G. C. R. Acad. Sci Paris (1882), 1456.

[2] Huwmi, M. Factorization of systems of differential equations. J. Math. Physics
27 (Jan 1986), 76-81.

[3] INCE, E. L. Ordinary Differential Equations. Dover Publications, Inc., New
York, 1964.

[4] KONOPELCHENKO, B. G. On exact solutions of nonlinear integrable
equations via integral linearising transforms and generalised Backlund—
Darboux transformations. J. Phys. A: Math. Gen. 23 (1990), 3761-3768.

[6] LaMB, G. L. Elements of Soliton Theory. John Wiley & Sons, New York,
1980.

[6] LEvi, D. Toward a unification of the various techniques used to integrate
nonlinear partial differential equations: Backlund and Darboux transforma-
tions vs. dressing method. Rep. Math. Phys. 23, 1 (1986), 41-56.

[7] Popravskil, I. V. Generalized Darboux—Crum—Krein transformations.
Theo. Math. Physics 69, 3 (1986), 1278-1282.

[8] SALL, M. A. Darboux transformations for non-Abelian and nonlocal
equations of the Toda chain type. Theo. Math. Physics 53 (1982), 1092—
1099.

[9] STANEK, S., AND VOSMANSKY, J. Transformations of linear second order
ordinary differential equations. Archivum Mathematicum (BRNO) 22, 1
(1986), 55—-60.

[10] ZHENG, W. M. The Darboux transformation and solvable double-well
potential models for Schrodinger equations. J. Math. Physics 25, 1 (Jan
1984), 88-90.

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




30.  An Involutory Transformation 139

30. An Involutory
Transformation

Applicable to Nonlinear partial differential equations of a certain
form.

Yields

A reformation of the partial differential equation.

Idea

Inverting the dependent and independent variables might lead to a more
tractable equation.

Procedure
Suppose we have a partial differential equation of the form

o 0
P <u,%7§> = O (u, Uy Uy, - -« Uty Uty .. ) = 0,

(30.1)

for u = u(z,t). We introduce the inverse transformation

v =z,
T={2 =u,
t'=t.

Because applying T twice is equivalent to not applying 7', the transforma-
tion is involutory (i.e., T? = I = the identity). Noting that
, 0 1 0
T 9r o' /o’ o'
, 0 0 ou' /ot 0
T ot ot ou /o oz’

then, under T, equation (30.1) becomes

® (z;D';0') = 0. (30.2)

This transformation may be used to change classes of nonlinear equations
with Dirichlet boundary conditions to linear form. For example, the class

o’ 0 (& ;
W—w(u’)% Zai(u’,t’)D’ 2| =0,

i=1

u =Wy (t) on 2’ = ®¢(t'), (30.3)
u' = Wy(t') on 7' = ®y(t'),
u' = 0(z') at t' =0,
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transforms, under 7', to

on x = Uy(t), (30.4)

Example
Given the equation and initial/boundary conditions

o' kO
g au’ 2 127
o (Gy) ou

u'=0 on 2’ = ®¢(t'), (30.5)

=17 on 7' = ®y(t'),

u' = 0(z') at t' =0,

the transformed equation and initial/boundary conditions become

ou_ o
ot~ "oa2’
u = Pq(¢) on z =0, (30.6)

u = Dy(t) onzx =1L,
u=0"1x) att=0.

Then equation (30.6) can be easily solved (by use of, say, Fourier trans-

forms) to yield
/ O™ (0)sin mro) do

( KN 7r2t> . /nTT
25 e

i / o (2 ) [#1(7) = (1" @a(r)] d]

This last relation, can be implicitly solved for = x(u,t); which (under T)
is the solution to equation (30.5) (i.e., v’ = u/(2/,t')).

Note
1. The Hodograph transformation is a different way in which the depen-
dent and independent variables are interchanged (see page 456).

Reference
[1] RocERs, C. Inverse transformations and the reduction of nonlinear Dirichlet
problems. J. Phys. A: Math. Gen. 17 (1984), L681-L685.
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31. Liouville
Transformation — 1

Applicable to The general Sturm-Liouville problem

~[p(x)y] +r@)y = Ap(x)y,  fora<wz<b,
y'(a) + ay(a) =0, (31.1)
y'(b) + By(b) = 0.
Procedure

The Liouville transformation (version 1) is to change the independent
variable from z € [a,b] to ¢ € [0, 7] by

_ L (e
t = j‘/a <p(_gj)) de, (312)
where J is defined by
Ly @)/
J= 7T/a (p(m) da, (31.3)
and to change the dependent variable from y(z) to u(t) by
u(t) = f(@)y(x) = [p(@)p(@)]*y(x), (31.4)

where we have defined f(z) = [p(z)p(x)]'/*. With this change of variable,
equation (31.1) becomes
+ [k = q(t)]u

u'(0) + hu(0
u' (7)) + Hu(m

W fOI‘OStS’]T,
(31.5)

0
) =0,
)=0
which is in Liowville normal form. The definitions of {k,q(t), h, H} are as
follows

k= J?,
-
q(t) = f}t +J%m(t),
h— f%m)wp(a) - F@a)l,
H= fj( 57 879(0) = F ) £
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Note that ¢(t) may also be written as

00) = -+ o) o) ),
S DR OO RHOIORION
Example

If we have the equation and boundary conditions

1
—(@y) +—y=Ary,  form <z <2m,
y'(m) =0,
y'(2m) =0,

then we identify

plx) ==z, r(r)=

1
x’
a=m, b=2

a=0, [f=0.
A simple calculation results in J =1,t=2-m, f( ) = VT = Vt+1,
mt) = & = 2, q(t) = Hl)g, kQ =\ h=—= andH:—ﬁ.

z? (t+1)2>
Hence, we obtain

3
" s — < <
u —|—<)\ X )2>u 0, for 0 <t <,

[+
W(0) — %u(O) —0, (31.6)
, 1 B
u'(m) — mu(ﬂ) =0.

Equation (31.6) is in Liouville normal form.

Notes
1. The standard assumptions used with equation (31.1) are that on the
interval [a, b]: p and ¢ are real-valued, p > 0, ¢ does not vanish, and
p and g have continuous second derivatives. Boundedness conditions
are also required for the new functions.
2. When p = 0, the transformation

/ Iq
\/ (31.7)
1/4
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when applied to equation (31.1), results in

d*u
— HEL+ RO)] u(t) =0, (31.8)

where

_andp(zx) d _
R(t) = DL ),

and the plus (minus) sign is taken in equation (31.8) if ¢(x) > 0
(g(z) < 0). This is also called the Liouville transformation (see
Eastham [4]).

3. The two different transformations, the one in equations (31.2) and

(31.4), and the one in equation (31.7), are each sometimes called the
Liouville-Green transformation.

4. See also Birkhoff and Rota [1, pages 265-267], Boyce [2, pages 20—21],

Hille [5, page 340], Lakin and Sanchez [7, pages 36-41], and Valiron
[8, page 511].
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32. Liouville
Transformation — 2

Applicable to The second order linear ordinary differential equa-
tion
d*y 4

on the finite interval 0 < ¢ < T', where )\ is a constant and m(t) > 0.

Procedure
The Liouville transformation (version 2) is to change the dependent and
independent variables in equation (32.1) by

a () d
x== [ m*(z)dz,
J Jo
1 /T
J= —/ m?(z) dz,
™ Jo
w(z) = m(t)y(t).
This transformation changes equation (32.1) into

B Q] o, @22

for 0 <z <7, where Q(z) is defined by

L Em) P P
QW) =8 a2~ m (m(t)>' (32:3)

The inverse transformation, which takes equation (32.2) into equation
(32.1), is given by
=
0

tdC
mOF
(/] wior)

where m*(x) = m(t) is any positive solution of the differential equation

J

d>m*
dx?

= Qz)m” ().
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Example
Suppose we have (essentially) Airy’s equation
d*y
— + My =0. 324
Tz T At (32.4)
Comparing equation (32.4) to equation (32.1) shows that m(t) = t/4.
Using this value for m(t) produces

2
J=—=T°",
3m

()"
w(z) =t 4y(t).

Under this change of variables, equation (32.4) becomes

d?w 4\ 5 1
T3 =0. 2.
dx? + <9772 36 xQ) v (82:5)

For large values of z, an approximation to equation (32.5) might be ob-
tained by discarding the second term in the parentheses.

Notes

1. The function Q(x) defined in equation (32.3) will be a constant if and
only if m(t) = (at®>4 Bt+6)~"/2. In this case, Q(z) = —J?*(ad —452).

2. This transformation is useful when followed by some sort of asymp-
totic analysis. When the magnitude of X is large compared to Q(z),
then the first order approximation to equation (32.2) will be to dis-
card the Q(z) term.

3. See Magnus and Winkler [1, page 51].

Reference
[1] MacgNuUs, W., AND WINKLER, S. Hill’s Equation. Dover Publications, Inc.,
New York, 1966.
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33. Reduction of Linear

ODEs to a First Order
System

Applicable to Linear ordinary differential equations.
Yields

A first order vector system.
Idea

By introducing variables to represent the derivatives in an nth order
linear ordinary differential equation, a first order system of differential

equations may be obtained.

Procedure
Given the linear ordinary differential equation

d(nfl)y

d
= an1 (@) o+ (@) + ao(@)y +b(a)

d™y
dxn

for y(z), introduce the variables {z1, 22, ..., 2z, } defined by

dy d?y d™y
=", 2=—= ..., 2= .
dx 27 dx? dx™

21
Using these new variables, equation (33.1) may be written as

Ly = Alz)y + (),

where

y=y y@ y("_l)}T:[y 21 22 ... Zn_i
b=1[0 0 ... 0 bx)]",

and A is the matrix

0 1 0 0 K 0

0 0 1 0 e 0

0 0 0 1 0

0 0 0 0 1
lao(z) ai(z) az(z) az(z) ... an—1(z)]

(33.1)

(33.2)
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If the initial conditions for equation (33.1) were in the form

y(xo) = co, ¥ (z0) = 1, ¥ (x0) = 2y - . -, y(nfl)(l“o) = Cp—1,

then the initial condition for equation (33.2) isy(zo) = [co ¢ ... cn,l}T
To solve an equation in the form of equation (33.2), see the section on vector
ordinary differential equations (page 421).

Example
Given the linear ordinary differential equation with initial conditions

d? d
d—a:g + x2ﬁ + (log z)y = sinz,

y(0)=3, ¢ (0)=4,

it may easily be changed into the equivalent first order system

d {y| _ 0 1 vl 0
dz |y |~ |=logz —22| |y sinxz|’

or, equivalently,

dy
— =A b
p (x)y+ ’
_[y] 4] O 1 -0
where y = L/], A= [_ log _xQ}’ and b = [sin x}

Notes

1. Many packaged computer programs require the input to be in the
form of a first order vector system.

2. The method of elimination is the opposite of the method presented
here. In the method of elimination, a system of simultaneous equa-
tions is converted into a single equation of higher order. See Finizio
and Ladas [2, pages 162-170] for details.

3. See also Bronson [1, pages 185-192].
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34. Prufer Transformation

Applicable to Linear, homogeneous, second order differential equa-
tions.

Yields

An equivalent system of two first order differential equations.

Idea
This transformation changes an equation from Liouville normal form to
two successive ordinary differential equations.

Procedure
Suppose we have the Sturm-Liouville equation

% (P(m)j—;) + Q(x)u =0, (34.1)

defined on a < z < b, with P > 0,P € C', and Q continuous. If we
think of this single second order equation as two first order equations for
the unknowns {u,u’}, then we can change the dependent variables from
{u,u'} to R(x) and 6(x) by

P(z)u/(x) = R(x) cos (x),
u(z) = R(x)sinf(z). (34.2)

Using (34.2) in equation (34.1), we obtain two sequential first order ordi-
nary differential equations for the unknowns R(x) and 0(x)

do

— = Q(x)sin? 0 + cos? 6,
dx P(x)

(34.3.a-b)
dR 1 .

If equation (34.3.a) can be integrated, then equation (34.3.b) can be solved
for

R(z) = R(a) exp< / ' [% - (t)] sin 20(t) dt) . (34.4)

Example
If we have the linear second order homogeneous ordinary differential
equation

zu” —u + 23u =0, (34.5)
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then we can write equation (34.5) in Liouville normal form as

d (1
— <—u'> +zu =0,
dr \z

from which we can identify P(z) = 1/x, Q(x) = x. Therefore, from
equation (34.3.a), we have

% :xsin29+1/%cos29

= .

This equation can be solved to yield 8(x) = % +C, where C is an arbitrary
constant. From equation (34.4), we then find R(x) = R(a). Therefore, we
conclude that

2

u(z) = R(a) sin(% + 0)

B ()sin(xQ/Z—i—C)
- ua sin(a?/2 4+ C)

is the solution to equation (34.5).

Notes
1. The Priifer transformation is often used to obtain information about
the zeros of u(x).
2. See also Birkhoff and Rota [5, pages 257-266].
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35. Modified Prufer
Transformation

Applicable to Linear, homogeneous, second order ordinary differ-
ential equations.

Yields

An equivalent system of two first order ordinary differential equations.

Idea

This transformation changes an equation from Liouville normal form to
two successive ordinary differential equations.

Procedure
Suppose we have an ordinary differential equation in Liouville normal
form

v 4+ Q(x)u =0, (35.1)

defined on a < z < b, with Q > 0. We define the modified amplitude R(x)
and the modified phase ¢(x) by

ule) = Gt sin (o),

u'(z) = R(x)QY* cos ¢(x).

Using equation (35.2) in equation (35.1), we determine the modified Priifer
system corresponding to equation (35.1) to be

(35.2.a-b)

do = QY% - lg sin 2¢,
du 40 (35.3)
1dR 1Q '

E% = 15C082¢.

The modified Priifer transformation is usually used to obtain asymp-

totic information about the solution to equation (35.1).

Example
If u(z) satisfies

M
u" + (1 - x—2> uw=0, (35.4)

for 0 < x < oo, then the exact solution is u(z) = \/zZ,(x), where Z,(z)

is a Bessel function and n = +,/M + ;. Comparing equation (35.4) to
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equation (35.1), we identify Q(z) = 1—2£, so that equation (35.3) becomes

do _ [ M, Msn2
dr x2  2(z3 — Mzx)’

id_R__ M cos2¢
Rdx  2(23— Mx)’

For M = O(1) and x > 1, the above expressions can be expanded to yield

d¢ 1M 1
— ~ -] — —— —
dx 2x2+0< )’

1dR 1
E%—()(E)’

which can be integrated (and then simplified) to yield

(b(z)z(boo—m—%—kO(i)’

2 2
v (35.5)

R(z) ~ R, +0(i> .

22
Using equation (35.5) and Q(z) in equation (35.2.a) provides an approxima-

tion to u(z) for large values of x. This, in turn, provides an approximation
to the nth Bessel function.

Notes
1. The modified Priifer transformation is often used with Q(z) = A —
q(z) when X is large in magnitude compared to g(x).
2. See also Birkhoff and Rota [1, pages 267-277].
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36. Transformations of

Second Order Linear
ODEs — 1

Applicable to The second order linear ordinary differential equa-
tion

Yy +alx)y +b(x)y = 0. (36.1)

Transformation 1
If the dependent and independent variables in equation (36.1) are changed

by
t:/ exp(—/ a(z) dz) dr,

w(t) = y(z),
then equation (36.1) becomes

dPw

o b(x(t)) exp (—2 /w: a(z) dZ> w = 0. (36.2)

Example
For the ordinary differential equation

3z
1" !
Y 1_x2y+

7
1_ﬂy=Q

the change of variables becomes t = x/+/1 — 22 and the equation corre-

sponding to equation (36.2) is ‘fT;“ + Ww =0.

Transformation 2
If in equation (36.1) the expression

b+ 2ab
i (36.3)
is found to be a constant, then the change of independent variable given

by

z= C/\/b(x) dx, (36.4)

where C'is an arbitrary constant, will reduce equation (36.1) to an equation
with constant coefficients. Moreover, if the expression in equation (36.3)
is not constant, then no change of independent variable alone will reduce
equation (36.1) to an equation with constant coefficients.
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Example
Given the equation

zy” 4 (82% — 1)y’ + 2023y = 0, (36.5)

we note that a(z) = 8z — 1/z and b(z) = 20z. Hence, the expression in
equation (36.3) becomes

b +2ab 40z +402°(8x —ax~!)  3202% tant
b3/Z 203/223 T o032 | constant.

Therefore, if the independent variable is changed by z = C [ V20z dz,
then equation (36.5), written in terms of z, will be a constant coefficient
differential equation. A natural choice for C'is C' = 2/ V20 so that the
transformation becomes z = z2. Using this new variable in equation (36.5)
results in the equation

Py dy
SV 4 sy =0
dz? * dz +oy ’

which has the solution y = e~2* (Acos z + Bsinz), where A and B are
arbitrary constants. Hence, the general solution to equation (36.5) is

y = (Acosz® + Bsinz®) exp(—22?).

Transformation 3
If the dependent variable is changed by

o) =u)exp( 3 [ al2)a)

then equation (36.1) becomes

u’ + I(x)u =0, (36.6)
where
1 45 1lda

Equation (36.6) is said to be the normal form for equation (36.1). The
quantity I(x) is the invariant of equation (36.1).

Two ordinary differential equations that have the same normal form
(i.e., I(z) is the same) are said to be equivalent. This is because if y; (z)
and yo(x) satisfy

Yy + iy + iy =0,

(36.8)
Yy + payy + qayz = 0,
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and if both equations have the same invariant, then

0@ =w@en (-3 [ (m6) -m@)d).  Go9)

Conversely, if y; and ys are solutions to equation (36.8), and if y;(x) =
f(@)y2(x) for some f(x), then the invariants of the two equations in equa-
tion (36.8) are the same.

Example
Suppose we wish to solve the equation
d’y  2dy 9 2
SN — —_— = . ].
dz? xdx et 22)Y 0, (36.10)

in which a is a constant. We find that (comparing equation (36.10) with
equation (36.1), and using equation (36.7))

2 14 12
— 2 2
I(z) (a +F>_ZF_§:C_2 “
Now, we know the solution of

2

% +a*v =0 (36.11)
to be v(z) = Acosax + Bsinazx, where A and B are arbitrary constants.
Because equations (36.10) and (36.11) have the same invariant, one can be
transformed into the other. Using equation (36.9), we find

y(2) = v() exp ( / d—x) _—

and, hence, the solution of equation (36.10) is y(x) = Az cos ax+ Bz sin ax.

Transformation 4
If, instead of equation (36.1), both sides of

Y +aw)y +b(a)y = cla) (36.12)

o) =exo | ole)z).

then equation (36.12) is put in the formally self-adjoint form

4 (10 2) +atay = @), (36.13)

are multiplied by

where
q(x) = p(z)b(z),
r(z) = p(x)e(z).

See the method on page 157 for transformations of an equation in the form
of equation (36.13).

| CD-ROM Handbook of Differential Equations (©)Academic Press 1997




36. Transformations of Second Order Linear ODEs — 1 155

Transformation 5

Ferndndez et al. [3] suggest transformatng equation (36.1) via y(x) =
VZzexp (— [Q(z)dx) Y(z) with = x(z). This results in the equation
Y..+ R(2)Y =0, where

o 2 Lzzz 3(1;22)2 a CL2
h(z) = () {b+ 2(x.) 4w, 2 Z} '

Example
Suppose we wish to solve the equation

(1 — 2y — yzy' + My = 0.

Using a = —yz/(1 — 2%), b = A/(1 — 2?), and z(z) = — cosz results in
2

Y,. + R(2)Y = 0 with R(z) = A+ 051 — G-UG=S)

Notes

1. Note that the invariant of the adjoint of equation (36.1) is equal to the
invariant of equation (36.1). That is to say, invariants are preserved
under the operation of taking the adjoint.

2. If equation (36.6) has the two linearly independent solutions u(x) and
v(z) and if we define s(x) := u(z)/v(x), then {s,x} = 2I(z), where
{, } denotes the Schwarzian derivative.

3. Kamran and Olver [6] completely solve the equivalence problem, that
is, determining when two second order linear differential operators are
the same under a change of variable.

4. See also Boyce and DiPrima [2, pages 141-143], Hill [4, pages 42-43],
Ince [5, page 394], Murphy [7, pages 88-89], Piaggio [8, pages 91-92],
and Rainville [9, pages 7-10 and 15-23].
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37. Transformations of

Second Order Linear
ODEs — 2

Applicable to The second order linear ordinary differential equa-
tion in formally self-adjoint form
d dy
Ly := — — )y = 0. 1
= 72 ()2 ) + atohy =0 (37.)

Transformation 1
If the independent variable in equation (37.1) is changed from x to s by

d d
s = / (—x), and if p(z) > 0 for > x¢, and / ar 00, then equation
p(x

z P(@)
(37.1) becomes
d?y
22 T P(@)a(z)y =0.
Note that, as z — oo, we have s — co. See Courant and Hilbert [1, page
292].

Example

For the ordinary differential equation (xy’) +y = 0, we identify p(z) =
z, g¢(x) = 1, and o = 0. Hence, the change of variable s = logz results in
Yss + €'y = 0.

Transformation 2
If the dependent variable in equation (37.1) is changed from y(z) to

w(z) by
w(z) = /p(@)y(z),

then equation (37.1) becomes

Transformation 3
If the range of interest for equation (37.1) is 29 < = < oo and if the
independent and dependent variables are changed by

e,
t‘/zo Vo)
u(t) = [p(e)a(@)]

lg
p
@)V y(x),
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then equation (37.1) becomes

du
s+ L+ RO u(t) = 0, (37.2)

where

_au d _
R(t) = p/*lal = = Ip(@)la@)] 7" [, -

and the plus (minus) sign is taken in equation (37.2) if ¢(x) > 0 (¢(x) < 0).

This transformation is sometimes called the Liouville-Green transfor-
mation. This transformation is virtually identical to the Liouville trans-
formation (see page 141). See Courant and Hilbert [1, page 292], Eastham
[2], and Lakin and Sanchez [3, pages 36—41].

Transformation 4

If the independent and dependent variables are changed in equation
(37.1) by

then equation (37.1) becomes

nd 5 dw
_— N L = 0. .
18 (pu . dt) T Lpw =0 (37.3)

Note that the operator L[] is defined by equation (37.1). If (z) is chosen
to be

then equation (37.3) simplifies to #% + L{p]w = 0. See Courant and

Hilbert [1, page 292].
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38. Transformation of an
ODE to an Integral
Equation

Applicable to Second order linear ordinary differential equations.
Yields

An equivalent integral equation.
Idea

An ordinary differential equation may sometimes be formulated as an
integral equation.

Procedure
There is a standard transformation that will allow a linear second order

initial value ordinary differential equation to be written as a Volterra
integral equation. Given the differential equation with initial conditions
for y(x),

y + A( dy B =

T2 33)% + B(2)y = g(2),

y(a) =a, y'(a) =5,

an equivalent Volterra integral equation is

o) = 1)+ [ K Oue) dc
where
@) = [ (= Qa0) a5 + (o - ) (4@a +5) + .
K(2,¢) = (¢~ 2)(B() - 4(Q)) — A(C).

There is also a standard transformation that will allow a linear second
order boundary value ordinary differential equation to be written as a
Fredholm integral equation. Given the differential equation and boundary
conditions for w(x),

d%w dw .
Tz b C(CC)E + D(z)w = j(x),

w(a) =, w(b) =24,
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an equivalent Fredholm integral equation is

b
w(z) = h(z) + / H(x, Qw(¢) d,

where

T —a b
W) =7+ [ (@ QO+ 5 [5_7_/@_4)]-(4)«],

.0 Z:s [C(O —(a— C)(O’(C) - D(c))], for z > ¢,
H(z,() =
?:Z {C(C) —(b-¢) (O’(c) - D(g))}, for z < C.
Example
If y(z) satisfies
y/l + y — x7
y(0) =0, y’(O) =0, (38.1)

then y(x) satisfies the following Volterra integral equation

3

o) =5+ [ € (38.2)

The solution to equation (38.1), y = x — sin x, satisfies equation (38.2).

Notes

1. There are many other ways in which an ordinary differential equation
may be transformed into an integral equation. For example, if y(x)
satisfies the nth order ordinary differential equation

n

y (@) = f@) + ) Cila)yV V()

Jj=1

and u(z) := y(™(x), then u(z) satisfies the integral equation

u(z) = F(x) + /90 K (z, t)u(t) dt,

- (t —x)i~1

K(z,t) = ZCj(m)Wa

j=1

where F(z) is f(z) plus a polynomial in (x — a) generated by the
initial conditions. See Squire [3, pages 223-227] for more details on
this technique, as well as two other techniques.
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2. Bose [1] shows that every solution of the nth order linear homoge-

neous differential equation
Y™ = a1 (2)y™ Y o+ ag(z)y

satisfies the integral equation

o) = ylan) + [ ) du+ [ { / G, v)a0 () (v) dv} du,

where h(z) is the unique solution to

R = a1 ()W + ... 4 a1 (2)h, (38.3)
h(ffo) = yl(xO)a hl(xo) = y”(xo)a T 7h(n72) (xo) = y(nil) (xo)a

and G(z,u) is the Green’s function associated with equation (38.3).

3. See also Jerri [2, pages 60—67].
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39. Miscellaneous ODE
Transformations

Applicable to Ordinary differential equations.

Procedure
Many transformations have been developed for equations of specific
forms.

Transformation 1
If y(x) is defined by the ordinary differential equation

d?y

L=t (39.1)

and the dependent variable is changed by

w(() = V¢ (@)y(), (39.2)

(for arbitrary ¢ = (), or x = x(()), then equation (39.1) becomes

P Y ~d? ()
T = {a: I(@) + Ve g G )} - (39.3)

— [#1@) - 312.63|

where dots denote differentiation with respect to ¢, and {z,(} is the
Schwarzian derivative of & with respect to . If we choose ((x) by

C(z) = / V@ dz, (39.4)

so that w(¢) = y(z)fY/*(z), then equation (39.3) becomes

d*w
€ [1+ ¢(Q)]w, (39.5)

with

CAfFT =50 1 d? 1

ST P (f1/4) |

This is called the Liouville transformation by Olver [7, Chapter 6], and the
Liouville-Green transformation by Lakin and Sanchez [6, pages 36-41]. By
neglecting ¢(¢) in equation (39.5) and solving for w(¢), we obtain the first
term in the WKB approximation (see page 642).

¢(¢)
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Example
If we apply this transformation to Airy’s equation, 3" = zy, for x > 0,
then we find (using f(z) = z)

v 2

() = [ Vdz= a2,

w(¢) = V¢ (@)y(z) = 2~y (x).
And so equation (39.5) becomes

d*w 5

— — 1+ —= =0.
ac: < i 36<2> !
This leads to the approximation w” —w = 0 when ¢ > 1 (which corresponds
tox > 1).

Transformation 2
This transformation removes the (n — 1)th derivative term in an nth
order ordinary differential equation. If y(x) satisfies

(—=1)"(py™) "™ + Lly] = Aqy, (39.6)

for 0 < z < 1, where L[y| is a linear differential operator of degree less
than or equal to 2n — 2 and if the dependent and independent variables are
changed from y(z) to w(t) by

w(t) = (" 'p) /" y(2),

z /2n
()
t=— = dx,
K Jo \p

1 1/2n
K:/ (3) da,
0o \P

then equation (39.6) is transformed into

d?™w
dth

+ H[w] = K*"\w,

where H[w] is another linear differential operator of degree less than or
equal to 2n — 2. See Boyce [1, page 21].

Transformation 3
The general third order linear homogeneous ordinary differential equa-
tion
"

y" +p1(x)y” + p2(2)y’ + ps(z)y =0,

can be changed to the canonical form

w” + 2Aw" + (A" + b)w = 0, (39.7)

CD-ROM Handbook of Differential Equations (©)Academic Press 1997 |




164 I.B  Transformations

by the change of variables

If we write

Py =p2 — p} —1h,

Py = p3 — 3p1pa + 2p} — pf,
then A(x) and b(z) may be written as

3
A(x) = §P2,

b(z) = Py — ng.

See Gregus [3] for details.

Transformation 4
The general fourth order linear homogeneous ordinary differential equa-
tion
A(@)y"™" + B(x)y" + C(x)y" + D(x)y" + E(z)y = 0,

for y(x) can be changed to the canonical form
w”" + a(t)w” + b(t)w' + c(t)w =0,
for w(t), by the transformation
w(t) = alz)y(x),  t=p(x),

where {a(x), 3(x)} are chosen to satisfy

ot e[ 4 1a]

Notes
1. If the transformation given by equation (39.2) is applied to the equa-
tion 2
Y
T2 = (@) +g(@)]y,

with ¢ defined by equation (39.4), then we obtain
d*w g
= (1 ) w.
= (1rerg)u
2. The differential equation adjoint to equation (39.7) has the form:

2" +2A72 + (A" — b)z = 0. Hence, the equation in equation (39.7)
will be self-adjoint if and only if b(z) = 0.
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3. Olver [7, pages 190-192] proves that any one-dimensional, first order

Hamiltonian differential operator can be put into constant coefficient
form by a suitable change of variables.

4. See also Hill [5, pages 44-45].
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40. Reduction of PDEs to
a First Order System

Applicable to Nonlinear partial differential equations.
Yields

A first order system of partial differential equations.

Idea

By introducing variables to represent the derivatives in a partial differ-
ential equation, a first order system may be obtained.

Procedure

Sometimes it is advantageous to reduce a partial differential equation of
high order for a single unknown function to a system of several first order
equations. This might be done, for instance, to utilize a specific numerical
package that requires a partial differential equation to be input as a first
order system. This can always be done by introducing an appropriate set
of derivatives as unknowns.

The general procedure is to introduce new variables as the derivatives of
the desired function and then “discover” relations among these functions.
The following derivation for second order equations is from Garabedian [1].

Suppose we have the second order partial differential equation, with
boundary conditions

Uge = G (x7y7u7uw7uy7uwyauyy) ,
u(0,y) = f(y), (40.1)
uz(0,y) = g(y),

for the unknown u(z,y). We introduce new variables, {uy, ..., us}, which
are assumed to depend upon the new independent variables ( and 7, by
the definitions

Uy =T, Ug = Ug, U7 = Ugy,
U2 =Y, U5 = Uy, Ug = Uyy,

Uz =u, Ug = Ugyg-

If we then specify the new independent variables by requiring

Gur _ 9us Guz _y,
o — an’ a
ul(oan) = 07 u2(07 77) =1,

then u; = ¢z = ¢ and uy = y = 1. The purpose of introducing these new
independent variables is to eliminate explicit dependence on z and y.
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With these new variables, equation (40.1) can be written as the system

Ouy _ Ous 9z _ Ous _ Oua  Ous . Ous

oc oy’ o ¢~ tam a¢ T Com
Ous  Oug Our  Oug OJug  Ouy

e 17 - - =, 40.2
A N A N “0z)
8u6 o 8u2 8u2 8u2 8U4 8u6 8U7

Most of the above equations are consistency requirements; that is, (uy), =
(uy), implies that (us)¢ = (ua),. The initial conditions for the variables
{u1,...,ug} are given by

u1(0,m) =0,
u2(0,m) =7,
us(0,7m) = f(n),
us(0, 1) = ggn), (40.3)
us(0,m) = f'(n),
ue(0,n) = G(0,n, f(n), g(n), £'(n),g' (), f"(m)),
ur(0,m) = g'(n),
us(0,n) = f"(n).
Note that equation (40.2) is in the general form of a linear first order system

Oui

8—< :Zajk(ul,...,uE;) 8’17 s

forj=1,2,...,8.
To convert the system in equation (40.2) back to the system in equation
(40.1) may require the use of the boundary conditions in equation (40.3).

Note

1. Systems of high order partial differential equations can also be made
into first order systems by the introduction of enough terms. For
instance, the system of equations for u(z,y) and v(z,y)

Fi (z,y,u, g, Uy, v, Vg, vy) =0
F> (z,y,u, g, Uy, v, Vg, vy) =0

can be written as a first order system, but the resulting system has
12 dependent variables. See Garabedian [1, pages 7-11] for details.
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41. Transforming Partial
Differential Equations

Applicable to Partial differential equations.
Idea

Changing variables in a partial differential equation is a straightforward
process.

Procedure 1

The general procedure is simple: Construct a new function, which
depends upon new variables, and then differentiate with respect to the
old variables to see how the derivatives transform.

Procedure 2

If a differential equation can be written in terms of coordinate-free
expressions (e.g., in terms of the gradient operator), then a change of
variables can be avoided by simply using the metric of the new coordinate
system. This section contains representations of common coordinate-free
expressions for an orthogonal coordinate system. Note that Moon and
Spencer [4] list the metric coefficients for 43 different orthogonal coordinate
systems. (These consist of 11 general systems, 21 cylindrical systems, and
11 rotational systems.)

In an orthogonal coordinate system, let {a;} denote the unit vectors in
each of the three coordinate directions, and let {u;} denote distance along
each of these axes. The coordinate system may be designated by the metric
coefficients {g11, ga2, 933}, defined by

8%1 2 8@ 2 8x3 2
i = 41.1
Jii ( 8ul ) + 8ul + 8ul ’ ( )
where {z1,22,x3} represent rectangular coordinates. Using the metric
coefficients defined in equation (41.1), we define g = g11922933-

When ¢ represents a scalar and E = Ey1a; + Esag + Esag represents a
vector, we have

M 00w 09 a 00
Vo1 0ur - J/gaz Oua (/g3 Ous’ (41.2)

grado =V ¢ =

divE =V -E
L (Y (a5 ()
\/g aul g11 5u2 g22 8UB g33 ’ (413)
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Iy Iy I's
curlE=VY xE =a + a + a, , 41.4
' V911 ? V922 ’ V933 ( )

v2¢>=i{ 0 [\/—3¢]+ 0 {\/—%]Jri[ﬁﬁ” (41.5)
V9 L Our | g11 Ouy Oug | g2z Ous duz | gs3 Ous | )’

i ([ S ] 2 )

h1h2h3 8U1 hl 8u1 8UQ hQ 8u2 8U3 hg 8U3 ’

a 8T ao 8T as 8T

raddivE=V(VE) = ——+ —— + — —,
& ( ) V11 011 /922 02 /933 O3 (41.6)

curlcurl E = v x(V xE)
[0 On] g [0 or
= W g |0 O 2 Oxrs Oy
g3z [Ol'2  OI'y (41.7)
‘ag,/— |m—— 51,
g |0r1 Oxo

E = graddivE — curlcurl E
= V(V E) -V X(V XE)

a{ 1 or /&{@_%]}
! v d11 83;1 g 8x3 8332 (41 8)
+a{ L oY, fom [c‘g_@]} |
2 v/ g22 8332 83;1 8x3
1 8T gs33 |:8F1 8F2:|}
tagq—a—+,/— |7—— | ¢’
as { /933 023 g [0z Ox

where T and I' = (I'1,'5,I's) are defined by

- {2y E] ey E ] 2 )
%{% (V75 Es) ——(@Ew}

S v ) @
97{6%1 (V22 B2) = 5 (\/QTEl)}-
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Operations for orthogonal coordinate systems are sometimes written in
terms of {h;} functions, instead of the {g;;} terms. Here, h; = ,/gi, so
that /g = h1hahs. For example

e Cylindrical Polar Coordinates

T1 = rCOoS ¢, To = rSin @, T3 =2

g1 = 1) g2 = TQ? gs = 1 (4110)

e Elliptic Cylinder Coordinates

1 = ujuz, To = \/(u% —c2)(1 —ud), T3 = u3
2_ 2,2 2_ 2.2
us — c*uj ui — c*uj
= ——F, =, == 1
g1 U/% — 2 g2 1_ ug g3
Example 1
Suppose we have the equation

and we would like to transform the equation from the {z,y} variables to
the {u, v} variables, where

Note that the inverse transformation is given by z = u, y = u/v.
We define g(u,v) to be equal to the function f(z,y) when written in
the new variables. That is,

flz,y) = glu,v) =g (3: g) . (41.12)

Now we create the needed derivative terms, carefully applying the chain
rule. For example, by differentiating equation (41.12) with respect to z,
we obtain

0 0
fo(z,y) = QU% (u) +9v% (v)

— 2( )_|_ 2 E
_glaxx 928x Y
1
=01 +92—
Y

v
= g1 + —92,
u
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where we have used a subscript of “1” (“2”) to indicate a derivative with
respect to the first (second) argument of the function g(u,v) (i.e., g1(u,v) =
gu(u,v)). Use of this “slot notation” tends to minimize errors.

In a like manner, we find

B) B
@ww=%@¢w+%@w>

_ g(x)—f— g E
—glay g26y "y

xT
=— 30

y2

’UQ
=——0

u

The second order derivatives can be calculated similarly:

Fealiry) = 5= (F2(2,9))

Lo 1
Oz 9 ng

2v v?
=g11 + —g12 + —5 922,
u u
0 x
fl?y(xvy) = oz <—?92>
u? u? u?

——592 — 5012 — 5922

0
fyy(z,y) = 3_3/ (‘%92)

_ 203 i v
T2 92 u2922-

Finally, then, we can determine what equation (41.11) looks like in the
new variables:

2v v? 203 vt v?
=|g11+—g12+ 5922 | + | —5 92+ 5922 | +(u) | ——92
u u u u u

02 (20 — u? 2v v2(1 4+ v?
= %gv + Guu + —Guv + %gvv'
U u U
Example 2

As a simple example of using coordinate-free representations, consider
the diffusion equation in rectilinear coordinates:

Ut = K (Uga + Uyy + Uszz) . (41.13)
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We recognize this to be the same as u; = xkV2u. Hence, using equation
(41.10) in equation (41.5) we find

w = kV2u = Kk 82_u+1@+i82_u+@

b S \or2  ror  r20¢2 0 022)°

in cylindrical polar coordinates.

Notes

1. A Macsyma program that will perform changes of variables in partial
differential equations is described in Steinberg [5].

2. Mathematica has the package VectorAnalysis which can compute
the divergence, curl, gradient, Laplacian, and the biharmonic opera-
tor (V4) in 14 different coordinate systems.

3. The Laplacian (V?2) for 22 different coordinate systems is given start-
ing on page 204.

4. See also Butkov [1, pages 34-39] and Moon and Spencer [3, Chapter
3.
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42. Transformations of
Partial Differential
Equations

Applicable to Partial differential equations.

Procedure

Many transformations have been developed for equations of specific
forms.

Euler Transformation

Given the first order partial differential equation in two independent
variables, F'(z,y,z,p,q) = 0 (with, as usual, p = z;, ¢ = 2,) and 2z, # 0
the transformation

T=Ux X =2z,

y=Y Y=y

2=XZx—Z )<= Z=x2—2p, (42.1)
p=X P=x

q=—Zy Q= —2zy

is known as the Euler transformation. Note that Zy + z, = 0. Under
this transformation, the original equation transforms into F(Zx,Y, X Zx —
Z,X,—Zy) =0 (see Kamke [6, section 11.15, pages 100-101]).

As an example, the equation G(zp — z,y,p,q) = 0 becomes, under
the Euler transformation, G(Z,Y, X, —Zy) = 0. As another example, the
Clairaut partial differential equation F' = z — (225 + yzy + f(22,2y)) =0
is transformed into F = Z —YZy + f(X,—Zy) = 0. Note that this
latter equation is really an ordinary differential equation for Z = Z(Y)
(the variable X acts as a parameter).

Kirchoff Transformation
Given the elliptic partial differential equation

div[K () grad ] = V - [K () V4] = 0, (42.2)

for ¢ = ¢ (x), the Kirchoff transformation introduces the new dependent
C

variable, ®(x), defined by & = / K (t)dt, where 1)y is some arbitrary
o

reference value. This transforms equation (42.2) into Laplace’s equation
V2® = 0; see Ames [1, pages 6-7 and 21-23].
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Transformations of Parabolic Differential Equations I
The parabolic partial differential equation

U = QP ugy — duy + €u,

where {a, d, €} are constants, may be transformed into the simple diffusion
equation ¢; = a?¢,,, by means of the transformation (see Bateman [2,
pages 75-79] or Farlow [3, page 58])

u(z,t) = d(z, 1) exp{;s?a: + ( %) t} . (42.3)

Transformations of Parabolic Differential Equations I1
The nonlinear parabolic partial differential equation

¢t = (D(c)ey),

may be transformed, via v(c,t) = D(c)c,, into the following equation with
a simpler nonlinearity (see Hill [5, page 148]):

D(c)vy = 2 Vge.

Transformation of Elliptic/Hyperbolic Equations
The linear partial differential equation
0%u ou 0%u

o(r) 58 +0(z) g +2(au = age + b (12.4)

may be transformed into the equation

0 1 Ov v 0
X — +b—.
el )ax<( )ax> “o Vo
Through the transformation

X:/ dr U(X’t):u(:c,t)’

Ve uo ()

where ug(z) is any nonzero “equilibrium” solution of (42.4), and ¢(X) is
a function completely determined by {a(z),3(x),v(z)}. See Varley and
Seymour [9].

Removing First Derivative Terms

Linear elliptic equations and hyperbolic equations of second order, all of
whose coefficients of the derivative terms are constants, can be transformed
so that the first derivative terms no longer appear. For example, we
presume that u(x) satisfies

n

Z 8”+Z k—+c() = 0. (42.5)

k=
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Note that scaling of the {x} allows equation (42.5) to be written with
each {\;} equal to 0, 1, or —1. If we presume that no Ay is equal to zero,

and we define
1<~ [ b
w(x) = u(x) exp l§ Z (/\—k> xk] ,

k=1

then w(x) satisfies (see Garabedian [4, pages 74-75])

n 82w 1 n b%
;)\kaku—F (C(X)_Z 5y w =0.

i=1

Von Mises Transformation

For fluid flow with constant viscosity, the Navier—Stokes equations (see
page 179) sometimes take the form

ou ov 0%y

U+ V7~ =V
Ox Oy oy?’
o o, (42.6.a-b)
or oy

These are called the boundary layer equations. A standard procedure for
analyzing the Navier—Stokes equations (and equations derived from them)
is to introduce the stream function ¥, defined by

_ o __ov
= By oz

With this definition, equation (42.6.b) is automatically satisfied. In the Von
Mises transformation, ¥ and x are treated as the independent variables,
instead of y and z. This transforms equation (42.6.a) into

u_ 0 ( ou
oz~ v \""ow )
See Rosenhead [7], Schlichting [8], or von Mises [10].

Notes
1. If the boundary data are of the Neuman type, then the Kirchoff
transformation may introduce nonlinearities in the boundary data
for the ® problem.
2. The Kirchoff transformation is frequently useful in free boundary
problems (see page 311), where K () changes value across the (un-
known) boundary.
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43. Introduction to Exact
Analytical Methods

The methods in this section of the book are for the exact solution of
differential equations. The methods have been separated into two parts:

e Methods that can be used for ordinary differential equations and,
sometimes, partial differential equations: When a method in this
part can be used for a partial differential equation, there is a star (x)
alongside the method name.

e Methods that can be used only for partial differential equations.

Because many of the common methods for partial differential equations
are also useful as methods for ordinary differential equations, the first
part of this section should not be overlooked when attempting to find the
solution of a partial differential equation.

Listed below are, in the author’s opinion, those methods that are the
most useful when solving ordinary differential equations and partial differ-
ential equations. These are the methods that might be tried first.

Most Useful Methods for ODEs
e Look-Up Technique (page 179)
Look-Up ODE Forms (page 219)
Computer-Aided Solution (page 240)
Constant Coefficient Linear Equations (page 247)
Eigenfunction Expansions® (page 268)
Green’s Functions* (page 318)
Integral Transforms: Infinite Intervals* (page 347)
Integrating Factors® (page 356)
Series Solution* (page 403)
Method of Undetermined Coefficients* (page 415)

Most Useful Methods for PDEs

e Look-Up Technique (page 179)

Eigenfunction Expansions* (page 268)

Green’s Functions* (page 318)

Integral Transforms: Infinite Intervals* (page 347)
Method of Characteristics (page 432)

Conformal Mappings (page 441)

Lie Groups: PDEs (page 471)

Separation of Variables (page 487)

Similarity Methods (page 497)
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44. Look-Up Technique

Applicable to Equations of certain forms.
Yields

A reference to the literature that may yield an analytical solution, an
approximate analytical solution, or a numerical solution.

Idea

Many functions of mathematical physics have been well studied. If a
differential equation can be transformed to a known form, then information
about the solution may be obtained by looking in the right reference.

Procedure

Compare the differential equation that you are trying to analyze with
the lists on the following pages. If the equation you are investigating
appears, see the references cited for that equation.

The equations listed in this section include

e Ordinary differential equations (page 180)

— First order equations
— Second order equations
— Higher order equations

Partial differential equations (page 189)

— Linear equations
— Second order nonlinearity
— Higher order and variable order nonlinearities

Systems of differential equations (page 199)

— Systems of ordinary differential equations
— Systems of partial differential equations

The Laplacian in different coordinate systems (page 204)
Parametrized equations at specific values (page 205)

Notes

1. Realize that the same equation may look different when written in dif-
ferent variables. Some scaling of any given equation may be required
to make it look like one of the forms listed.

2. Carslaw and Jaeger [36] have a large collection of exact analytical
solutions for parabolic partial differential equations.

3. In Kamke ([90] and [91]), Murphy [123], and Polyanin and Zaitsev
[130] are long listings of ordinary differential equations and partial
differential equations and their exact solutions.

4. The references follow the listings of differential equations (page 209).
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5. A complete list of third-order polynomial evolution equations of not
normal type with nontrivial Lie-Backlund symmetries is in Fujimoto
and Watanabe [60].

44.1 Ordinary Differential Equations
44.1.1 First Order Equations

Abel equation of the first kind (see Murphy [123, page 23]):
y' = folz) + fila)y + f2(2)y® + fs(2)y®
Abel equation of the second kind (see Murphy [123, page 25]):
[90(x) + g1(@)y]y" = fo(z) + fr()y + fa(@)y? + fo(x)y®
Bernoulli equation (see page 235):
y' = a(x)y” + b(x)y
Binomial equation (see Hille [80, page 675]):
)" = f(z,y)
Briot and Bouquet’s equation (see Ince [85, page 295]):
zy — Ay = a10z + az02? + anyx + apey® + ...
Clairaut’s equation (see page 237):
flxy' —y) = 9(y)
Elliptic functions (see Gradshteyn and Ryzhik [69, page 917]):
y' =1 -y - k%)
Euler equation (see Valiron [161, page 201]):

r— 4, [ ayitbyttey’tdyte
y = ax*+bxr3+cx?2+dxte

Euler equation (see Valiron [161, page 212]):
y/ + y2 = ax™

Heisenberg equation of motion (see Iyanaga and Kawada [87, page 1083]):
dA i
dit) =5 [Ha A(t)]

Jacobi equation (see Ince [85, page 22]):
(a1 + biz + c1y)(zy —y) — (a2 + bax + c2y)y’ + (a3 + bz + c3y) =0

Lagrange’s equation (see page 363):
y=xfy)+a9y)
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Lowner’s equation (see Iyanaga and Kawada [87, page 1345]):

I 1tk(z)y
Y = "Y1is@y

Riccati equation (see page 392):
y' = a(@)y* + b(x)y + c(z)

Unnamed equation (see Boyd [30]):
y = —pe=9/Y

Unnamed equation (see Goldstein and Braun [68, page 42]):
9y = J(@) + h() G( [ f(z)da — [ g(y) dy)

Weierstrass function (see Rainville [131, page 312]):

Y = V42 — g2y — g3

44.1.2 Second Order Equations

Airy equation (see Abramowitz and Stegun [3, Section 10.4.1]):
y' =ay

Anger functions (see Gradshteyn and Ryzhik [69, page 989]):

y”—i—%—i— (1—%)y: I sinvm

x

Baer equation (see Moon and Spencer [119, page 156]):
(x —a1)(z —a2)y” + % 2z — (a1 + a2)]y — [me + qﬂ y=0
Baer wave equation (see Moon and Spencer [119, page 157]):
(@ —a1)(@ —az)y” + 3 20 — (a1 + a2)]y' — [K*2® —p*2 + ¢*| y =0
Bessel equation (see Abramowitz and Stegun [3, Section 9.1.1]):
22y +xy' + (22 —n?)y =0
Bessel equation — modified (see Abramowitz and Stegun [3, Section 9.6.1]):
22y +ay — (22 +n)y =0
Bessel equation — spherical (see Abramowitz and Stegun [3, Section 10.1.1]):
22y" 4 2xy’ + [x2 —n(n+ 1)] y=20

Bessel equation — modified spherical (see Abramowitz and Stegun [3, Sec-
tion 10.2.1]):

2y +2xy — [#2+n(n+1)]y=0
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Bessel equation — wave (see Moon and Spencer [119, page 154]):

22y +ay + [a®z* + b2 — 2|y =0
Bocher equation (see Moon and Spencer [119, page 127]):

1 m My —
y”+_|:—1+...+71]y’
2|x—a T — Qp-1

! Aot Ayzt o+ At
+ - y=0
4 (3} — al)ml (gj — a2)m2 e (33 _ an—l)m"_l
Confluent equation — general (see Abramowitz and Stegun [3, Section
13.1.35)):
2a bh’ b bh! W'\ /a
" <a Lo, ey b, R a ,
y+[x+2f+h h h,]y+ (h h h/)(x+f)
-1 2 / h/ 2
paas ) 2ol gy gy - D ] =0
X x h

Coulomb wave functions (see Abramowitz and Stegun [3, Section 14.1.1]):
y”—i—[l—i—"—% y=0
Duffing’s equation (see Bender and Orszag [20, page 547]):
v ' +y+ay?=0
Eckart equation (see Barut et al. [18]):
y”+[%+(1£—2)2+7}y=0, n=e'"
Ellipsoidal wave equation (see Arscott [13]):
y" — (a+bk?sn?z + gk*sn*2)y =0
Complete elliptic integral (see Gradshteyn and Ryzhik [69, page 907]):
d {x(l — xg)g—y} —zy=0

dx x
Complete elliptic integral (see Gradshteyn and Ryzhik [69, page 907]):
(1-2%)L (xg—z) +a2y=20
Emden equation (see Leach [102]):
(!E2yl)l + nyn =0
Emden equation — modified (see Leach [102]):
y'+al@)y +y" =0
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Emden—Fowler equation (see Rosenau [137]):
(mpy/)/ +27y" =0

Generalized Emden-Fowler equation (see Leach et al. [104]):
y'+ f(2)y" =0

Integrals of the error function (see Abramowitz and Stegun [3, Section
7.2.2]):

y' +2xy —2ny =0

Gegenbauer functions (see Infeld and Hull [86]):
(1—22y” — 2m+3)zy’ + Ay =0

Halm’s equation (see Hille [80, page 357]):
(14222 + Xy = 0

Heine equation (see Moon and Spencer [119, page 157]):

1 1 2 2 1| Ag+Aiz+Arz?4Asa® _
vt e vt b | e | = 0

r—aiy r—asz r—as

Hermite polynomials (see Abramowitz and Stegun [3, Section 22.6.21]):
y" —xy +ny=0

Heun’s equation (see Ronveaux [134]):

y// + [% + % - zia:| yl + r(r(iﬁla;(z{a)y =0

Hill’s equation (see Ince [85, page 384]):
y" + (ap + 2a1 cos 2z + 2agcosdx + ... )y =0

Hypergeometric equation (see Abramowitz and Stegun [3, Section 15.5.1]):
z(l—2)y' +c—(a+b+1)x]y —aby=0
Hyperspherical differential equation (see Iyanaga and Kawada [87, page
1185]):
(1 —22)y"” —2azy’ +by =0

Ince equation (see Athorne [14]):

y// + a+[3 cos 2t+ cos 4t

(14a cos 2t)? y= 0

Jacobi’s equation (see Iyanaga and Kawada [87, page 1480]):
e(l—2)y" +[y—(a+ Da]y’ + n(a+n)y=0

Kelvin functions (see Abramowitz and Stegun [3, Section 9.9.3]):
ny// + my’ _ (ixQ + 1/2)y =0
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Kummer’s equation (see Abramowitz and Stegun [3, Section 13.1.1]):
2y +(b—x)y —ay=0
Lagerstrom equation (see Rosenblat and Shepherd [138]):
Y+ 5y ey =0
Laguerre equation (see Iyanaga and Kawada [87, page 1481]):
2y +(a+1—2)y +Ay=0
Lamé equation (see Moon and Spencer [119, page 157]):
Vi d | R sV e v = 0

r—aiy r—asz r—as

Lamé equation (see Ward [167]):
y" +(h—nn+1)k?sn?x)y =0

Lamé equation — wave (see Moon and Spencer [119, page 157]):

2 2Y,— z+rx?
v+ g2 s ] o g [t o

r—a

Lane-Emden equation (see Seshadri and Na [147, page 193]):
y'+ 2y +yF =0
Legendre equation (see Abramowitz and Stegun [3, Section 8.1.1]):
(1 —22)y" — 22y + [n(n +1) - %} y=0
Legendre equation — wave (see Moon and Spencer [119, page 155]):
(1 —2?)y" — 2y — [kgaz(wz — 1) —plp+1)— 5|y =0
Lewis regulator (see Hagedorn [71, page 152]):
y'+ (L =lyhy' +y=0
Liénard’s equation (see Villari [163]):
v+ Wy +y=0
Liouville’s equation (see Goldstein and Braun [68, page 98]):
v +9W)(y)? + flz)y =0
Lommel functions (see Gradshteyn and Ryzhik [69, page 986]):
2y’ +ay + (22 - )y = 2
Magnetic pole equation (see Infeld and Hull [86]):

1 1
m(m+1)+z—(m+§) cos T
y”_ sin? x +()\+%) yZO
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Mathieu equation (see Abramowitz and Stegun [3, Section 20.1.1]):
Yy + (a —2qcos2z)y =0

Mathieu equation — associated (see Ince [85, page 503]):

y" 4+ [(1 —2r)cotz] y' + (a + k* cos®> x)y = 0
Mathieu equation — modified (see Abramowitz and Stegun [3, Section
20.1.2]):

y" — (a —2qcosh2z)y =0

Morse-Rosen equation (see Barut et al. [18]):

Y + [—=%— + Btanhaz +~]y =0

cosh? ax

Neumann’s polynomials (see Gradshteyn and Ryzhik [69, page 990]):

22y + 3zy’ + (22 + 1 — n?)y = x cos? o4+ n sin® e

Painlevé transcendent — first (see Ince [85, page 345]):
y' =6y° +x

Painlevé transcendent — second (see Ince [85, page 345]):
y' =2y> +ay +a

Painlevé transcendent — third (see Ince [85, page 345]):
v =5 W) = 2yt Hay? +8) + v+ S
Painlevé transcendent — fourth (see Ince [85, page 345]):
Y = () + B+ day? +2(2% — )y + &
Painlevé transcendent — fifth (see Ince [85, page 345]):
v = (%4 ) ) - Ly + O (ay+ 8) 42 2ule)
Painlevé transcendent — sixth (see Ince [85, page 345]):
PR N (MR

+y(y—1)(y—w)[ B w(w—l)+5w(ﬂc—1)}

Za-12 |CTE Ty Ty

Painlevé-Ince — modified (see Abraham-Shrauner [2]):
v +oyy + By’

Parabolic cylinder equation (see Abramowitz and Stegun [3, Section 19.1.1]):
y" + (ax? +br +c)y =0
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Pinney equation (see Common et al. [50, page 908]):
'+ )y + ey

Poisson-Boltzmann equation (see Chambré [39]):
y// + Ey/ = —§eY

Poschl-Teller equation — first (see Barut et al. [18]):

y,,_[ag(M+M)_bz}y:o

sin? ax cos? ax

Poschl-Teller equation — second (see Barut et al. [18]):
Y — [ag (n(ﬁfl) NS )) ) _ bg] y=0

sinh? ax cosh? ax

Polytropic differential equation (see Iyanaga and Kawada [87, page 908]):
(a2y') = —ay"
Rayleigh equation (see Birkhoff and Rota [24, page 134]):
V' —n[l- )]y +y=0
Riccati-Bessel equation (see Abramowitz and Stegun [3, Section 10.3.1]):
22y + [z —n(n+1)]y=0
Richardson’s equation (see Binding and Volkmer [23]):
—y" = (Asgnz + p)y
Riemann’s differential equation (see Abramowitz and Stegun [3, Section
15.6.1)):
o {l—xa—o/_F 1-8-4 n 1—y—+ J

—a r—0 r—c
N [aa’(a—b)(a—c) N BB (b—c)(b—a) N vy (¢ — a)(c — b)
T—a x—b T—=c
X Y =0

(z —a)(z = b)(z —¢)

Spheroidal wave functions (oblate) (see Abramowitz and Stegun [3, Section
21.6.4)):

(1 —:cg)y’]/—i— ()\+c2x2 - 1’f2 )yzO

x2

Spheroidal wave functions radial (see Abramowitz and Stegun [3, Section
21.6.3]):

[(1+x2)y’]/ - (/\—CQ$2 - %)y =0
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Struve functions (see Abramowitz and Stegun [3, Section 12.1.1]):
2 \v+1
2 "y 4 2 — 12y = 4(5)
y' +ay + ( W= ey
Symmetric top equation (see Infeld and Hull [86]):

M?— L K2 OMK cosa
sin? x

"no_

o+ K2+ D)y =0

Tchebycheff equation (see Abramowitz and Stegun [3, Section 22.6.9]):
(1—a?)y’ —xy +n°y=0
Thomas-Fermi equation (see Bender and Orszag [20, page 25]):

y// _ y3/2m_1/2

Titchmarsh’s equation (see Hille [80, page 617]):
y'+(A—2)y=0
Ultraspherical equation (see Abramowitz and Stegun [3, Section 22.6.5]):
(1—2%y" — (2a+ )2y’ +n(n +2a)y =0
Van der Pol equation (see Birkhoff and Rota [24, page 134]):
y' = pd =gy +y=0
Wangerin equation (see Moon and Spencer [119, page 157]):
y//_’_%{ Lo, 1, 2 }y’—i—i{ AptAiztdaa® T )

T—a, T—as T—as (x—a1)(z—az)(z—asz)?

Weber equation (see Moon and Spencer [119, page 153]):
" + ( 2 _ ﬁ 2) =0
Y a L)Y
Weber functions (see Gradshteyn and Ryzhik [69, page 989]):
Y+ z;_/_,_ (1_ Z_z)y: —ﬁ[x+u+(m—1/)coswr]

Whittaker’s equation (see Abramowitz and Stegun [3, equation 13.1.31]):

" 1 K i_“z -0
Yy + 4+w+ 2 Y=

Whittaker—Hill equation (see Urwin and Arscott [159]):
y" 4+ (A+ Bcos2x + Ccosdz)y =0

Unnamed equation (see Chrisholm and Common [45]):
y" + (a0 + a1y)y’ + bo + by + bay? + bsy? =0

Unnamed equation (see Gilding [65]):
y'=—AyP
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Unnamed equation (see Latta [101]):
(1 —22)y" — 2azy’ + (b+ cz?)y =0
Unnamed equation (see Leach et al. [103]):
v +yy + By’ =0
Unnamed equation (see Rubel [140]):
wyy” +yy' —a(y')? =0
Unnamed equation (see Setoyanagi [148]):
y" + (ax? + bx?)y =0

Unnamed equation (see Tsukamoto [158]):
y// + eatyb =0

44.1.3 Higher Order Equations

Products of Airy functions (see Abramowitz and Stegun [3, equation 10.4.57]):

y" —dzy —2y=0
Blasius equation (see Meyer [114, page 127]):

y/// _|_ yy// — 0
Falkner—Skan equation (see Cebeci and Keller [38]):

v+ +B[1- ()] =0
Generalized hypergeometric equation (see Miller [117, page 271]):
(0f +ar) - (o +ap) = 5 (0 +01) - (235 +0g) y =0
Laplace equations (see Valiron [161, pages 306-315]):

(aoz + bo)y™ + (a1 + b))y Y + - + (apz + by)y =0
Sixth order Onsager equation (see Viecelli [162]):
Orr—Sommerfeld equation (see Herron [77]):

2 2 2

L (- 0?) y-[U@ -0 (& —a?) - @]y =0

Unnamed equation (see Benguria and Depassier [21]):

A" +y = fy)

Unnamed equation (see Hershenov [78]):
y" +axy +by=0
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Unnamed equation (see Merkin [113]):
vy +Ay)? =0
Unnamed equation (see Pfeiffer [129]):
y" +al@)y +r(x)y =0
Unnamed equation (see Walker [164]):
[(ry") —py'l' +qy = oy
Unnamed equation (see Watson [168, page 106]):

y(m) _ axy—m/Q

44.2 Partial Differential Equations
44.2.1 Linear Equations

Biharmonic equation (see Kantorovich and Krylov [92, pages 595-615]):
Viu=0
Linear Boussinesq equation (see Whitham [170, page 9]):
Ut — azuww = b2uwwtt
Busemann equation (see Chaohao [42]):
(1 — 2% Uy — 22Yuszy + (1 — y?)uyy + 2a(zuy + yuy) —ala + )u =10
Chaplygin’s equation (see Landau and Lifshitz [99, page 432]):
2
Une + Toyz7e Uy + YUy =0
Diffusion equation (see Morse and Feshback [122, page 271]):
V- (k(x,1) Vu) = u
Euler-Darboux equation (see Miller [116]):
Ugy + %_y(aum —buy) =0
Euler—Poisson-Darboux equation (see Ames [9, Section 3.3]):
Helmholtz equation (see Morse and Feshback [122, page 271]):
V2u+ k*u=0
Klein—Gordon equation (see Morse and Feshback [122, page 272]):
Viu — clzutt = pu

Kramers equation (see Duck et al. [54]):
Py = Py — uPy + 2 [(u— F(z))P]
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Lambropoulos’s equation (see Wilcox [171]):
Ugy + aTUL + byuy + cryu +ug =0
Laplace’s equation (see Morse and Feshback [122, page 271]):
V2u =0
Lavrent’ev—Bitsadze equation (see Chang [41]):
Uze + (sgny)uyy = f(2,y)
Onsager equation (see Wood and Morton [172]):
(e” (€"Uga)yy) pw + B2uyy = F(z,y)
Poisson equation (see Morse and Feshback [122, page 271]):
V2u = —47p(x)
Schréedinger equation (see Morse and Feshback [122, page 272]):
—%V%L + V(x)u = ihut
Spherical harmonics in three dimensions (see Humi [84]):
[ﬁ% (sinfZ) + g 2= +10+ 1)} Yim =0
Spherical harmonics in four dimensions (see Humi [84]):
Uz + 2(cOt T)ug + oo (Uuu + (coty)uy + ﬁuu) +m?—=1u=0
Tricomi equation (see Manwell [110]):
Uyy = YUz
Wave equation (see Morse and Feshback [122, page 271]):
up = 2V3%u
Weinstein equation — generalized (see Akin [6]):

Viu + p_luwnf1 + Ly, =0

Tn Tn "

44.2.2 Second Order Nonlinearity

Benjamin—-Bona—Mahony equation (see Avrin and Goldstein [15]):
Ut — Uppr + ULy =0

Boussinesq equation (see Calogero and Degasperis [34, page 54]):
Ut — Ugy — Uggae T 3(u2)zz =0

Burgers equation (see Benton and Platzman [22]):

Ut + UUy = VlUgy
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Burgers equation — non-planar (see Sachdev and Nair [142]):

up + uug + 24 = gum

Burgers equation — generalized (see Oliveri [128]):
Ut + UUy — Uge + f(H)u=0

Ernst equation (see Calogero and Degasperis [34, page 62]):
(Ru) (trr + %= 4 usz) = uZ + u2

Fisher’s equation (see Kaliappan [89]):

Uy = Dugy +u — u?

Convective Fisher’s equation (see Shonborn et al. [151]):
Up = FUgp + u(l — u) — pun,
Kadomtsev—Petviashvili equation (see Latham [100]):

(Ut + Ugas — BuLy), T Uyy =0

Generalized Kadomtsev—Petviashvili-Burgers equation (see Brugarino [31]):
(ut + %U + Jluuz + J2uzz + JSUzzz)w + J4(t)uyy =0
Khokhlov—Zabolotskaya equation (see Chowdhury and Nasker [44]):
Upt — (UWlg)g = Uyy
Korteweg—de Vries equation (KdV) (see Lamb [98, Chapter 4]):

Ut + Ugzr — OUUL = 0

KdV equation — cylindrical (see Calogero and Degasperis [34, page 50]):

Ut + Ugze — 6uUL + 55 =0

KdV equation — generalized (see Boyd [29]):

Ut + Uy — Ugggrr = 0

KdV equation — spherical (see Calogero and Degasperis [34, page 51]):
Ut + Ugze — 6uu, + 3 =0

KdV equation — transitional (see Calogero and Degasperis [34, page 50]):
Ut + Uy — 6f (H)uu, =0

KdV equation — variable coefficient (see Nimala et al. [125]):

us + at"uty, + bt ugy, = 0

Korteweg—de Vries—Burgers equation (KdVB) (see Canosa and Gazdag [35]):

Up + 2Uly — VUgy + HUzzey = 0
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Kuramoto—Sivashinksy equation (see Michelson [115]):
up + Viu+ V3 + 2|V =0
Lin—Tsien equation (see Ames and Nucci [10]):
2y + UglUpy — Uyy = 0
Regularized long-wave equation (RLW) (see Calogero and Degasperis [34,
page 49]):
Up + Uy — OUUL — Uy = 0
Generalized shallow water wave equation (GSWW) (see Clarkson and

Mansfield [48]):

Uggat T QUL Uzt + butuww — Ugt — Ugy =0

Thomas equation (see Rosales [135]):

Ugy + AUy + buy + cuguy =0

Unnamed equation (see Rosen [136]):

Utt + 20Ut — Uz = 0
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44.2.3 Higher Order/Variable Order Nonlinearities

Affinsphéren equation (see Schief and Rogers [146]):

(Hey) = (RQR,,)

R2v2 )y v?2 .

Generalized Benjamin-Bona—Mahony equation (see Goldstein and Wich-
noski [67]):

up — Viug + vV -d(u)) =0
Benney equation (see Balmforth et al. [16]):

up + (u")z = —Ugz — fllgzr — Uzzza
Born-Infeld equation (see Whitham [170, page 617]):

(1 — uf) Upz + 2UgUtUgr — (1 + ui) U =0

Boussinesq equation — modified (see Clarkson [46]):

1 3,,2 —
§utt — UtUgy — §uwuw$ + Upzrer = 0

Boussinesq equation — modified (see Clarkson [47]):
Ut — UtUgy — %u%uww + Upgge = 0

Buckmaster equation (see Hill and Hill [79]):
w = (i), + ()

Generalized Burgers equation (see Sachdev et al. [141]):
U+ uug + (& +a)ut (B+ L) untt = Suy,

rr x

Generalized Burgers—Huxley equation (see Wang et al. [166]):
up — ouduy — Upy = fu (1 — u‘s) (u‘s — ’y)
Cahn-Hilliard equation (see Novick-Cohen and Segel [126]):
u =V {M(u)v (% . KVQu)]
Calogero-Degasperis-Fokas equation (see Gerdt et al. [63]):
Uppr — %ui + uy (Ae* + Be %) =0
Caudrey—-Dodd-Gibbon-Sawada—Kotera equation (see Aiyer et al. [5]):
Ut + Upparr + 30UUpre + 30Uptye + 180u2u, = 0
Clairaut’s equation (see Iyanaga and Kawada [87, page 1446]):
U = TUg + Yuy + f Uz, uy)

Inhomogenous nonlinear diffusion equation (see Saied and Hussein [143]):

2Puy = (2™ u"uy)

| CD-ROM Handbook of Differential Equations (©)Academic Press 1997 |




194 IT  Exact Analytical Methods

Nonlinear diffusion equation (see King [96]):

-4 (g

Nonlinear diffusion equation (see King [96]):

- ()

Eckhaus partial differential equation (see Kundu [97]):
Us + Ugy + 2 (|u|2)r u+ |ultu =0

Fisher equation — generalized (see Wang [165]):
Up — Ugy — %ui =u(l—u%)
Fisher equation — generalized (see Kaliappan [89]):

Up = Upy +u — uF

Fisher equation — generalized (see Herrera et al. [76]):

Up = Ugy +uP — u?P?

Gardner equation (see Tabor [155, page 289]):
up = 6(u + a®u?)uy + Uppy
Ginzburg-Landau equation (see Katou [94]):
up = (14 ia)uge + (1 +ic)u — (1 +id)|ul?u
Quintic Ginzburg-Landau equation (see Marcq et al. [111]):
A=A+ a1l — a3|A|2A - a4|A|4A
Hamilton—Jacobi equation (see page 61):
Vi+ Hit,x, Vo, o, Ve, ) =0

Harry Dym equation (see Calogero and Degasperis [34, page 53]):

Ut = urrru3
Generalized axially symmetric Helmholtz equation (GASHE) (see Lown-
des [109, page 96]):

9%u 9%u 2a OJu 2,

Generalized biaxially symmetric Helmholtz equation in (n + 1) variables
(GASHEN) (see Lowndes [109, page 93]):

n 9%u %u o Ou 2,
2im1 9z T oy Ty, TR uU=0

Generalized biaxially symmetric Helmholtz equation (GBSHE) (see Lown-
des [109, page 91]):

8%u 8%u 2a du 203 du 2,
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Hirota equation (see Calogero and Degasperis [34, page 56]):
ug + iau + ib(uge — 2n|u?|u) + cuy + d(Ugppr — 6n|u|?uz) =0

Kadomtsev—Petviashvili equation — modified (see Clarkson [46]):
Ut = Uggg + Sy — 6UZ Uz, — OUyUgy

KdV equation — deformed (see Dodd and Fordy [53]):
ug + (um —2nu® — %nTEZ) =0

KdV equation — generalized (see Rammaha [133]):

ug + uty + plulPlu, =0

KdV equation — modified (mKdV) (see Calogero and Degasperis [34, page
51]):

Up + Ugpy + 6u2uy =0

KdV equation — modified modified (see Dodd and Fordy [53]):
Ut + Ugge — %ug + uy (Ae®™ + B+ Ce ) =0

KdV equation — Schwarzian (see Weiss [169]):
s+ {uzt = A

Klein—Gordon equation — nonlinear (see Matsuno [112]):
V2u + AuP = 0

Klein—-Gordon equation — quasilinear (see Nayfeh [124, page 76]):

U — aPugy + Au = bu?

Kupershmidt equation (see Fuchssteiner et al. [59]):

_ 5 25 5,2
Ut = Ugzxz + §uw$a:u + Tuw$uw + Zu Uy

Liouville equation (see Matsuno [112]):
Viu+er =0

Liouville equation (see Calogero and Degasperis [34, page 60]):

Ugt = €T

Molenbroek’s equation (see Cole and Cook [49, page 34]):

-1
V2= Mfo{¢§¢m + 2006y b0y + Sy + 5 (6 +0] — 1)

X <¢ww + ¢uu + 5%) }

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




196 IT  Exact Analytical Methods

Monge-Ampere equation (see Moon and Spencer [121, page 171]):
(uwy)z — UgUy = f (xa Y, U, Ug, uy)

Monge-Ampere equation (see Gilbarg and Trudinger [64]):

Uz, Ugq o . Ugqx,y,

uwgwl u$2$2 ce u33233n f( )
= f(u,x,Vu

Ug,, Uy, zo . Ug,x,

Nagumo equation (see Zhi-Xiong and Ben-Yu [174]):

Ut = Uge +u(u —a)(l —u)

Phi—four equation (see Calogero and Degasperis [34, page 60]):
Utt—u$aj—u+u3 =0
Plateau’s equation (see Bateman [19, page 501]):
(14 u2) gy — 2ugtyty + (1 + 1)y, =0
Porous-medium equation (see Elliot, Herrero, King, and Ockendon [55]):
up = V- (u" Vu)
Generalized axially symmetric potential equation (GASPE) (see Lown-
des [109, page 95]):
9%u 9%u 200 Ou __
oty Ty =0
Generalized biaxially symmetric potential equation (GBSPE) (see Lown-

des [109, page 91]):

®u | Pu | 200u | 2B0u _
T ot oo Ty oy =0

Generalized biaxially symmetric potential equation in (n + 1) variables
(GASPEN) (see Lowndes [109, page 92]):

n 8%u 8%u a du __
2iz1 9z T oy T yay =0

Rayleigh wave equation (see Hall [74]):

Utt — Ugr = CL(Ut - u?)

Sawada—Kotera equation (see Matsuno [112, page 7]):

Schréedinger equation — logarithmic (see Cazenave [37]):
iug + V2u + ulog lul? =0
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Schréedinger equation — derivative nonlinear (see Calogero and Degasperis [34,
page 56]):
iU + Ugy 0 (|u|2u)z =0

Schréedinger equation — derivative nonlinear (see Hayashi and Ozawa [75]):

100 + O0ptp = IO (| 20) + M[P[P1F + Agfop[P2

Schréedinger equation — nonlinear (see Calogero and Degasperis [34, page
56]):

iU + Uy & 2ul?u =0

Sine-Gordon equation (see Calogero and Degasperis [34, page 59)]):
Uggy — Uyy T sinu =0
Sine-Gordon equation — damped (see Levi et al. [105]):

Utt + OUL — Ugy + SiDU =0

Sine-Gordon equation — double (see Calogero and Degasperis [34, page
60]):
Ugy [sinu + nsin (%)} =0

Sine-Gordon — multidimensional (see Elzoheiry et al. [56]):

Wy + mr_lur — Uy = sinu

Sinh—Gordon equation (see Grauel [70]):

Uge = sinh u

Sinh—Poisson equation (see Ting et al. [156]):
V2u + A?sinhu =0

Strongly damped wave equation (see Ang and Dinh [12]):
g — V2u — V3u + f(u) =0

Tzitzeica equation (see Schief [145]):

Ugy = el — 672u

Unnamed equation (see Aguirre and Escobedo [4]):
ur — V2u = uP

Unnamed equation (see Bluman and Kumei [25]):

Al

o)

Unnamed equation (see Calogero [32]):
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Unnamed equation (see Calogero [33]):

U = Upga + 3(Ugzu® + 3uu) + 3uu’
Unnamed equation (see Daniel and Sahadevan [51]):
Up = Uggy + Ullgy + Suu? + %u‘luz
Unnamed equation (see Fujita [61]):
up = VZu + e¥
Unnamed equation (see Fung and Au [62]):
Ut + Ugpe — 6UZUy + 6Auy = 0

Unnamed equation (see Lin [107]):
V2u+ Ae =0

Unnamed equation (see Lindquist [108]):
V-(IVuPvu) = f

Unnamed equation (see Roy and Chowdhury [139]):

2‘“#:‘2“ —
1—uu* 0

—iU + Ugy +

Unnamed equation (see Shivaji [150]):
—V2u = Aexp ( au )

atu

Unnamed equation (see Trubek [157]):
V2u+ Ku® =0

Unnamed equation (see Yanagida [173]):
V2u + Klz||u|9u = 0

Unnamed equation (see Utepbergenov [160]):

22Uy, + V2u+a(z)u=0
Wadati-Konno-Ichikawa—Schimizu equation (see Calogero and Degasperis [34,
page 53]):

iug + [(1 + |u|2)71/2 u} =0

rr

Zoomeron equation (see Calogero and Degasperis [34, page 58]):

(& - &) (=) +2(2),, =0
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44.3 Systems of Differential Equations
44.3.1 Systems of ODEs

Bonhoeffer-van der Pol (BVP) oscillator (see Rajasekar and Lakshmanan [132]):
3

x’:x—%—y—i—l(t)

y = c(a+a—by)

Brusselator (see Hairer et al. [73, page 112]):
' =A+u*v— (B+1)u
v' = Bu —u*v

Full Brusselator (see Hairer et al. [73, page 114]):
' =1+u%v— (w4 1)u
v = uw — u?v
w' = —uw+ «

Hamilton’s differential equations (see Iyanaga and Kawada [87, page 1005]):

)
2?:—3At&m
Jacobi elliptic functions (see Hille [80, page 66]):
u = vw
v = —uw
w' = —k*uw

Kowalevski’s top (see Haine and Horozov [72]):

Cii—r;l:)\mxm+'y><l

Z—Z:)\vxm

Lorenz equations (see Sparrow [152]):
i’ =o(y—x)
y =rx—y—xz
!
Z =xy—bz
Lorenz equations — complex (see Flessas [58]):
' =o(y—x)
Yy =rex—y—xz

2= —bz+ 3 (a*y + zy")
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Lotka—Volterra equations (see Boyce and DiPrima [28, page 494]):
u' = u(a — bv)
v =v(—c+ du)

Nahm’s equations (see Steeb and Louw [154]):

U= [V, W]
Vi = [W, U]
W, =[U,V]

Toda lattice equation — relativistic (see Ohta et al. [127]):
. jjn—l :tn eXp(mn—l - xn)
n — 1 1 -
v ( T ) ( T ) 14+ (1/c?) exp(zpn_1 — Tn)
jjn in—!—l eXP(l’n - $n+1)
—1+— (1
( * c ) ( * c > 1+ (1/02) exp(xn - xn—H)
Toda molecule equation — cylindrical (see Hirota and Nakamura [83]):
(arr + 7'_187’) log Vn - ‘/77,+1 + 2Vn - ‘/n—l - 0

Unnamed equation (see Steeb [153, page 57]):

uy +c1jul” (u X wg) + c2ju/"u =0

44.3.2 Systems of PDEs

Affine Knizhnik—Zamolodchikov equation (see Cherednik [43]):
0d(z siid(z
0(0) _ 3 280

J Zi—=zj

Beltrami equation (see Iyanaga and Kawada [87, page 1087]):
f? = M(Z)fz

Boomeron equation (see Calogero and Degasperis [34, page 57]):
Uy = b- Vg

Vit = UzgzD+a X v, —2v X [v X b]

Carleman equation (see Kaper and Leaf [93]):
Ut + Uy = v? —u?
vy — vy = u? —v?

Cauchy—Riemann equations (see Levinson and Redheffer [106]):
Uy —Vy =0

Uy +v,; =0
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Chiral field equation (see Calogero and Degasperis [34, page 61]):
(UUg), + (U*Uy), =0

Davey—Stewartson equations (see Champagne and Winternitz [40]):
iU+ Uy + Ay + bulul? —uw = 0

Way + CWyy +d (|u|2)yy =0

Dirac equation in 1 + 1 dimensions (see Alvarez et al. [7]):
w4+ vy + imu+ 20\ ([ul? = [v]*) u =10
vy 4 ug +imo + 20X (Jv]? = [ul*) v =0

Dispersive long-wave equation (see Boiti et al. [27]):

wp = (u2 — Uy + 2W)y

wy = (2uw + Wy )y

Drinfel’d-Sokolov—Wilson equation (see Hirota et al. [82]):
U = 3WW,

Wi = 2Wype + 20W, + UzW

Euler equations (see Landau and Lifshitz [99, page 3]):
%—‘t’ + (v-grad)v = —% grad P

Fitzhugh-Nagumo equations (see Sherman and Peskin [149)]):
Ut = Ugy + u(u —a)(l —u) +w

Wt = €U
Gross—Neveu model (see Calogero and Degasperis [34, page 62]):

N
i =™ 3 (v<m>*u<m> + u(m)*vm))
m=1

2

™ = um 3 (v<m>*u<m> i u(m)*vm))

m=1

Heisenberg ferromagnet equation (see Calogero and Degasperis [34, page
56]):

St =S X Sy

Hirota—Satsuma equation (see Weiss [169]):
U = %uwm + 3uu, — 6ww,

Wi = —Wapr — SUW,

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




202 IT  Exact Analytical Methods

Von Kdrmén equations (see Ames and Ames [8]):
Viu=E [wiy — wmwyy]
Viw = a + b [ty Wey + UgzWyy — 2UpyWay]
Kaup’s equation (see Dodd and Fordy [53]):
fo=2fgc(z—1)
ge = 2fge(z — 1)
KdV equation — super (see Kersten and Gragert [95]):
U = BUULE — Upgpr + SWWyy

wy = U W + 6uw, — dWary
Klein—Gordon-Maxwell equations (see Deumens [52]):
VZs—(la®* +1)s =0
V?a—-vy(vV-a)-s’a=0
Landau-Lifshitz equation (see Barouch et al. [17]):
Up=U -Upe +U-JU
Matrix Liouville equation (see Andreev [11]):
(UIU_l)t =U
Maxwell’s equations (see Jackson [88, page 177]):
4
V- D=drp, VxH=-—J
c

10B
V-B=0, VXE+—8—:O
c Ot

Reduced Maxwell-Bloch equations (see Calogero and Degasperis [34, page
59)):

Ey—v =0, Gz +Ev=0

re +wv =0, v, —wr—Eqg=20

Nambu—Jona Lasinio—Vaks—Larkin model (see Calogero and Degasperis [34,
page 62]):

N
Z-u(mn) — ,U(n) Z U(m)*u(m)
m=1

N
ngn) _ u(n) Z u(m)*v(m)
m=1

Navier’s equation (see Eringen and Suhubi [57]):
()\+2M)VV-u—uV><V><u:p%27§‘

| CD-ROM Handbook of Differential Equations (©)Academic Press 1997




44.  Look-Up Technique 203

Navier—Stokes equations (see Landau and Lifshitz [99, page 49]):
u+ (u-Viu= —%—FVVQU

Pohlmeyer—Lund-Regge model (see Calogero and Degasperis [34, page 61]):

, Cos U
um—uyyismucosu+< — ) (vi—vg) =0
sin® u

(Ugg cot? u)w = (vy cot? u)y

Vector Poisson equation (see Moon and Spencer [118]):
A = —curlE

Prandtl’s boundary layer equations (see Iyanaga and Kawada [87, page
672]):

U + Ulg + VUy = Ut—l—UUz—F%uyy
Uy +vy =0

Sigma-model (see Calogero and Degasperis [34, page 61]):

Vot + (Vev) v=0

Massive Thirring model (see Calogero and Degasperis [34, page 62]):
iug +v+ulp =0
ive +u+vul? =0

Toda equation — 3 + 1-dimensional (see Hirota [81]):

v2 10g Vn - ‘/77,+1 + 2Vn - ‘/n—l =0

Unnamed equation (see Salingaros [144]):
V xu=ku

Veselov—Novikov equation (see Bogdanov [26]):
(0 + 02 + 82) v + 0. (uv) + dz(vw) =0
Osu = 30,v
0,w = 30zv

Yang-Mills equation (see Calogero and Degasperis [34, page 62]):
UV, — (U TVs)y =0

Anti-self-dual Yang—Mills equation (see Ablowitz et al. [1]):

el —1 99 9 —-109Q \ _
2 (082 ) + & (2182) =0
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Zakharov equations (see Glassey [66]):
1By + By =NE

Nut = New = L (1EP)
tt Tr — 8!E2
44.4 The Laplacian in Different Coordinate Systems

For ease of recognizing an unknown Laplacian (i.e., V?) in a differential
equation, we have frequently used the indeterminates {x,y, 2z} instead of

the

more customary notation for a specific coordinate system. For details

on any of these coordinate systems, see Moon and Spencer [120].

1.
2.

rectangular Ugy + Uyy + Uz
cylindrical polar Upp + —Up + S UGY + Uz
r r
1
elliptic cylinder [Uze + Uyy] + Uss

cosh? z — cos? y

. parabolic cylinder

5. spherical Uy + ;ur + 7'_2”99 +—Fup+ i 0u¢,
6. prolate spheroidal
1 1
————————— Uy + cOth zuy + Uyy + cOtyu,| + ———5—u.,
sinh? 2 + sin? | v Y] sinh? z sin? y
7. oblate spheroidal
1 1
——————— [ty + tanh zu, + uyy + cot yuy |+ ————5—u,.
cosh? z — sin®y | v yus] cosh? zsin’ y
. 1 1 1 1
8. parabolic pa— Ugz + Z +Uyy + 5“1/ + xg—yguzz
9. conical 1
Uzz + ;Uz + m { (CE2 — b2)(02 — $2)wa — CE[2{E2 — (b2 + 02)]u$ +
(12 = ) = yP)uyy — y[25° — (0% + )y )
10. logarithmic-cylinder (x2 + y2) Uga + Uyy| + Usz
11. tangent-cylinder D2 gy + Uyy) + Uz
3

12.
13.
14.

15.
16.

17.
18.

19.

cardioid-cylinder x
hyperbolic-cylinder 24/ (22 + y?) [uge + Uyy] + Uz
rose-cylinder 2(a” + 2/2)3/2 Uy + Uyy| + Uszz

]
|
Ugy + uyy] + Uzz
|
]
]

Cassinian-oval e 2 \/e% +2e®cosy + 1 [Ugy + Uyy| + Uz

inverse Cassinian-oval

e (eQr + 2e” cosy + 1)3/2 [Uzz + Uyy] + Uz
Maxwell-cylinder (6206 + 2e” cosy + 1)71 [Uzz + Uyy] + Uz
bi-cylinder (coshz — cos y)2 [Upa + Uyy] + Uss
. o (cosh? 2 — sin® y)?
inverse elliptic-cylinder [Upa + Uyy] + Uss

(cosh?  — cos? y)
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20. log tan-cylinder (sinh? 2z + sin® 2y) [uge + Uyy) + Uz
21. log cosh-cylinder
(cosh? x — sin? )2

Ugy + U + Uz
(cosh? zsinh? z + (sinh  cosh 4 sin y cos )2)4 | ]

22. ellipsoidal

23. paraboloidal

(x = b)(x —¢) E AT —
oo —a) = [VETIE e
(y—=b)y—o

+ (m_y)(z_y)au[ (b_y)(c_y)uy

=b—0 ey g
Y emae = [V IE =]

44.5 Parametrized Equations at Specific Values
1. Polyanin and Zaitsev [130, page 29] tabulate solvable cases of the
Abel equation yy' —y = sz + Az™:

m s m s
arbitrary | — ?fn”:g)lg -1 0
_7 15/, —1/ —2/y
4 6 — 1/ —4/o5
—5/y 12 —1/ 0
) 0 — 1/ 20
_9 2 0 | arbitrary
—5/g —3/1 1 —1§/49
—5/3 —9/100 2 —5/25
—5/3 63/, 2 6/25

— 75 —5/36

Solutions are also tabulated for the Abel equations
yy —y=sx+0cA (ax1/2 + BA+ ’yAzx*l/?) and
yy —y = sz + adxP + BA%z9.
2. Polyanin and Zaitsev [130, pages 251-254] tabulate solvable cases of
y// _ Alx”l yml + A2xn2ym2:
e Solvable two parameter families (arbitrary m; and ms) include
{n1 =0,n2 =0}, {ny = —m — 3,n2 = —mg — 3}, and {n; =
—Ya(my + 3),n2 = —1a(ma + 3)}.
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my

e Several solutions are tabulated where one or both of the A; are

—
—
N — — — — — — —
o g S | m|O [arll [es) oo n/_ﬂ M_%m_&/_34_3.4_30 n/_ﬂ U_57_3 M_.b 7_2M_&/_34_30 [\l
3 ] _ _ AR
<]
2
< nl \nu~/4 N |O [en) [ B R B R B S [ S o) NI O (AN MINO pohapole O M_5O kolagolenpolepoley O
—
= 2 _ L _ _ I i NEERRR
> <
@ £
o] .m —
2 = =
< < —
2
< W4 Q_u 4 Kw 4 A_x Q_u nﬂ holen nﬂ ~-hapo|en b~ ho aala Yol[aa)
. o® | [ ] | [
=2
nm Q
1
2S m = — (D= | a ol ael[a] P~hastlon Faho o=len
g = g RN _ _ | N _ NN
o, 9
n N
[
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3. Polyanin and Zaitsev [130, pages 304-306] tabulate solvable cases of
the modified Emden-Fowler equation zy”’ — ky’ = Az tly™:

e Solvable two parameter families include {k = nh,m # —1,
n # =2} {k = —otm+3/, 1 m # —1,n # =2}, and {k =
—2n4tm+3/) o om £ —1,n £ —2}.

e Solvable one parameter families (with n = —2) include {k =
-1}, {m= -2}, {m= -1,k # —1}, and {m = — 1/, k # —1}.

e Solvable one parameter families (with n # —2) include

{m=-7k=3(n-1)} {m=—Lk=—-%(5n+13)}
{m=-7k=1(n-3)} {m=-1k=n+1}
{m=—4,k=in} {m=-1,k=1in}
{m=-4k=f(n—-1)} {m=—-%1k=-2n-5}
{m=-2k=1(n-1)} {m=—3k=4in)}
{m=-%k=3n} {m=—3k=33n+4)}
{m=-3k=32n+1)} {m=—5k=30n-1}
{m=-3k=-3n-T7} {m=—5k=3502n+1)}
(m=-3k=1n} {m=—-3k=-32n+7)}
{m=-2k=138n+4) {m=—3.k=3(6n+7)}
{m=-5.k=3n-1)} {m=3.k=3n}
{m=-2k=12n+1)} {m=13k=—32n+7)}
{m=-3k=1(n-2)} {m=2,k=—-Tn— 15}
{m=—-2k=—13n+10)} {m=2k=in}
{m=—2,k=1%(6n+5)} {m=2k=—-1(n+5)}
(m=-Tk=1n-1)} {m=2k=—%(Tn+20)}

4. Polyanin and Zaitsev [130, pages 278-281] tabulate solvable cases of
the Emden-Fowler equation y" = Az"y™ (y')":

e Solvable two parameter families include n = 0, m = 0, and
{k=2ntme3/ 0 0m £ —1,n# —1}.

e Solvable one parameter families include

-{k#1,2,m=-1,n=-1} —{k= gZig,m: —n—3,n# -3
—{k#3p,m=-3n=—1 —{k=1,m+#-1,0,n= -1}

—{kzgzig,m;ﬁ—%,n:—% —{k=2,m=-1,n#-1,0}

—{k:%ﬁigﬂ’n;ﬁ—%,n:l} —{k=2,m7$—2,0,n:—1}

_ fJ — 3n+d — 1l 3 —{k=3,m=-n—-3n=-1}
{—§n+iam— PRRL 32}

—{k=gmm=1n#—3

e Isolated points at which the solution is tabulated include
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k m n k m n k m n
T I _5 S B R 5T
2 2 l% 2 2 2 l% 5
L =% 1 —
20 T 20
— 13 ) —2 13 1
_ D _ 1 ) 1
4 2 1
0 1 0 1
e T 2 5] 5| 2
3 2 6
T 5 1 " g E—
2 2 2
Ei —22 21 2] _1 —10 [ _5
12 8 7 3y 4
L pall k2l -7 2
8 1 _3 8 0 1 _% _%
’ 1 ° 1 7 N a m—
2 4 5 5
T T3 —10 —r=2
A I : S
1 Ll =3 —3 7
0 —3 -2 -2
L 1 —1
7 2 1 -
1 5 -3
B I 3 e e 1
P 7 3 5 B —T -1
20 93 _3 20 3 2
Bt 31 i
13 2 2 t———=3 —5 T —5
S | 5 ——
7 1 —3 2 | —2
2 7 1 1 _2
-3 1 ol 3
—_1 1 0 1 0| —4
2 9 2 T _>
N e =
1 | =3 1 2
) 1 _% 1 2
| I —_3% 5T =11 —1 T -7
rd 2 2 4
T L 2 T =9 _
. ? . J e e )
5 2 2 5
T 7 _1 -2
3 6 2 — 7
5
—1
2
0
5
2| —3
3| =7

5. Polyanin and Zaitsev [130, page 242] tabulate solvable cases of the
Emden-Fowler equation y"” = Az"y™:

e Solvable one parameter families include n = 0, n = —m — 3,
n=-4(m+3),m=0,and m=1.

e Isolated points at which the solution is tabulated include:
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m n m n
-7 1 —Tf5  —13/g
-7 3 —7/3 1
—5/y  —1p "
_9 ) 1y =5/
-2 1 —1f -2
—5/3 —10/ A
_5/3 _7/3 _1/2 _7/6
e —1p =1
—5/3  —1p —1/5 1
—5/3 1 2 -5
—5/3 ) 2 —20/,
2 —15/;

6. Solvable cases of the following equations are also tabulated in Polyanin
and Zaitsev [130]:

(y")¥ = Ay* + Ba" [130, page 106]
(y")¥ = Ay* + Be® [130, page 107]
(y')* = AeY + Bx" [130, page 107
(y')* = AeY + Be® [130, page 107
y" = (Ajz™y™ + Ayxm2y™2)(y')k [130, pages 314-319]
ay" = ox"y™(y )k + anTlym Ty )kt [130, pages 349-352]
y" = App™iy™a(y )k 4 Agrm2y™2(y')k2 with ky # ke [130, page 367)
y" = Az®yP(y')7 (y")° [130, pages 529-535]
y" = Aet(y')(y")° [130, page 577]
y" = AyPeW)” (y")d [130, page 577]
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45. Look-Up ODE Forms

Applicable to Ordinary differential equations.
Yields

An idea of whether or not an ordinary differential equation has a closed-
form solution.

Idea

An experienced differential equations practitioner can look at many
second order ordinary differential equations and readily guess whether or
not there is a closed form solution because there are many familiar forms
that often appear.

Procedure
Having a listing of familiar differential equation forms will make it
possible to recognize these forms. We have tabulated below many of the
familiar forms that appear for second order ordinary differential equations.
In the listings below, () represents a term that contains constants. Such
a term may or may not be correlated with other terms of the form (). For
example, equation 22.6.5 in Abramowitz and Stegun [1] is

(1-2%)y" — 2o+ Day +n(n+2a)y =0,

where « is a real constant and n is an integer. Isolating the x dependence,
we list this equation as

(1=2*)y" + Oz + )y =0

and disregard the fact that the hidden values have constraints on them
and, in fact, are related.

45.1 Equations of the Form: 3" + ¢(x)y =0

c(z) = () [1, 22.6.10]
c(x) = —x 1, 10.4.1]
clx) = () — ? [1, 22.6.20]
c(z) = () + Oz + ()z° 1, 19.1.1]
c(x) = ()aV 1, 9.1.51]
cx) =0 +4 1, 9.1.49]
cx) =2+ 4 [1, 9.1.50]
cz)=)-L-4 1, 14.1.1]
clx)=() -2+ 4 [1,13.1.1 and 22.6.8]
c(z) = ()e* = () 1, 9.1.54]
e(z) = Tz + 7 [1, 22.6.7)
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o(@) = 1z + oy 1, 22.6.14]
c(z) = (1(2)2 + (14(-35)2 + 1252 1, 22.6.3]
cle) =9+ U4 () 1, 22.6.17]
o(x) = () + ij 1, 22.6.8]
@) =)+ iz + ooz 1, 22.6.4]
45.2 Equations of the Form: y” + b(z)y + c¢(x)y =0
bx) =—z, c(z)=1() [1, 22.6.21]
b(x) = =2z, c(x)=1() [1, 22.6.19]
b(x) =2z, c(z)=—-()z (1, 7.2.2)
b(z) =2z, c(z)=22—() (1, 10.1.1]
b(z) =2z, c(z)=()—2? (1, 10.2.1]
bx)=()—z, clx)=() [1, 22.6.15]
b(x) = ()z, c(x)=()+a0 [1,9.1.53]
bx) =Y, c(x)=() 1, 9.1.52]
bx)=(), c(x)=()—()cosz [1, 20.1.1]
45.3 Equations of the Form: zy” + b(x)y’ + c¢(x)y =0
bx)=()—=z, clx)=() (1, 13.1.1]
ba)=()+a, ca)=()+Y 1, 22.6.16]
45.4 Equations of the Form: (1—22)y"+b(z)y'+c(z)y =0
b() = (), () = () - ()a? [1,20.1.8)
bx)=—z, c(x)=1() (1, 22.6.9]
b(z)=—x, c(x)=()—()z? [1, 20.1.7]
b(x) = =2z, c(x)=1() [1, 22.6.13]
b(x) = —2z, c(z)=()+ 'l 1, 8.1.1]
b(x) = -3z, c(x)=1() (1, 22.6.11 and 22.6.12]
bx) =)z, c(x)=1() [1, 22.6.5 and 22.6.6]
bx)=0)+ Oz, c(x)=() [1, 22.6.1 and 22.6.2]
45.5 Equations of the Form: z%y” + b(x)y' + c(z)y = 0
b(z) =z, c(x)=2%—) [1,9.1.1)
b(z) =z, c(z)=()—2? [1, 9.6.1]
b(z) =2z, c(z)=()+2? [1, 10.1.1]
b(z) =2z, c(x)=()—2? [1, 10.2.1]
45.6 Equation of the Form: z(1—x)y"+b(z)y +c(z)y =0
ba)= ()~ Oz, clw) = () 1, 15.5.1]
Note

1. Realize that the same equation may look different when written in dif-

ferent variables. Some scaling of any given equation may be required
to make it look like one of the forms listed.
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Reference
[1] ABRAMOWITZ, M., AND STEGUN, 1. A. Handbook of Mathematical Functions.
National Bureau of Standards, Washington, D.C., 1964.
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46. An Nth Order Equation

Applicable to The equation % = f(x).
Yields

Two exact forms of the solution are available.

Idea

The explicit solution can be written analytically.

Procedure

The general solution of the ordinary differential equation for y(x)
d™y
dx™

= f(x)

can be found by integrating with respect to x a total of n times. This
produces

x T T _ n—1
)= [ e [ e [ s 0B
+ Cg% oot Cpg(x—x0) + Cp,  (461)

for any xo, where the {C;} represent arbitrary constants. This solution
can also be written as

* x—x)" L
y(ac) — ﬁ‘/wo(x_t)nlf(t) dt"‘Cl%

(x — xp)
(n —2)!

n—2

+ Cy —+ -+ Cn_l(l‘ — xo) +C, (462)

in which there are no repeated integrals. Sometimes the form in equation
(46.2) is more useful than the form in equation (46.1).

Example
The ordinary differential equation

y(4) =sinz,
y(0) =0, y'(0)=0,
y//(O) — 0’ y/// (0) — 0

has the solution

y(x):/ dac/ dx/ dac/ sin x dz. (46.3)
0 0 0 0
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This solution may also be written as

y(x) = é/oz(a: —t)3sint dt. (46.4)

Sometimes it is easier to evaluate the expression in equation (46.4) (by

expanding out (z —t)® and integrating the four terms) to determine that
. z®

y(r) =sinz —x + -

than it is to evaluate the expression in equation (46.3).

Notes
1. When the answer is to be computed numerically, the solution rep-
resented by equation (46.2) is more useful than the form in equa-
tion (46.1). It is much easier to numerically approximate a one-
dimensional integral than a multi-dimensional integral.
2. See Ince [1, page 42].

Reference
[1] INncE, E. L. Ordinary Differential Equations. Dover Publications, Inc., New
York, 1964.
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47. Use of the
Adjoint Equation®

Applicable to Linear differential equations.
Yields

A linear differential equation of lower order.

Idea

For every solution of the adjoint equation we can find, we can reduce
the order of the original equation by one.

Procedure
If we have the nth order linear differential operator L[-] (shown operat-
ing on the function u(zx))
d™u d"lu du,
T + al(m)m + -t an—1(r)— + an(x)u,

Llu(2)) = ao() - s

then the adjoint of L[] is defined to be L*[-], where L*[] is given by (shown
operating on the function w(z))

L @) =1 fag )] + (<1 ] + -
() L @] + (<1 fan (@]

dx
(see page 95 for details). The bilinear concomitant of L[] is defined to be

n—1n-1
B(u,w) =Y (=)™ Fumm Y (agw) P (47.2)
k=0 m=k
and satisfies the equation
d
wLu] — uL*[w] = d—B(u,w), (47.3)
x

for all u(z) and w(x).

Suppose we wish to solve the equation L[u] = f(z). If we can find a
solution to L*[w] = 0 and call it w*(z), then we have (substituting into
equation (47.3))

w*Lu] — ul*[w*] = %B(U,W*)a

or

W (@)f (@) = - Blu,w),
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B(u,w*) = /w w*(x) f(x) de. (47.4)

Therefore, to find u(z), we can solve equation (47.4) instead of L[u] = f(z).
In other words, w*(z) is an integrating factor for the equation L[u] = f(z).
The original differential equation, L{u] = f(x), is of degree n whereas
equation (47.4) is of degree n — 1.

Special Case

For n = 2 the adjoint equation is important enough to write separately.
If the linear operator L[] is defined by L[u(z)] = R(z)u” + S(z)u' + T(x)u,
then the adjoint is L*[w(z)] = Rw” + (2R’ — S)w’ + (R" — 8" + T)w, and
the bilinear concomitant is B(u,w) = uwSw + v Rw — u(Rw)’.

Example
Suppose we wish to solve the equation L{u] = 1, where
Llu] = (2% — 2)u” + (22% + 42 — 3)u + Szu.
The adjoint, in this case, is the operator
L*[w] = (2% — 2)w” + (=222 + 1)w' + (4= — 2)w,

and the bilinear concomitant is given by

B(u,w) = u(22* 4 2z — 2)w + v’ (2% — 2)w — u(2? — 2)w’.

(47.5)

A solution to L*[w] = 0, obtained by the method of undetermined
coefficients, is w*(z) = z?. Using this solution in equation (47.4), we

obtain (with f(x) =1)

3

Blu, w*) = / w* (2)f (2)dz = / Pdr=" 1,

where C' is an arbitrary constant. Using w = w* = z?

produces

in equation (47.5)

B(u,w*) = (z* — 23)u + 22%u.
Equating these last two equations yields a first order equation for wu:
3

(z* — 23’ + 22tu = % +C. (47.6)

Note that equation (47.6) is a first order equation (the original differential
equation was of second order). Because equation (47.6) is a first order linear
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equation, it can be solved by the use of integrating factors. Multiplying by

2-102% and integrating results in
x

¥ —1 -1
(x —1)%e* u(z) = / [;v 3 e + Cezwx—g} dx
e o * (47.7)
T — 2x 2x
= — D
2 ¢ Tzt T
where D is another arbitrary constant. Hence, the final solution is
1 20— 3 C
= — + De 27| . 47.

u(z) @-1)? [ ot 572 + De } (47.8)

Notes
1. If an operator and its adjoint are identical, then the operator is said
to be formally self-adjoint (see page 95). In this case, the adjoint
method does not help to find a solution of the original differential
equation.
2. Similar results hold for linear partial differential equations. For the
partial differential operator

" 0%u " ou
Llu) =) ay (X)M +) bi(x) o0, c(x)u,
=1

ij=1

the adjoint operator is defined by

With this definition of the adjoint, we find

—

/D(wL[u] - uM[w]) dx + /81:) Blu,w]dzxy -+ -dx; - - - dxy = &7'%

where B[u, w)] is defined by

n

i n aai' ~ au 8'[1}
Bt = 0 (B et B [ v
; ; J ; J J

In equation (47.9), dzy - - - dsz -+ - dx, indicates the product dz1 - - - dz,,
with the factor dz; removed. See Garabedian [1, pages 161-162] or
Zauderer [5, pages 483-486] for details.

3. If the elliptic operator L[] is defined by L{u] = —V - (pVu) + qu, then

wLu] — uLw] =V - (—pwVu + puVw).
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If the hyperbolic operator L[-] is defined by L[u] = pus + L[u], then

wLu] — uLjw] = V - [-pwVu + puVw, pwu, — puw,],

where V = [V,0/01] is the space-time gradient operator. If the

~

parabolic operator L[-] is defined by L[u] = pu; + L[u], then

wLu] — uL*[w] = V - [-pwVu + puVw, puw],

where the operator L*[] is defined by L*[u] = —pu; + L[u]. Each
of the last three equations can be integrated to obtain an expression
similar to equation (47.9). See Zauderer [5] for details.

4. See also Ince [2, pages 123-125], Kaplan [3, pages 448-453], and

Valiron [4, pages 323-324].
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48. Autonomous Equations —
Independent
Variable Missing

Applicable to Ordinary differential equations of the form
F(y(’,]’)’y(’n’_l)? A 7y//7y/7y) = O.
Yields

An ordinary differential equation of lower order.

Idea

An autonomous equation is one left invariant under the transformation
z — = + a. Any ordinary differential equation in which the independent
variable does not appear explicitly is an autonomous equation. Because
we know something about the solution, we can reduce the order of the
differential equation.

Procedure

Given the nth order autonomous equation F(y(™), y(™=D . . " o
y) = 0, change the dependent variable from y(z) to u(y) = y'(x). The
resulting ordinary differential equation for u(y) will be of lower order. To
find how the higher order derivatives transform, consult table 48.1. After
the ordinary differential equation of lower order has been solved for u(y),

y(x) can be determined from integrating u(y) = ¢'(x); i.e., / —— =z
u

Example
Suppose we want to solve the nonlinear autonomous equation

cy dy _, dy

dz?  dr Yz (48.1)

Because there are no explicit occurrences of x in equation (48.1), we
recognize the equation to be autonomous. Therefore, we change variables in
equation (48.1) by u(y) = Z_'Z' Using table 48.1, equation (48.1) transforms
into ufl—z —u = 2yu or

du
u (d—y —1- 2y) =0. (48.2)

From equation (48.2), either uw = 0 or ‘;—Z —1—2y =0. If u(y) = 0, then

g—g = 0 and so one solution to equation (48.1) is

y(z) = A, (48.3)
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Y = u,
Yoz =  Uly,

Ypzz = uu? + uguyy,

Yvozw = WUy + Ayt u? + Uy,
Yozoor = uujyi + 7uyyyuyu1+ 4uzu§2yy + 11u22u§2uyy + u4fyyyy,

Yo(s) = Uy + Ty (3yuyu” + 4u Uy (3 + 11u Uy Uyy + U Uy (a),

Yz(6) = uug + lluy(4)uyu4 + 15u4u3(3 Uyy + 32U3U§U/y(3)

+34u3uyu2y + 26u2u§uyy + U Uy (5),
Yo() = uug + 57u uéuyy + 122u3u2uyyy + 34u4u2y + 180u3u§u§y

—|—76u4ugy + 15Uty (3)2 4 1920 uy gy 1y 3

—|—26u5uyyuy(4) + 16u5uyuy(5) + uﬁuy(g)

Table 48.1: How to transform derivatives under the change of independent
variable: u(y) = y.(z). (To simplify notation, we have defined y,(,) to be
the nth derivative of y with respect to x. Similarly for u,,.)

where A is a constant. Conversely, if u(y) # 0, then equation (48.2) requires
that

du
— —1—-2y=0. 48.4
a y=0 (48.4)

Equation (48.4) can be integrated to obtain
u(y) =y*+y+ B, (48.5)

where B is a constant. Using u(y) = g—z, equation (48.5) can be written as
j—g = y?+y+ B, so that /yzf% = [ dz, and therefore %tan_l(gy—gl) =

x+ C, where D? = 4B — 1 and C is an additional constant. Inverting this
last equation gives y explicitly as a function of x

1
y(x) = Etan(Ex + F) — 3 (48.6)
where £ = D/2 and F' = CE. Hence, the two solutions to equation (48.1)
are given by equations (48.3) and (48.6).

Notes
1. This method is derivable from Lie group methods (see page 366).
2. Schwarz’s paper [4] describes a REDUCE program that will automat-
ically determine first integrals for an autonomous system of equations.
3. The easiest way to make the necessary transformation in an au-
tonomous differential equation is by replacing every occurrence of
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4 with u%. For instance, writing equation (48.1) in the form

(20) - £ =25

leads immediately to equation (48.2) via

d( d d d
Yy <u@(y)> - ud—y(y) = 2yu@(y)-

4. Sometimes it is advantageous to write a pair of first order autonomous

equations as a single first order equation, by dividing the two equa-
tions. For example, the non-linear predator—prey equations

dx dy
— =ax — = = —cy + 48.
" ax — bxy, n cy + dzy (48.7)

can be written in the form

d —b

ar _ ar—ory (48.8)

dy —cy-+dxy
Although equation (48.7) cannot be solved explicitly in finite terms,
from equation (48.8) we can show that F'(x,y) := dz + by — clogz —
alogy is a constant on the solution curves {z(t),y(t)}.

5. It is straightforward to create a Macsyma program that will perform

the necessary change of variables. Program 48.1 shows a terminal
session in which the input equation

1d2 1 [(dy\? 1

__y [ _y —1 4+ — = O
ydr?  y?2 \dx y3

is transformed into

d
y3—u—uy2+u2y—1:0.
dy

6. Autonomous systems of ordinary differential equations can have cen-

ter manifolds, which are a classification of the solution surface. As a
simple example, consider the system

x' = Ax + f(x,y), y = Bx+g(x,y), (48.9)

where A is a constant matrix all of whose eigenvalues are imaginary,
B is a constant matrix all of whose eigenvalues have negative real
part, and the functions f and g and their first derivatives vanish at
the point (0,0). Then, there is a function h such that

e h is an invariant manifold under equation (48.9).
e h and its first derivatives vanish at (0, 0).
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DEPENDS (Y,X)$
AUTONOMOUS (EQN, Y, X) := BLOCK([NEW,A,U,MAX_DEGREE, J],
DEPENDS (U, Y),
MAX_DEGREE : DERIVDEGREE (EQN,Y,X),
KILL(A),
A[0]:Y,
FOR J:1 THRU MAX_DEGREE DO (
A[J]:EXPAND( SUBST(U,DIFF(Y,X),DIFF(A[J-1]1,X)) ) ),
FOR J:1 THRU MAX_DEGREE DO (
NEW: SUBST( A[J], DIFF(Y,X,J), NEW ) ),
FACTOR(NEW) )$
EQN: DIFF( DIFF(Y,X)/Y, X) - 1 + 1/Y*x3;

2
y (y >
X X b4 1
R T .
y 2 3
y y
AUTONOMOUS (EQN, Y,X) ;
3 2 2
y —uu y +u y-1
y
3
y

Program 48.1: Macsyma program to change variables.

dy[1]l= uly[x11;

dy[2]= Dluly[x1],x] /. y’[x]1->uly[x]]1;

dy[n_]l:= D[dy[n-11,x] /. y’[x]->uly[x]]

dy2[n_]:= dy[n] /. {ulylx]]1->u, v’ [ylx]l]l->u’, uw’’[y[x]]->u’’,
w ?? [ylx11->u’??, w?’ [ylx]1->u’’’°}

Table[ {n,dy2[n]}, {n,1,5}] // ColumnForm

Program 48.2: Mathematica program to change variables: u(y) = y.(z).

e The stability of the solution (0,0) is the same as that of the
smaller system x’ = Ax + f(x, h(x)).

7. The results in table 48.1 can be obtained with the Mathematica code
in program 48.2. The output of that program is

{1, u}
{2, uu’}
2 2
{3, uuw +u u’}
3 2 3 (3
{4, uvw +4u uw w’>+u u }
4 2 2 3 2 3 (3)
{5, uuw +11u w w’+4u uw’ +7u u u +
4 (4)
u u }
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8. See Bender and Orszag [1, pages 24-25] and Rainville and Bedient
[3, pages 268—269].

References

[1] BENDER, C. M., AND ORSZAG, S. A. Advanced Mathematical Methods for
Scientists and Engineers. McGraw—Hill Book Company, New York, 1978.

[2] MAN, Y. K. First integrals of autonomous systems of differential equations
and the Prelle-Singer procedure. J. Phys. A: Math. Gen. 27 (1994), L329—
L332.

[3] RAINVILLE, E. D., AND BEDIENT, P. E. Elementary Differential Equations.
The MacMillan Company, New York, 1964.

[4] ScuwaRrz, F. A REDUCE package for determining Lie symmetries of

ordinary and partial differential equations. Comput. Physics Comm. 27
(1982), 179-186.

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




49.  Bernoulli Equation 235

49. Bernoulli Equation

Applicable to Ordinary differential equations of the form: y’ +
P(x)y = Q(z)y".
Yields

An exact solution of the given equation.

Idea

By a change of dependent variable, a Bernoulli equation (which is a
nonlinear equation of the form y'+ P(x)y = Q(x)y", where n is not equal to
1) can be transformed to a first order linear equation. This linear equation
can be solved by the use of integrating factors.

Procedure
Suppose we have the equation

Y + P(z)y = Q(x)y", (49.1)

which we recognize to be a Bernoulli equation. To solve, we divide the
equation by y™ and change the dependent variable from y(z) to u(x) by

This changes equation (49.1) into the first order linear differential equation

= nu/ + P(z)u = Q(z). (49.2)

An exact solution of equation (49.2) can be found by integrating factors
(see page 356). The solution is given by

u(z) = exp {(n— 1)/1 P(t) dt} {/r exp[(l —n) /SP(t) dt] Q(s)ds}.

(49.3)

Example
Suppose we have the equation

y +y =y’ sinz. (49.4)

To solve this equation, divide it by y* and then define u(x) = y(z)~2 so
that equation (49.4) becomes

1
—§u' +u =sinz. (49.5)
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The solution to equation (49.5) (obtained by the method of integrating
factors) is

2
u(z) = Ae*® + g(cosx + 2sinx),

where A is an arbitrary constant. Using y(x) = u(x)~'/2, the final solution
is found to be

9 —1/2
y(x) = {Ae% + g(cosx + 2sinx)} .

Notes
1. If n = 1, then the original equation is in the form of equation (49.2);
and it can be solved directly by the use of integrating factors.
2. See also Boyce and DiPrima [1, page 28], Ince [2, page 22], Rainville
and Bedient [3, pages 69-71], and Simmons [4, page 49].
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50. Clairaut’s Equation

Applicable to Differential equations of the form: f(xy’ —y) =
9(y').
Yields

An exact implicit solution. Sometimes a singular solution may also be
obtained.

Idea
A solution of the differential equation f(xzy’ — y) = g(y’) is known.

Procedure
Given the equation

flay' —y) = 9@, (50.1)
a general solution (for which y” = 0) is given implicitly by
f(@C —y) = 9(C), (50.2)

where C'is an arbitrary constant. Equation (50.1) may also have a singular
solution. If it does, it can be obtained by differentiating equation (50.1)
with respect to x to obtain

y' [f'(xy —y)x —g'(y')] = 0. (50.3)

If the first term in equation (50.3) is zero, then equation (50.2) is recovered.
If the second term in equation (50.3) is zero, then equations (50.1) and
(50.2) can be solved together to eliminate y’. The resulting equation for
y = y(z) will have no arbitrary constants and so will be a singular solution.

Example 1

Suppose we have the ordinary differential equation
@y =y’ = () -1=0. (50.4)

Because equation (50.4) is of the same form as equation (50.1) (with f(z) =
22, g(x) = 2% — 1), a general solution can immediately be written down as
(xC —y)2=C%+1or

y=Cx++C? -1, (50.5)

where C' is an arbitrary constant.
To find the singular solution, we differentiate equation (50.4) with
respect to x to obtain

y"[2(zy’ —2)z - 2yl = 0.
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Figure 50.1: Solution curves for the differential equation in Example 2.

If the second term is set equal to zero, then we find

/ Ty
= . 50.6
V= (50.6)

Using equation (50.6) in equation (50.4), we determine the singular solution
to be

P =1 (50.7)

Note that equation (50.7) is not derivable from (50.5) for any choice of C.

Example 2

For the differential equation zy’ —y = g(y/), with g(z) = 3(z% — 2), a
set of solution curves is shown in figure 50.1. Because g(z) is a cubic, there
are regions where there are three different solutions for a specified x and y.
This is clearly shown in the figure.

The singular solution to the above differential equation can be easily
shown to be y = (5 + 22)3/2/\/135.

Notes
1. The singular solution obtained by this method turns out to be the
locus of the solutions in equation (50.2). That is, the envelope of the
solutions in equation (50.2), for all possible values of the parameter
C, will be the singular solution. See Ford [1, pages 16-18] for details.

2. A generalization of Clairaut’s equation is Lagrange’s equation (see
page 363). n

3. Clairaut’s partial differential equation z = Z T aaji +f ( (,;9—;1, e 8‘1—1)

i=1

has the solution z = Y | a;z; + f(a1,a2,...,a,). See Kamke [3,
section 13.8, page 123].

4. See also Ince [2, pages 39-40] and Rainville and Bedient [4, pages
263-265].
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51. Computer-Aided
Solution

Applicable to Some classes of ordinary differential equations, most
frequently first and second order equations.

Yields

An exact solution.

Idea

Several of the popular computer algebra languages have a symbolic
differential equation solver.

Procedure

Find a computer system that runs any of the following commercial
computer languages: AXIOM, Derive, FORMAC, Macsyma, Maple, Math-
ematica, muMath, or REDUCE. Identify the routine that solves differential
equations automatically, and use that on your problem. For URLs of these
software packages, see page 71.

Nearly all of the symbolic algebra programs have a specialied interface
that makes it easy to identify and use the differential equation solver. This
interface usually displays the output in a very attractive way; the ascii
output shown below is less attractive but represents one output option.

In each of the packages below a different package was asked to solve the
simple differential equations " + 4y = 0 and 3’ = 3% + ¥.

Example 1

The following Macsyma session was run by Jeff Golden. Note that
(c2), (c3), and (c4) are input lines (“command” lines) and that (d2),
(d3), and (d4) are output lines (“display” lines). On the first input line,
the first equation is defined to be eqnl. On the second line, a solution is
requested. Note that %k1 and %k2 are arbitrary constants in the solution
that Macsyma found. The third input line defines the second equation to
be eqn2, and the fourth line requests the solution (in this case %c is the
arbitrary constant in the solution).

Starting Macsyma math engine with no window system...

This is Macsyma 421.0 for SGI (IRIX) computers.

Copyright (c) 1982 - 1997 Macsyma Inc. All rights reserved.
Portions copyright (c) 1982 Massachusetts Institute of Technology.
All rights reserved.

Type "DESCRIBE(TRADE_SECRET);" to see important legal notices.
Type "HELP();" for more information.

/usr/macsyma-421/system/init.1lsp being loaded.
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(c1) eqnl: ’diff(y,x,2) + 4%y = 0;
2
dy
(d1) -———+4y=0
2
dx
(c2) ode(egni, y, x);
/usr/macsyma-421/ode/ode.o being loaded.
/usr/macsyma-421/ode/odeaux.o being loaded.
/usr/macsyma-421/ode/ode2.0 being loaded.
(d2) y = %k1 sin(2 x) + %k2 cos(2 x)
(c3) eqn2: ’diff(y,x) = xxy~2 + y;
dy 2
(d3) - -xy -y=0
dx

(c4) ode(eqn2, y, x);

(a4) y = mmmmmmmmmmmm— -

he = (x - 1) %e

Example 2

241

The following MAPLE session was run by the author. Note that input
lines begin with a greater than sign. On the first input line, the first
equation is defined to be eqnl. On the second input line, a solution is
requested. Note that _C1 and _C2 are arbitrary constants in the solution
that MAPLE found. The third input line defines the second equation to

be eqn2, and the fourth line requests the solution.

IN7/1 Maple V Release 3 (Zwillinger & Associates)

I\ |/1_. Copyright (c) 1981-1994 by Waterloo Maple Software and the

\ MAPLE / University of Waterloo. All rights reserved. Maple and Maple V

<____ ____ > are registered trademarks of Waterloo Maple Software.

| Type 7 for help.

> eqnl:= diff(y(x),x$2)+4*y(x)=0;

> dsolve( eqnl, y(x) );
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y(x) = _C1 cos(2 x) + _C2 sin(2 x)
> eqn2:= diff(y(x),x)-x*y(x) 2-y(x)=0;

/ d \ 2
eqn2 := |-——- yx)| - x yx) -y =0
\ dx /

> dsolve( eqn2, y(x) );

1
-——- = - x + 1 + exp(- x) _C1
y(x)

Example 3

The following Mathematica session was run by Alexei Bocharov. Note
that the nth input line is denoted In[n] and the nth output line is denoted
Out [n]. On the first input line (In[4]), the first equation is input and the
solution is requested. Note that C[1] and C[2] are arbitrary constants
in the solution that Mathematica found. The next input line defines the
second equation and requests the solution.

In[4] := DSolvely’’ [x]+4y[x]==0,y[x],x]
Out[4]= {{y[x] -> C[2] Cos[2 x] - C[1] Sin[2 x]}}

In[5]:= DSolvely’ [x]==x*y[x] 2+y[x],y[x],x]

Out[5]= {{ylx] -> -----------=---- 1

Example 4

The following MuPAD terminal session was run by Paul Zimmermann.
Note that input lines begin with the symbol >>. The first command,
setuserinfo(ode, 1), tells the system to prints comments. On the second
input line, the first equation is input and the solution is requested. Note
that C1, C2, and C3 are arbitrary constants in the solutions that MuPAD
found. The next input line defines the second equation and requests the
solution.

*m———k MuPAD 1.4.0 --- Multi Processing Algebra Data Tool
A
*————x | Copyright (c) 1992-97 by B. Fuchssteiner, Automath
| *-=]-% University of Paderborn. All rights reserved.
(VAR V4
$-————k mmmm——————— Developers NSB Version ------—----——--

>> setuserinfo(ode,1):
>> solve(ode(y’ (x)=x*y(x)"2-y(x), y(x)));
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Riccati equation
Riccati method worked

{ 1 }
{0, ~—————————- }
{ x + Cl exp(x) + 1}

>> solve(ode(y’’ (x)+4*y(x)=0, y(x)));
linear ordinary differential equation of order 2
with constant coefficients

{C2 cos(2 x) + C3 sin(2 x)}

Example 5

The following Derive terminal session was run by David Stoutemyer.
Note that input and output lines begin with an octothorpe (#) and are
numbered consecutively. The input was entered in a one-line dialog box
that had a Greek toolbar and other capabilities.

#2: DSOLVE2(0, 4, 0, x, y) User
#3: y COS(2 x) + c2 SIN(2 x) Simp (#2)
#4: BERNOULLI_GEN(-1, x, 2, x, y) User
1 X
#5: ---=c#e -x+1 Simp (#4)
y
Example 5

The following REDUCE terminal session was run by Winfried Neun.
Note that all input lines are numbered. The first command tells the
system to load the ODE solver. On the second input line the first equa-
tion is input and the solution is requested. Note that arbconstant (1)
—arbconstant (3) are arbitrary constants in the solutions that REDUCE
found. The next input line defines the second equation and requests the
solution.

1: load odesolve;

(odesolve)

2: depend y,x;

3: odesolve(df(y,x,2)+4*y=0,y,x);

{y= - arbconst(2)*sin(2*x) + arbconst(1)*cos(2*x)}
4: odesolve (df(y,x)=x*y~2 +y,y,x);

X X
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1 arbconst(3) - e *x + e
{ }
y x
e

Notes

1. A comparative differential equation review of the languages AXIOM,

Derive, Macsyma, Maple, Mathematica, MuPad, and REDUCE is
maintained by Postel and Zimmermann [13]. Presently, they have 54
equations that they have run though each of the above systems; the
input and output files for each are available.

Moussiaux [12] has made available the program CONVODE, which sym-
bolically solves ordinary and partial differential equations across the
internet. For example, sending

depend y,x;
CONVODE( {df (y,x,2)+4*y=0}, {y}, {x}, {}, {englishl});

to convode@riemann.physmath.fundp.ac.be will have the solution
of y”+4y = 0 sent to you via email with comments in English (the de-
fault is French). See http://www.physique.fundp.ac.be/physdpt/
administration/convode.html. Note that CONVODE is based on
REDUCE.

REDUCE can be used interactively over the web via the site http://
www.zib-berlin.de/Symbolik/reduce/testreduce.html.
MathServ provides an interface between the user and Mathematica
(see http://math.vanderbilt.edu/ pscrooke/detoolkit.shtml).
Templates for twelve different types of ODEs are available; the user
can specify the functions appearing in them.

Packages that can handle a wider variety of differential equations are
constantly being created. See, for example, Chan [2], Kovacic [9],
Schmidt [15], or Watanabe [20]. An example of the use of FORMAC
may be found in Hanson et al. [5]. Shtokhamer [16] presents a
Macsyma program that implements the Prelle-Singer algorithm and
gives several examples.

All of the programs illustrated above and many others (such as the
package by Hubbard and West [7]) can be run on a microcomputer
(such as an IBM PC or a Macintosh).

Given a homogeneous linear differential equation whose coefficients
are in a finite algebraic extension of Q[z], Singer’s [17] paper has
a decision procedure to determine a basis for the Liouvillian solu-
tions. Liouvillian functions are essentially those functions that can
be built up from rational functions by algebraic operations, taking
exponentials and by integration. In detail

e Let K be a field of functions. The function 6 is a Liouvillian
generator over K if it is:
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— algebraic over K, that is if § satisfies a polynomial equation
with coefficients in K;

— exponential over K, that is if there is a ¢ in K such that
0" = ¢'#, which is an algebraic way of saying that 6 = exp (;
or

— an integral over K, that is if there is a ¢ in K such that
¢’ = ¢, which is an algebraic way of saying that § = [ (.

e Let K be a field of functions. An over-field K (61,...,6,) of K
is called a field of Liouvillian functions over K if each 6; is a
Liouvillian generator over K. A function is Liouvillian over K
if it belongs to a Liouvillian field of functions over K.

Then, some of the important theorems in this area are

Theorem There is an algorithm that, given a second order
linear differential equation, y” +ay’+by = 0 with ¢ and b rational
functions of x, either finds two Liouvillian solutions such that
every solution is a linear combination with constant coefficients
of these two solutions or proves that there is no Liouvillian
solution (except zero).

Theorem There is an algorithm that, given a linear differential
equation of any order, the coefficients of which are rational or
algebraic functions: either finds a Liouvillian solution or proves
that there is none.

Theorem Let A be a class of functions containing the coeffi-
cients of a linear differential operator L, let g be an element of A,
and let us suppose that the equation L[y] = g has an elementary
solution over A. Then, either L{w] = 0 has an algebraic solution
over A, or y belongs to A.

Theorem Let A be a class of functions, that contains the co-
efficients of a linear differential operator L, let g be an element
of A, and let us suppose that the equation L[y] = ¢ has a
Liouvillian solution over A. Then either L{w] = 0 has a solution
exp( [ z(x) dz) with z algebraic over A, or y belongs to A.a

See Davenport et al. [4] for details. See also Bronstein [1].
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52. Constant Coefficient
Linear Equations

Applicable to Homogeneous linear ordinary differential equations
with constant coefficients.
Yields
An exact solution.
Idea

Linear constant coefficient ordinary differential equations have expo-
nential solutions. The method of undetermined coefficients can be used to
solve this type of equation after a polynomial has been factored.

Procedure
Given the nth order linear equation

y(n) + an_ly(n_l) + e+ aly/ + apy = 07 (521)
where the {a;} are constants, look for a solution of the form
y(z) = Ce, (52.2)

where C' is an arbitrary constant. Substituting equation (52.2) into equa-
tion (52.1) yields

A A 4 an, A b ag N +ag| = 0. (52.3)

Hence, equation (52.2) is a solution of equation (52.1) if A is a root of the
characteristic equation, defined by

A 4 ap A 4 A ag = 0. (52.4)

If equation (52.4) has n different roots {);}, then the general solution to
(52.1) is, by use of superposition,

y(z) = Cne?® + oy 1% 4o 4 Cre?,
where the {C;} are arbitrary constants. If some of the roots of equation
(52.4) are repeated (say A1 = Ay = -+ = A,,), then the solution corre-
sponding to these {\;} is

y(x) = (Cfmﬂjm—l + C7n—1a:m—2 4+ 0233 + Cl)e)‘””.
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Example
Given the linear differential equation

Y — 14y + 80y — 242y 4 419y — 416y" + 220y’ — 48y = 0,

(52.5)
we substitute y(z) = e to find the characteristic equation
AT — 14X° 4 80A% — 242" + 419A% — 41677 + 220\ — 48 = 0,
which factors as
A=1P2AN=22A=3)(A—4) =0. (52.6)

The roots of equation (52.6) are {1,1,1,2,2,3,4}. The general solution to
equation (52.5) is therefore

y(x) ={Co+ C1z + ngg}eg” +{Cs+ C4x}e% + Cse3® + Cge®,

where {Cy, ... ,Cg} are arbitrary constants.
Notes
1. Using the transformation described on page 146, the system in equa-
tion (52.1) can be written in the form y’ = Ay, where A is an

n X n constant matrix. Then the techniques for vectors ODEs (see
page 421) may be used.

2. See Boyce and DiPrima [1, section 5.3, pages 263-268] and Simmons
[2, pages 83-86].
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53. Contact Transformation

Applicable to First order and (occasionally) second order ordinary
differential equations.

Yields

A reformulation, which may lead to an exact solution (sometimes in
parametric form).

Idea

By changing variables, a different and sometimes easier differential
equation may be found.

Procedure
Given a relation between three variables

(b(xayap) =0, (531)

it will be a first order ordinary differential equation if dy — pdx = 0. If the
variables in equation (53.1) are changed by

r=z(X,Y, P),
y=y(X,Y, P), (53.2)
p=p(X,Y,P),

then the transformed equation ®(X,Y,P) = 0 will also be an ordinary
differential equation if dY — PdX = 0. If this is true, then equation (53.2)
is a contact transformation. For example, the change of variables

y=PX-Y )< Y=pr—y (53.3)

is a contact transformation. It is easy to show this:

0=dy—pdr
=d(PX-Y)-XdP
=PdX —dY.

If the new differential equation, ®(X,Y, P) = 0, can be solved, then the
solution to ¢(z,y,p) = 0 may be determined by eliminating X, Y, and P
from the original equation, using the solution found and the transformation
rules.
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Example
Suppose we have the nonlinear first order ordinary differential equation
dy dy
y<dx) g —y=0, (53.4)

which we may write as
2yp? — 2xp —y = 0.

We utilize the contact transformation in equation (53.3) to obtain, after
some algebra, the new first order ordinary differential equation

1-2X? dy 1-2X?
Pry(— )= v () o
* <2X3—3X> 0 o gxt <2X3—3X) 0(535)

This differential equation can be solved by integrating factors to obtain

Y =C(2x* —3x)"°, (53.6)
where C' is an arbitrary constant. Now that we have the solution of the
transformed equation, we can find the solution of the original differential
equation.

Utilizing Y = X —y and P = z from equation (53.3), equations (53.5)
and (53.6) can be written as

2+ (X — ) <ﬂ> —0,

X —y = (2X° - 3X)

(53.7)

Now X can be eliminated between these two equations by, say, the method
of resultants (see page 50). This produces the solution to equation (53.4) in
the form f(x,y) = 0 (there are 21 algebraic terms in this representation).
Alternately, we can obtain a parametric representation of the solution by
solving equation (53.7) for x = z(X) and y = y(X) and then treating X
as a parameter.

Notes

1. Composing two contact transformations or taking the inverse of a
contact transformation results in another contact transformation.
Because the identity transformation is also a contact transformation,
the set of all contact transformations forms an infinite dimensional
topological group.

2. This method is derivable from the method of Lie groups (see page
366), where it goes by the name of the extended group of transforma-
tions. See Ince [4, pages 40-42] or Seshadri and Na [6, pages 18-20].
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3. The condition dy—pdx = 0 states that, if the point (z,y) is on a curve,
then p should be its tangent. The change of variables in this method
gives a different parameterization of the same curve. In particular, if
two curves touch in the old parameterization, then they also touch in
the new parameterization; hence the name of the transformation.

4. Some second order ordinary differential equations also may be solved
by this method. If R = % = j_?; and % = 3—2 = %, then we may
use the relation dP — RdX = dx — Rdp.

5. In more generality, a transformation of the 2n+1 variables {z, z;, p; |
j =1,...,n} to the 2n + 1 variables {Z,X;,P; | j = 1,...,n} is a
contact transformation if the total differential equation

dz — prdxy — padxy — -+ — ppdx, =0
is invariant under the transformation; that is, if the equality

(dZ — PydX;| — PydXo — -+ — PpdXy,)
=p (dZ —p1d$1 _p2d$2 - = pndxn)

holds identically for some nonzero function p(x,p,z). See Iyanaga
and Kawada [5, pages 286 and 1448 for details.

6. A contact transformation is also a canonical transformation (see page
132). The generating function of the canonical transformation, €,
satisfies the three relations: Q(x,z, X, Z) = 0, 53—)%_ + Pj% =0, and
687% + pj%—g =0.

7. Named contact transformations include

(a) The Legendre transformation (see page 467) is given by Q =
Z+z+Y 2;X;, Z = ijjxj —z, X; = —pj, Pj = —x;, and
p=—1

(b) The Pedal transformation is given by Q = Z? — 27 — Y z; X, +

2X;—a;
2 X} Xj=-p;Z, pj= -5 and p= -

(c) The similarity transformation is given by Q = (Z — 2)? — a® +
. ~1/2
Y(Xj—@)i)? Xy =y —ap; L+ Xp) T Py =y, Z =
zj+a(l+ Zp?)fl/z, and p = 1.
8. Some other contact transformations are
r=X-YP X =x— yp
y:—Y\/ﬁ ) Y=y p2—1
P p—__P (53.8)

P U R
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aP X ap

r=Xx - =+ ——
1/1_’_1*_)2 1—|—p2
a a
Y Vit P? Vit | (539

9. See also Bateman [1, pages 81-83], Carathéodory [2, Chapter 7, pages

102-120], and Chester [3, pages 206—207].
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54. Delay Equations

Applicable to Ordinary differential delay equations.
Yields

In many cases, an exact analytical solution.

Idea

There are several standard techniques for delay equations.

Procedure
The standard methods for solving delay equations are by the use of

Laplace transforms

Fourier transforms
Generating functions
General expansion theorems
The method of steps

For the first two methods, the technique is the same as it is for ordinary
differential equations (see page 347). That is, the transform is taken of
the delay equation; by algebraic manipulations the transform is explicitly
determined; and then an inverse transformation is taken. See Example 1.

For a delay equation with a single delay, the method of steps consists of
solving the delay equation in successive intervals, whose length is the time
delay. In each interval, only an ordinary differential equation needs to be
solved. See Example 2.

The method of generating functions is frequently used when only in-
tegral values of the variables are of interest. The technique is similar
to the technique for integral transforms described above. For generating
functions, the integration is replaced by a summation, and the “inverse
transformation” is generally a differentiation (see page 315 for more de-
tails). See Example 3.

The general expansion theorems are all of the same form; given a
delay equation, the solution can be expressed as a sum over the roots of a
transcendental equation called the characteristic equation.

Example 1

Suppose we have the delay equation
y'(t) +ay(t—1) =0, (54.1)
with the boundary conditions

y(t) =yo  when —1<¢t<0, (54.2)
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where a is a constant. We define the Laplace transform of y(t) to be
Y(s) b = [ e *y(t)dt. Multiplying equation (54.1) by e~** and
integratlng Wlth respect to t yields

| e a [ ee-na—o. (54.3)
0 0

The first integral in equation (54.3) can be integrated by parts to yield

/000 e Sy (t) dt = sY (s) — yo. (54.4)

The second integral in equation (54.3) can be evaluated by changing the
variable of integration from ¢ to u =t — 1:

a/ e Syt —1)dt = a/ ety (u) du
0 —1

oo 0
= a/ e 5Dy () du + a/ e sy (1) du
0 —1 (54.5)

—S

=ae Y (s) + ayo

Utilizing equations (54.4) and (54.5) in equation (54.3) results in the alge-
braic equation

—S

sY (s) —yo +ae Y (s) + ayo Se =0,

which can be solved for Y (s):
Yo ayo
Y(s§)=—— —"——. 54.6
() s s(s+ae?) (54.6)

If this formula for Y (s) is expanded as

o0

Y(s) =2 —yo ) (~1)"a" e s,

then an inverse Laplace transform may be taken term by term to conclude
that

[t]+1

= yo Z ”7,“) (54.7)

where the floor function, [t], is the greatest integer less than or equal to t.
Another way of expressing the solution in equation (54.7) is by taking
the inverse transform of Y'(s), as defined in equation (54.6), directly, and
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using Cauchy’s theorem to evaluate the Bromwich contour integral. This
results in

y(t) = —ayo Z 8(%:8) (54.8)

where the summation is over all roots of the equation
s+ae *=0. (54.9)
All the roots of equation (54.9) will be simple unless a = e~!, when
there is a double root at s = —1. The solution in equation (54.8) can

be approximated (for large t) by just using the s, that has the smallest
real part. There exist theorems (see Pinney [15] for instance) that allow
the solution of equation (54.1) to be written in the form of equation (54.8)
immediately.

Example 2

In the method of steps, only a sequence of ordinary differential equations
need to be solved. To illustrate this method, consider equations (54.1) and
(54.2). In the interval 0 < y < 1, the solution satisfies

y/(t) +ayo = Oa

(54.10)
y(0) = yo.
The equation (54.10) has the solution
y(t) =yo(l —at), for0<y<1. (54.11)

Now we solve for y(¢) in the next interval of length one. Using equation
(54.11) we find that, in the interval 1 <y < 2, the solution satisfies

y'(t) +ayo[l —a(t — 1)] = 0,
y(0) = yo(1 —a).
The equation (54.12) has the solution

(54.12)

1
y(t) = yo l—at+§a2(t—1)2 ., forl<y<a2.

This process can be repeated indefinitely. The solution obtained is identical
to the solution in equation (54.7).

Example 3

This example shows how generating functions may be used to solve delay
equations. Consider equations (54.1) and (54.2). Define the generating
function associated with y(t), for 0 <t <1, by

Y(t, k)= i y(t + p)kP. (54.13)
p=0
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Once this generating function is known, y(¢) may be obtained in either of
the two ways

1 /0P
y(t+p) = ol (%Y(ta k)

k=0

=L vkt ar,
2mi Je
where C is a closed contour surrounding the origin in the k-plane and lying
wholly within the region of analyticity in k of Y (¢, k).
By differentiating equation (54.13) with respect to ¢, multiplying by k,
and redefining p, we find that

oo

Yi(t,k) = v/ (t+p)k?,
p=0

oo

kY (t k) = y(t+p+1)kP.

p=1

(54.14)

If we now evaluate equation (54.1) when ¢ has the value ¢ 4 p, multiply by
kP, and sum with respect to p from 1 to infinity, we find (using equation
(54.14))

Yi(t, k) +a (kY (t, k) +y(t—1))=0

or, because 0 <t <1,

Yi(t, k) + akY (t, k) = —ayo.
This equation is an ordinary differential equation and can be readily solved
to yield

_%

Y(t, k) = e M F(k) o

(54.15)

where F(k) is some unknown function. We can determine this function
by a judicious use of the initial conditions. Evaluating equation (54.13) at
t =1, we find

kY (1,k) = kiy(l + p)k?

p=0

= y(+pk!
; (54.16)

=y(0)+ > _y(p)k?
p=0

=y(0) + Y(0,k).
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Evaluating equation (54.16) by use of equation (54.15) results in

B (e R () - %) = o+ (F(k) - %) ,

or

P = ey

This leads to the complete determination of the generating function

efakt
Y(t, k — 1.
(t k) = k <1 — ke—ak >
Via some algebraic manipulations, we can obtain

%) p+1

Y (t, k) —yOZkPZ alp+t—g+1)" (54.17)

q!

p=0  ¢=0

so that the solution can be read off (compare equation (54.17) with equation
(54.13)):
[t]+1

O=w X (- ottt

where the floor function mdlcates the least integer.

Notes
1. In the literature, equations of the form yj (t) = yn—1(t) are often
called differential—difference equations, whereas equations of the form
y'(t) = y(t — 1) are called mized differential-difference equations.
Delay equations are also known as functional equations, differential-
delay equations, differential equations with deviating argument, and
equations with retarded arguments.  Neutral differential equations
are differential equations in which the highest order derivative of the
unknown function is evaluated both at the present state ¢ and at one
of more past or future states.
2. The pantograph equation (see Buhmann and Iserles [4]) is #(t) =
ax(t) + bz (0(t)) + ci(o(t)).
3. The Cherwell-Wright differential equation (see Iyanaga and Kawada
[12, page 287]) is &(t) = (a — x(t — 1))z(t).
4. Marsaglia et al. [13] numerically evaluate the following functions:
e Renyi’s function: [(z — 1)y(z)]" = 2y(z — 1)
e Dickman’s function: zy'(z) = —y(z — 1)
e Buchstab’s function: [zy(z)]’ = y(z — 1)
5. Several authors have tried to analyze delay equations by replacing
y(t — r) with the first few terms of a Taylor series, say

(b =) = ylt) = 7y () + 579" (6) -+ (<) 1),

| CD-ROM Handbook of Differential Equations (©)Academic Press 1997 |




258

10.

11.

II.LA  Exact Methods for ODEs

This is, in general, a bad idea as the approximations that are obtained
are often unrelated to the original equation. See Driver [8, page 235]
for more details.

The paper by Driver and Driver [7] gives explicit error bounds for the
solution of z'(t) = bx(t — 1) for a range of b values, when using the
first terms in an asymptotic expansion. For example, when z(t) = 1
for t <0, and b = 1, then z(t) = z4(t) + g(t) with z,(t) = 1.13¢%-567
and |g(t)| < 0.25e~147¢,

The book by Pinney [15] contains a large compilation of delay equa-
tions that have appeared in the literature. References are cited, and
the (then) current knowledge of each of the equations is given.

The system of linear delay equations
u'(t) = Au(t) + Bu(t — d), for t > to,
u(t) = g(t), for —d <t <ty, (54.18)

where d > 0 is the delay and A and B are constant square matrices
has a solution of the form u(t) = ce®® if and only if s is a zero of the
transcendental equation: det (Is —A- Be*ds) =0.

As an example of the general expansion theorems, the equation

au'(t) + bu(t) + cu(t — d) = 0,

where a, b, ¢, and d are all constant and d is positive, is satisfied by

u(t) =Y pr(t)e’™, (54.19)

where {s,} are complex numbers satisfying as, + b + ce~% = 0,
and p,(t) is a polynomial in ¢ of degree less than the multiplicity
sy (see Bellman and Cooke [3, page 55]). The sum in equation
(54.19) is either finite or infinite, with suitable conditions to ensure
convergence. In actuality, finding all the solutions to equation (54.15)
is very difficult. This technique generalizes to higher order ordinary
differential equations and partial differential equations, but the work
in obtaining a solution becomes prohibitive unless numerical methods
are used.

Delay equations are usually solved numerically. A survey of numerical
techniques for solving delay equations may be found in Cryer [6].
Nieves’s paper [14] contains the description of a computer algorithm
that numerically approximates the solutions of functional equations
with a minimal amount of user input. Virk’s paper [18] extends
Runge-Kutta methods to delay-differential equations (the method
he presents is compromise between computational efficiency and code
complexity).

See also Saaty [16, Chapter 5, pages 213-261].
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55. Dependent Variable
Missing

Applicable to Ordinary differential equations of the form G (y™,
y(n71)7 ety ylla yla iE) = 0

Yields

An ordinary differential equation of lower order.

Idea

If the dependent variable does not appear explicitly in an ordinary
differential equation, then the order of the ordinary differential equation
can be reduced by 1.

Procedure
Suppose we have the nth order ordinary differential equation

Gly™,y™ =Dy x) = 0. (55.1)

Notice that the variable y(z) does not appear explicitly in equation (55.1).
If we define p(z) = y/(x), then equation (55.1) becomes

G, p"=2 Ly p,a) =0, (55.2)

which is an ordinary differential equation of order (n—1) for the dependent
variable p(x). After solving equation (55.2) for p(z), y(x) can be found by
integrating p(x).

Example
Suppose we have the second order equation

y' +y = (55.3)
Using y'(z) = p(x), equation (55.3) can be written as

p+p==x. (55.4)
Equation (55.4) can be solved by integrating factors (see page 356) to obtain

p(x) =Ae ™ + 2 —1,

where A is an arbitrary constant. Then p(z) can be integrated to obtain
y(x)
x !EQ
y(x) :/ p(t)dt:B—Ae_””—i—? -z,

where B is another arbitrary constant.
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Notes
1. This solution technique can be derived from Lie group methods (see
page 366).
2. See also Boyce and DiPrima [1, pages 111-112], Goldstein and Braun
[2, pages 74-76], Ince [3, page 43], and Rainville and Bedient [4, pages
266—268].
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56. Differentiation Method

Applicable to Nonlinear ordinary differential equations.
Yields

An explicit solution.

Idea

Sometimes differentiating an ordinary differential equation will result
in an ordinary differential equation that is easier to solve.

Procedure

Given an ordinary differential equation, differentiate it with respect to
the independent variable. This will yield a new equation that may some-
times factor (see page 292), or simplify in some other way. By considering
each term in this new equation to be equal to zero, several possible solutions
may be found.

The general solution of each term must then be used in the original
equation, possibly to constrain some of the parameters.

Example
Suppose that we have the nonlinear ordinary differential equation
2 1 2
29y" = ()" =3 —2y")". (56.1)

If this equation is differentiated with respect to z, the simplified result is
y" (z%y" — xy’ —3y) =0,
from which we recognize that
y" =0 or 22y —ay — 3y =0. (56.2)
In the first case, a candidate for the general solution is
y(x) = az® + bx + c.

Using this form in the original equation, equation (56.1), we find after some
simplification that 3ac = b2. Using this equation to determine ¢, a general
solution to equation (56.1) is found to be

b2
y(r) = ax® +br + —. (56.3)
3a
Another possibility is that the second expression in equation (56.2) is
equal to zero. This second equation is an Euler equation (see page 281),
and so the general solution is found to be

_ 3. B
y(z) = ax +x.
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Using this form in the original equation, equation (56.1), we find after some
simplification that o8 = 0. Hence, two different solutions to equation (56.1)
are given by

3

y(r) = ax and y(z) = (56.4)

B
—
Equations (56.3) and (56.4) contain three different solutions to equation
(56.1).

Notes
1. The above example is from Bateman [1, pages 66—67].
2. This procedure is used to find the singular solutions to Clairaut’s
equation (see page 237).

Reference
[1] BATEMAN, H. Partial Differential Equations of Mathematical Physics. Dover
Publications, Inc., New York, 1944.
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57. Differential Equations
with Discontinuities®

Applicable to Equations that contain discontinuous functions.
Yields

An exact solution.

Idea

Equations can be solved locally and then patched together at the points
of discontinuity.

Procedure

The following discussion is limited to linear ordinary differential equa-
tions, but the general techniques apply to linear and nonlinear ordinary
differential equations and partial differential equations.

Suppose we have the equation

an(@)y'™ + an_1y" Y 4+ 4 an(2)y + ao(x)y = b(x),
(57.1)

where the {a;(x)} and b(x) may all be discontinuous. For example, a;(z)

may look like
T if0 <z <3,
ai(z) =19 | .
sinx if3<x<8.

We presume that the {a;(z)} and b(z) are discontinuous at only a finite
number of points, say {x1,z2,...,Zn}, and that we wish to find the solu-
tion at the point zy with xo < 21 < -+ < @y, < ¢. Assume further that
the initial data {y(z0), v’ (z0), %" (z0), ...,y (xo)} are all given.

The general technique is to divide the interval from zo to xy into m
intervals and solve equation (57.1) separately on each interval. Because
the equation is continuous on these intervals, we can use any technique
known to us to find the solution. Define y;(x) to be the solution in the
interval [z, zj11].

To determine y;(z) completely, we need to specify the value of {y;(z;),
yi(xj), -, yﬁ”fl)(mj)}. These can be determined from y;_1(z). Because
an equation of nth order (which is what equation (57.1) is) must have
continuous derivatives of all orders up to n— 1, we simply match the values
of y;(x) and its derivatives to the values of y;_1(z) and its derivatives, all
at the point z;.

To illustrate this technique on equation (57.1), we would solve

an (@)l + an—1y" Y 4+ ar(@)y) + ao(x)y; = b(z)
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in the interval [z;,2;41], for j =0,1,2,...,m. To obtain the initial values
for each equation we take

Yo(wo) y(zo)
Yo (7o) y'(zo0)
_y(()n—l) (xO) _y(nfl) (xO)
and then
y;‘(l’j) ] ya’—l(xj) ]
yj(xj) yjq(fj)
: = : , forj=1,2,...,m.
y"V ) L)

Finally, the solution at x = z; will be given by yum (xf).

Example
Suppose we want to determine the value of y(t) at ¢ = T when

y'+ ft)y =0,
and f(t) is given by

-1 for0<t<r,
f(t) =
1 for7<t<T,

given that y(0) = 1, y'(0) = 0. (Here, 7 and T are fixed constants.) To
solve this problem, we break the interval from 0 to T into two intervals;
interval I will be from 0 to 7 while interval II will be from 7 to T

In interval I, f(t) can be replaced by —1, so we solve

Yy —y1=0, (0)=1, ¢;(0)=0.

This equation has the solution y;(¢) = cosht¢. In interval II, f(¢) can be
replaced by 1, so we solve

Yy +y2=0 (57.2)

in the interval from 7 to T'. For the initial values of ys(t), we use the final
values of y1 (t), that is,

1(7) = cosh T,
yo(7) = zi ET; = sinhT. (57:3)
The solution of equations (57.2) and (57.3) is

y2(t) = (sin7 cosh 7 + cos 7 sinh 7) sin ¢ + (cos 7 cosh 7 — sin 7 sinh 7) cos ¢,
and hence, the value of y(t) at t = T is given by

y2(T') = (sin7 cosh 7+ cos 7 sinh 7) sin T+ (cos 7 cosh 7 — sin 7 sinh 7) cos 7.
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Notes

1. When the discontinuities involve the dependent variable, then the
problem is generally a free boundary problem. See Elliot and Ock-
endon [3] or Fleishman [6] for a discussion.

2. If the discontinuity appearing in a linear differential equation is a
single delta function, which appears as a forcing function, then the
solution will be a Green’s function (see page 318).

3. If the discontinuities include generalized functions (such as a delta
function), then the solution may only exist in the weak sense. See
Gear and Osterby [7] for details.

4. There exist computer programs for numerically approximating differ-
ential equations with discontinuities. See Enright et al. [4] or Gear
and Osterby [7].

5. Fleishman [6] analyzes the equation x = A(t)x 4 sgn(x) + t(t), where
“sgn” represents the signum function.

6. Das et al. [2] compare eight different approximations to a one-dimensional
steady-state boundary value problem for a general symmetric second
order ordinary differential equation with discontinuous leading coef-
ficient.

7. See Leveque and Li [9] for methods for elliptic partial differential
equations. See also Boyce and DiPrima [1, Section 6.3.1, pages 304—
309].
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58. Eigenfunction Expansions®

Applicable to Linear differential equations with linear boundary
conditions.
Yields
An exact solution in terms of an infinite series.
Idea

Any “well-behaved” function can be expanded in a complete set of
eigenfunctions. In this method, we expand the dependent variable in a
differential equation as a sum of the eigenfunctions with unknown coeffi-
cients. From the given equation and boundary conditions, equations can
then be determined for the unknown coefficients.

Procedure

We will describe the procedure for ordinary differential equations, but
the same procedure can be used for partial differential equations (see Ex-
ample 2). Assume that we want to solve the inhomogeneous linear ordinary
differential equation

Ly =3 pe() 2 = h(e),

(58.1.a-b)

n d’r‘y dTy )
Bi[y] :=Z<cir@(a)+dirﬁ(b)> =0, i=1,2,...,n,

r=1

for y(x), where = € [a,b] and {c¢;r, dir, pr(z), h(z)} are all known.

Let us suppose that we know a complete set of eigenfunctions {uy(x)}
that satisfy the boundary conditions in equation (58.1) and are orthogonal
with respect to some weighting function w(z). These could be obtained
from a table (e.g., see table 77.1), or we might look for a set that is related
to the differential equation in (58.1). A common approach is to choose a
set of eigenfunctions {uy} that satisfy

H[uk] = )\kuk,

58.2.a-b
Rijur] =0, i=1,2,...,n, (58.2.a-b)

where H|[] is a linear operator related to L[] in some way, the R;[:] are
linear boundary conditions related to B;[-] in some way, and )y, is a constant
(M is an eigenvalue of the (H, {R;}) system). The orthogonality condition
requires that

0 form #k,
N, for m =k.
(58.3)

b
(Uk, Upy) = / g () (x)w(x) de = Nidgm = {

| CD-ROM Handbook of Differential Equations (©)Academic Press 1997 |




58.  Eigenfunction Expansions* 269

Frequently the operator H[-] is chosen to be the same as the operator
L[], and the {R;} are chosen to be the same as the {B;}. This is not
required, nor must the degree of the differential equation in (58.2.a) be n
(which is the degree of the differential equation in (58.1.a)).

Because the presumed eigenfunctions are complete, we can write any
“sufficiently smooth” function as a linear combination of these functions.
In particular, we choose to represent y(x) and h(z) as

y(z) = Zykuk(x), h(z) = Z hrug(z).
k=1 k=1 (58.4.a-b)

Once the {y;} are known, the problem is solved. The {hx} can be de-
termined, given h(z), by multiplying equation (58.4.b) by w(x)u.,(x) and
integrating with respect to x from a to b. This calculation can be written
as

(h(z),um(a})) = (Z hkuk(m)a%n(x)) ;
k=1
= > b (@), ()
k=1

=3 hi (Nibem) ,

k=1
= thma

where we have utilized equation (58.3). If we take the {R;} to be identical
to the {B;} then, from equation (58.2.b), the boundary conditions for y(z)
(in equation (58.1.b)) are automatically satisfied. Hence, only equation
(58.1.a) needs to be satisfied. Using equation (58.4.a) in equation (58.1.a)
results in

Llyl=1L [Z ykuk(x)‘|

=y L[us]
k=1
= h(z).

The {y;} can now be determined from equation (58.5) by multiplying
equation (58.5) by w(z)um (x) and integrating with respect to z from a to
b. This produces

(58.5)

Z yi (L{ug), um) = (h(x), um) = Nphp, form=1,2,...,
past (58.6)
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which is an infinite system of linear algebraic equations. In principle, all of
the {yx} in equation (58.6) are coupled together.

In practice, if a good choice was made for the eigenfunctions, then equa-
tion (58.6) will simplify and y,, can be determined directly from equation
(58.6). For instance, if H[:] is chosen to be equal to L[] then L[u,] = Apun,
(from equation (58.2)) and equation (58.6) becomes > po | YrAk (Uk, Um) =
Ny hp, or, by orthogonality, ym = hu /Am.-

Example 1
Suppose we have the fourth order differential equation and boundary
conditions

L[y] — y//// —|—o<y” 1 By = h(x),
(0) =0, y(]-) =0, (587)
y"(0)=0, y"(1)=0,

<

to solve for y(z) on the interval z € [0, 1].
For this case we choose to use the eigenfunctions corresponding to the
Sturm-Liouville operator (see page 103)

(0) =0, | (58.8)
0.

For the operator in equation (58.8), it is easy to determine that the eigen-
functions are ug(z) = sinkmz, the eigenvalues are A\, = km, and the
weighting function is w(x) = 1. Because this is a self-adjoint problem (see
page 95), we know that these eigenfunctions are complete. Now that we
have a set of eigenfunctions, we observe that they satisfy the four boundary
conditions given in equation (58.7).

We write y(z) in terms of these eigenfunctions as

y(z) = Z Yk sin k. (58.9)
k=1

Using equation (58.9) in equation (58.7) and then multiplying by u, ()
and integrating from z = 0 to z = 1 results in
Z Y sin kmc} U () dx

/01 L{y(z)|um(x) dx = /01 L 2

o0 1
= kz:; yk/o Lisin(knx)]um (z) dx

= /01 h(z)wm, (x) dz.
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Equating the last two expressions, using u,, (z) = sinmmz and simplifying
gives

00 1
Z Yk / (k47r4 — ak’n? + ﬂ) sin krzsinmnrzr dz =
k=1 0

1
/ h(z) sin mrzx dx,
0
or (since fol sin kwx sinmrz dr = %&m)
1 1
Sk (k*n* — ak®n® + B) = / h(zx)sin kmx dz.
0 (58.10)

Hence, solving equation (58.10) for y; and using this value in equation
(58.9) results in the explicit solution

y(z) = i <2f0 ilw)sin b dm) sin k.

44 _ 122
= kimd — ak?n? 4+ 3

If @ and 3 are such that k*r* — ak?7% 4+ 3 = 0, for some value of k,
then there will be no solution unless fol h(z) sin kwx de = 0. Even then, the
solution will not be unique; this is because the differential equation L[u] =
0, with the boundary conditions in equation (58.7), will have the solution
u(z) = Csinkmx, where C is arbitrary. See the section on alternative
theorems (page 15).

Example 2
Suppose we want to solve the partial differential equation
(bt = ¢w$a
) 0 = b
¢(z,0) = f() (58.11.a-d)
¢(0,t) =0,
d)(]‘V t) = 07

for ¢ = ¢(x,t). We can use the eigenfunctions in equation (58.8) to solve
this problem. In this case, we expand ¢(z,t) as

oz, t) = Z an(t) sinnmz. (58.12)

n=1
By using this representation for ¢(z,t), the boundary conditions in equa-
tion (58.11.b) and equation (58.11.c) are automatically satisfied. By multi-
plying equation (58.12) by sin(mmz) and integrating from z =0 to x = 1,
we find that

1
an(t) = 2/0 ¢(z,t)sinnmzdz. (58.13)
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Using the boundary condition from (58.11.b) in equation (58.13) produces
the initial values for the {a,(t)}

1 1
an(0) = 2/ ¢(z,0)sinnrzdz = 2/ f(z)sinnrzdz.
0 0 (58.14)

Now, the correct procedure is to multiply the original equation, equation
(58.11.a), by one of the eigenfunctions, sinmmz, and integrate from x = 0
to x = 1 to obtain

1 1
/ ¢ sinmmr dr = / Qe SN do. (58.15)
0 0

After utilizing equation (58.12) for ¢ in equation (58.15), the resulting
equation should be integrated by parts, using the information in equation
(58.13). This results in

al,(t) = —n*ra,(t), (58.16)

where a prime denotes a derivative with respect to ¢. The solution of
equation (58.16) is

an(t) = an(0)e ™™ ™t

1 L, 58.17
(2/ f(z)sinnmz dz) et ( )
0

where we have used equation (58.14). Combining equations (58.12) and
(58.17), we determine the final solution to equation (58.11) to be

oo 1
o(z,t) = Z (2/0 f(z)sinnrz dz) e sinnra.

n=1

Be aware that it would have been incorrect, when trying to obtain
an ordinary differential equation for a,(t), to substitute equation (58.12)
into equation (58.11.a) and then multiply by one of the eigenfunctions and
perform the integration. Although this would have resulted in the same
differential equation and boundary conditions for a,, in this example, it
might not work in other cases (see the next example). The proper technique
is to multiply the original equation by one of the eigenfunctions and then
integrate by parts.

Example 3

Consider solving Laplace’s equation in two dimensions in the unit square

Ugy + Uyy = 0,
u(a:, 1) = U’(Oa y) = U(l,y) =0,
u(z,0) = f(z). (58.18.a-¢)
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Since the functions {sinnmy} are complete on the interval [0, 1], we choose
to represent the solution to equation (58.18) in the form

u(z,y) = Z cn () sinnmy, (58.19)
n=1
from which we can deduce that
1
en(z) = 2/ u(z,y) sinnry dy. (58.20)
0

From the boundary conditions on u(x,y) at = 0 and at x = 1, we also
find that ¢, (0) = ¢, (1) = 0.

We will show that an incorrect answer is obtained if the {c¢,} are
determined in a naive way. If we substituted the assumed form of the
solution (e.g., equation (58.19)), into the equation in (58.18.a), then we
would find

oo
/!

Ugy + Uyy = E (cn — n27r2cn) sinnmy = 0.
n=1

Hence, by orthogonality, we would find that ¢/ — n?r%c, = 0. Solving

this differential equation with the boundary conditions on ¢, (e.g. ¢,(0) =
¢n(1) = 0), we would be led to ¢, (x) = 0 and so u(x,y) = 0. This is clearly
wronyg.

If, instead, the equation (58.18.a) is multiplied by 2sinnmy and inte-
grated with respect to y from 0 to 1, then we obtain

1
0= / 2sin Ny (Ugy + Uyy) dy
0

dQ 1 . . .
=3 /O 2u(z, y) sinnmy dy + 2uy,(z,y) sinnmy |

1
— 2nmu(z, y) cosnwy }é —n?n? / 2u(z,y) sinnwy dy
0
=cl +2nmf(z) — n*rcn,

where we have integrated by parts twice, used equation (58.20) to substitute
for the integral, and used the boundary conditions in equation (58.18.b-c).
Solving this last equation for ¢, (z), we find

1
cn(z) = 2n7r/ G(z;t) f(t) dt,
0

where G(z;t) is the Green’s function G(z;t) = Sinhmifrziiﬁlﬁzz(l_r>) and
where x5 (z-) indicates the larger (smaller) of x and ¢.

This second approach gives the correct solution to this problem. The
reason that the first approach would not work is that the series chosen to
represent the solution does not have uniform convergence.
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Notes

1. Note that the solution in Example 2 would have been obtained in
exactly the same form if separation of variables had been used (see
page 487).

2. If the chosen eigenfunctions do not come from a self-adjoint operator,
then it will be necessary to know the eigenfunctions of the adjoint
operator. This is because the orthogonality condition will utilize the
eigenfunctions of the adjoint operator.

3. Because the eigenfunctions we used in the examples were just sine
functions, the expansions obtained here are identical to the results
that would have been obtained from a Fourier sine series (see page
344).

4. To determine that a set of functions is complete, it is not necessary
that they be derived from a self-adjoint operator. See Minzoni [6] for
an example of a set of functions proved complete by using theorems
from analysis.

5. See also Birkhoff and Rota [1, Chapter 11], Butkov [2, pages 304-318],
and Farlow [4, Lesson 9, pages 64-71].
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59. Equidimensional-in-x
Equations

Applicable to Ordinary differential equations of a certain form.
Yields

An autonomous ordinary differential equation of the same order (which
can then be reduced to an ordinary differential equation of lower order).

Idea

An equidimensional-in-z equation is one in which the scaling of the z
variable does not change the equation. By a change of independent variable,
we can change an equation of this type into an autonomous equation.

Procedure

An equidimensional-in-z equation is one that is left invariant under the
transformation z — ax, where a is a constant. That is, if the original
equation is an equation for y(z) and the x variable is replaced by the
variable az’, then the new equation (in terms of y and ') will be identical
to the original equation (which is in terms of y and z). An equation of
this type can be converted to an autonomous equation of the same order
by changing the independent variable from x to ¢ by the transformation
xz = et

Example
Suppose we have the nonlinear second order ordinary differential equa-

tion

d*y dy

T—= = 2y——. 59.1

dz? Vi ( )
First, we will show that this equation is equidimensional-in-z. Substituting
ax’ for z in equation (59.1) produces

N @y . dy
(az )d(ax’)2 = 2yd(aw’)’ (59.2)

or, multiplying equation (59.2) by the constant a

o d2y _ d_y
d(m/)Q Yz

which is identical to equation (59.1).
Because we now know that equation (59.1) is equidimensional-in-z, we
change variables from y(z) to y(t) by @ = e'. Using table 59.1, we find that

et672t(

Y — ye) = 2y(e "),
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Yo = e_t(yt)
Yt — Yt),
Yett — 3Yee + 2ut),
Yeerr — 6Ypr + 11y — 6yy),
—5t

(
3t(
(
Yzaeaze = €~ (Yeterr — L0Ustee + 35Yeee — 50yse + 24yy),
(
(
(

Yrxx = €

_ 4t
Yzzza =

v3) =€ " (Yeis) — 10yeca) + 35Yee — 50yze + 24yy),

" (yu6) — 15Yu(s) + 85Yr(a) — 225y + 274y — 120y,),

" (ye(ry — 21y6) + 1T5Y1(5) — T35Ys(a) + 1624ysp — 1764y + T20y,).

z(7) = €

Table 59.1: How to transform derivatives under the change of dependent
variable: & = et. (To simplify notation, define Yo(n) to be the nth derivative
of y with respect to x, and similarly for y;(,.)

or

Yt — Yt = 2YYs. (59.3)

The equation in (59.3) is autonomous (there is no explicit ¢ dependence).
Hence, it can be reduced to an ordinary differential equation of order one
by the transformation u(y) = y:(t) (see page 230 for more information).

Carrying out the details (equation (59.3) was the example in the section
on autonomous equations), it is easy to derive that either y(t) is a constant
for all ¢, or y(t) satisfies

1
y(t) = Etan(F + Et) — 2
where E and F are arbitrary constants. Changing the independent variable
from t to = we have

1
y(z) = Etan(F + Elogx) — 3

Notes

1. This method is derivable from Lie group methods (see page 366).

2. It is straightforward to create a Macsyma program that will perform
the necessary change of variables. Program 59.1 shows a terminal
session in which the input equation

dy\' Py
dx ydx2_
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(c1) DEPENDS(Y,X)$
(c2) EQUIDIMENSIONAL_IN_X(EQN,Y,X):= BLOCK([NEW,HOLD,J],

DEPENDS( [U], [T]),

GRADEF (T, X, %E**(-T) ),

NEW:SUBST( U, Y, EQN ),

NEW:EV(NEW, DIFF),

NEW:SUBST( %E**T, X, NEW),

NEW : FACTOR (NEW) ,

NEW) $
(c3) EQN: DIFF(Y,X)**2-Y+DIFF(Y,X,2);

2
(d3) y) -vyvy
X XX
(c4) EQUIDIMENSIONAL_IN_X(EQN,Y,X);
-2t 2

(a4) - %e (uu - (u) -uu)

tt t t

Program 59.1: Macsyma program to change variables.
is converted into the second order autonomous equation
d?u du\? du 0
U— — | — ] —u—=0.
dt? dt dt

This autonomous equation could then be reduced to a first order
equation (see page 230).

3. See Bender and Orszag [1, page 25].

Reference
[1] BENDER, C. M., AND ORSZAG, S. A. Advanced Mathematical Methods for
Scientists and Engineers. McGraw—Hill Book Company, New York, 1978.
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60. Equidimensional-in-y
Equations

Applicable to Ordinary differential equations of a certain form.
Yields

An ordinary differential equation of lower order.

Idea

An equidimensional-in-y equation is one in which the scaling of the y
variable does not change the equation. This information can be used to
lower the order of the equation by a change of the dependent variable.

Procedure

An equidimensional-in-y equation is one that is left invariant under the
transformation y — ay, where a is a constant. That is, if the original
equation is an equation for y(z) and the y variable is replaced by the
variable ay’, then the new equation (in terms of ¢’ and z) will be identical
to the original equation (which is in terms of y and z). An equation of
this type can be converted to an equation of lower order by changing the
dependent variable from y(z) to e*(®).

Example
Suppose we have the equation

(1-2) [yj—y— (j—y)

to solve. We can tell by inspection that this equation is equidimensional-
in-y because all of the y terms in equation (60.1) all appear to the same
power. That is, the y terms in equation (60.1) are all quadratic, the terms
being of the form {y2, y2,v2., .-\ YYu, YYzzs YaYzas - - - }-

To formally show that equation (60.1) is equidimensional-in-y, substi-
tute ay’ for y in equation (60.1) to find

+2%y* =0 (60.1)

d*(ay’) (d(ay’))2 +22(ay’)? = 0.

(1-2) [my’) (2

Or, because a is a non-zero constant,

d2yl dy/ 2
j— /— — _
(1-2) [y dx? <da:>
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dy[0]= Explulx]];

dy[1]1= y[x] w’[x];

dy[n_]l:= DIdy[n-11,x1/. {y’[x]->y[x] u’[x]}

dy2[n_1:= dy[nl /. {yx]l->y, w [x]->u’, u’’[x]->u’’,
u)))[x]_>uiii, u;));[x]_>u:;:;}

Table[ {n,ddy2[nl}, {n,1,4}] // ColumnForm

Program 60.1: Mathematica program to change variables: y(z) = e*(*).

which has the same form as equation (60.1). Now, substituting e*(*) for
y(x) in equation (60.1) produces

d?u du? du\?
1-— 2 == — — | y—
(1-2) [y (dw2 * <d;v> ) (ydx)
where table 60.1 has been used to determine how the derivatives transform
under this change of variable. For y # 0, equation (60.3) becomes

+2%y? =0,

(60.3)

d*u 9
Note that equation (60.4) does not have any explicit y dependence. If it
did have any such terms, then the original equation could not have been
equidimensional-in-y. The solution to equation (60.3) is (see page 224)

x w 2'2
u(a:):/ [/ z—ldz} dw,
3 2P
:€+7+(x—1)10g(x—1)+Ax+B,

where A and B are arbitrary constants. Hence, the solution of the original
equation is

u(a) @) o[ L 4
ylx) =" =(z - 1) exp E—F?—FAQZ—FB .

Notes

1. This method is derivable from Lie group methods (see page 366).
2. Equidimensional-in-y equations are also called equations homoge-
neous in .
3. The results in table 60.1 can be obtained with the Mathematica code
in program 60.1. The output of that program is:
{1, y v}
2
{2, yw +yu’}
3 (3
3, yuw +3yuw w’>+yu }
4 2 2 3)
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y=e",
Yo = YlUg,
Yoz = Y(Uza + Ui]a

Yooz = Y(Uszz + BUglpy + ul],
Yowws = Y(Uszzr + Nglipry + Uy + 6USUL, + ul).

Yo(a) = Y(Up(a) + Aglipzs + 3u, + 6ulusy + ul),

Yn(5) = Y(Us(5) + DUzUsp(a) + 10Uz UL + 10U U zp + 15uzu?, + 10U Uy, +ud),
Yax(6) = y(ugc(e) + 6uguz(s) + 15ugztz) + 15uiuw(4) + 10uim + 20u§umm

+ 15U, + 60U Uprtyry + 45u2u2, + 15ubu,, + ub).

Table 60.1: How to transform derivatives under the change of independent
variable: y(z) = e“(®). (To simplify notation, define y,(, to be the nth
derivative of y with respect to x. Similarly for u,y).)

{4, yuw +6yuw uw’>+3yu’ +4yu u +

(4)
yu }

4. See Bender and Orszag [1, page 27].

Reference
[1] BENDER, C. M., AND ORSZAG, S. A. Advanced Mathematical Methods for
Scientists and Engineers. McGraw—Hill Book Company, New York, 1978.
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61. Euler Equations

Applicable to Linear ordinary differential equations of the form
agz"y™ + arz" Yy ot a, gzy + any = 0.

Yields

An exact solution.

Idea

An equation of the above type can be turned into a linear constant co-
efficient ordinary differential equation by a change of independent variable.
This new equation can be solved exactly.

Procedure
An Euler equation has the form

apa"y™ + ara" "y 4o, yay +any = 0.
(61.1)

If the independent variable is changed from x to ¢t (via the transformation
x = e'), then the resulting equation becomes a linear constant coefficient
ordinary differential equation. This type of equation can be solved exactly.
(Table 61.1 shows how the derivatives of y with respect to z become
derivatives of y with respect to t.)

Alternatively, a solution of the form y = =
equation (61.1).

k can be tried directly in

Example 1

Given the Euler equation
Yoz — 22Ys + 2y = 0,
we change variables by x = ¢! to obtain
Y — 3y + 2y = 0. (61.2)

The standard technique for solving a linear constant coefficient ordinary
differential equation is to look for exponential solutions (see page 247).
Using y = e* in equation (61.2), we find the characteristic equation to be
A2 —3X+2 = 0. The roots of this equation are A = 1 and A = 2. Therefore,
the solution to equation (61.2) is

y(t) = Cre’ + Coe™,

where C7 and Cy are arbitrary constants. Writing this solution in the
original variables, we determine the final solution

y(z) = Cra + Coz?.
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Yz = eit(yt)
Yoz = € (Z/tt - yt)
Yazaa = € Bt(yttt — 3yu + 2y1),

4t(ytttt — 6y + 1lyy — 6yy),

Yrxxxe =
Yzzzzr = 5t(yttttt — 10yt + 35Yee — 50Yse + 24yy).

Yos) = € (Yees) — 10ys(a) + 35Yue — 50y + 24u),

Ya(e) = € " (Yr(6) — 15Ye(5) + 85Ys(a) — 225Ysee + 274ys: — 120y,),

) =€ " (yry — 21yu6) + 175Y1(5) — T35Ys(a) + 1624ysse — 1764y, + 720y,),

Table 61.1: How to transform derivatives under the change of dependent
variable: z = e! (To simplify notation, define Yz(n) to be the nth derivative
of y with respect to x. Similarly for y;(,).)

Example 2
Given the Euler equation
23y — 2%y’ — 2wy’ — 4y =0, (61.3)
we use y = ¥ to find the characteristic equation:
E(k —1)(k — 2)a* — k(k — 1)2* — 2ka® — 42* =0

or
(k* +1) (k—4) =0.

This equation has the roots k = 4 and k = +i. Hence, the general solution

to equation (61.3) is

y = C1z* 4 Cy cos(log ) + Cy sin(log x).
Notes
1. This method is also applicable to the equation
aO(Aa:+B)"y(")—l—al(Ax—i-B)"_ly(”_l)—F- ctan_1(Az+B)y +any =0,

which is only a trivial modification of an Euler equation.
2. Equations of the form —%&— = 4+ , where P(x) is a polynomial
a VP@ VP (z) is a poly

of degree three or four, have also been called Euler equations (see
Valiron [5, pages 201-202]).

3. Euler matrix differential equations (in which the {a;} in equation
(61.1) are all matrices) are discussed in Jédar [3].

4. See also Boyce and DiPrima [1, Section 4.4], Finizio and Ladas |2,
pages 103-105], and Simmons [4, page 86].
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62. Exact First Order
Equations

Applicable to First order ordinary differential equations.
Yields

An exact solution (generally implicit).

Idea

Some first order ordinary differential equations can be integrated di-
rectly.

Procedure
If the given ordinary differential equation has the form

dy _ N(z,y)
—-— = 62.1
de  M(x,y) (62.1)

and N(z,y) and M (z,y) are such that
oM  ON
—+—=—=0 62.2
ox + Jy ( )

then equation (62.1) is said to be an exact ordinary differential equation.
Such an equation can be solved exactly, though the answer may be in terms
of an integral. The (implicit) solution will be of the form

Pz, y) =C, (62.3)

where C is an arbitrary constant. Motivating this is straightforward.
Differentiating equation (62.3) with respect to z and rearranging terms
gives

dy Pa
_— = 62.4
Comparing equation (62.4) to equation (62.1), we have
¢s = —N, ¢, =M, (62.5.a-b)

and hence equation (62.2) is satisfied (because ¢y = ¢ys). Conversely, if
equation (62.2) is satisfied, then there is a ¢ such that equation (62.5) is
satisfied. To solve equation (62.5) for ¢, integrate equation (62.5.a) with
respect to = and integrate equation (62.5.b) with respect to y for

oa.9) == [ Ny do+ ().
(62.6.a-b)

oe,y) = / M(z,y)dy + g(2),
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where f(y) and g(x) are unknown functions. Comparing equation (62.6.a)
to equation (62.6.b) will determine f(y) and g(z). Knowing either of these,
the full solution is then given by equation (62.6.a) or equation (62.6.b).

Example
Suppose we have the equation

@_BxQ—y2—7

dr e¥+2xy+1 (62.7)
In equation (62.7) we identify
N(z,y) =3z> —y?> -7 and M(x,y) =e¥ 4 2zy + 1.
Following our procedure, we find M, = —N, = 2y and so we know that we

can solve equation (62.7) exactly. Integrating N and M we find

$w,y) = —/N(x,y) dz + f(y) = —(«® +y*z — Tx) + f(y),
¢(z,y) = /M(% y)dy +g(x) = (e’ + %z +y) + g(v). (62.8.-D)
Comparing equations (62.8.a) and (62.8.b), we deduce that
2’ — g’z +Te+ fly) = e’ +y’e +y+g(2)
or
fly) = (e +y) = gz) — (T + ). (62.9)
From equation (62.9) we conclude that

fy)=e+y+ A, gx) =Tr—2>+ A,
(62.10.a-b)

where A is an arbitrary constant. Using either equation (62.10.a) in (62.8.a)
or equation (62.10.b) in (62.8.b), we conclude

d(z,y) = —a° —y? + Tz + e’ +y+ A (62.11)

The solution is then given by ¢(x,y) = C, where C is an arbitrary constant.
Therefore,

—23 —y* + T +e! +y="B (62.12)

is the final solution, where B := A — C' is a final arbitrary constant. Note
that the solution in equation (62.12) is implicit.
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Note
1. See Boyce and DiPrima [1, pages 79-84], Rainville and Bedient |2,
pages 29-33], and Simmons [3, pages 38-41].
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63. Exact Second Order

Equations
Applicable to Some nonlinear second order ordinary differential
equations of the form f(z,y,y")y"” + g(x,y,y") = 0.

Yields

A first integral (which will be a first order ordinary differential equa-
tion).
Idea

Some second order ordinary differential equations can be integrated
once.

Procedure
The second order differential equation

F(z,y,y,y") =0 (63.1)

is said to be exact if it is the total differential of some function; i.e., F' =
d¢/dx where ¢ = ¢(z,y,y’). If equation (63.1) is exact, then ¢ = C is a
solution to equation (63.1), with C' an arbitrary constant. Differentiating
¢ = C with respect to x, we find

dp _d¢ 09 , 09 ,

@—%4—8—2/2/ +3_y’y . (63.2)

Comparing equation (63.2) to equation (63.1), we conclude that, for equa-
tion (63.1) to be exact, F(x,y,y’,y") must have the form

F(x,y,y,y") = f(x,y,9")y" + 9(z,y.9), (63.3)
for some functions f and g with

0 0 0
f(xay7yl):a_¢/7 g(m)yvyl):a_i+8_¢y/
y y (63.4.a-b)

By differentiating equation (63.4.a—b) with respect to x, y, and p, (using
p := dy/dx), all dependence on ¢ can be eliminated between the two
equations in equation (63.4) to obtain

fzz + 2pfzy +p2fyy = Gap + DYyp — Gy,

(63.5)
facp +pfyp + 2fy = Ypp-
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If the conditions in equation (63.5) hold, then equation (63.3) is exact.
If equation (63.3) is exact, then we can integrate equation (63.4.a) (with
respect to p) to determine ¢(z,y,y’) as

6= hiz,y) + / Fa.p) dp, (63.6)

where h(z,y) is, so far, an arbitrary function of integration. This function
will be restricted when equation (63.6) is used in equation (63.4.b).

Example
Given the equation

wyy” +x(y')* +yy =0, (63.7)
which has the form of equation (63.3), we identify: f = xy, g = x(y)? +

yy' = xp? + yp. It is easy to verify that equation (63.5) holds. Hence,
equation equation (63.7) is exact. Equation (63.6) now becomes

¢=h(ﬂr,y)+/ﬂrydp

(63.8)
= h(z,y) + zyp.
Using equation (63.8) in equation (63.4.b) yields
99 09
=X 2 + = — + _— /
g=ap’ typ =g ot 5y (63.9)

= (ha +yp) + (hy + xp)p.

Hence, if h is constant, say h = D, then equation (63.9) will be satisfied.
Therefore a first integral of equation (63.7) is given by ¢ = C, or

C = ¢(z,y,p)

=D +xyp (63.10)
dy
=D —.
Ty dx
In this example, the first integral equation (63.10) can itself be integrated
in closed form (this is often true). A solution to equation (63.7), obtained
by solving the ordinary differential equation in equation (63.10), is thus
given by
y?
3= (C—D)logz + E,

where FE is another arbitrary constant.
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Notes
1. The most general solution for h(z,y) in equation (63.9) is h = h(y —
x). With this form for h, however, the first integral cannot be
integrated to yield an explicit solution.
2. Exact second order linear ordinary differential equations have fac-
torable operators (see page 294).
3. Given the differential equation

f@,y,...,y™) =0, (63.11)

define f; = %. Then equation (63.11) will be exact if

7Ldnf77«
_...+(_1) dxn :0

_dn Eh
O dr dx?

(63.12)

If the differential equation (63.11) is exact, then a first integral can be
found by a repetitive sequence of steps: First, integrate the highest
order term in f and call this result F;. Then, integrate the highest
order term in fdr — dF} and call this result F>. Continue in this
manner until fdx — dFy — dFy — --- = 0. Then, a first integral is
given by Fy 4+ F5 + - - - = constant. For example, given the nonlinear
third order equation

1.1

f=w" —vy' +v*y =0, (63.13)

we identify fz3 =y, fo = =y, f1 = —y" +93, fo =y + 3y%y’ and
verify that equation (63.12) is satisfied. We then calculate Fy = yy”,
since the highest order term in f is yy””’. Then, fdx—dFy = (—2y'y" +
y3y')dx, and so we take Fy = —(y')%. Then, fdx—dF)—dFy = y3y'dx,
and so F3 = iy‘l. Finally, then, fdx — dFy — dFy — dF3 = 0, so that

"

1
vy — (v')* + Zy“ = constant

is a first integral of equation (63.13).
4. See also Goldstein and Braun [1, page 93] and Murphy [2, pages
921-222).

References

[1] GOLDSTEIN, M. E., AND BRAUN, W. H. Advanced Methods for the Solution of
Differential Equations. U.S. Government Printing Office, Washington, D.C.,
1973. NASA SP-316.

[2] MurpnY, G. M. Ordinary Differential Equations and Their Solution. D. Van
Nostrand Company, Inc., New York, 1960.

| CD-ROM Handbook of Differential Equations (©)Academic Press 1997




290 II.LA  Exact Methods for ODEs

64. Exact Nth Order
Equations

Applicable to Linear nth order ordinary differential equations.

Yields
A first integral.

Idea

Some linear differential equations can be integrated exactly without
modifying the equation in any way.

Procedure
The linear nth order ordinary differential equation
ar ar—t d
Pa(@) 2 + Pa-a(2) 5] + -+ + Pi(2) 52 + Polw)y = R(@),
dx™ dxm™ dx (64.1)
is said to be ezact if it can be integrated once to yield
dn—l dn—2 d
Qn—l(x)Tfll + Qn—Q(x)T}; + -+ Ql(a:)—y + Qo(z)y = /R(x) dz.
dx dx dx (64.2)

If equation (64.1) is exact, then the {Q;(z)} may be found from
anl = Pna

Qn72 = Pnfl - P7/7,7
Qn—B = Pn—2 - P;L_l + qua

QO =P — P2I —I—Pél — 4 (_1)7171}37&7171)'

A necessary and sufficient condition for equation (64.1) to be exact can
be found by differentiating equation (64.2) with respect to x and comparing
terms with equation (64.1). This condition is

ann _ dnilpnfl dni?Pn72 + nflﬁ

dxm dxn—l dxn—Q - (_]‘) dr + (_]—) PO =0.

(64.3)
Special Case

The second order linear ordinary differential equation
Pz)y" + Q(x)y’ + R(z)y =0
will be exact if and only if P”(z) — Q'(z) + R(z) = 0.
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Example
If we have the linear ordinary differential equation of third order
(1+x+x2)@+(3+6x)@+6@—6x (64.4)
da3 dx? de '
then we have Py = 0, P, =6, P, = 3+6x, P3 = 1 +x+22, and R(z) = 6a.
It is easy to verify that
Py d*P,  dP,

dx3 dx? dx

_P0:07

and so equation (64.4) is exact. Integrating equation (64.4) directly, we
obtain

(1+x+x2)@+(2+4x)@+2y=3x2+A (64.5)
dz? dx ’ '
where A is an arbitrary constant. Now equation (64.5) is again exact, and
so it can be integrated again to yield

d
(1+x+x2)£+(1+2x)y:x3+Ax+B7 (64.6)

where B is an arbitrary constant.
Finally, equation (64.6) is once again exact. It can be integrated to
yield the general solution of equation (64.4)

2

2 xt T
l4+z+=x )y=Z+A7+Ba:+C,

where C' is an arbitrary constant.

Note
1. See Ford [1, pages 77-78] and Murphy [2, pages 221-222].
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65. Factoring Equations”

Applicable to Ordinary differential equations and partial differen-
tial equations.

Yields

Equations of lower degree.

Idea

If a differential equation can be factored into simple terms, then the
solution to each of the factors is a solution to the original equation.

Procedure

Given a differential equation, attempt to factor it. If this is possible,
then solve each factor separately. Each of the solutions of the different
factors will be a solution of the original differential equation.

Example
The nonlinear ordinary differential equation

V(' +y) =z +y) (65.1)
for y(x) may be factored into
W +y+az)y —x)=0. (65.2)

Solving each of the factors appearing in equation (65.2) separately, the
solutions to equation (65.1) are given by

Ae ™ +1—ux,
y(z) =

2

B+Z,

where A and B are constants.

Notes
1. The complete solution to the original differential equation may switch
from one solution branch to another.
2. See Bateman [2, pages 97-98] and Fogiel [3, pages 1222-1229].
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66. Factoring Operators®

Applicable to Ordinary and partial differential equations.
Yields

A sequence of lower order equations to solve.

Idea

If the operator representing a differential equation can be “factored”
into two or more operators, it may be easier to find a solution.

Procedure

Suppose we wish to solve the differential equation Q[u] = 0 for the
quantity u(x), where Q-] is a differential operator. When possible, “factor”
the differential equation Q[u] = 0 as L[H[u]] = 0, where L[-] and H|[] are
also differential operators. Then solve the two equations: L[v] = 0 for v,
and then Hlu] = v.

Example 1

The fourth order partial differential equation
(V*—a*)u =0, (66.1)
where a is a constant and V? is the usual Laplacian, may be factored as
(V2 —a)(V? + a)u = 0.

The general solution of equation (66.1), therefore, is given by the solution
of the two successive second order differential equations
(V2 —a)v =0,

(V2 4+ a)u=v. (66.2)

Alternatively, equation (66.1) could have factored equation as
(V24 a) (V2 —a)u=0

so that the general solution of equation (66.1) can also be written as the
solution of

(V2 +a)w =0,

66.3

(V2 —a)u = w. (66.3)
Solving equation (66.2) or equation (66.3) as a sequence of two second order
differential equations may be easier than solving the fourth order equation
(66.1) directly.
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Example 2

If we want to solve the nonlinear ordinary differential equation Q[u] = 0,
where

Q[U] = uir — 2UpUgpy + 22Uy — w2=0 (66.4)
= (uwx - uw)Q - (Uw — U)2 = 0, ’

then we might factor the operator Q-] as Q[u] = L[H|[u]], where L[v] =
v2—v?, and H[u] = u, —u. Therefore, the equation Q[u] = 0 can be solved

o

by solving the sequence of first order differential equations

The solution of L[v] = 0 is v = Ce®®, where C' is an arbitrary constant.
The general solution of equation (66.4) can then be determined by solving

Hlu) = uy —u =v = Ce*?. (66.5)

Equation (66.5) can be solved by the use of integrating factors (see page
356) to obtain the two possible forms of the solution

(A+ Cx)e”,
Ce " + Be”,

where A and B are also arbitrary constants.

Example 3

The relativistic wave equation

2 ot2 0x2  0yr 022 K2

=0

was factored by Dirac [4, Chapter 11] using hypercomplex algebra. If {ay,
ag, as, ag} represent four of the elements in this algebra that obey the
relation a0, + a0 = 26, then the factored equation is

ie ¢4 & 8 ., tme
cdt = 'dex  Cdy  Cdz " 'h

li_F i+ i_|_ i_|_ @ ¢—()
cdt "My TRy TR TMTR )Y T

The first factor led to the correct relativistic theory for the electron, while
the second factor led to Dirac’s prediction of the positron.
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Example 4

The formally self-adjoint homogeneous fourth order operator

(P 2Y) (L) + R

dz? dz? ) dx
may be factored into L{v(x)L[y]], where L[] is the second order operator

Ll = 4 @ |+ utow

where {v(x), u(z), A\(z)} satisfy

viz) = %,
Az) = a?f,

«Q 1
(@) = 7 (a” + §7a) ,
and {a(z), B(x),7(x),6(x)} are any solution to
P(x) = a®p",
Q(z) = ?B" +2aa' 8" + (4ao/' —92a% 4+ ,yag) 2

R(z) = % (" + oy + 'y + ad),
with 48 = 29" + 2. See Hill [9] for details.

Notes
1. Note that the equation in example 2 can be directly factored as Q[u] =
(Uge —2uz+u)(uge —u). In this case, the factorization of the equation
simplier than the factorization of the operator (see page 292).
2. It is not true that the number of distinct factorizations is limited by
the order of the differential equation. For example, the second order
ordinary differential equation

(2% — 2% + (22 — dx)u’ + (6 — 2x)u = 0,

has the three distinct factorizations

d 2y d —
(x£—2) {(x—x)£+2x—3]u—0,

(x% - 3) [(x - xQ)% +x-— 2] u=0, (66.6)
[(x—xQ)% +x—3} (x%—Z)u:
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The Laplacian in two dimensions admits the factorization:

o P L9 (0 ON(o 0N _ (9 (2
S 0z2 oy \ox oy )\ox oy) \oz)\oz)’
(66.7)

where i = /—1. Therefore, using z = x + iy, Laplace’s equation
may be written as VZu = % = 0. This shows that the most
general solution to Laplace’s equation in two dimensions is u = f(z)+
9(Z), where f(z) and g¢(Z) are arbitrary functions. Also, because
the biharmonic equation may be written as V*u = 16% =0,
the general solution of the biharmonic equation is seen to be u =
f(2)+9(Z)+ zh(Z) +Zj(z). The operators 9/0z and 9/9% are known
as Wirtinger derivatives. In two dimensions, solutions of Poisson’s
equation may sometimes be found by use of Wirtinger derivatives.
See Henrici [8, pages 300-302] for details.

. It is possible to write down an “explicit” factorization of any nth
order linear differential equation. To do so, however, requires explicit
knowledge of the n linearly independent solutions. For example, if

L[] is the differential operator
Llu] = u" + p()u’ + q(2)u,

and u1,ug are any two linearly independent solutions of L[u] = 0,
then )
Lju] = W(ui,uz) d ug d (u ’
U dx | W (u1,u2) de \ up

where W (u1,usz) is the Wronskian of wi(x) and wus(x). In the nth
order case, consider the differential operator

Hlu) = u™ + py(@)u™ + po(a)u2 + .- + p ().

If {u1,u9,...,u,} are n linearly independent solutions of H[u] = 0,
then define Wy, (for £k = 1,2,...,n) to be the Wronskian of the first
k linearly independent solutions; that is, Wy := W (uq,us,...,ux).
Using this definition, we can write H[u] as
W, d[ W2,
H = — n R
[U] <Wn—1Wn

) )

See Rainville [12, pages 292-299] for details.

5. The factorization

{f-ao}{g+ao}o-T2ru {2 -]

leads to the technique for solving Riccati equations (see page 392).
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6. Differential resultants can be used to analyze the factoring of opera-
tors for linear differential equations. See Berkovich and Tsirulik [1]
for details.

7. Two differential operators P and @ are said to be permutable if
P(Q) = Q(P). From Ince [10, page 131], we have

If P and @ are permutable operators of orders m and n respec-
tively, they satisfy identically an algebraic relation of the form
F(P,Q) =0 of degree n in P and of degree m in Q.

For example, the operators

_ 2
Coda? 2’
d? 3 d 3
i i Dol
dx ?dr =
are permutable because PQQ = QP. We can also find the algebraic
relation P2 — Q2 = 0, observe

P(P(P(f))) _ f//////_gf////_'_%f///_?

x2

2 144 144

3 Ef//+x_5f/_x_6f = Q(Q(f)).
This example is due to Ince [10, page 131]. See also Griinbaum [7].

8. Landau [11] gives a (surprising) factorization that depends on an
arbitrary parameter a:

w2 n 2 i 1 i 1+ 2ax
L R A x(1+ax) /) \de z(1+azx) Y
9. Schwarz [14] has developed an algorithm that will factor ordinary

differential equations. As an example, his program derives the fac-
torization

"n_ i+i_i — i—i—ki—k;
y 122 o gt )Y T a2 22 x— 1
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67. Factorization Method

Applicable to Eigenvalue/eigenfunction problems for homogeneous
linear second order ordinary differential equations.

Yields

An equation from which a single eigenfunction can be used to calculate
additional eigenfunctions.

Idea

By “factoring” an ordinary differential equation into a certain form, a
ladder of eigenfunctions may be formed.

Procedure

Suppose we have the linear second order ordinary differential equation
PY 4 o m)y + My = 0 (67.1)
— 7"‘ x = .
dx2 3 y y )

where m is an integer for which we would like to determine the eigenfunc-
tions {y} corresponding to a single value of the eigenvalue A. We denote
the eigenfunction by y(A, m) and suppress the x dependence. The equation
in (67.1) is said to be factorizable if it is equivalent to each of

H_T+1HT+13J()M m) = _L()\7 m + 1)y()\7 m)’
H™Hy(A\,m) = L\, m)y(\,m), (67.2.a-b)

where L(\,m) is a function and the HY* are differential operators.

d
HP =k + —
+ (33, m) dz’
For a factorizable equation, finding L(A, m) and the H" is a difficult task.
Also, not all equations in the form of equation (67.1) are factorizable.
If equation (67.1) is factorizable and if y(\, m) is a solution of equation
(67.1), then (see notes)

_ m—+1
y(h,m +1) = Ty, m), (67.3.a-b)
y(A,m —1) = H'y(A,m),
are also solutions corresponding to the same value of A, but different values
of m. Hence, given one solution of equation (67.1) (for a specific value of
A), a ladder of solutions belonging to this value of A may be formed by
repeatedly iterating equation (67.3).
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Example 1
The equation for the associated spherical harmonics may be put in the
form

Ly

de m2 1
d6?  sin26 (

1
A+ Z) y = 0. (67.4)

This equation is factorizable, and we find

m 1 d
HY = <m—§> cot9:|:£,

LA\ m)=\— <m—%)2,

The eigenvalues of equation (67.4) are of the form A = [(I + 1) for | =

(67.5)

m,m+1,.... Some of the eigenfunctions of equation (67.4) are of the form
1-3-5---2+1)]"*
1) — 1+1/2
y;(0) [ 524l } sin 0.

All of the remaining eigenfunctions may be found from equation (67.3) and
equation (67.5) to be given by

) al .
y(6) = cm0+—ﬁylw»

\/(l+m)(11+1—m) [(m_%> df

y"t ) = \/(l+mi T [<m+ %) cot 0 — d%] Y (6).

Example 2
As another example, Legendre’s differential equation
(1 =) [(1 = a*)yp,] "+ m(m + Dym = 0
has the factorizations
H™ HT "y = —mypm,
H_T+1H7_n+1ym _ _(m + 1)2ym7
where HT = (1 — 2?)£ £ ma. This factorization leads to the ladder of
solutions: Ym+1 = H™yYpm,.

Notes

1. The results in equation (67.3) are straightforward to derive. For
example, operating on equation (67.2.b) with HY* results in

HP ™ (O, m)} = LOum) {H2y(,m)}
(67.6)
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Because this has the same form as equation (67.2.a), which is by hy-
pothesis equivalent to equation (67.1), it must be that y = H'y(\, m)
is a solution of equation (67.1). In equation (67.3), we called this
y(A,m — 1) because, when equation (67.6) is compared to equation
(67.2.a), the parameter m is replaced by m — 1.

2. The factorization method has been generalized to systems of equa-

tions in Humi [4].

3. The operators in equation (67.3) are sometimes called raising and low-

ering operators. This method is sometimes called the ladder method.

4. Infeld and Hull [5] have a large list of equations to which this method

applies.

5. The paper by Hermann [3] relates the technique in this section to

Lie groups. Sattinger and Weaver [8, pages 49-54] also consider the
relation to Lie groups.

6. See also Lamb [6, pages 38-41] and Morse and Feshback [7, pages

788-789)].
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68. Fokker—Planck Equation

Applicable to Linear ordinary differential equations with linearly
appearing “white Gaussian noise” terms (a single differential equation or
a system).

Yields

A Fokker—Planck equation (which is a parabolic partial differential
equation) for the probability density of the solution.

Idea

If a differential equation contains random terms, then the solution to
the differential equation can only be described statistically. The solution
to the Fokker—Planck equation is the probability density of the solution to
the original differential equation.

Procedure

Here we present the technique for constructing the Fokker—Planck equa-
tion for a linear system of ordinary differential equations depending on
several white noise terms. Consider the linear differential system for the m
component vector x(t)

d
2X(0) =b(t,%) + o(t,x)n(t), (68.1.a-b)
X(tO) =Y,

where o(t,x) is a real m x n matrix and n(t) is a vector of n independent
white noise terms. That is,

E n;(t)| = 0,

[ni(8)] (68.2)

Elni(t)n;(t + 7)] = 6i;0(7),

where E[-] is the expectation operator, d;; is the Kronecker delta, and

d(7) is the delta function. The Fokker-Planck equation corresponding to
equation (68.1.a) is given by

opP 0 I s 92
5 = ; o (biP) + 5 ‘Zl il (ai; P), (68.3)

)=
where P = P(t,x) is a probability density and the matrix A = (a;;) is
defined by A(t,x) = o(t,x)o " (t,x). The initial conditions for equation
(68.3) come from equation (68.1.b); they are

m

P(tQ,X) = H(S(Q?i — yz) (684)

i=1
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The solution of equations (68.3) and (68.4) is the probability density of the
solution to equation (68.1). Any statistical information about x(¢) that
could be ascertained from equation (68.1) can be derived from P(t,x). For
example, the expected value of some function of x and ¢, say h(x,t), at a
time ¢, can be calculated by

Eh(x(t),1)] = /_ T hx(t), O P(t, x) dx.

Special Case

In the special case of one dimension, the stochastic differential equation

dx

5 = J@ +g(@)n(t), (68.5)

with z(0) = z, corresponds to the Fokker—Planck equation

op 9 1 0?
ot Ox
for P(t,x) with P(0,z) = d(x — z).

Example
Consider the Langevin equation

" + B2’ = N(t), (68.6)
with the initial conditions
x(0) =0, Z'(0) = uy, (68.7)
where N (t) satisfies
O 1] ~ 80, 653

From equation (68.8), we recognize that N (t) is a white noise term. There-
fore, we can use the Fokker—Planck equation to determine the probability
density of z(t). Because equation (68.6) has second derivative terms, we
rewrite equation (68.6) and equation (68.7) as the vector system (see page

2=+ 8 g e,
!
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The Fokker—Planck equation for P(t,z,u), the joint probability density of
z and u at time t, is

oP 0 0] 10°P

= = (uP)+ —(BuP) + - ——
o = ap D)t g, PP 550 (68.10)
P(0,z,u) = 0(z)0(u — uop)-

In this example, we can solve equation (68.10) exactly by taking a Fourier
transform in x (see page 350) and then using the method of characteristics
(see page 432). We eventually determine

T
1 T — Uy T = U
Pt z,u) = detDeXp<_ {u—uu} b |:U_Mu:| ) ’

01)1) O’I’LL

where D = [ }, and the parameters {fiz, by, Ouws Oxu, Oun} are

Uwu U’U/LL

given by

Ha = % (1 _675t)7

uu:uoe_ﬁta
t 2 _ 1 _
Jiz:@_@(l_e ﬁt)‘f’ﬁ(l—e 2ﬁt),
1 _ 1 _
Jiu:@(l—e ﬁt)—ﬁ(l—e 2ﬁt),
ogu:%(l_ef%t).

The details of this calculation are presented in Schuss [7].

Notes

1. With a Fourier transform, the method of characteristics can often
solve a Fokker—Planck equation in one dimension.

2. Because a Fokker—Planck equation and the equation for a Green’s
function (see page 318) both have delta function forcing terms, the
solution techniques are similar.

3. Not all noise terms are white Gaussian noise (the requirements in
equation (68.2) are very stringent). The book by Srinivasan and
Vasudevan [8] has descriptions of several approximate techniques for
other types of noise.

4. When the coefficient of the noise term (i.e., g(z) in equation (68.5))
is small, then a singular perturbation problem generally results.

5. The solution of equation (68.1) is a Markov process; the density of its
probability transition function is given by the solution to the Fokker—
Planck equation and its initial conditions.
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Another name for the Fokker—Planck equation is the forward Kol-
mogorov equation.

The solution of the Fokker—Planck equation in equation (68.3) (and
its initial conditions in equation (68.4)) might be better represented
by P(t,x;to,y). The function P(t,x;t,y) also satisfies the backward
Kolmogorov equation, which is the adjoint of equation (68.3). This
equation

1 & 9*P
82‘;0 Z 82/1 5 ijZZI Qi 8ylayj 3
’ 68.11
P(t07x;t07Y) :5(X_y)7 ( )
has as its independent variables the “backward variables” {to, y}.
When only moments of the probability density P(t,x) are required,
the method of moments (see page 568) may sometimes be used to
calculate these moments without having to solve the Fokker—Planck
equation.
Another equivalent form of equation (68.1.a) that often appears is

dx(t) = b(t,x) dt + o(t, x) dw(t), (68.12)

where w(t) is a vector of independent standard Wiener processes (see
page 91).

Consider a particle starting at y and randomly moving in a domain
Q. If the probability density of the location evolves according to

oP ’” d*P
o~ HPI= _gb 3yz s Z Y) oy00;

(68.13)

e Then the expectation of the exit time w(y) is the solution of
L{w] = —1 in Q, with w = 0 on 9%).

e Then the probability u(y) that the exit occurs on the boundary
segment I' is the solution of L{u] = 0 in Q with

) 1 foryeTl
u(y) = .
Y 0 foryeQ/T
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69. Fractional Differential
Equations®

Applicable to Fractional differential equations.
Yields

An exact solution.

Idea

There are two common ways to solve fractional differential equations;
using an integral transform or transforming to an ordinary differential
equation.

Procedure
There are two main methods for solving fractional differential equations

e Transformation to an ordinary differential equation
e Using the Laplace transform

To transform to an ordinary differential equation, care must be taken
because the ordinary chain rule from calculus does not apply to fractional
derivatives.

Example 1

This example will convert a fractional differential equation into an
ordinary differential equation. Suppose we wish to solve the fractional
differential equation

S~ Lifr=o0 (69.1)

for f(z). To convert this to an ordinary differential equation, we will
differentiate with respect to x one-half time. This will produce a new

differential equation that involves %. Eliminating this term between
the new equation and equation (69.1), we will have determined an ordinary
differential equation.
To differentiate equation (69.1) with respect to  one-half time, we have
to use the differentiation rule (from Oldham and Spanier [3, page 155])
d=9 qd? df
a7 oar . a4 Q-2 Q-3 , ... Q-m—1
dxi-Q dﬁQ'f - dr + 0133 + C1237 + + Cmm y
where 0 < Q@ < m < @ + 1, m is an integer and the {C;} are arbitrary
constants. Hence, differentiating equation (69.1) one-half time results in

df Y
dr Ciz + dxl/2

0. (69.2)
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Eliminating the d'/?/dz'/? term between equations (69.1) and (69.2) re-
sults in

df
N S WL 69.3
dx f 1T ) ( )
which is an ordinary differential equation for f(z). Equation (69.3) has the
solution (obtained by use of integrating factors)
1
f(x) = De® — 20, |Vme® erf(Vx) + —| , (69.4)
Vv

where D is another arbitrary constant. If we now utilize equation (69.4)
in equation (69.1), it turns out that D and C; are related by D = 2C;+/7.
This is because of the identities

d1/2 N N d1/2 1
i VD= g =0
d1/2 . 1 N
ey L + e” erf(v/x),

from Oldham and Spanier [3, pages 119 and 123]. Therefore, the solution
of equation (69.1) is

1
VT

f(x) = D |e” erfe(v/x) —

Example 2

This example will solve a fractional differential equation by use of
Laplace transforms. Suppose we wish to solve the fractional differential
equation

df d1/2f
42 L 9r—ny. .
e + 11/ f=0 (69.5)
The Laplace transform of equation (69.5) is
d—'2f(0)

sF(s) — f(0)+ /sF(s) — i 2F(s) =0, (69.6)

where F'(s) is defined to be the Laplace transform of f(z); that is, F(s) =
Jo° f(x)e~®ds. If we define the constant C' by C = f(0)+d~'/2£(0)/dz~1/2,
then the solution to equation (69.6) is given by
F(s) = C B C B C
VD2 365-1 365+D  (gon

and so the final solution to equation (69.5) can be obtained by finding the
inverse Laplace transform to equation (69.7), which is

flx) = % [2e* erfc(2v/x) + € erfe(—/T)] .
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tes

. Fractional differential equations are also called extraordinary differ-
ential equations.

One of many equivalent definitions for fractional derivatives is the
following

YR T f)
5= G [ [, e 4]

forn>q > 0.

Certain diffusion problems can be reduced to the solution of a semi-

differential equation (one in which all the derivatives are either to an

integer order or a half integer order). See Oldham and Spanier [3,

Chapter 11] for details.

. A third technique for solving fractional differential equations is by
the use of power series (see page 403). For fractional differential
equations, a series of the form

f(z) =P Z apz®/m
k=0

is used, where p > —1, n is an integer, ag # 0, and the {a;} are
unknowns.

Erdélyi’s paper [1] contains several boundary value problems for or-
dinary differential equations that are solved by using fractional dif-
ferential techniques.
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70. Free Boundary
Problems*

Applicable to Systems of differential equations in which the loca-
tion of the boundary of the domain is one of the unknowns to be deter-
mined.

Idea

Sometimes a similarity solution may be used to determine the location
of the free boundary. In more difficult problems, a numerical technique
may be required.

Procedure

In free boundary problems, a differential equation must be solved in a
domain whose size can vary. One of the unknowns to be determined is the
size of the domain on which the equation is to be satisfied.

Differential equations of this type are most often solved numerically.
In rare cases, an analytical solution may be obtained; these solutions are
generally found by use of similarity methods (see page 497).

Example

Consider a mass of water in > 0 at time ¢ = 0. Initially, the water
has the constant temperature Ty > 0. If a constant temperature T¢ < 0 is
maintained at the surface © = 0, then the boundary of freezing, x = s(t),
will move into the fluid. The unknowns to solve for in this problem are the
temperature of the water w(z,t), the temperature of the ice u(x,t), and
the location of the unknown boundary, x = s(¢). See figure 70.1.

The equations that describe the unknowns are

Up = Ugy, for 0< xz<s(t), t>0,
Wy = Wy, for s(t)< x<o0, t>0,
U(O, ) - TCa

t
0
t) = (70.1.a-g)
t
t

Here we have defined the freezing boundary to be the curve along which
the temperature is zero, and equation (70.1.g) represents the transfer of
latent heat necessary to create the ice. The parameter A is the latent heat
of fusion times the density divided by the coefficient of heat conduction.
Now, we propose the similarity solution. Because diffusion equations
often have time scaling as the square of a distance, we assume that a
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Figure 70.1: This diagram illustrates the location of the freezing boundary
for the system given in equation (70.1).

solution to equation (70.1) can be found with

u(z,t) = f(n) = f (%) ) =gl =y (%) " (70.2)

for some unknown functions f(n) and g(n). Using these proposed forms in
equation (70.1.g) shows that these forms are possible only if the freezing
boundary is given by

s(t) = avt, (70.3)

for some value of a. Using equations (70.2) and (70.3) in equation (70.1),
we find the equivalent system

1
() + §nf’(77) =0, for0<n<a,

g"(n) + %ng’(n) =0, fora<n<oo,
f0)=Tc,  fla) =0, (70.4)
g(00) =Ty, gla)=0,
/(@) ~ o' (0) = 2

The ordinary differential equations in equation (70.4) may be solved to
determine that

fn)=Tc —TH%,
Ty

g(n) = erfc(a/2) erf(n/2) — erf(a/2)],

(70.5)
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where « satisfies the transcendental equation

T + o _ —)\aﬁeo‘Q/‘l.
erf(a/2) = erfc(a/2) 2
Notes
1. In writing equation (70.1.a) and equation (70.1.b), we have assumed

that the thermophysical parameters in both the ice and the water are
the same (i.e., the Stefan number, which is a ratio of these parameters,
is equal to one). In reality, these parameters are different and a
constant that cannot be scaled out must be introduced into either
equation (70.1.a) or equation (70.1.b).

The example illustrated above is described in more detail in Crank
[2, Chapter 3].

Melting problems for a pure material are also known as Stefan prob-
lems.

. Another technique often used in free boundary problems is changing

coordinates so that the free boundaries become fixed in the new
coordinate space. This is the idea behind the hodograph method
(see page 456).

Free boundary problems often arise in hydrodynamics, when the flow
over an airfoil is being computed. When the flow becomes supersonic,
the type of governing equation changes from hyperbolic to elliptic and
a different type of numerical scheme is required. Where the equation
changes type is not known a priori.

Some of the popular numerical techniques for solving free boundary
problems go by the name of front tracking methods or front fizing
methods. These techniques generally require that the location of the
free boundary be approximately known before the computer code is
run. A better approach is to use enthalpy methods. These methods do
not need initial information about the interfaces, and multiple fronts
can also occur.

The paper by Hill and Dewynne [6] discusses several different approx-
imation techniques applied to a single physical problem involving a
free boundary.
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71. Generating Functions®

Applicable to Systems of differential equations, where each equa-
tion has a similar form.

Yields

An exact analytic solution.

Idea

Sometimes a single function can be used to contain the information in
several equations.

Procedure

We illustrate the method as it applies to ordinary differential equations.
Suppose we have a system of ordinary differential equations for {uy(t)}, all
of the form

d
EUN :f(UN_m,...,UN,...,UN+7n,t), (711)

for N =1,2,...,00 or N = +1,4+2, ..., £00. We might introduce the
ordinary generating function

G(s,t) =) up(t)s", (71.2)
k

or the exponential generating function

sk
!

H(s,t) = Zuk(t)k—. (71.3)
k

Using equation (71.2) (or equations (71.3)) and (71.1), we can sometimes
find a partial differential equation for G(s,t) (or H(s,t)). After solving the
partial differential equation, we can determine the {u(¢)} from either

1 (d\"
() = () 660 |
or

up(t) = (%)k H(s,t)|,_,-

After we have solved for the {ug(t)}, we must then check that equation
(71.2) (or equation (71.3)) converges for the values of ¢ that are of interest.
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Example

The classic equations relating to service times are called the birth and
death equations (see notes). For the special case of “constant death” and
“linear birth,” these equations have the form

d
Epo(t) = —APy(t) + pPi(t),
d
G EN(E) = APN-1(t) = (A + Np) Py (t) + (N + DuPr4a (1), (71.4)
where 1 and A are constants and N = 1,2,...,00. The initial conditions

for equation (71.4) are
Pn(0) = 03, (71.5)

where dn; is the Kronecker delta and j is a given positive integer. The
ordinary generating function is defined in this case by

G(t,s) = i Py (t)s". (71.6)
k=0

Differentiating G(t, s) with respect to ¢ leads to

oG X[d
=2 [Fho)
= [~APy(t) + pPi(1)] s°

+ 5" P (t) = A+ k) Pe(t) + (k + DpuPesa () 5°
k=1

1.7
=/\(s—1)[P0—|—P18—|—P252+...] ( )

+u(l—s) [P +2Ps+3P3s” + -]
oG

The initial condition for G(¢, s), from equations (71.5) and (71.6), becomes

G(0,s) = 7. (71.8)
The partial differential equation in (71.7), with the initial condition in
(71.8), can be solved by the method of characteristics (see page 432). The

solution is

Gt,s) = e =90/ 11 _ (1 = g)emt]’. (71.9)
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Taking a Taylor series of equation (71.9) with respect to s (see equation
(71.6)) allows all of the {Py(¢)} to be found. For example

Ro(t) = X0 =y,

1— t—1
Pi(t) = ex(ly)/u% [)\yQ F(tu— 20y + )\} :

Py (1) — (=g 924 2y,3
»(t) =e T Ayt 4 (2t — 4Ny (71.10)

F [ — 1)p? — 202t — 3N)]y? + (2t — 4N2)y + )\2},

where y = e M.

Notes

1. In the birth and death equations (see Karlin and Taylor [2, page
135]), Py (t) is the probability of k unfinished jobs at time ¢. We also
assume: Initially there are M jobs to be finished, the average service
time is A\, and the average number of new jobs spawned by an existing
job is p per unit time.

2. For the example given above, Laplace transforms (see page 350) could
also have been used to solve equation (71.7) with equation (71.8).

3. Nonlinear systems of differential equations can also be solved by
this method. A classic application is to equations describing the
aggregation of particles (see Feller [1, Chapter 17, pages 444-482]).

4. See Taylor and Karlin [4, pages 310-316 and 337-338].
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72. Green’s Functions®

Applicable to Linear differential equations with linear boundary
conditions and initial conditions.

Yields

An exact solution, in the form of an integral or an infinite series.

Idea

Initially, the solution of the linear differential equation with a “point
source” is determined. Then, using superposition, the “forcing function”
(appearing in either the differential equation or the boundary condition) is
treated as a collection of point sources.

Procedure
Suppose we have the following linear differential equation for u(x)

Llu] = f(x), (72.1)

with the linear homogeneous boundary conditions

Bi[u] = 0, (72.2)
fori=1,2,...,n. Suppose we can solve for G(x;z), where G(x; z) satisfies
LIG(x;2)] = 6(x — z),

Bi[G(x;2)] =0

and 0(x) is the usual delta function. Then the solution to equations (72.1)
and (72.2) can be written as

u(x) = /G(X; z)f(z) dz, (72.3)

integrated over some appropriate region.
Conversely, suppose we want to solve the linear homogeneous differen-
tial equation

L[v] =0,
Blo] = hx) (72.4)
If we can solve
Lig(x;2)] =0,
Blg(x;2z)] = 6(x — z),
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for g(x;z), then the solution to equation (72.4) is given by

v(x) :/g(x; z)h(z) dz.

Both G(x;z) and g(x;2) are called Green’s functions. The functions f(x)
and h(x) are often referred to as “forcing functions.” If, for example,
f(x) =0, then by equation (72.3) u(x) = 0.

Green’s functions can be calculated once, then used repeatedly for
different functions f(x) and h(x). Some Green’s functions are tabulated in
table 72.1. To calculate the Green’s function G(x;z), we require:

(a) L[G(x;2z)] =0, except at X = z.
(b) B;|G(x;2z)] = 0. (72.5)

(¢c) If L[] is an nth order ordinary differential equation, then
G(x;z) must be continuous (with its derivatives up to
order n — 1) at x = z.

The conditions on g(x;z) are very similar:

(a) Llg(x;z)] = 0. (72.6)
(b) Blg(x;2)] = 0. except at x = z,
(¢c) If L[] is an nth order ordinary differential equation, then

g(x;z) must be continuous (with its derivatives up to order
n—1)at x =z

Conditions (72.5.a,d) and (72.6.b,d) follow from the definition of the delta
function. Conditions (72.5.c) and (72.6.c) follow from the definition of
what a solution to an nth order differential equation means; and conditions
(72.5.b) and (72.6.c) follow from the defining equations for G(x;z) and
9(x;2).

Many methods can be used to construct a G(x;z) or a g(x;z) that
satisfies the above four requirements. We will illustrate two methods for
constructing G(x;z) for the special case of a second order linear ordinary
differential equation. Then we illustrate the construction process for g(x; z)
for a partial differential equation.
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In the following, r = (x,y,2), ro = (20,¥0,20), R = |r —1¢|, P? = (z —
70)? + (y — y0)?, and H(-) is the Heaviside function

e For the potential equation V2G + k*G = —47d(r — rg), with the
radiation condition (outgoing waves only), the solution is

2mi giklz—zol  in one dimension,

] . . :
G = ’L7TH(§ )(kP) in two dimensions,
eikR . . .
7 in three dimensions,

where Hél)(-) is a Hankel function (also called a Bessel function of
the third kind).

e For the diffusion equation V2G — ag%—? = —4md(r —ro)d(t —to), with
the initial condition G = 0 for ¢t < tp, and the boundary condition
G =0 at r = oo in N dimensions, the solution is

N
dn a ( a2||r—r0||2)
G==5|—F—| eo|——7—7 |-
a \ 2\/7(t —to) 4(t — to)

e For the wave equation V2G — % %ig; = —47nd(r—rg)d(t —tg), with the
initial conditions G = G; = 0 for t < ¢y, and the boundary condition
G = 0 at r = oo the solution is

2erH {(t —tg) — @} for one space dimension,
_ 2 P : .
G = WH [(t—to) — £] for two space dimensions,
E0 [ —(t—1to)] for three space dimensions.

Table 72.1: Green’s functions for common partial differential equations.

Special Case 1

Define the general linear second order ordinary differential equation
with linear homogeneous boundary conditions by

o = 5 (s 5 ) - ston

Bilu] == aqu(a) + asu/(a) =0
Bg [u] = ﬁlu(a) + 6211,/(()) = 0,
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and suppose that we wish to solve L[u] = f(z). If yi(z) and ya(z) are
non-trivial (i.e., not identically equal to zero) and satisfy

0,
0,
y1(x)y2(2)
G(z;2) = p(2) W (z) fora<z <z,
’ @G g < g < b,

where W(z) =

point x = z.

Special Case 2

Suppose that L[] is a self-adjoint operator, so that it has a complete set
of orthogonal eigenfunctions (see page 103). Suppose further that we know
the eigenvalues {\,} and the eigenfunctions {¢,} for {L, By, Bo}. That is,

L[(bn] = )\n¢n;
Bi[¢n] =0,
Ba[pn] =0,

then G(z; z) is found to be

(bn (bn

Example 1

Suppose we wish to solve

y' = f(x),

y(0>_= 0, y(L)=0. (72.7)

Using the first method, we require the solutions y;(x) and ya(z) of

1=0, 1(0)=

0,
ys =0,  ya2(L) =0.

The solutions to these equations are

yi(x) = Az, ya(z) = Bz - L),
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where A and B are arbitrary constants. We compute the Wronskian to be
W(z) = ABL. Therefore,

z(z—L)

Glasz) =4 I, rlszsz (72.8)
’ % forz<z<L.

Using the second method, we find the eigenvalues and eigenfunctions to
be

Ay = %, On(z) = sin Az = sin(nLﬂ) ,
so that
G(z;2) = % i sin(?) sin(%) . (72.9)
n=1

Using either of equations (72.8) or (72.9) for G(x; z), the solution to equa-
tion (72.7) can be written as

L
y(x) :/0 G(z;2) f(2)d=. (72.10)

For example, using equation (72.8) in equation (72.10), the solution to
(72.7) can be written as

La(z—1L) T 2(x—1L)
(z) = ———f(2)dz+ ——f(2) d=.
’ /r L /0 L (72.11)

Note the similarity between equation (72.11) and the form of the solution
shown in the section on variation of parameters (see page 418).

If, for example, f(x) = 3, then evaluation of equation (72.11) results
m B T . L4
=@ T E)
The second method yields the same answer. For this example, the second
method is equivalent to using finite Fourier series (see page 344).

y(z)

Example 2
Suppose we are given the parabolic partial differential equation
0%u 1 ou
— === 72.12
0x?  a? Ot ( )
for u(z,t) with the initial and boundary conditions
u(x,0) = h(z), wu(Loo,t)=0. (72.13)
We choose to write the solution as
u(z,t) = / g(x,t;2)h(2) dz, (72.14)
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where the Green’s function g(x,t; z) satisfies

g _ 199
9z a2 ot’
g9(x,0;2) =6(z —x), g(£oo,t;2)=0.

Taking a Fourier transform (in z) of the equation for g(z,t; z) results in

da
d_i = —CL2CU2§,

L (72.15)
9(w,0;2) = e,

V2T

where g(w, t; z) is defined to be the Fourier transform of g(z,t; z); that is,

~ 1 > ;
g(w, t; z) == E/ g(z, t; 2)e*" dx.

Solving the ordinary differential equation (72.15) results in

. 2
wz ,,—a”wt
€

~ 1
glw,t;2) = —=e

Ver

Using the inverse Fourier transform, we then have our solution

1 RN ;
g(z,t;2) = E/ g(w, t; z)e " dx.

By using the convolution theorem for Fourier transforms, we can determine
that 1
. _ —(z—2)2%/4at
gz, t;2) = e .
( ) Vamra?t
This should be used in equation (72.14) to determine the solution to equa-
tions (72.12) and (72.13).

Notes

1. If z is in a n-dimensional space, then the integrals appearing in
equation (72.5.d) and equation (72.6.d) are n single integrals, each
one over one of the coordinate axes.

2. Delta functions, in non-rectangular coordinate systems, are easily de-
termined by a change of variables in the defining relation: [ é(z)dz =
1. In changing variables, the Jacobian of the transformation will then
divide the delta function terms. For example

e In a spherical coordinate system (denoted by the usual coor-
dinates 7, 0, and ¢) the delta function located at the point
x' = (r',0',¢") is given by

1

O(x—x) = 72 sin

o(r—1")8(0 = 0")5(¢ — ¢'),
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for 7/ # 0 and 0’ # 0, 7. For a point source at r = r’ and 6 = 0,
the representation 6(r — r)d(0) /2772 sin @ may be used whereas
a point source at the origin has the representation §(r)/4mwr?.

e In a cylindrical coordinate system (denoted by the usual co-
ordinates p, 0, and z) the delta function located at the point
x' = (p,0,2") is given by

d(p — p')8(0 — 6")d(= — =)

5(X — X/) = )
p
for p’ > 0. A point source at the origin has the representation
6(2)d(p)
2mp

If G*(x;z) satisfies the problem adjoint to L[] (see page 95), then
G(x;z) = G*(z;x). Therefore, if L[] and its associated boundary
conditions are self-adjoint and L[G(x;2z)] = d(x — z), then G(x;z) =
G(z;x). This is called the reciprocity principle. It can be observed in
our example (see equation (72.9)).

When the operator is self-adjoint, the Green’s function is sometimes
written in terms of the variables . and x~ instead of x and z. When
this is done, z« (z>) represents the smaller (larger) of x and z. For
example, (72.11) could have been written as G(z; z) = M
Few analytic solutions of the Helmholtz equation

V3G + kin?(r)G = —d(r — o)

are known when the index of refraction, n(r), is variable. Solutions
are known in the following cases:

(point source) n = v1+aTr +r"Br

(point source, layered medium) n = 2z~

(point source, layered medium) n = v A+ Cz + Fz2

(line source) n = \/x

(line source) n = \/A + Bx + Cy + Da2 + Exy + Fy?

See Li et al. [8] for details.

As another example, the differential equation with boundary condi-
tions

1

y' + Ky = f(),
y(0)=0, ¥'(1)=0

s . . _ _cosk(l-z)sinkz>
has the Green’s function G(z;2) = ————F 77—

Consider the self-adjoint second order operator L[u] = (p(z)u'(x))" +
g(x)u(x), and consider the boundary conditions

Bi[u] := aju(a) + azu’(a) =0,

Bs[u] := byu(b) + b’ (b) = 0. (72.16)
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Define ¢(z) and 9 (z) to be the solutions to

L )\T(I‘)(b7 Bl [Qb] = 0)

L] = Ar(z)y,  Ba[Y]=0.

Then, the Green’s function for the operator L — Ar, which satisfies
the boundary conditions in equation (72.16), is given by Gx(z;2) =
%, where W (¢, ) represents the Wronskian.

There will not exist a Green’s function if the solution of the original
problem is indeterminate. In this case, a generalized Green’s function

will exist. As an example, consider the system

"

(x )
(1),
"(1).

Il
LS e -

y
y(0)
y' (0

If u(x) is any solution to the above system, then so is u(z)+ C where
C is any constant. Because the solution of the original system is
indeterminate, an ordinary Green’s function cannot be found. See
the section on alternative theorems (page 15) or Farlow [5, pages
290-298] for details.

Sometimes, in such problems, the specific solution in which the Green’s
function is symmetric in both x and z is chosen. This results in the
modified Green’s function. See Stakgold [10, Chapter 1, pages 215
218] for details.

Fokker—Planck equations have delta function initial conditions. The
methods used for solving these equations are the same as the methods
used for finding Green’s functions.

Some potential problems can be solved by assuming a continuum of
sources. In these cases, the potential outside of the body, which is
due to the presence of the body, is represented as the superposition
of potentials due to point sources and dipoles lying entirely within
the body. See Barshinger [1] for an example.

Butkovskiy’s book [3] has a comprehensive listing of Green’s func-
tions. Any particular Green’s function problem is partitioned into
one of several separate disjoint groups labeled by a triple of integers:
(r,m,n). In this partitioning, r represents the dimension of the
spatial domain, m is the order of the highest derivative with respect
to t, and n is the order of the highest derivative with respect to the
space variables. Over 500 problems are catalogued and solved.

See Butkov [2, Chapter 12, pages 503-552] and Zauderer [11, pages
353-449].

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




326

II.LA  Exact Methods for ODEs

References

(1]

BARSHINGER, R. The electrostatic field about a thin oblate dielectric body
of revolution. SIAM J. Appl. Math. 52, 3 (June 1992), 651-675.

Burtkov, E. Mathematical Physics. Addison—Wesley Publishing Co.,
Reading, MA, 1968.

BuTkovskiy, A. G. Green’s Functions and Transfer Functions Handbook.
John Wiley & Sons, New York, 1982. Halstead Press.

COURANT, R., AND HILBERT, D. Methods of Mathematical Physics.
Interscience Publishers, Inc., New York, 1953.

FArLoOw, S. J. Partial Differential Equations for Scientists and Engineers.
John Wiley & Sons, New York, 1982.

GREENBERG, M. D. Application of Green’s Functions in Science and
Engineering. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971.

JorDAN, K. E., RICHTER, G. R., AND SHENG, P. An efficient numerical
evaluation of the Green’s function for the Helmholtz operator on periodic
structures. J. Comput. Physics 63, 1 (1986), 222-235.

Li, Y. L., Liu, C. H., AND FRANKE, S. J. Three-dimensional Green’s
functions for wave propogation in a linearly inhomogeneous medium—the
exact analystical solution. J. Acoust. Soc. Am. 87, 6 (June 1990), 2285.
MoORSE, P. M., AND FESHBACK, H. Methods of Theoretical Physics.
McGraw—Hill Book Company, New York, 1953.

STAKGOLD, I. Green’s Functions and Boundary Value Problems. John Wiley
& Sons, New York, 1979.

ZAUDERER, E. Partial Differential Equations of Applied Mathematics. John
Wiley & Sons, New York, 1983.

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




73.  Homogeneous Equations 327
73. Homogeneous Equations

Applicable to First order ordinary differential equations of a cer-
tain form.

Yields

An exact solution.

Idea

If P(z,y) and Q(z,y) are homogeneous functions of z and y of the same
degree, then, by the change of variable y = vz, the differential equation
y' = P(x,y)/Q(x,y) can be made separable.

Procedure

A function H(z,y) is called homogeneous of degree n if H(tz,ty) =
t"H (z,y). In particular, a polynomial, P(z,y), of two variables is said to
be homogeneous of degree n if every term of P(x,y) is of the form 27y ~J
for j =0,1,...,n. A homogeneous function of degree n can be written as
H(z,y) = 2™ H(1,y/x). Therefore, given an ordinary differential equation
of the form

dy _ P(,y) (73.1)

dr — Q(z,y)’

where P(z,y) and Q(z,y) are both homogeneous polynomials of degree n,
we change variables by y = vz to obtain

v _ P(1,v)
T T Q)

Because this is a separable equation, it can be integrated to yield (see
page 401)

dv
| g =ose
Q(1,v)

where C' is an arbitrary constant.

Example
Suppose we have the ordinary differential equation
dy _ 22%y—y*

==J 7 2
dr  x* —2xy3 (73.2)

Because both the numerator and denominator of the right-hand side of
equation (73.2) are homogeneous polynomials of degree four, we set y = vz
to obtain
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or
dv v+ vt

Yiz " 1-208

This last equation is separable, and the solution is given by
/ *dx / V] — 203
— = —dv,
x v+ v?
v 71

3v? (73.3)

= logv — log(1 + v*) 4 log C

or z(1+v3) = Cv, where C is an arbitrary constant. Substituting v = y/z
in this yields the final solution z2 + y® = Cxy.

Notes

1. Equation (73.1) may be made exact (see page 284) by multiplying by
the integrating factor 1/(Pz — Qy).

2. This method is derivable from Lie group methods (see page 366).

3. This method is contained in the method for scale invariant equations
(see page 398).

4. Beware that the expression “homogeneous equation” has two entirely
different meanings; see the definitions (page 6).

5. It may be simpler to think of homogeneous equations as ordinary
differential equations of the form dy/dx = f (y/z). This is equivalent
to equation (73.1).

6. The equation

dy _ (—C“”’*bly”l) (73.4)

dx asx + bay + co
can always be made homogeneous or separable.
e If a1by # asgby, then the change of variables
z=X+h,
y=Y +k,

changes equation (73.4) into the homogeneous equation

d_Y o a1 X +b1Y
dX - a2X+b2Y ’

when h and k satisfy the equations: [Z; Zﬂ [H = [:i; ]
o If a1by = agby, then the change of variables Y = x + Z—lly =

T+ %y results in the equation

d_Y—1_|_b_1 CL1Y—|—01
de ai asY +ca )’
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7. See Boyce and DiPrima [1, pages 87-91], Ford [2, pages 40-45],
Goldstein and Braun [3, pages 81-84], Ince [4, pages 18-20], and
Simmons [5, pages 35-37].
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74. Method of Images*

Applicable to Differential equations with homogeneous boundary
conditions and sources present.
Yields
An exact solution.
Idea

If we know the solution to a free space problem, then we can often
use superposition to find a solution in a finite domain with homogeneous
boundary conditions.

Procedure

Given a problem with a point source present, solve the free space
problem (i.e., disregarding the boundary conditions). By superposition,
determine the solution when there are sources at different points of different
strengths. Choose the position and strengths of these sources so as to obtain
the desired boundary conditions.

The added sources cannot appear in the physical domain of the problem.
Symmetry considerations tend to simplify the process of determining where
the sources should go.

Example 1

Suppose we wish to find the potential, ¢(x), outside of a grounded
sphere of radius R, when there is a point source at position y (with ||y|| =
A > R). The equations that represent this problem are

v2¢ = 6(X_Y)7
O liier =0 @ g0 =0

in the region R < ||x|| < oo (see figure 74.1). If the boundary condition at
[|x|| = R is ignored, then the problem

(74.1.a-c)

has the solution (using Green’s functions, see table 72.1)

1

N S—
Ar||x — |

(74.2)

If we place an additional source of strength S at the point z and solve
V20 = §(x —y) + S6(x — z),

74.3
® | o0 = 0 9
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NI

Figure 74.1: Equation (74.1) represents the potential outside of a grounded
sphere of radius R, with a source point present.

then we obtain (using equation (74.2) and superposition)

1 S

= - .
dr|lx —yl|  4nl|x — 2]

(74.4)

Note that the point z cannot be in the region R < ||x|| < oo, because then
equation (74.3) (whose solution we want to be the solution to equation
(74.1)) will not satisfy equation (74.1.a).

To determine the strength and location of the additional source (S and
z), we calculate the potential at x = p, where ||p|| = R (i.e., on the surface
of the sphere). We find

P | ——i{ S }
=P A |llp-yll  lp-zll]

For this to be zero (and so ® = ¢), we require (after some vector algebra)

R4 R?
S = 3 Z=-3Y
Hence,
1 1 R* 1 ]
b =-—— - — 74.5
In [Hx—yn X T =y B2/ (74.3)

satisfies equation (74.3) and also equation (74.1.b). Because ||z|| < R (by
virtue of ||ly|| = A > R) the point source, we added is not in the physical
domain of the problem. Therefore, the solution to equation (74.1) is given
by equation (74.5).

Example 2
Suppose we wish to solve Laplace’s equation in the half plane:
Viu =0, fory > 0,—o00 < x < 00,
u(z,0) = f(z), (74.6)
u — 0, as ’x2+y2|—>oo.
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*(¢,n)

orlgmal source

* (§7 _77)

1mage source

Figure 74.2: The original source and the image source for equation (74.8).

The solution to (74.6) can be obtained by Green’s functions (see table 72.1):

/f (z,0;¢,n) dx (74.7)
where the Green’s function G(z,y;¢,n) satlsﬁes
0’°G  9°G
2 —_— —_—— pa— pa—

ViG=o5t o2 52 =d(z —¢)d(y —n),

(33,0,(77’]) =0. (748a_b)
A solution to equation (74.8.a) is given by

G(z,y:¢.m) —10g\/ (= ¢+ (y — ). (74.9)

But this does not satisfy equation (74.8.b). If we place an image source at
(¢, —n), having the opposite sign of the source at (¢,n) then G(z,y;(,n)
will vanish along y = 0 by symmetry. See figure 74.2.

Hence, the solution to (74.8) is

Gla,yi o) = 5o 7 — P + (g~ P — 5= log /o — OF 4 (5 )%

Using this is in equation (74.7), we obtain the solution to equation (74.6):

u(¢,m) = %/_00 f(x)%.

This solution is known as Poisson’s integral.

Notes

1. The method of images is often used to solve Laplace’s equation in
hydrodynamics and electrostatics.

2. The method of images can be used for diffusion problems and hy-
perbolic problems. See, for example, Butkov [1, pages 529-530 and
595-599] or Stakgold [5, pages 72-73 and 491-493].

3. See also Jackson [3, pages 26-29], Kellog [4, pages 228-230], and
Zauderer [6, pages 420-432].
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75. Integrable Combinations

Applicable to Systems of ordinary differential equations.
Yields

One or more ordinary differential equations that can be integrated
exactly.

Idea

Sometimes, by combining pieces of a system of differential equations,
a combination of the dependent variables can be determined explicitly in
terms of the independent variable.

Procedure
Integration of the system of ordinary differential equations

dx i
dt

= filt,x1,29,...,2,), fori=1,2,...,n,

is often accomplished by choosing integrable combinations. An integrable
combination is a differential equation that is derived from a system of
differential equations and is readily integrable.

Example 1
Given the two equations
dx dy

_ d —
Yy an i

- Nl
o T, (75.1)

an integrable combination can be obtained by adding the two equations to
obtain
dz +y)
dt

This last equation can be integrated (treating x + y as a single variable) to
yield

=T +y.

r+y=Ae, (75.2)

where A is an arbitrary constant. For the equations in equation (75.1),
another integrable combination may be obtained by subtracting the equa-
tions. Integrating this new equation results in

T —y= Be ", (75.3)

where B is another arbitrary constant. The explicit solution for x(t) and
y(t) may be obtained by combining equations (75.2) and (75.3).
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Example 2
Suppose we have the nonlinear system of ordinary differential equations

dx
>~ __3
dt yz7
dy
— =3zz,
dt
dz
— = —xy.
dt Y

Multiplying the first equation by z, the second by 2y, and the third by 3z
and adding, results in

dx dy dz
xa + ZyE —|—3z§ = 0.
This last equation may be integrated to obtain 22 +2y%+322 = C, where C
is an arbitrary constant. For this example, another integrable combination
can be found by multiplying the first equation by z, multiplying the second
by y, and adding. This new differential equation results in the additional
relation 2 + y? = D, where D is another arbitrary constant.

Notes
1. Each linearly independent integrable combination yields a first inte-
gral of the original system.
2. See El'sgol’ts [1, pages 186-189].
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76. Integral Representation:
Laplace’s Method*

Applicable to Linear ordinary differential equations.
Yields

An integral representation of the solution.

Idea

Sometimes the solution of a linear ordinary differential equation can be
written as a contour integral. To find such a representation, a lower order
differential equation may need to be solved.

Procedure
Let L,[] be a linear differential operator with respect to z, and suppose
that the ordinary differential equation we wish to solve has the form

L.[u(z)] =0. (76.1)

We look for a solution of equation (76.1) in the form

/K (z,&)v(€) de, (76.2)

for some function v(§) and some contour C in the complex ¢ plane. The
function K(z,&) is called the kernel. Some common kernels for Laplace’s
method are

Laplace kernel: K(z,€) = €.
Euler kernel: K(z,6) = (z—&N.
We combine equations (76.2) and (76.1) to obtain

/C LK (2, 6)]v(€) dE = 0. (76.3)

Now we must find a linear differential operator A¢|[-], operating with respect
to &, such that L.[K(z,£)] = A¢[K(z,§)]. After A¢[-] has been found, then
equation (76.3) can be rewritten as

| Aclk et de =0, (76.4)

Now we integrate equation (76.4) by parts. The resulting expression will be
a differential equation for v(£) with some boundary terms. The boundary
terms determine the contour C, and the differential equation determines
v(€). Knowing both v(£) and C, the solution to equation (76.1) is given by
equation (76.2).
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Special Case
For the case where L[] is a linear operator with polynomial coefficients,
the solution is easy to find using the Laplace kernel. Let L. [-] have the form

N M dr
Lz = Z ( CLTSZS> y, (765)
r=0 \s=0

where the {a,s} are constants. Then define the linear differential operator
Me[] by

N
=0

M ds
Me=>" (2) “”d?s) £ (76.6)

Now define M [] to be the adjoint of M¢[-]. Then L,[u(z)] = 0 will have a
solution of the form

u(z) = [ eu(e)as
if v(§) satisfies
MZ[u(e)] = 0, (76.7)

and C is determined by
[Ple v} =0, (76.8)

where P{e*,v(£)} is the bilinear concomitant of €*¢ and v(¢) (see page
226). Note the order of the original differential operator in equation (76.5)
was N while the order of the differential operators in equations (76.6) and
(76.7) is M.

Example
Consider Airy’s equation

v’ — zu = 0. (76.9)
We assume that the solution of equation (76.9) has the form

u(z) = /C e*0(€) de, (76.10)

for some v(§) and some contour C. Substituting equation (76.10) into
equation (76.9), we find

/g%(g)ezﬁ d¢ — z/u(g)ezﬁ d¢ = 0. (76.11)
C C
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The second term in equation (76.11) can be integrated by parts to obtain

A}%@w%%—[MOfﬁ

1 F13 _
C—!—/cv(f)e d¢ =0

or
0| + [ [0l + i) de o (76.12)
C C
We choose
o) +v'(§) =0 (76.13)
and
[v(g)625 =0. (76.14)
C

With these choices, equation (76.12) is satisfied. From equation (76.13) we
can solve for v(§)

v(€) = exp<—§> . (76.15)

Using equation (76.15) in equation (76.14), we must choose the contour C

so that
= |exp _ §>
c {e (zf 3

for all real values of z. The only restriction that equation (76.16) places on
C is that the contour start and end in one of the shaded regions in figure
76.1. Finally, the solution to equation (76.9) can now be written

=0, (76.16)
C

e

u(z) = /Ce<5Z*€2/3> de. (76.17)

Asymptotic methods can be applied to equation (76.17) to determine in-
formation about u(z).

For this example, we also could have used the general results in equa-
tions (76.6)—(76.8). Identifying equation (76.9) with the operator in equa-
tion (76.5), we find

d2
Lz = @ — z,
so that (from equation (76.6))
d
Me=¢——
e=¢ &
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I3

Figure 76.1: A solution to equation (76.9) is determined by any contour
C that starts and ends in the shaded regions. All of the shaded regions
extend to infinity. One possible contour is shown.

and also p
M =€+ —.
13 £+ d¢

So, we have to solve (from equation (76.7))
Mi(E)] =&Ev+0 =0. (76.18)

Because this last equation is identical to equation (76.13), we find the same
v(£). We compute the bilinear concomitant to be

P{e€,u(¢)} = v(f%ez5 - ezgd%v(f),

= (24 &) exp (—zf — ;) ,

and we find the same contour C as before (see (76.16)).

Notes

1. Two linearly independent solutions of Airy’s equation are often taken

to be
1 [ 3
Aj = — - t) dt
i(x) 77/0 cos<3—|—x> ,

, [ ¢3 3
Bi(z) = = exp| — + at ) cos 3 +at )| dt.

These solutions represent two different choices of the contour in equa-
tion (76.17).
2. The Laplace equations

(aox +bo)y™ + (a1 +01)y" D + - + (anz + by)y = 0
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have solutions in the form of equation (76.2). Indeed, this was
Laplace’s original example. See Davies [3, pages 342-367] or Valiron
[6, pages 306-319] for details.

3. When the kernel of the transformation is some function of the product
z€, then this method is sometimes called the Mellin transformation.
See Ince [4, pages 186-203 and 438-468] for details.

4. Sometimes a double integral is used to find an integral representation.
In this case, a solution of the form u(z) = [[ K(z;s,t)w(s,t) dsdt is
proposed. Details may be found in Ince [4, page 197]. As an example,
the equation

2 dy

(xQ—l)%—i—(a—Fb—Fl)x%—l—aby:O

has the two linearly independent solutions

o0 oo 1
yx(z) = / / exp {:I:mst - 5(52 + tz)} s ds dt.
o Jo

5. Equations of the form

ORI

which are sometimes called Pfaffian differential equations, can also be
solved by this method. See Bateman [2, Chapter 10, pages 260-264]
or Ince [4, page 190] for details.

6. An application of this method to partial differential equations may
be found in Bateman [2, pages 268-275].

7. The Mellin—Barnes integral representation for an ordinary differential
equation has the form

Hmzl]'—‘(bj_g)nr'lzlr(l_aj—*—g)
u\z) = z Zg J J .
@)= [ K l (RTINS AT

In this representation, only the contour C and the constants {a;, b;, m,n, ¢, 7}
are to be determined (see Babister [1, pages 24-26] for details).
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77. Integral Transforms:
Finite Intervals®

Applicable to Linear differential equations.
Idea

In order to solve a linear differential equation, it is sometimes easier to
transform the equation to some “space,” solve the equation in that “space,”
and then transform the solution back.

Procedure

Given a linear differential equation, multiply the equation by a kernel
and integrate over a specified region (see table 77.1 on page 344 for a listing
of common kernels and limits of integration). Use integration by parts to
obtain an equation for the transform of the dependent variable.

You will have used the “correct” transform (i.e., you have chosen the
correct kernel and limits) if the boundary conditions given with the original
equation have been utilized. Now solve the equation for the transform of
the dependent variable. From this, obtain the solution by multiplying by
the inverse kernel and performing another integration. Table 77.1 also lists
the inverse kernel.

Example 1

Suppose we have the boundary value problem for y = y(x)

Yoz +y =1,

y(0) =0, y(1)=0. (77.1.a-c)

Because the solution vanishes at both of the endpoints, we suspect that a
finite sine transform might be a useful transform to try. Define the finite
sine transform of y(x) to be z(§), so that

z(€) ::/0 y(z) sin&x dx. (77.2)

(See “finite sine transform-2” in table 77.1). Now multiply equation (77.1.a)
by sin£x and integrate with respect to  from 0 to 1. This results in

1 1 1
/ Yu () sin €z dx —|—/ y(z)sinx dx = / sin &x dzx.
0 0 0 (77.3)
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If we integrate the first term in equation (77.3) by parts, twice, we obtain
1
. . rx=1 r=1
/ Yoo (x) sin€x dax = y,.(z) sin x |I:0 — &y(x) coséx |I:0
0

1
+€2/0 y(x)sin&x da. (77-4)

Because we are interested only in £ = 0, 7,27, ... (see table 77.1), the first
term on the right-hand side of equation (77.4) is identically zero. Because
of the boundary conditions in equation (77.1.b-c), the second term on the
right-hand side of equation (77.4) also vanishes. Because we have used
the given boundary conditions to simplify certain terms appearing in the
transformed equation, we suspect we have used an appropriate transform.
If we had taken a finite cosine transform, instead of the one that we did, the
boundary terms from the intergration by parts would not have vanished.
Using equation (77.4), simplified, in equation (77.3) results in

1 —cosé
—
Using the definition of z(§) (from equation (77.2)), this becomes

1 1
§2/0 y(x)sinfmda:—i—/o y(x)sin €z dr =

€22(6) + 2(6) = g
or 1 5
— COS
=

Now that we have found an explicit formula for the transformed function,
we can use the summation formula (inverse transform) in table 77.1 to
determine that

ylr)= > 2z(¢)sinée,

£=0,m,2m,...
1 —cosé
= Z 2——=sinéx
2 3
£=0,m,2m,... (1 +€ )5 o
OO2 - (-1 sin krx )
= e —— s
= (1+m?k?)mk ’
_ 4sinkrx
- 27.2 )
ey I G
where we have defined k = £/7.
The exact solution of equation (77.1) is y(z) = 1 — cosz + <=L sina.

If this solution is expanded in a finite Fourier series, we obtain the repre-
sentation in equation (77.5).
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Example 2

Suppose we have the following partial differential equation for ¢(r,t)
(this corresponds to the temperature of a long circular cylinder whose
surface is at a constant temperature)

82¢+ 19¢ 109
o2 ror kot
o(1,t) = ¢o, for t > 0,

¢(r,0) =0, for 0 <r < 1.

forO0<r<landt>0,
(77.6)

Multiplying this equation by rJo(pr) (where p is positive and satisfies
Jo(p) = 0, see “finite Hankel transform-1” in table 77.1) and integrating
with respect to r from 0 to 1, we find

. 1d®

p(boJé(p) —p°®= wdt’ (77-7)

where we have defined ®(p,t fo r,t)rJo(pr) dr. This follows from the

02 10

relation: / <87“(§ + - af) rJo(pr) dr = ppoJ)(p) — p*®(p,t). The initial
0

condition in equation (77.6) is transformed to ®(p,0) = 0. Using this, we

can solve equation (77.7) to find ®(p,t) = %Jé(p) (e*“p% - 1). Taking

the inverse transform (and noting that Jj(p) = —J1(p)), we arrive at the
final solution to equation (77.6)

$(r,t) =200 (e_ﬁpzt ) ]iofg( %

where the summation is over all positive roots of Jy(p) = 0.

Table 77.1: Different transform pairs of the form

B
w6) = [ K@o)u@ds,  ulx) = 3 H. &) ol
@ &k

Finite cosine transform — 1, (see Miles [5, page 86]) here [ and h are
arbitrary, and the {£;} satisfy & tanéil = h

! — 2 2 COS X
o) = [ conate) ute)de. u(a) = Y Etetlt ot ) )

&k

Finite cosine transform — 2, (see Butkov [1, page 161]) this is the last
transform with h =0, [ =1, so that £, = 0,7, 27,....

1
v(&) = /0 cos (z&) u(z)dz, wu(z)= 2(2 — 0¢,0) cos (§x) v(&r).

&k
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Finite sine transform — 1, (see Miles [5, page 86]) here | and h are
arbitrary, and the {£;} satisfy & cot(&xl) = —h.

! 2 2) sin (&
o) = [ sin(et) ule)ds, ute) = Y28 T i ),
&k

Finite sine transform — 2, (see Butkov [1, page 161]) this is the last
transform with h =0, [ =1, so that & = 0,7, 27,....

1
o(&) = / sin (264) u(z) dz, u(z) =3 25in (&) v(&).
&k

Finite Hankel transform — 1, (see Tranter [8, page 88]) here n is
arbitrary and the {{x} are positive and satisty J,, (&) = 0.

1 iC
o) = [ (et u Z2J2 e

m+1

Finite Hankel transform — 2, (see Miles [5, page 86]) here n and h are
arbitrary and the {£x} are positive and satisfy & J!, (alx) + hJy(a&k) = 0.

= ax &) u(x 265 Tn (4r) v
’U(é-k)_‘/o Jn( gk) ( Z{ h2+€2 a2 — WQ}J,QZ(CL&) (51@)

Finite Hankel transform — 3, (see Miles [5, page 86]) here b > a,
the {&;} are positive and satlbfy Yo (&) Jn(b€) = Jn(a&i)Yn (D), and
Zn(x8k) := Yn(a&p)In(x8k) — Jn(a&e)Yn (x8k)-

b 7T 2 X
o) = / 70 () u(x) da, u(x)_z7 % & ébﬁk) j%((bigv(gk).

Legendre transform, (see Miles [5, page 86]) here & =0,1,2,....

w6 = [ Pa@ @, u@) = 3B P @) (6

Ek

Note
1. See Butkov [1, Chapter 5 and Section 8.5].
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78. Integral Transforms:
Infinite Intervals®

Applicable to Linear differential equations.
Idea

In order to solve a linear differential equation, it is sometimes easier to
transform the equation to some “space,” solve the equation in that “space,”
and then transform the solution back.

Procedure

Given a linear differential equation, multiply the equation by a kernel
and integrate over a specified region (see table 78.1 on page 349 for a listing
of common kernels and limits of integration). Use integration by parts to
obtain an equation for the transform of the dependent variable.

You will have used the “correct” transform (i.e., you have chosen the
correct kernel and limits) if the boundary conditions given with the original
equation have been utilized. Now solve the equation for the transform of
the dependent variable. From this, obtain the solution by multiplying by
the inverse kernel and performing another integration. Table 78.1 also lists
the inverse kernel.

Warning

After a solution is obtained by a transform method, it must be checked
that the solution satisfies the requirements of the transform. For example,
for a function to have a Laplace transform, it must be a Lo function (i.e.,
square integrable).

Example 1
Suppose we wish to find the solution to the parabolic partial differential
equation

U = a*ugy (78.1)

with the initial condition and boundary conditions given by

u(z,0) =0,
u(0,t) = o, for ¢ > 0, (78.2.a-c)
u(oo,t) =0, for ¢ > 0,

where a and ug are given constants.
Because this problem is in a semi-infinite domain (i.e., ¢ varies from 0
to oo), we suspect that a Laplace transform in ¢ may be useful in finding
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the solution. Let £{-} denote the Laplace transform operator, and define

v(z,s) = L{u(x,t)} = /000 e *tu(x, t) dt (78.3)

to be the Laplace transform of u(z,t). We want to manipulate equation
(78.1) into a form such that there are v(x, s) terms present. To obtain this
form, multiply equation (78.1) by e~*¢ and integrate with respect to t from
0 to oo to obtain

/ e Sty (z,t) dt = a2/ e gy (2, 1) dt. (78.4)
0 0

The left-hand side of equation (78.4) can be integrated by parts while the x
derivatives can be taken out of the integral in the right-hand side to obtain

2

te—st | 00 &
_ulz, t)e”™ ) _|_/0 se*tu(z,t) dt:az%/o e Stu(x,t) dt.

S

If we assume that limy o e **u(x,t) = 0 and use equation (78.2.a), then
we obtain

o0 62 [e'e]
—st _ 2 —st
/0 se u(z,t)dt = a @/0 e *u(zx,t)dt.

Finally, using the definition of v(z, s), from equation (78.3), we obtain
52
sv(x,s) = agﬁv(x, ), (78.5)

which is essentially an ordinary differential equation in the independent
variable z. The boundary conditions for this equation come from taking
the Laplace transform of equation (78.2.b—c). We calculate

0(0.8) = £{u(0.)) = Lo} = [ e ugde =2
v(00, s) := L{u(co,t)} = L{0} = 0. (78.6)

Solving equation (78.5) with the boundary conditions in equation (78.6)
results in

v(x,s) = %e‘rﬁ/a. (78.7)

A table of inverse Laplace transforms, when applied to equation (78.7),
results in
u(z,t) = L~ Ho(x, s)}
1 oo st
=5 s e”v(zx, s)ds

(5]
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which is the final solution.

Now that we have the solution, we must either verify that it solves
the differential equation and initial condition and boundary conditions
that we started with (equation (78.1)), or we must verify that the steps
we performed in obtaining the solution are valid. In this case, it means
verifying that lim; o e”**u(x,t) = 0 and that u(z,t) is square integrable.
Because each of these are true, the solution found in equation (78.8) is
correct.

Example 2

Suppose we have the ordinary differential equation

d4
d—xﬂ =y + p(z) (78.9)

for y(z), for —o0o < & < oo, with the boundary conditions: y(+o0) = 0,
y'(+£00) = 0. Because the equation is on a (doubly) infinite domain, we try
to use a Fourier transform in z to find the solution.

Let F{-} denote the Fourier transform operator, and define

oo

@)= Fly)i= [yl ds
to be the Fourier transform of y(x). If we apply the operator F{-} to
equation (78.9) (by multiplying by ¢*® and integrating with respect to z),

we find
0o d4 0 0
/ e“"wd—xz dzx = / e“Tydr + / e*“p(x) dx.

— 00 — 00 — 00

Integrating by parts and using the given boundary conditions, this can be
simplified to

o0

(iw)*z(w) = z(w) + / e“p(x) da.

— 0o

This last expression can be solved to yield

z(w) = w41— 1 /700 e“p(z) dr. (78.10)

For any given p(z), the integral in equation (78.10) can be evaluated,
and then an inverse Fourier transform can be taken to determine y(z) =

FHz(w)}

Table 78.1: Different integral transform pairs of the form

163 b
o(€) = / Kz &u(@)de,  u(z) = / H(, €)u(€) de.
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Fourier transform, (see Butkov [3, Chapter 7))

1 > T _i > —ix
v(f):\/—2_ﬂ_/7006 Su(x)de, u(z)= mlwe Su(€) de.

Fourier cosine transform, (see Butkov [3, page 274])

o(€) = @ | ostat) ) da, - ute) = @ | costag) () .

Fourier sine transform, (see Butkov [3, page 274])

o(€) = @ | sine)ute)ds, ute) = @ | sintee) v de

Hankel transform, (see Sneddon [22, Chapter 5])
WO = [ aat)u@ e, ulw)= [ €0 v(e)de.
0 0

Hilbert transform, (see Sneddon [22, pages 233-238])

K—transform, (see Erdélyi [7] )

) o+100
o(€) = / K, (26)V/Eru(z) dz, u(z) = — / 1, (26) /€ v(€) de.

7Ti —1300
Kontorovich-Lebedev transform, (see Sneddon [22, Chapter 6])
o(€) = / Bel®) o) de, i) = % / & sinh () Kig () v(€) d.
0 0

Kontorovich—Lebedev transform (alternative form), (see Jones [12])

1 100

o(6) = /fHé”(x)u(x)dm w(w) =~ [ ey v(e) de.

2z —100

Laplace transform, (see Sneddon [22, Chapter 3])

o) o+100
U(ﬁ):/o e " u(z)de, u(z) L/ e u(€) de.

21 J o —ioo
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Mehler—Fock transform of order m, (see Sneddon [22, Chapter 7])
v(€) = /000 sinh(z)Pjf_; /5 (coshz) u(z) dz,
D)= [ tanb(ne) P pfcosh) () .

Mellin transform, (see Sneddon [22, Chapter 4])

) o+100
v(€) :/0 2 () de, u(z) = L/ x5 v(€) dE.

21 S y—iso

Weber formula, (see Titchmarsh [24, page 75])

/f (2€)Y, (a€) — Y (), (a€)] u(z) da

(a€) — Y, (x€)J], (at)
f/ J? @) T ve@) %

Weierstrass transform, (see Hirschman and Widder [10, Chapter 8])

[eS) T
v(€) = \/%L el6—2) /4u(x) dz, wu(z)= ETIE{; . pl@—i&)? Lo (i€) de.

Unnamed transform, (see Naylor [20])

:/_ZKO(|§—x|)u(x)dac, u(z) = - : <dm2 - )/ Ko([§—a[) v(§) d¢.

Unnamed transform, (see Titchmarsh [24, page 83])

9= [ [+ I g )] ulo) s

oo

oo J. (") +JT . ~(e7)
u(z) = e Ve v
(z) /0 4 sinh (7/€) () d.

Notes

1. Note that many of the transforms in table 78.1 do not have a standard
form. In the Fourier transform, for example, the two v/27 terms might
not be symmetrically placed as we have shown them. Also, a small
variation of the K-transform is known as the Meijer transform (see
Ditkin and Prudnikov [6, page 75]).

2. There are many tables of transforms available (see Bateman [7] or
Magnus et al. [14]). It is generally easier to look up a transform than
to compute it.
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3. Transform techniques may also be used with systems of linear equa-
tions.

4. If a function f(z,y) has radial symmetry, then a Fourier transform
in both x and y is equivalent to a Hankel transform of f(r) = f(z,y),
where 72 = 2% + y2. See Sneddon [22, pages 79-83].

5. Integral transforms can be constructed by integrating the Green’s
function for a Sturm—Liouville eigenvalue problem. This involves
explicitly finding an integral representation of the delta function. For
example, the relation

1 [~ .
d(n) = —/ e dv (78.11)
21 J_
can be used to derive the Fourier transform. To see this, change 7 to
x—¢ in equation (78.11), multiply by f(£) and integrate with respect

to £ to obtain

1 > ixy 1 > 3%
f@=—=[ [%E/;j@k %]w
For more details, see Davies [5, pages 267-287], or Stakgold [23,
Chapter 7, pages 411-466].

6. Many of the transforms in table 78.1 have a convolution theorem,
which describes how the transform of the product of two functions,
is related to the transforms of the individual functions. For exam-
ple, if g(t) (respectively h(t), k(t)) has the Laplace transform G(s)
(respectively H(s), K(s)), and G(s) = H(s)K(s), then

o(t) = /O h(t — 7)k(r) dr.

This is called a convolution product and is often denoted by g(t) =
h(t) = k(t). See Miles [16, Table 2.3, page 85].

7. Most of the transforms in table 78.1 have simple formulae relating
the transform of the derivative of a function to the transform of the
function. For example, if G(s) is the Laplace transform of g(t), then

L{gM (B)} = "G(s) — g V(0) + 59D (0) + - + (~1)"s" 1 g(0).

8. Two transform pairs that are continuous in one variable and discrete
in the other variable, on an infinite interval, are the Hermite trans-
form

oo , 1 - )
u(x) =Y vaHu(a)e ™ /2, Up = n—/ u(z)Hy (v)e™™ /2 da,
n=0 (2 )‘\/E —00

where Hy(z) is the nth Hermite polynomialand the Laguerre trans-
form

) = 3 v L )
n=0

m, Un = /0 u(x)Lf{(x)xaeﬂ diC,
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where L& (x) is the Laguerre polynomial of degree n, and a > 0. See
Haimo [9] for details.

Integral transforms are generally created for solving a specific dif-
ferential equation with a specific class of boundary conditions. For
example, the Mathieu integral transform (see Inayat-Hussain [11])
has been constructed for the two-dimensional Helmholtz equation in
elliptic-cylinder coordinates.

The papers by Namias ([17] and [18]) on fractional order Fourier and
Hankel transforms contain several examples of how the transforms
may be used to solve differential equations.

Note that

" (AN (Ld o\ (L d |1 d
dzm |\ dz z dx 2 dx o1 dx

r—1
1 d , d
= i) = 78.12
lH (xril dr” )] = ldr ( )

i=1

Then observe that the v—transform, defined by
swiv) = 2lf vl = [ [ g (e[]07) X0 T e an
0 0
1 (0+) (0+) _1/r . o
70 = Gmiy /700 /700 o (o ILe vt Tl

where v = (v1,...,v.—1) and 7 runs from 1 to r — 1 in each sum and
product, can be used with (78.12) to obtain

d"u o\ dZ[u,] G
Z{W”r]—(z) N e

where v, = (=1/r,—2/r,...,—(r — 1)/r). This transform can be
applied, for example, to the equation y") + azy’ + by = f(x) or to

d" by dr—1 b,_1 d
(dxr ;W+-~+xr1%)y+amy’+by:f(m).
See Klyuchantsev [13] for details.
Classically, the Fourier transform of a function exists only if the func-
tion being transformed decays quickly enough at t+oo. The Fourier
transform can be extended, though, to handle generalized functions.
For example, the Fourier transform of the nth derivative of the delta
function is given by F (60 (t)) = (iw)". Another way to approach
the Fourier transform of functions that do not decay quickly enough
at either oo or —oo is to use the one-sided Fourier transforms. See
Chester [4] for details.
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13. Many of the transforms listed generalize naturally to n dimensions.
For example, in n dimensions we have
e Fourier transform: v(§) = (2r)~"/2 S €U (x) dx,

u(x) = (27) " o, e €%0(E) de.
e Hilbert transform (see Bitsadze [2]):

of T'(n/2) / Yi — T
R

¢(y)dy7 i:1727"'7n_17

Ox; /2 Jpaoa ly — x|
__TI(n/2) (y—x)-Vf
Qb(y) - 7Tn/2 /};n—l |y o X|n d ’

14. The name Bessel transform is given to an integral transform that in-
volves a Bessel function. This class includes Hankel, K, Kontorovich—
Lebedev, and many other transforms.

15. Note that, for the Hilbert transform, the integrals in table 78.1 are
to be taken in the principal value sense.

16. See also Abramowitz and Stegun [1, pages 1019-1030] and Butkov [3,
Chapter 5, pages 179-220 and Section 8.5, pages 299-304].
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79. Integrating Factors”

Applicable to Linear first order ordinary differential equations.
Yields

An exact equation that can then be integrated.
Idea

When a given equation is not exact, it may be possible to multiply the
equation by a certain term so that it does become exact. The term that is
used is called an integrating factor.

Procedure
Let us suppose that the nonlinear ordinary differential equation

M(z,y)dz+ N(z,y)dy =0 (79.1)

is not exact (see page 284). It may be, however, that if equation (79.1) is
multiplied by an integrating factor u(x,y), the resulting equation

uMdx +uNdy =0

is exact. For this to be the case, we require d(uM)/0y = d(uN)/dz, or

oM ON ou ou
“Voay ~ ox

= NZ— - M—. (79.2)

In general, solving the partial differential equation (79.2) for u(zx,y) is
more difficult than solving the ordinary differential equation (79.1). But,
in certain cases, it may be easier. For example,

LIf % (%—]‘; - %—];7) = f(x), a function of x alone, then u(z,y) = u(z) =
exp([” f(z)dz) is an integrating factor for equation (79.1).

2. If (%—A; — %—]z) = ¢(y), a function of y alone, then u(x,y) = u(y) =

exp(— [? g(2) dz) is an integrating factor for equation (79.1).

Example
Suppose we have the general linear first order ordinary differential
equation

y' + P(z)y = Q(x). (79.3)

We recognize that the homogeneous equation corresponding to equation
(79.3) is y' + P(z)y = 0. Written as dy + (P(z)y)dz = 0, we see that the
first case applies with f(z) := P(z) (because M = yP(z) and N =1 ).
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Hence we have the integrating factor u(z) = exp( [ P(z) dz), and equation
(79.3) can be written as

W+ Pomes( [ Pea) = a@es( [ pea),

% [yexp(/wp(z) dz)] = Q(x) exp(/w P(z)dz) :

and therefore (by integrating), we find the solution to be

() zexp(— / " Pl dz> / " O(w) exp( / ’ P(z)dz) dw.

Special Case
For a concrete illustration, the equation

1
Yy + ~y= 7 (79.4)

has {P(z) = 1/z,Q(x) = 22}, so that

o) s [ L)

= exp (log z)
=z

is an integrating factor. When equation (79.4) is multiplied by u(z) = =z,
we obtain

xy 4y =’
d
(zy) — a3,
dx
1
T
-y
Y= + 0,
ory = % + £, where C is an arbitrary constant.
Notes

1. If equation (79.1) admits a one parameter Lie group with generators
{&,n} (see page 366), then an integrating factor is given by u(x,y) =
1/(Nn— M¢). For example, the differential equation y(y? — ) dx +
2?dy = 0 is invariant under the transformation {y’ = e/2y, 2/ =
e‘x}. Therefore, the infinitesimal operator of the group is described
by {n = 3y, £ = z}. This leads to the integrating factor u =
2/3zy(z — 2y?), which leads to the solution y = z/v/2z + C.
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. If Mz + Ny # 0, and equation (79.1) is homogeneous (see page 327),
then an integrating factor is given by u(x,y) = 1/(Mx 4+ Ny). For
example, the differential equation (zy — 2y?)dx — (22 — 3zy) dy = 0
is homogeneous and has the integrating factor u = 1/zy?. This leads
to the solution £ —log(z%y®) = C.

If M = My(z)y — Ma(z)y™ and N = 1, then an integrating factor is
given by u(z,y) =y "exp((1—n)/ [ M, dz).

. The differential equation M;(z)Ms(y)dx + Ni(xz)N2(y)dy = 0 has
the integrating factor u = (MaN7) L.

The differential equation y f(zy) dz+ zg(zy) dy = 0, when f # g, has
the integrating factor u = 1/[zy(f — g)]. For example, the equation
y(1—ay)dx —z(l4+2y)dy =0has {f(z) =1—2,9(z) = —1—2z2} so
that an integrating factor is given by u = 1/2xy. This leads to the
implicit solution ye®¥ = C'z.

Given equation (79.1), if z = N —iM is an analytic function of x and
y (i.e., the Cauchy-Riemann equations {N, = —M,, N, = M,} are
satisfied), then an integrating factor is given by 1/(N? + M?).

For example, the homogeneous equation

(y2+2xy—a:2) dy — (y2 —2xy—x2) dr =0

has the integrating factor u = 1/ [2 (x2 + y2)2}7 which leads to the
solution y + = = C(2? + y?).

Sometimes an integrating factor of the form z¥y™ can be found (for
specific values of k and n). This form of the integrating factor will
always be adequate for differential equations of the form z%y°(py dz +
qrdy) + 2%y°(rydr + sz dy) = 0, where {a, b, d, e, p, q, T, s} are
constants.

The technique presented here also applies to linear ordinary differen-
tial equations of higher order. For example, the second order ordinary
differential equation

d*y dy
— +2z—+4+3y=0
\/deQ + T +Y
can be made exact (see page 287) by use of the integrating factor
u(z) = /z. Multiplying equation (8) by /z results in

2
x% + 2953/2% +3yvx = % x;l—gyc + (2232 — 1)y .
Murphy [2, page 165] has a discussion of how to make second order
ordinary differential equations exact.

When the quasilinear partial differential equation in two independent
variables, M (z,y,u)u, = N(z,y,u)u,, has M, = N,, then the
solution is given implicitly by ®(z,y,u) = 0, where M = &, and
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N = @,. If, alternately, M, # N,, then it may be possible to
find an integrating factor v(z,y) such that (vM), = (vN),. For
example, if (N, — M,)/M is a function of x alone, then v(z) =

N, — M, . . .
exp ( / yT dx) will be an integrating factor.

10. For example, the equation u, = yu, has the integrating factor v(x) =
e”. The solution can then be found to be u(z,y) = —Cy3e3, where
C is an arbitrary constant.

11. See Boyce and DiPrima [1, pages 84-87], Murray [3, pages 22-27],
Rainville and Bedient [5, pages 35-37 and 59-66], and Simmons [6,
pages 42-46].
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80. Interchanging
Dependent and
Independent Variables

Applicable to Ordinary differential equations.
Yields

A reformulation of the original equation.

Idea

Sometimes it is easier to solve an ordinary differential equation by inter-
changing the role of the dependent variable with the role of the independent
variable. If this technique works, then the solution is given implicitly by
2 = z(y) instead of the usual y = y(z).

Procedure
Given the equation

dy
~Z = f(x,
A C)

to solve, it might be easier to solve the equivalent equation
de 1
dy  f(z,y)

This method can also be used for ordinary differential equations with
an order greater than 1. For these cases, table 80.1 can be used to de-
termine how the derivatives {yz, Yszz,...} transform into the derivatives

{2y, Tyy,... }
Example 1
Suppose the solution is desired to the ordinary differential equation
dy T
& EEA
Interchanging the dependent and independent variables in this equation
produces

d 2,2 | .5 5
2TV Y e Y (80.1)
dy T x
Equation (80.1) is now a Bernoulli equation with n = —1 and can be solved
exactly (see page 235). The solution is
: 53\
x(y) = (Ae2y3/3 ~ % — Z) , (80.2)

where A is an arbitrary constant.

CD-ROM Handbook of Differential Equations (©)Academic Press 1997 |




80. Interchanging Dependent and Independent Variables 361

Yo = Ty
Yzo = —x;?’xyy,
Yozz = 3x;5m§y — m;4xyyy,
Yozor = —15x;7xzy + 10x;6xyyxyyy — xfxww

2

Yozzze = 105x;9x4 105x;8m§yxyyy + 1Om;7xyyy

yy

—7
+ 15% LyyTyyyy — Ly Lyyyyy

Table 80.1: How higher order derivatives transform when the dependent
and independent variables are switched.

Example 2

The following formidable nonlinear ordinary differential equation
Y +ayy)? =0 (80.3)

becomes, after interchanging the dependent and independent variables,
Airy’s equation

Hence, the solution to equation (80.3) is given explicitely by
z(y) = C1 Ai(y) + C2 Bi(y),

where C and Cs are arbitrary constants.

Example 3
The nonlinear equation y” = (z — y)y’> becomes, after interchanging
variables, xy, = x —y. This equation has the solution x = y+ Ae¥ + Be™Y.

Notes
1. When this method is applied to partial differential equations (and
not ordinary differential equations), then the method is called the
hodograph transformation (see page 456).
2. See Bender and Orszag [1, Section 1.6] and Goldstein and Braun [2,
page 107].
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81. Lagrange’s Equation

Applicable to Equations of the form y = zF (Z—z) +G (Z—g).
Yields

An exact solution, sometimes given parametrically.

Idea

Equations of this form can be solved by quadratures.

Procedure
Given an equation of the form

y=aF (%) +G(%>’ (81.1)
use p to represent dy/dzr so that equation (81.1) can be written as
y =aF(p) + G(p). (81.2)
Now differentiate equation (81.2) with respect to x to obtain
Y = p=Fo) + L[aFp) + O (). (813
Equation (81.3) can be rewritten as
/ /
Z_Z:x<pljl(f()p))+<p€g()p))’ (314

which is now a linear differential equation in = and p. It can be solved by
the method of integrating factors (see page 356) to determine

x = ¢(p,C), (81.5)

where C' is an arbitrary constant. Now there are two possibilities:

e Eliminate p between equations (81.2) and (81.5) to obtain the implict
solution ®(y,z,C) = 0.

e Use equation (81.5) in equation (81.2) to obtain the parametric solu-
tion

where P is a free parameter.
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Example 1
Suppose we have the equation
dy dy 8
=2~ —qa == 1.
Y Yo ¢ <dm) ’ (81.6)

where a is a constant. Comparing equation (81.6) to equation (81.1), we
identify F'(p) = 2p, G(p) = ap®. Hence, (81.5) becomes

dx 2x
— = = 4 3ap.
dp D

This last equation has an integrating factor of p? and so

3a , C
T =—p +

7 2 (81.7)

where C'is an arbitrary constant. Using equation (81.7) in equation (81.6),
we can remove the x dependence to obtain

Hence, a parametric solution of equation (81.6) is given by

T = 3—CLP2 + Q,
4 P2
(81.8)
_aps, 2
Y 5 P

where P can have any value. By use of resultants (see page 50), the
parameter P can be removed from equation (81.8) to determine the implicit
solution

(27ay® — 162%)y? + 16a%2(9ay? — 42)C — 128a%2*C? — 64a*C? = 0.

If C is taken to be zero, for example, then the explicit solutions y =

4 ,.3/2 _ i
Tt and y = 0 are obtained.

Example 2

If we have the equation

d dy\”
y =202 — (—y> : (81.9)

then we make the identification {F(p) = 2p, G(p) = —p?} so that equation
(81.4) becomes

do _ T <—z> + 2

dp p ’
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or (using the integrating factor p?)

2, C
=P+ = 81.10
r=grt g (81.10)

where C' is an arbitrary constant. Using equation (81.10) in equation (81.9)
results in
_e_r
b=

Hence, a parametric solution of equation (81.9) is given by
C

2 2
o %P Eﬁ’ (81.11)
Yy = F + ﬁv

where P can have any value. By use of resultants the parameter P can be
removed from equation (81.11) to determine the implicit solution

y2(4y — 322) + 62(22° — 3y)C + 9C? = 0.

Notes

1. Equation (81.1) is known as d’Alembert’s equation and also as an
equation linear in x and y.

2. If F =1, then equation (81.1) is the same as Clairaut’s equation (see
page 237).

3. The technique presented in this section is only an application of the
more general technique of “solving for y” (see page 411).

4. See Ince [1, pages 38-39], Murphy [2, pages 65-66], and Valiron [3,
pages 217-218].
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82. Lie Groups: ODEs

Applicable to Linear and nonlinear ordinary differential equations.

Yields

Invariants and symmetries of a differential equation. Often these can
be used to solve a differential equation.

Idea

By determining the transformation group under which a given differen-
tial equation is invariant, we can obtain information about the invariants
and symmetries of a differential equation. Sometimes these can be used to
solve a given differential equation.

Procedure
A one parameter Lie group of transformations is a family of coordinate
transformations of the form

Te = f(;v,y;e),

(82.1)
Ye = g(z,y; €),

such that € = 0 gives the identity transformation. It is also required (for
the transformations to form a group) that f(x,y;e + 0) = f(2e, ye;0), and
Y, y;€) = f(x,y; —€), with analogous formulae for g(z, y;€).

Equation (82.1) is called the global transformation group. Expanding
(82.1) for small values of € yields

Te =T + €($7y)€ + 0(62 3
Ye =y + n(z,y)e + O(),

~—

where

wn=(F) . wen-(3) . ®2

The quantities & and 7 are the infinitesimal transformations of the group.

Lie’s first fundamental theorem states that knowledge of the infinitesimals

{&(z,y),n(x,y)} is equivalent to knowing the functions {f, g} in (82.1).
An nth order differential equation

G(x,y,y’,...,y(")) =0 (82.3)

is said to be invariant under the group defined by equation (82.1) if the
differential equation

G (xeayeayéa s 7y£n)) =0
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is equivalent to equation (82.3) under the change of variables in (82.1).

The infinitesimal generator (also called the generator or infinitesimal
operator) associated with equation (82.1) is X = §(x,y)% + n(a:,y)a%.
The prolongations of X are defined by

0 0 i 0
x () — Lp— + § — 24
g@x ”ay — & oy’ (824)

where & =n and & = D(&§_1) —yOD(€), for 1 = 1,2,...,n, and the total
derivative operator D is defined by D := % + y’a% + 3" a?/ +....

The differential equation of nth order in equation (82.3), G = 0, will be
invariant with respect to the one parameter group defined by (82.1) if

xXMa =o, (82.5)

on the manifold G = 0 in the space of the variables {z,v,%/,...,y™}.
Note that equation (82.5) is quasilinear and the method of characteristics
may be used to solve it.

If the differential equation G = 0 is invariant with respect to the group,
then the subsidiary equations of equation (82.5) can be written as (see page
432)

de _dy _dy) __ dy™)
We can sometimes integrate two of these equations to obtain two integrals:
u=u(z,y,y,...) and v = v(z,y,y,...). If the original equation, G = 0,
is written in terms of these new variables, then the resulting differential
equation will be only of order n — 1. Hence, we will have reduced the order
of the given differential equation.

Special Case

The condition for the equation F(x,y,y’,y”) = 0 to be invariant under
the action of the group defined by equation (82.1) is that X F |p—_o= 0.
When F =y" — f(z,y,y’), this determining equation becomes

Nex + (27717; - gﬂcr)y/ + (nyy - 2€zy)y/2 - y/gfyy
+ (g — 2 = 3Y'E)f — [+ (0 — &) — o) fir
—&fz — 77fy = 0.

We emphasize that equation (82.6) is an identity in z, y, and 3. Because
n and £ cannot depend on y’, equation (82.6) separates into many simul-
taneous equations for each type of 3 term.

(82.6)

Example 1

Given the class of second order ordinary differential equations

G,y v, y")=xy' — F (%y') =0, (82.7)
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we ask if this differential equation is invariant under the magnification
group

T = TS,

- (82.8)

If it is, then we should be able to reduce equation (82.7) to a sequence of
first order ordinary differential equations. Using (82.8) in the definitions
in equations (82.2) and (82.4), we can sequentially calculate

y) ==z, nxy) =y,
So=n=y,
§&1=D(&) —y'D(§) = D(y) —y'D(x) =0
§2 = D(&) —y"D(§) = D(0) — y"D(x) = -y,
) o 0

X® =gl oy oy
x3x+y8y 4 oy"

Applying X to G, we find

where F} denotes the derivative of F' with respect to its first argument. We
conclude, then, that G = 0 is invariant under the magnification group.
Now we form the subsidiary equations:

de dy dy  dy”
x y 0  —y"
< ; dr _ d ia . ;
From the first equality, % = Ty, we find that y/x is a constant; we write
this as y/z = u. From the second equality, dy—y = %, we find that ¢ is a

constant; we write this as ¢y’ = v.
Now we will write the equation G = 0 in terms of the “constants” that
parameterize the solution space: {u,v}. To change variables, we will need

T dr  dr  dudr du

y_dy _dv _ dvdu dv(y' y):dvv—u

r a2 du =x

Hence,

1 y / d'U
= (v—u)— — F =0. 2.9
G=uy F (x’y ) (v—u) » (u,v) =0 (82.9)

CD-ROM Handbook of Differential Equations (©)Academic Press 1997 |




82.  Lie Groups: ODEs 369

Finally, then, we have transformed the second order differential equation
G = 0 into a first order differential equation in terms of v and v. After
this equation is solved for v = v(u), we then have a first order equation for
y(x) (using u =y/z and v =y’).

We now illustrate the above result with two special cases:

1. If we choose the special case F'(u,v) = v — u (for which equation

(82.7) becomes the linear equation z2y” — xy’ +y = 0, with solutions

y =z and y = zlog z), equation (82.9) becomes (v—u) (& — 1) = 0.

The most general solution to this equation is v = u+C, where C' is an

arbitrary constant. Changing to our original variables, this becomes

Z—z = 2 4 C. This equation has the solution y = Cxzlog 2+ Dz, where
D is another arbitrary constant.

2. If we choose the special case F(u,v) = u? — v? (for which equation
(82.7) becomes the nonlinear equation z3y” + x%(y’')? — y? = 0),
equation (82.9) becomes fil—z = —v — u. This first order equation can
be integrated to yield v = (u? — 2u + 2) + Ce™%, where C is an
arbitrary constant. In this case, we cannot integrate again to obtain

y = y(z) in closed form.

Example 2

For a given differential equation, the different infinitesimal generators
will generate an r-dimensional Lie group (L, ) The following four statements
are equivalent (see Ibragimov [10, page 39]):

1. The second order ordinary differential equation

y' = f(z,y,9) (82.10)

can be linearized by a change of variables.
2. Equation (82.10) has the form

y' = F(a,y)y"”° + Fa(z,y)y'” + Fi(z,y)y + Fola,y) =0

with coefficients {F;(x,y)} satisfying the integrability conditions of
the following over-determined system:

0 OF,
_2222_F0w_F12+—0+F0F2,

or dy

0 1 0F: 2 OF;
—Z:—Z’LU+F0F3———2 ——1,

dy 30x 30y (82.11)
ow e 1OR | 20F, |
or %3739y "3 0z’

0 OF:
—w:—w2+F2w—|—ng+—3—F1F3.

dy Ox
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Equation (82.10) admits the Lie algebra Ls.

Equation (82.10) admits the Lie algebra Lo with a basis {X1, X2},
such that X; V X9 = 0 (see the notes for the definition of the
pseudoscalar product X; V Xo =).

Examples:

e Consider the equation

v = f(). (82.12)

From the above, this will be linearizable if and only if f(y') is a
polynomial of the third degree in y’. That is, if equation (82.12) has
the form

V' + Ay + sy + Avy' + Ao =0,

where the {A;} are constants, then it may be linearized.

e Consider the equation

) = fy) (82.13)

From the above, this will be linearizable only if f(y’) is a polynomial
of the third degree in y’. That is, equation (82.13) must have the
form 1

v+ — (Aay” + Aoy + vy’ + Ao) =0,

where the {A;} are constants. In this case, the integrability condi-

tions in (82.11) become
Ay(2— A1) +940A43 =0
22 =)+ 840 : (82.14)
3A3(1+ A1) — A5 =0.

If we define a = — Az and b = — A,, then we can solve equation (82.14)
for A; and Ay. We conclude: Equation (82.13) may be linearized if
and only if it has the form:

1 3 2 b? b b
n_ = ’ by 122 )y 2 '
Y m[ay +oy +<+3a>y+3a+27a2

e Consider the equation

y" = F(x,y). (82.15)

This matches the above form with Fy} = F;, = F3 = 0 and Fy = F.
In this case, the integrability conditions in equation (82.11) become

zw:z2+Fw—Fy,

(82.16)
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Translation in = Te=x+€
X = aw Ye =Y
Translation in y Te=2
X = 81/ Ye =Yy + ¢
Scaling T, = e‘x

X =20, +y0y | ye=ey
Rotation in the (z,y) plane | z. = x cose — ysine
X = —y0y + 20y | ye = xsine —ycose

Table 82.1: Some common Lie group generators

Using the first two equations in (82.16) in the identity z;y = zya,
we find the compatibility condition F,, = 0. This is a necessary
condition for the linearizability of equation (82.15).

Notes
1. Lie group analysis is the most useful and general of all the techniques
presented in this book. Some common generators are in table 82.1.
Many of the other methods presented in this book can be derived
from the method of Lie groups. For example

e Equations with the dependent variable missing (see page 260)
are invariant under the translation group {z. = x,y. = y + €}.

e Equations with the independent variable explicitly missing (see
page 230) are invariant under the translation group {z. = x +
€ Ye = y}

e Homogeneous equations (see page 327) are invariant under the
affine group {z. = z,y. = ye°}.

e Scale invariant equations (see page 398) are invariant under the
group {z. = xze®,y. = yeP}.

e In Kumei and Bluman [13], it is shown that the hodograph
transformation (see page 456) and the Legendre transformation
(see page 467) are derivable from Lie group methods.

e Similarity solutions (see page 497) are all derivable from Lie
group methods.

o Contact transformations (see page 249) and the Riccati transfor-
mation (see page 392) are also derivable from Lie group methods.

2. Changing variables in an infinitesimal generator is straightforward.

Suppose we have the generator X = "1, bi%. To change vari-
ables from the {#'} coordinates to the {z" } coordinates (with % =
2 (7)) we find that X = 31 | (Xa?) %. For example, consider

the generator for scaling invariance: X = xa% + ya%. To change to
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the variables v = y/x and v = zy, we form

R AN
- \Uoz y@y - \Uoz y@y
0 0 0 0

Hence, we can write X in the (u,v) coordinates as X = 21}8%. (Mak-
ing the further substitution b = %log v, we find that X = %.)

In the older literature, transformation groups were found and then
classes of equations that were invariant under that group were deter-
mined. This was what was done in the first example in this section.
For example, it can be shown that the most general second order
differential equation invariant under a group of the form

re = f(a;€) = x4 &(x) + O(€?),
ye = g(z;€)y = y + en(a)y + O(€?),
has the form
/ & -2 , 2—€ ! P(A, B
(22 (£ 20

where @ is an arbitrary function of its arguments, and {A, B, s} are
defined by

A(z,y) = sy,
B(z,y) = (§x —ny)s,
Tt
s(z) = exp (— n(®) dt) .
D)
See Hill [9, page 84] for details.
Recently, the procedure in the last note has been reversed: Given
a differential equation, find a transformation group that leaves the
equation invariant. To derive the transformation group, a set of par-
tial differential equations arising from the equation X (™G = 0 must
be solved. For example, for the second order ordinary differential
equation & = f(¢,z, ) to be invariant under the group
Te =2+ ew(tvx) + 0(62)7
te =i+ e(b(ta x) + 0(62)7
requires that the following equation

(2that — Gu)d + (Voz — 2020) 3% — Ppod®
+ (Y2 = 2¢1) = 3] f(t, 2, 8) — @ fi(t, 2, &) — Y fa(t, x, )
— [ + (W0 — P1)d — ¢w§02] fa(t,z,2) =0
hold for all (¢, z, ). See Aguirre and Krause [1] for details.
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5. The analysis in this section can be obtained from the general results of
Lie algebras. For example, if x(t) satisfies the equation & = f(z, %),
where f is in C'°°, and the solution is analytic for all ¢, then the
solution may be obtained from x;,, = e**72,, where

0 0 0
e () s () (5)

and we have used z, to denote z(7). For example, for the differential
equation £ = 1, we have f = 1 so that Q,; = v;0,, + 0,, + 0r, and
we can calculate

Qrx, = vy,

QExT =Qv =1,

Dz, =Q,1=0,

O, =0, for k>3

Using these calculations, we can then find

Tppr = e,

= thQk
= k[ xT
k=0 ’

2
=x; +1tvr + 5;

or z(t +7) = x(r) + ti(r) + /2.

This also generalizes to higher dimensions. For example, the solution
of the vector equation % = f(x, %) may be written as x;y, = e/ x,,

where 9
Q‘r =v,:-V +f(XT)VT) -V +=

X+ Vr (97' '
6. Note that an arbitrary function of z. and y., F'(zc,y.), can be for-
mally expanded in terms of the generator, z, and y as

_ of 0, 99 9
F(ze,ye) = F(z,y) +¢ (86 o + 9% 32/)6_0 F(z,y) +

1
= F(£C7y) + EVF(it,y) + §€2V2F($,y) +o
= eV F(z,y).

7. If the parameter ¢ appearing in equation (82.1) had been an r-
dimensional vector, then there would be r infinitesimal operators
{X1,X5,...,X,}. Lie’s second fundamental theorem states that
these operators generate an r-dimensional Lie group under commuta-
tion [X,, Xp] = K¢ X, where the K’s are called structure constants
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No. | Commutator  Pseudoscalar Typified by

I [Xl,XQ]ZO X1 VX #£0 {X1:8I,X2:8y}

11 [Xl,XQ]:O X1 \/XQZO {Xlzay,ngx(?y}

II1 [Xl,Xg]:Xl X1 \/XQ#O {Xlzﬁy,XQ:x(?w—kyay}
v [Xl,Xg]:Xl X1vVXe=0 {Xlzﬁy,ngyay}

10.

Table 82.2: All possible cases for a two-dimensional Lie algebra

and summation occurs over repeated indices. Lie’s third fundamental
theorem relates the structure constants to one another.

If » = 1 in the above, then the order of the original equation can
be reduced by 1. If n > 2 and r = 2, then the order of the original
equation can be reduced by 2. If n > 3 and r > 3, then it does not
follow that the order of the original equation can be reduced by more
than 2. However, if the r-dimensional Lie algebra has a ¢-dimensional
solvable subalgebra, then the order of the original equation can be
reduced by ¢g. See Bluman and Kumei [3] for details.

. Given the two generators X; = 518% + 7718% and X5 = 528% + 7728%7
the pseudoscalar product is X7V Xy = 112 —&2n; and the commutator
is [X1,X5] = X3Xs — XoX;. By a suitable choice of basis, any
two-dimensional Lie algebra can be reduced to one of four types as
shown in table 82.2. Hence, an algorithm for integrating second order
ordinary differential equations is given by

(a) Calculate an admitted Lie algebra L,..
(b) Compare r to 2:
i. If » < 2, then the ODE cannot be completely integrated
using Lie groups.
ii. If r > 2, then determine a sub-algebra Lo C L.
(¢) From the commutator and pseudoscalar product change the
basis to obtain one of the four cases in table 82.2.
(d) Integrate the resulting equation.
(e) Rewrite the solution in the original variables.

. The generators for some first (second) order ordinary differential
equations are in table 82.3 (table 82.4). The Lie groups associated
with some second order ordinary differential equations are in table
82.5.

The semigroup approach to differential equations starts with the
evolution equation u; = Lu + Nu (where £ and N are constant
coefficient linear and nonlinear operators that do not depend on time)
with the initial condition u(x,tg) = uo(z) and writes the solution as
the nonlinear integral equation

t
w(z,t) = ety () + / et LN (u(zT)) dr.

to
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Equation Generator
y =F(kx+1ly) | X =10, — ko,
y’zF(%) X = 20, + y,
y=L+F (L) | x =00,
x x
v =Fla)y X =yd,
Table 82.3: Generators for some classes of first order ODEs
Equation Generator
y'=F(y,y) X =0,
y' =F(x,y') X =0,
y'=F(z,y —ay) X =z,
y' =y F <y y_T,xy/ X =yd,
2y =F (%, y— a:y') X =2%0, + YOy
Table 82.4: Generators for some classes of second order ODEs
Equation Lie group L |L|
y' = fy.y) | {0:} 1
v =1 | {00y} 2
y' = f(jj/) {0y, 20, + yOy} 2
Yy’ =Cy3 {0s,220; + y0y, 220, + y20y,} 3
Yy’ = CeY {0z, 0y, 205 + (z + y)0y} 3
y' =0 {0s, 0y, 0y, £y, YOy, YOy, 20y + TYOy, xYdy + Y20y} | 8

Table 82.5: Lie groups for some second order ODEs

This representation of the solution is useful for proving existence and
uniqueness of solutions and computing estimates of their magnitude,
verifying dependence on initial and boundary data, as well as per-
forming asymptotic analysis of the solution (see, e.g., Yosida [22]).
11. Using Lie groups to find symmetries of differential equations can
be computationally intensive. Algorithms have been developed for
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computerized handling of the calculations, see Azara [2] (for Maple),
Bocharov and Bronstein [4], Champagne et al. [5] (for Macsyma),
Eliseev et al. [7] (for REDUCE), or Head [8] (for muMATH).

It is also possible to find discrete groups that transform solutions of
ordinary differential equations to other solutions, see Zaitsev [23]. For
example, the generalized Emden—Fowler equation y” = Az"y™ (v )l
is described by the parameters ¢ = (n,m,l). Under the discrete
transformation {y = at, x = bu}, the solution y = y(z;c) is mapped
to the solution v = u(y,c’), where ¢’ = (n,m,3 — ). Another such
discrete transformation is given by {y = au=/™, x = bt?/(*+1} for

which ¢/ = ( o 2’”“). Zaitsev [23] illustrates this method

n+121-00 m
by writing the solution of ¢ = z~'%/3y\/%/ in terms of the solutions
to v’ = 6u? (which are elliptic functions).
Technically, a Lie group is a topological group (i.e., a group that
is also a topological space), which is also an analytic manifold on
which the group operations are analytic. The tangent space to that
manifold is a Lie algebra, which is a linear vector space. See Sattinger
and Weaver [16] for an algebraic approach to Lie groups.
Easily readable books that explain Lie groups more fully are Bluman
and Kumei [3] and Stephani [20]. See also Ince [11, Chapter 4, pages
93-113]. and Olver [14].
For the system of second order ordinary differential equations

ya:wa(yi7yi7t)7 a7i:1)"'7N

the generalization of equation (82.6) is (using the summation con-
vention, (), = 9()/0t, and (); = 9()/0y") (see Stephani [20, page
95]):

ow®

oyb

+ 20 (€0 + 7€) + W (596 — %) + 95 be

+ 20" e = 9Y M e+ 9°€ 0 = 200" — 1 = 0.

s +nwy + (1, + 9’ — 9P — 9P )

The Blaisus equation y”' + yy” = 0 is invariant under the scaling

y(n) = AF(7]) where n = 7j/\. Hence, if FI()\) is a solution, then so is
AF(An). Consequently, the solution to the Blaisus equation with the
boundary conditions {y(0) = ¢'(0) = 0,y'(c0) = 2} can be solved by
the sequence of two initial value problems

F"+FF'=0 FO0)=F(0)=0 F"0)=1
v +yy" =0 y(0)=y(0)=0  y"(0) =[2/F(c0)]*?

This procedure is called ezact shooting, see Klamkin [12].
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As another example, consider the generalized Emden—Fowler equa-
tion N[u] = (t*u') + ctbe* = 0 with 4/(0) = 0 and u(c0) = 0
(for a +b # 2). If U(t) is a solution of N[U] = 0, then so is
u(t) = U (te*/®=2+2)) + X, Hence, the original BVP can be solved
by finding U from {N[U] = 0,U(0) = U’(0) = 0} and then finding u
from {N[u] = 0,u(0) = —U(0), u'(0) = 0}.
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83. Operational Calculus®

Applicable to Ordinary and partial differential equations.
Yields

A reformulation of the original differential equation.

Idea

It may sometimes be easier to solve a differential equation in a trans-
formed space.

Procedure

Given an ordinary differential equation, transform it to a field of op-
erators, solve the equation in that field, and then transform back. In this
field, ordinary functions, generalized functions, and differential operators
are all treated as objects in a single algebraic structure.

The operator field that is used has, among other elements, an identity
operator (Z), a differentiation operator (often denoted by D or s) and
an integration operator (often denoted by D~!). The operator D, when
applied to the operator corresponding to a function f(t), results in

D{f}={f}+{f(0)},. (83.1)

The operator D~!, when applied to the operator corresponding to a func-

tion f(t) results in
DLf} = {/Otﬂu) ).

The braces around the above expressions emphasize that they are operators
in the field. In many applications, the operator D is formally treated as
being a “large constant.”

There are tables of formulae describing how operators interact in their
quotient field. For example, because

A
D -«

= {e*'} (83.2)

we can calculate

7 A A

(D—-a)2 (D-a)(D-a)

= (e} ()

t
_ {/ eauea(t—u) du}
0

= {te},
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because the “product” of two operators is the operator corresponding to a
convolution. The formula in equation (83.2) follows from equation (83.1)
when f(t) = e®!, because

(D—a){e} = ({ae™}) + {1} —a{e} =1

It is easy to represent generalized functions and non-continuous func-
tions in the field. For example, a square wave of period 2c¢ has the operator

representation W.
Example 1
The following ordinary differential equation for y(t)
y'+y=0
has the operator representation
(D*+1){y}=0 (83.3)

or D? (1+ D~2){y} = 0. By applying D=2 to the left of the above equa-
tion, we obtain

(1+D7%) {y} = D7*{0}
— At+B,

where A and B are arbitrary constants. This equation may be formally
solved by “dividing” by the operator on the left and expanding terms. We
find

o) = { e+ 1)}

={(1-D24+D™*—...) (At + B)} (83.4)
At*  Bt? At® Bt?

Z{(At-i-B)-‘r <_T_T>+<_m_ﬂ>+-“}

= {Asint + Bcost}.

Hence, y(t) = Asint + B cost.
Really, in this last calculation, there would be many more terms than
those illustrated. For instance, when D~* is applied to (At + B), we ob-

tain (—%; - g—f) plus some terms of the form (C1t® + Cat? 4+ Cst + Cy).

When the form of the solution, with all these additional terms, is substi-
tuted into the defining equation (83.3), these additional constants turn out
to be zero.
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Example 2
Consider the constant coefficient linear ordinary differential equation
for z(t)

2" 432 + 22 = f(¢),
2(0)=1, 2'(0)=0.

Because of the formula

L) — pny {Z(nfl)(o) + D22 (0) 4+ - + anlz(o)}

(which parallels the rule for Laplace transforms), the equation for z(¢) has
the operator representation

[Dg{z}—D] +3[D{z}—z} +2{) =1{f}.

This operator equation can be manipulated into

)= D +37 {r}
D2+3D+2  D2+3D+2
2T 7 T
_D+1_D+2+(D+1 D+2){f}

={2e7"} —{e '} + {7 ="} {f},

and hence,

2(t) =2e7 "t — e 4 /t (e7 —e™?) f(u)du,
0

which is the same result that would be obtained by use of Laplace trans-
forms.

Notes

1. The operational calculus is also called the Heaviside calculus.

2. The operational calculus, at its simplest level, has a great similarity
with Laplace transforms. One school of thought is that any integral
transform creates an operational calculus.

3. It is sometimes difficult to justify the formal steps that are employed
in using the operation calculus. One solution (see Erdélyi [3]) is to
use a more precisely defined operator, such as the primary operator

Dyf(t) +>\/ AE=0) £(p)

which has the inverse D} 'g(t) -2 fo
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4. Infinite order differential equations are often solved by techniques sim-
ilar to those described above. For example, the ordinary differential
equations (a-L + 1)71 y+(Bz—a)y = 0 and [cosh(i-1) + H(z) —a] y
0 are infinite order differential equations for y(z) (here H(z) repre-
sents the step function). Recent results (as well as the solutions to
the two above equations) may be found in Dimitrov [2].

5. The extension of this technique to partial differential equations is
straightforward. Using D for a% and D’ for %, a partial differential
equation can sometimes be written in the form P(D, D"){y} = {f}.
The “inversion” process will then proceed in two steps. For example,
to obtain a particular solution of gy — 6ugs + Yug = 1222 + 362t, a
calculation analogous to the one in equation (83.4) might proceed as
follows:

W= 5557
1

— 2
= DFopp 7 ope L2 360)

/ —2
= (1 - Q) (122® 4 36xt)

D2 D
1 D D"

=53 <1+65+27D2 +> (122”4 36xt)
1 5 6

=53 (122* + 36at) + 73 (362)

= (334 + 6x3t) + (93:4) = 10z* + 62°t.

6. See Courant and Hilbert [1, Volume 2, pages 507-535] and Kaplan
[5, pages 515-538].
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84. Pfaffian Differential
Equations

Applicable to Pfaffian differential equations.
Yields

Knowledge of whether the equation is integrable.

Idea
Pfaffian differential equations are partial differential equations of the
form

f(x) - dx = ZFi(ml,Z‘Q,...,xn) dzr; = 0. (84.1)

i=1
For equations of this type,

e If n = 3, then a necessary and sufficient condition that equation
(84.1) be integrable is that

f(x) - curlf(x) = 0.

e If n > 4, then a necessary and sufficient condition that equation
(84.1) be integrable is that

5, {8Fr an] v [an 8Fr} - {an an}

dzg  Oxy oz, 0z, Oz, Oz,

Oz, Ozq

:07

where p, ¢, and r are any three of the integers 1,2,3,...,n.

There exist a number of techniques for integrating Pfaffian equations.

Example
If we have the equation

(y? +y2)de + (vz + 2%) dy + (y* — 2y) dz = 0, (84.2)
then we identify n = 3 and
f(x) = (y* +yz, 22 + 2% y* — ay),

so that
curlf(x) = vV xf(x) = 2(—z +y — z,y, —v).

Therefore f(x) - curl f(x) = 0, and there exists a solution to equation (84.2).
The solution is, in fact, given by y(z + z) = C(y + 2), where C is any
constant.
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Procedure 1

If a Pfaffian equation is integrable, then there exists an integrating
factor p such that

i=1

By appropriate manipulations of equation (84.1), it may be shown that p
satisfies any of the equations

du i 1 {63 aFj]
12 = Fi 833j 8331
for i =1,2,...,n. Any one of these equations may be solved to determine

an integrating factor. Alternatively, if two integrating factors can be found,
say p and v, then a solution to equation (84.1) is given by u/v = constant.

Example 1
The Pfaffian differential equation

y(a? —y? —y2)de +2(y? — 2% —x2)dy + xy(z +y)dz =0
(84.4)

can be shown to pass the integrability requirements. Substituting into
equation (84.3) results in the three separate equations

Cdp_ 2(x—y)(2x +2y+2) 2(z +vy)

= dy — d
p y@ ) R ogr
g —
_ 2 —yQRet2yte) 0 2xty) dz.,
x(y? — 22 — x2) y2 — 2?2 —xz

(84.5)

for j = 1,2,3. The last equation in (84.5) can be integrated to determine
p = 1/(zy)?. Hence, multiplying equation (84.4) by 1/(zy)? results in

2,2 2 _ 2
dp— (Y 92\ gp o (L2 Z22) gy 4 Tty dz,
x2y xy? xy

which can be integrated to yield

T T+
¢=—+3+( y)z—i—C,
Yy x

Ty

where C' is an arbitrary constant.
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Procedure 2

If an integrable Pfaffian differential equation is of the form Pdx+ Qdy+
Rdz = 0, where P, @, and R are homogeneous functions of the same degree,
then a solution may be found. First, define Z = Px + Qy + Rz. Then,
form

Pdxr+ Qdy+ Rdz —dZ dZ
— = 4.6

7 + 7 0 (84.6)

and integrate (we have addressed only the case of Z # 0, although there

are special techniques that can be used when Z = 0).

Example 2
Given the Pfaffian equation

(yz + 22)dx — xzdy +xydz =0,
we define Z = zz(y + z). Forming equation (84.6) we obtain

dZ  2(dy+dz) _
Z y+z

)

which can be immediately integrated to yield Z = C(y + 2)? or 2z =
C(y + z), where C is an arbitrary constant.

Procedure 3

The Pfaffian differential equation Pdx + Qdy + Rdz = 0 can sometimes
be solved by taking one variable, say z, as a constant. Then, the solution
of Pdz + Qdy = 0 (because z = constant means that dz = 0) will be given
by u(z,y) = constant.

We take the “constant” in this last expression to be f(z). Differentiating
u(x,y) = f(z) and comparing to the original equation, we may sometimes
obtain an ordinary differential equation for f(z).

Example 3
Given the Pfaffian equation

20 dr + dy + (1 + 22% 4 2yz + 2222) dz = 0,

we treat z as a constant to obtain 2x dxr + dy = 0, which has the solution
22 + y = constant = f(z). This can be differentiated to obtain

2z dx +dy + f'(z)dz = 0.

Comparing this to the original equation, we find that f(z) satisfies the
ordinary differential e%uation: f' = 1+422% +2zf. Solving this equation
to obtain f(z) = Ce™* — z, where C is an arbitrary constant, we find the
solution to the original equation to be

x2+y+z=Ce’ZQ.
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Notes
1. Another name for a Pfaffian differential equation is a total differential
equation.
2. One way to solve Pfaffian differential equations in three dimensions
is by the observation: if curl f(x) = 0, then f(x) must be the gradient
of a scalar. Hence, the set of partial differential equations

fi(x) = 8;5:) )

may be solvable for v(x). The solution to equation (84.1) would then
be given implicitly by v(x) = constant.

3. If the Pfaffian differential equation is of the form Y. | fi(x;) dz; = 0,
then the integral surfaces are defined by Y., [ fi(z;) dx; = C, where
C is an arbitrary constant.

4. Sometimes a Pfaffian differential equation can be reduced to a sys-
tem of ordinary differential equations. One such procedure is called
Mayer’s method. See Carathéodory [1, pages 121-133] for details.

5. Given a system of m Pfaffian differential equations in m dependent
variables {z; | j =1,2,...,m} and n independent variables
{zr | k=1,2,...,n}

fori=1,...,n,

dzj:Zij(x,z)dxk, i=1,2,...,m,
k=1

the condition for complete integrability is given by

apjk - 5ij 5le T 5le
-F)i = Pq/ 5
ox; + e 0z; ! Oz, + ; 0z; k

forj=1,2,...,mand k,l =1,2,...,n. See Iyanaga and Kawada [6]
for details on how this system may be solved.

6. Using the notation of exterior calculus, a total differential equation is
an equation of the form w = 0, where w is a differential 1-form, also
called a Pfaffian form, Y"1, a;(x) dz; on a manifold. See Zwillinger
[9] for details.

7. See Ford [2, pages 135-141], Ince [5, pages 52-59], Moon and Spencer
[7, pages 23-27], and Sneddon [8, pages 18-33].
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85. Reduction of Order

Applicable to Linear ordinary differential equations.
Yields

A lower order differential equation, if any non-trivial solution of the
homogeneous equation is known.

Idea

For an nth order linear ordinary differential equation, any non-trivial
solution of the homogeneous equation can be used to reduce the order of
the equation by 1. For the special case of second order linear differential
equations, knowing any solution of the homogeneous equation allows the
general solution to be found.

Procedure
We choose to illustrate the method for second order equations. If we
have the general second order linear ordinary differential equation

v + o)y + q(x)y =r(z), (85.1)

let z(z) be any non-trivial solution to the corresponding homogeneous
equation; that is, z(z) satisfies

~—

2" +p(x)z' +q(z)z = 0. (85.2
(z),

If we look for a solution of equation (85.1) in the form of y(z) = z(x)v
then we can obtain a solvable equation for v(x). Substituting y(z
z(z)v(z) into equation (85.1) yields

2"+ (22" + p2)v + (27 + p2 +q2)v =1 (85.3)
Because z(x) satisfies equation (85.2), equation (85.3) becomes
20"+ (22 + p2)v = (85.4)

If we now let w(z) = v'(z), then equation (85.4) becomes a first order
linear ordinary differential equation for w(x). It can be solved by the use
of integrating factors (see page 356).

Example
Given the second order linear differential equation
d*y dy
Sl A IS AT Yy :
122 T + 2y =3, (85.5)

we recognize that z(x) = z is a solution of the homogeneous equation.
Equation (85.4) becomes

d*v

r—

dx?

dv
2(1 - 2?)— =
+2(1-2%) - =3
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This equation may be solved by recognizing that it is a linear first order
ordinary differential equation in the unknown dv/dxz. Hence, integrating
factors can be used to find dv/dx. After dv/dx is determined, it can be
integrated directly to yield

v(x)z%—i—A/w

where A and B are arbitrary constants. Using the relationship y(z) =
z(x)v(x), the general solution of equation (85.5) is

et
i+ B,

3 @ et
y(x)=§+Ax/ t—th—i—Bx.

Notes
1. The general nth order linear ordinary differential equation is treated
in Finizio and Ladas [2, pages 108-116] and Rainville and Bedient [3,
pages 127-129]. The general result is that

If z(x) is a solution of the linear homogeneous equation

Z(n) —|—p1($)z(n71) + - +pn(m)z — O
(85.6)

and if y(z) = v(x)z(zx), then the equation

y(n) +p1(x)y("_1) + -t pu(2)y = ()
(85.7)

transforms into
v+ qu(@)ol" T g0 = ().

This last equation may be reduced in order by defining
w(z) = v'(x).
2. More generally, if {z1(x),...,2y(x)} are linearly independent solu-
tions of equation (85.6), then the substitution

Z1 ‘e Zp v

/ ! /

2 . Zv

y@) =1 . S
z%p) e z,(,p) v(®)

reduces equation (85.7) to a linear ordinary differential equation of

order n — p for v(z).
3. See also Boyce and DiPrima [1, section 3.4, pages 127-131].
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86. Riccati Equations

Applicable to Ordinary differential equations of the form y' =
a(@)y® + b(z)y + c(x).
Yields

A reformulation as a linear second order ordinary differential equation,
or a second solution if one solution is already known.

Idea

A change of dependent variable can transform a Riccati equation to a
linear second order ordinary differential equation. Also, if one solution to
a Riccati equation is known, then the other solution can be written down
explicitly.

Procedure 1
Suppose we have the Riccati equation

Y = a(@)y? + bla)y + (). (86.1)

If the dependent variable in equation (86.1) is changed from y(z) to w(x)
by

y(z) = — — (86.2)

then we obtain the equivalent second order linear ordinary differential
equation

R AC) z)| w +a(x)e(z)w =
w {a(x) + ( )} + a(x)c(z) 0. (86.3)

It might be easier to solve equation (86.3) than to solve equation (86.1) by
other means.

Procedure 2
Suppose we have the Riccati equation

y' = a(2)y® + b(x)y + c(x), (86.4)

and suppose further that one solution to this equation is already known
to us, say, y(x) = z(x). If y(r) = z(x) + u(x) is substituted in equation
(86.4), then the solvable Bernoulli equation

u' = (b+ 2az)u + au?

is obtained for u(z). To solve this equation, the new dependent variable
v(z) = 1/u(x) should be introduced and then integrating factors should be
used (see pages 235 and 356).
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Example 1

Suppose we have the Riccati equation
Yy ="yt —y+e (86.5)

to solve. By identifying a(x) = €%, b(z) = —1 and ¢(x) = e %, the change
of variables in equation (86.2) becomes

w'(z) _
== v 86.6
o) = e (56.6)
so that equation (86.5) becomes w” + w = 0, which could have been

obtained directly from equation (86.3). The solution to this equation is
w(x) = Asinz + Bcosx, where A and B are arbitrary constants. Using
this solution in equation (86.6) leads to the general solution of equation
(86.5)

y(z) = —e7* <

There should be only one arbitrary constant in the solution to equation
(86.5), because it is a first order ordinary differential equation. In fact,
this last equation may be written as

Acosz — Bsinzx
Asinz + Bcosz )

y(z) = —~7 (cosx - Csinx)

sinx + C cosx

where we have defined C' = B/A (and assumed A # 0).
Example 2

Suppose we have the equation
Y=y —ay+1 (86.7)

to solve. A solution to equation (86.7), obtained by inspection, is y(z) = x.
We utilize this solution in forming

y(x) =z + u(x), (86.8)

and then (using equation (86.8) in equation (86.7)) the equation ' =

u? + xu is obtained. This Bernoulli equation has the solution u(x) =
2
ew—/z, where A is an arbitrary constant. Thus, the second solution

A— et?/2dt

0
to equation (86.7) is

z2/2
yo) =a+ — .
A— / et?/2dt
0
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Notes

1. The transformation in equation (86.2) is known as the Riccati trans-
formation.
2. The identity

(i -a) (4 +a@) ) u=u+ (¢ =)

shows that the differential equation u” + p(x)u = 0 can be factored
into the form of equation (86.9) if ¢ — ¢> = p, which is a Riccati
equation.

(86.9)

3. See Bender and Orszag [1, Section 1.6], Boyce and DiPrima [2, pages

93-94 and 142-143], Goldstein and Braun [3, pages 45-36], Ince [4,
pages 23-25 and 295], and Simmons [6, pages 62-63].
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87. Matrix Riccati Equations

Applicable to Systems of quadratic ordinary differential equations.
Yields

An exact solution.

Idea

There is an exact solution available for matrix Riccati differential equa-
tions. If a given system of ordinary differential equations can be put in the
form of a matrix Riccati equation, then the solution can be found.

Procedure
If Z(t), A(t), and K(t) are all N x N matrices, then we can use the
following theorem:

If Z(t) satisfies the following matrix Riccati differential equation

4, ZAZ+KZ+ZKT,  Z({t=0)= Z,,
dt (87.1)
then Z(t) is explicitly given by
¢ -1
20 -0 |z - [ @' mawee s oo
0 (87.2)
where Q(t) is defined to be the solution of
Can=KmQw, Qu=0=T, (37.3)

I is the N x N identity matrix, and the required matrix inverses are
assumed to exist.

If a given system of ordinary differential equations can be placed in
the form of equation (87.1), then the solution can be found from equation
(87.2).

Example
Suppose we wish to solve the following system of coupled differential
equations for z(t) and y(t)

ccli_x = a(t)(y* — 2%) + 2b(t)zy + 2c,
t (87.4)

W be)(w? ~ a) ~ 2a(t)ey — 20y,
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with 2(0) = D and y(0) = E. If we form the matrices Z = [§ _¥],

Yy —x

K =159, 2 =[5 5], and A = [_Z((:)) 2((?)}, then the equations in

(87.4) are the same as those in equation (87.1). The solution for Q(¢) from
equation (87.3) is Q(t) = e°*I. Therefore, the solution for Z is

Z(t) = et [Zol — /t €25 A(s) ds] B .

0
If we define

then, by equating the corresponding entries of equation (87.2), we can find
{z(t),y(t)} in terms of {«(¢), B(t)}. We have
z(t) = e [a(t)(E® + D*) + D] /A,
y(t) = > [B(t)(E® + D) + D] /A,
where A = A(z) is defined by
A(z) = [B*(t) + &*(t)] [E*> + D?*] — 2B(t)E + 2a(t)D + 1.

Notes

1. Matrix Riccati equations arise naturally in a number of physical set-
tings. For example, the gains in a Kalman-Bucy filter satisfy a matrix
Riccati equation. Also, the deflection of a beam can be described by
such equations. They also appear quite often in the context of control
theory (see Jodar and Abou-Kandil [3]) and invariant embedding
solutions (see page 747).

2. Kerner [7] shows that nonlinear differential systems of arbitrary order

C.i:Xi(CLCQ;-”;Ck;t)a fori:1,2,...,kz,
may often be reduced to Riccati systems

id'i = A1 + Biama + Ciaﬁxozmﬂv
fori=1,2,...,n, n >k, and A, B, C constant,

and then to elemental Riccati systems
2i = Eiapzazs, fori=1,2,...,p, p(n) > n,

where each Ej;.3 equals 0 or 1. His examples include ordinary differen-
tial equation systems that contain exponential functions and elliptic
functions.
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Celletti and Francoise [2] study matrix differential equations of the
form X =Y, Y = —h(X)Rh'(X), where h is a polynomial function.

. Jodar and Navarro [4] write the solutions of the matrix differential
equation X ®) 4+ Ap_lX(p_l) + -+ 4+ AgX = 0 in terms of the matrix
algebraic equation Y? + A, {YP~1 4+ ...+ Ay = 0.
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88. Scale Invariant
Equations

Applicable to Ordinary differential equations of a certain form.

Yields

An equidimensional-in-x ordinary differential equation of the same or-
der (which can then be reduced to an ordinary differential equation of lower
order).

Idea

A scale invariant equation is one in which the equation is unchanged
when x and y are scaled in a certain way. When an equation is scale
invariant, we can convert the equation into an equidimensional-in-x ordi-
nary differential equation of the same order by a change of the dependent
variable. This equidimensional-in-x ordinary differential equation can then
be changed into an autonomous equation of lower order.

Procedure

A scale invariant equation is one that is left invariant under the trans-
formation {x — ax,y — aPy}, where a and p are constants. That is, if the
original equation is an equation for y(x) and the = variable is replaced by
the variable ax’ and the y variable is replaced by the variable a”y’, then
the new equation (in terms of y’ and ') will be identical to the original
equation (which is in terms of y and x). The way to determine the value
of p is to change variables and then see what value of p leaves the equation
unchanged.

A scale invariant equation can be converted to an equidimensional-in-z
equation by the substitution for y

y(z) = 2Pu(x). (88.1)

By the techniques on page 275, this equidimensional-in-r equation may
then be made autonomous, and then (after another transformation) the
order of the equation can be reduced.

Example

Suppose we have the nonlinear second order ordinary differential equa-
tion

2
?—=2 4 3z—= = . (88.2)
X X
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To determine if this equation is scale invariant, and if so, what the value
of p is, we substitute az’ for z and aPy’ for y to obtain

d*(aPy’) d(a”y’)
N2 /
3 =
(az’) d(az’)? +3(az) d(az’)  (aPy’)3(ax’)*
or
Qde/ dy’ . 1
ala’ ot 3@@@ — (=39 ey (88.3)

Hence, if we choose p so that p = —3p —4, then the form of equation (88.3)
will be the same as the form of equation (88.2). So the equation is scale
invariant, with the value p = —1. To make this equation equidimensional-
in-x, we change variables by equation (88.1): y(z) = u(x)/x. Using this
change of variables in equation (88.2) produces

d*u du 1
2

oy = —. 4
x 72 —|—mdx U 3 (88.4)

Equation (88.4) is equidimensional-in-z, so we use the substitution x = €’
(see page 275) for

1
— U= —. (88.5)

Equation (88.5) is autonomous, so we change the independent variable by
v(u) = u/(t) (see page 230) for

1

The solution of equation (88.6) can be found by separating variables (see

page 487)
1
v(u) =4 /A—u? - 2

where A is an arbitrary constant. To find u(t), we must now solve

du 1
EZU(U)Z:E\/A—’LLQ—E. (88.7)

Equation (88.7) is a separable equation whose solution is

u(t) = ++/cosh B + sinh Bsin(2t + C),

where B and C are arbitrary constants. The last step is to recall that
y(x) = u(z)/x and that x = e'. The final solution is therefore

1
y(z) = ig\/coshB + sinh Bsin(2logz + C).
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Notes

1. This method is derivable from Lie group methods (see page 366). The
infinitesimal operator in this case is given by U = xa% + pya%.

2. A special case of this method (when p = 1) is the method for homo-
geneous equations (see page 327).

3. Euler equations (see page 281) are scale invariant equations for any
value of the parameter p.

4. Scale invariant equations are also called isobaric equations.

5. In Rosen’s paper [3], a change of variable is proposed, different from
the one presented above, that often allows parametric solutions to be
obtained.

6. See also Bender and Orszag [1, pages 25-26] and Goldstein and Braun
[2, pages 81-84].
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89. Separable Equations

Applicable to First order ordinary differential equations.
Yields

An exact solution, often implicit.

Idea

First order ordinary differential equations can be solved directly if the
forcing term factors into a term involving only the independent variable
and a term involving only the dependent variable.

Procedure
Given an equation of the form

z—z = fy)g(@), (89.1)

both sides can be formally multiplied by dx/f(y) and then integrated to
obtain

dy = xT)axr
m_/g( ) dz. (89.2)

The evaluation of equation (89.2) requires only that two integrals be eval-
uated. An arbitrary constant of integration must be included to obtain the
most general solution of equation (89.1).

Example
Suppose we have the equation

dy 92%+1
de  y2+1

to solve. Multiplying both sides of equation (89) by (y* + 1) dr and then
integrating results in

/(y2 +1)dy = /(93:8 +1)dx.
Evaluating the integrals yields

y3
§+y=x9+x+C,

where C' is an arbitrary constant.
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Notes
1. The solution obtained by this method will generally be implicit.
2. The formal procedure of multiplying equation (89.1) by dx/f(y) can
be rigorously shown to give the correct answer.
3. See Boyce and DiPrima [1, pages 37-42], Ince [2, pages 17-18], and
Simmons [3, pages 35-36].
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90. Series Solution®

Applicable to Homogeneous linear ordinary differential equations,
most frequently second order differential equations.

Yields

An infinite series expansion of the two independent solutions.

Idea

If an infinite series is substituted into a linear equation, the different
coefficients may be matched to obtain recurrences for the coefficients of the
series. Solving these recurrences results in an explicit solution.

Procedure
Given a homogeneous linear second order ordinary differential equation
in the form

y' + P(z)y' + Q(z)y =0, (90.1)

we search for a series solution around the point & = 0. There are four
different cases to consider.

Clearly, an expansion about any other point, xg, could be determined
by changing the independent variable to t = x — xg and then analyzing the
resulting equation near ¢t = 0.

1. If z = 0 is an ordinary point of equation (90.1) (the definitions of
ordinary points and singular points are given on page 11) then we
may assume that P(z) and Q(z) have the known Taylor expansions

P(z) =Y Pu",  Qz)=) Qua" (90.2)
n=0 n=0

in the region |z| < p, where p represents the minimum of the radii of
convergence of the two series in equation (90.2). In this case, equation
(90.1) will have two linearly independent solutions of the form

y(x) = ana". (90.3)
n=0

2. Alternately, if x = 0 is a regular singular point of equation (90.1)
then we may assume that P(z) and Q(z) have the known expansions

Pz)= > Pua", Q)= Y Qu" (90.4)

n=-—1 n=-—2

CD-ROM Handbook of Differential Equations (©)Academic Press 1997 |




404 II.LA  Exact Methods for ODEs

in the region |z| < p. After determining the expansions in equation
(90.4), we need to determine the roots to the indicial equation

o +alPy-1)+Q =0, (90.5)

which is obtained by utilizing y = x® in equation (90.1), along
with the expansions in equation (90.4), and then determining the
coefficient of the lowest order term. The two roots of this equation
are called the exponents of the singularity. There are now several
cases, depending on the values of the exponents of the singularity:
(a) If a1 # a9 and a1 — a is not equal to an integer, then equation
(90.1) will have two linearly independent solutions in the forms

o0

yi(2) = J2|™ (1 2 ”) ’
n=1
oo

ya() = |z]°2 (1 2 x) '
n=1

(b) If @1 = g, then (calling o = «1) equation (90.1) will have two
linearly independent solutions in the forms

yi(z) = |z[* (1 +y dnx"> ;

n=1

(90.6)

. (90.7)
ya(x) = y1(z)log o] + |2]* Y ena™

n=0

(¢) If ay = ag + M, where M is an integer greater than 0, then
equation (90.1) will have two linearly independent solutions in
the forms

yi(x) = |z|™ (1 +> f) :
n=1

y2(2) = hyy (z) log [z] + [2[* ) gna”,

n=0

(90.8)

where the parameter h may be equal to zero.

The procedure in each of the four cases is the same: Substitute the given
forms (i.e., the expansions in equation (90.3), (90.6), (90.7), or (90.8)) into
the original equation (90.1) and equate the coefficients of the 27 and 27 log x
terms for different values of j. This will yield recurrence relations for the
unknown coeflicients. Solving these recurrence relations will determine the
solution.
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In the case of an ordinary point, there will be two unknown coefficients
that parameterize the series solutions in equation (90.3). These two co-
efficients will generate the two linearly independent solutions of equation
(90.1).

Example 1

Given the equation
y" +y =0, (90.9)

we easily see that © = 0 is an ordinary point. Using equation (90.3) in
equation (90.9) we find

(2a2 + ag) + (6as + a1)z + (12a4 4 ag)x? + . ..

+[(n+1)(n+2)ante +an]z™ +---=0.
Hence, we must have a, 3 = ‘MW- Iterating this relation we find
aam = (" gyp em = (U Ty

(90.10)

Hence, using equation (90.10) in equation (90.3),

() ( z? ozt x3  2d
y(x) = ao 1——|—|——|—...)—|—a1(x——'+—'—...>.
2! 4! 3! 5! (90.11)

Of course, the exact solution to equation (90.9) is y(x) = ag cosx +a sinx,
which is what equation (90.11) has reproduced.

Example 2
Given the equation
1+22 , 1

" ——y= 12
vt 2r 0 2727 0 (90.12)
we easily see that x = 0 is a regular singular point. In this case we have
(see equation (90.4)) P_1 = 1, Q_» = —3. Therefore, the indicial equation

(from equation (90.5)) becomes
1 1 1
2 —_ — —_ - = — —_ = =
o’ —za-3 (—1) (a 2) 0.

Because the roots a; = 1, ag = —% are unequal and do not differ by an
integer, then we have case 2 (a). Using equation (90.6) in equation (90.12),

for ai; = 1, and equating powers of x we readily find that

1422 1
n—1 n n+1 _
g (n+1)(n)brx +—2x 1+ E bpx 5 | ¢ + E bpx =0.

n>1 n>1 n>1
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Equating the coefficients for different powers of x, we find that

2 2(j + 1)

by = —= b1 =———2 2 p
Ty It 22+ 7j+5 7

Hence, one solution of equation (90.12) is of the form

2 4
yl(m)zm(l—gaj—F%xQ—...).

The other solution can be obtained by using ay = —% in equation (90.6)

and

equation (90.12). For this solution, we find

1
yz(x)szlﬂ (1—x+§$2—...>.

The general solution of equation (90.12) is a linear combination of y (z)

and

y2(z).

Notes

1.

This method is similar to the method of Taylor series (see page 632)
but is different in that

e [t allows for logarithmic terms to be present, as well as fractional
powers.

e The recurrence relations are computed just once.

e The method applies only to linear ordinary differential equa-
tions.

The series solution in equations (90.3), (90.6), (90.7) and (90.8) will
always converge in the region |z| < p.

The series in equation (90.6) are sometimes called Frobenius series.
For regular singular points, this method is sometimes called the
method of Frobenius.

When the given linear ordinary differential equation has an irregular
singular point, then series solutions are difficult to obtain and they
may be slowly convergent. Morse and Feshback [9, pages 667-674]
discuss the canonical second order equations that have 1, 2, and 3
regular singular points, 1 regular and 1 irregular singular points, 1
and 2 irregular singular points. See Bender and Orszag [1, Chapter3]
or Goldstein and Braun [6, Chapter 9, pages 251-279] for details.
Often the WKB method (see page 642) is used to approximate the
solution near an irregular singular point.

Understanding the nature of the singular points in an ordinary dif-
ferential equation leads to an understanding of the types of boundary
conditions to be expected for that equation. For example, the ordi-
nary differential equation zy’ = 1 has the solution y = C + logz,
where C' is an arbitrary constant. Only if y(x) is specified at some
point other than = = 0 will it be possible to determine the constant
C. The point z = 0 is a regular singular point of this equation.
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This method extends easily to the general nth order homogeneous
linear ordinary differential equation at a regular singular point xg. If
the differential equation is given by

yom Gn-1(7) Y= ¢ Gn—2(7) Jm=D Ly qo(7) y=0,
(x — xp) (x — x0)? (x — z)"
where {qo(),...,qn—1(x)} are analytic at x¢, then the indicial equa-

tion for « is given by

(@)n + qn-1(z0)(@)n-1 + gn-2(z0)(@)n—2 + -+ qo(z0)(a)o = 0,
(90.13)

where (@), = (a)(a—=1)--- (e —=n+1) and (a)g := 1. If the n roots
of equation (90.13) do not differ by integers, then there are n linearly
independent solutions of the form of equation (90.6). Otherwise, the
forms in equation (90.7) and equation (90.8) must be generalized. See
Bender and Orszag [1, Chapter 3] for details.

7. Series solutions can also be used to find the solutions of partial

10.

differential equations (see Collatz [3, pages 222-226 and 419-422]
or Garabedian [5, Chapter 1, pages 1-17]), or to approximate the
solution of nonlinear differential equations, see Leavitt [8].

Della Dora and Tournier [4] describe a computer package that will
symbolically produce the series for singular points.

The computer language Macsyma has the function SERIES that will
compute the series expansion of a second order ordinary differential
equation. Program 90.1 shows a terminal session in which Airy’s
equation (Y., +xy = 0) was input and the power series representation
of the solution was obtained. Note that the function fff(n,i) is
defined to be ££ff (n,i)= (n); =n(n—1) - (n—i+1) in the Macsyma
manual and that %k1 and %k1 are arbitrary constants that appear in
the general solution.

When all of the singular points in an ordinary differential equation
are regular, then the equation is said to be of Fuchs’s type. A
second order Fuchsian equation with 3 regular singular points can be
transformed by a linear fractional transformation into the Riemann
differential equation:

A A A A A
y”+(—1+ 2>+<3+ L )=0,

x  r-—1 22 (x—1)2 " z(z—1)

where the {4;} are constants. This equation can then be changed to
a hypergeometric equation by a change of dependent variable.

See Boyce and DiPrima [2, Chapter 4, pages 187-256] and Ince [7,
Chapter 16, pages 396-437].
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(c1) DERIVABBREV:TRUE;

(c2) LOAD(SERIES)$

(c3) DEPENDS(Y,X)$

(c4) DIFF(Y,X,2) + X*Y = 0;

(d4) y +xy=0

X X

(c5) NICEINDICES( SERIES(D4,Y,X) );

DIAGNOSIS: ORDINARY POINT

inf inf
==== i 31 ==== i 31
\ (-1 x \ -1 x

(as) y = %k2 x >  —mmmmmmmm———— o + %kl > e
/ 4 i / 2 i
==== fff (-, i) 9 i! ==== fff(-, i) 9 i!
i=0 3 i=0 3

Program 90.1: Macsyma program to produce series solution.
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91. Equations Solvable for x

Applicable to First order ordinary differential equations that are
of the first degree in x; that is, equations of the form = = f(y,v’).

Yields

An exact solution, sometimes implicit.

Idea

Equations of the form = = f(y,y’) can be solved by finding a second
equation involving z, y, and 3’ and then eliminating 3’ between the two
equations.

Procedure
Given an equation of the form
dy
= ,— |, 91.1
=1 (n ) o11)
define, as usual, p = %, so that equation (91.1) may be written
z=f(y.p) (91.2)

Now differentiate this with respect to y to obtain

de (o dp
dy - yapv dy

1 dp
Lo (y,p, dy) (91.3)

or

for some function ¢. Now the ordinary differential equation (91.3), for
p = p(y), may sometimes be integrated to obtain

F(y,p;C) =0, (91.4)

for some function F', where C' is an arbitrary constant. By elimination, the
p may sometimes be removed from equations (91.2) and (91.4) to determine
y = y(z; C). In cases in which it cannot be removed, we obtain a parametric
solution.

Example
Suppose we wish to solve the nonlinear ordinary differential equation
dy dy\*
=2r— —= 91.5
y=2z—-+y ( dx) (91.5)
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for y(z). Solving equation (91.5) for x results in

s A (91.6)

YT Ty

where we have used 3y’ = p. Differentiating equation (91.6) with respect to
y and factoring results in either p = 4 (leading to the solution y = +ix)

1 dp
1+ — — ) =0.
(+p2) (p+ydy) :

This equation may be integrated to yield
py =C. (91.7)

Solving equation (91.7) for p and using this in equation (91.5) results in
the explicit solution
220 —y* 4+ C? = 0.

Note
1. See Piaggio [1, page 64].

Reference
[1] Pi1acGro, H. T. H. An Elementary Treatise on Differential Equations and
Their Applications. G. Bell & Sons, Ltd, London, England, 1926.
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92. Equations Solvable for y

Applicable to First order ordinary differential equations that can
be explicitly solved for y; i.e., equations of the form y = f(x,y’).

Yields

An exact solution, sometimes implicit.

Idea

Equations of the form y = f(x,y’) can be solved by finding a second
equation involving x, y, and ¢’ and then eliminating the 3’ term between
the two equations.

Procedure
Given an equation of the form
dy
= —= 92.1
v=1 (). (92.1)
define, as usual, p = Z—g, so that equation (92.1) may be written
y=f(z,p). (92.2)

Now differentiate this with respect to = to obtain

_dy dp
p=--=0 (af,p, dx) ; (92.3)

for some function ¢. Now the ordinary differential equation in (92.3), for
p = p(x), may sometimes be integrated to obtain

F(z,p;C) =0, (92.4)

for some function F', where C' is an arbitrary constant. By elimination, the
p may sometimes be removed from equations (92.2) and (92.4) to determine
y = y(z; C). In cases in which it cannot be removed, we obtain a parametric
solution.

Example
Suppose we wish to solve the nonlinear ordinary differential equation
x:yd—y—:r dy 2:yp—a:p2 (92.5)
de ~ \dx '

for y(x). Differentiating equation (92.5) with respect to x, and using p = ¢/,
results in

dp  pz

de  p2—1
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This last equation may be integrated to determine

1 1

—z? = C+ =p* — logp, (92.6)
2 2

where C' is an arbitrary constant. Together, equations (92.5) and (92.6)
constitute a parametric representation of the solution to equation (92.5):

a::\/2C+p2—210gp
z(1+p?

y:( P°)
p

In this representation, p is treated as a running variable.

Notes
1. The technique used for Lagrange’s equation is a specialization of the
present technique applied to a restricted class of equations (see page
363).
2. See Piaggio [1, page 63].

Reference
[1] Piaccro, H. T. H. An Elementary Treatise on Differential Equations and
Their Applications. G. Bell & Sons, Ltd, London, England, 1926.
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93. Superposition®

Applicable to Linear differential equations.
Yields

A set of linear differential equations with “easier” initial conditions or
boundary conditions. The sum of the solutions to these new equations will
produce the solution to the original equation.

Idea

By use of superposition, the solution to an inhomogeneous linear differ-
ential equation may be determined in terms of simpler systems.

Procedure

Given a linear differential equation with a forcing term, inhomogeneous
initial conditions, or inhomogeneous boundary conditions, construct a set
of equations with each equation having more homogeneous parts than the
original system. Solve each of these parts separately, and then combine
them for the final solution.

Example
Given the linear second order ordinary differential equation

Lyl = vy" + a(z)y + b(z) = f(x), (93.1)

we choose y1(z) and yo(x) to be any linearly independent solutions of
Lly;] = 0. If C; and C5 are any constants, then

Ye(z) = Cry1(z) + Caya(x)

is called the homogeneous solution or the complementary solution of equa-
tion (93.1). We also define y,(z) to be any solution to L{y,] = f(z). The
function y,(x) is called a particular solution.

Any solution of equation (93.1) (there will be different solutions, de-
pending on what initial conditions or boundary conditions are chosen with
equation (93.1)) may be written in the form

y(r) = ye(x) + yp(f)v
for some choice of C; and Cs.

Notes
1. In fluid dynamics, the influence of an obstacle in a flow can be
simulated by a continuous superposition of sources. See, for instance,
Homentcovschi [4].
2. There also exist superposition principles for nonlinear equations.
These are relations that allow new solutions, with arbitrary constants

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




414 II.LA  Exact Methods for ODEs

in them, to be calculated from other solutions. For instance, if y1,
Y2, and ys3 are solutions of the Riccati equation (see page 392), then
y will also be solution if it satisfies

Y—1Y2 :Oys—yz7
Yy—u Ys — Y1

where C'is an arbitrary constant. See Ince [5, pages 23-25] for details.

3. More generally, Lie and Scheffers [7] showed that a necessary and
sufficient condition for a system of n first order ordinary differential
equations to have a (nonlinear) superposition formula is that the

system of equations be of the form — Z ()¢ (y) and that the

vector fields Xy := Z Gy generate a finite dimensional Lie

0

3ym
algebra. Given a set of vector fields, Z = {X3,...,X,}, and a Lie
bracket [, ], a Lie algebra is generated by adding to Z all elements of
the form [X;, X;]. This process is repeated with the new, potentially
larger, set Z until no new elements enter Z. The resulting Z is closed
under the [, | operation and is a Lie algebra; it may contain a finite
or an infinite number of elements.

4. See also Boyce and DiPrima [1, Section 7.4 pages 352-357].
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94. Method of Undetermined

: ES
Coefficients
Applicable to Linear or nonlinear differential equations, a single
equation or a system.
Yields
An exact homogeneous solution, an exact particular solution, or both.
Idea

If the general form of the solution of a given differential equation is
known (or can be guessed), it can be substituted into the defining equa-
tions with unknown coefficients. Then the unknown coefficients can be
determined.

Procedure

Very often we can guess the form of a solution to a differential equation.
Or, we could just guess blindly. By having several unknown parameters
in the assumed form of the solution, the solution should be able to fit
the defining equation(s). By forcing the guessed solution to satisfy the
equation, we may be able to determine these unknown quantities.

Example 1

Suppose we have the equation
" 2 4 3
Y — =y =Tx" + 3z”. (94.1)
x

If we suspect that this equation has a power type solution for y(z), we
might search for a solution in the form

y(z) = az?, (94.2)

where a and b are unknowns to be determined. In this example, we presume
that a and b are constants (in more complicated problems, the unknowns
can be functions to be determined). We try to determine a and b by
substituting our guess in the original equation for y(z). Using equation
(94.2) in equation (94.1) yields

az’ 2(b? —b—2) = Ta* + 323, (94.3)

This equation must be satisfied for all values of x. There is no single set of
values for a and b for which this will be true. However, note the following:

e If b =6,a = 1/4, then the left-hand side of equation (94.3) becomes
T4,
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e If b =15,a = 1/6, then the left-hand side of equation (94.3) becomes
323,

e If b = —1, then the left-hand side of equation (94.3) becomes zero.

e If b = 2, then the left-hand side of equation (94.3) becomes zero.

The first two facts enable us to write the particular solution of equation
(94.1) as
_1le 15
yp(x) - 4x + 6‘/'C .

The second two facts tell us that y(z) = z* and y(x) = 1/x are both
solutions to the homogeneous equation

"

2
—Zy=0.
Y 22 Y
Therefore, the complete solution to equation (94.1) is

1 1 B
y(x) = Zmﬁ + 6335 + Ax? + e

where A and B are arbitrary constants.

Example 2
Suppose we have the partial differential equation
Ugx = Ut,
u(0,t) =0,
(0,2 (94.4)
u(1,t) =0,

u(z,0) = sinmz
An appropriate guess for the form of the solution would be
u(z,t) = f(t)sinrz,

for some unknown function f(¢). Using this guess in equation (94.4) results
in the system
framf=0,  f0)=1

2

Hence, f(t) =e ™ ¢.

Example 3
A guess for the form of the solution of the nonlinear equation
ur = (uuy), (94.5)
might be
u(z,t) = f(t) + g(t)«? (94.6)
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for some functions f(¢) and g(t) and some constant p. Using equation
(94.6) in equation (94.5) leads to the choice p = 2. With this value, f(t)
and g(t) can be determined so that

w(z,t) = (C —6t) a2+ (C —6t) /°.

See Ames [1] for more details.

Notes

1. In Table 3.1 of Boyce and DiPrima [2] is a description of general
solution forms for a forced linear second order constant coefficient
differential equation when the forcing function is a polynomial, a
trigonometric function, an exponential function, or a combination of
these terms. By utilizing this general form with unknown coefficients,
a solution may be obtained.

2. The reason that we suspected equation (94.1) to have a power type
solution is that the homogeneous part of equation (94.1) is a Euler
equation.

3. See Boyce and DiPrima [2, Section 3.6.1, pages 146-155], Rainville
and Bedient [3, pages 115-118], and Simmons [4, pages 87-90].
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95. Variation of Parameters

Applicable to Forced, linear ordinary differential equations.
Yields

An integral representation of the particular solution.
Idea

If we know the solution to the homogeneous equation, we can write an
expression for the particular solution.

Procedure
We illustrate the general technique for the linear ordinary differential
equation of second order. Suppose we have the equation

y" + P(z)y' + Q(x)y = R(x), (95.1)

and suppose that we know that {y1(z), y2(z)} are two linearly independent
solutions to the homogeneous (unforced) equation

y' + Px)y +Q(z)y = 0. (95.2)

That is, every solution of equation (95.2) is a linear combination of y; ()
and ya2(x). We look for the particular solution of equation (95.1) in the
form

y(x) = v1(@)y1 (2) + va(2)ya(2), (95.3)

where vy (x) and va(z) are to be determined. Differentiating equation (95.3)
with respect to x yields

y' = (v1yy + vays) + (V1y1 + vhy). (95.4)
We choose the second term in equation (95.4) to vanish, so that
(191 + v5y2) = 0. (95.5)

If we now differentiate equation (95.4) with respect to x, and use this
expression (with equations (95.3), (95.4) and (95.5)) in equation (95.2)
then we obtain

viy] + vhyh = R(x). (95.6)

Equations (95.5) and (95.6) constitute two algebraic equations for the two
unknowns v} (z) and v}(x). Solving these two algebraic equations yields

L m@RE) @A)
! W(y1,y2) ’ ? W(y1,y2) ’ (95.7)
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where W (y1,y2) := y1y5 — y1y2 is the usual Wronskian. The equations in
(95.7) can be integrated and the results can be used in equation (95.3) for

y2(z)R(x) y1(z)R(x)
x) = —y1(x L~ Cdrtys(x) | S——dx
yi@) = —ni) W(y1,y2) 2() W(y1,y2)
Example
Suppose we have the equation
y' +y=cscx (95.8)

to solve. The solutions to the homogeneous equation, y” 4+y = 0, are clearly
y1(z) = sinz and yo(x) = cosx. Hence, we can compute the Wronskian to
be W(y1,y2) = —1. Using this in equation (95.7) results in

vy () :/ymlcscxdx = log(sin ),

va () :/—smx_iscmdx = —z.

Hence, the particular solution to equation (95.8) is y(z) = sinz log(sin z) —
x CoS T.

Notes
1. In Boyce and DiPrima [1, pages 156-162, 275277, 391-393] or Finizio
and Ladas [3, page 136] may be found the generalization of the
analysis presented above for differential equations of higher order.
The result is

If {y1,y2, .., yn} form a fundamental system of solutions for the
equation

y(”) + anfl(l')y(n_l) +---4ay (x)y/ + ao(x)y =0

and if the functions {uy,us, ..., u,} satisfy the system of equa-
tions

y1ut + youy + -+ ypu;, =0,
yiuy + yauh + - -+ ypuy, =0,

",/

yiul +yguy + -+ Yy, =0,
"Iy, =0,
y§n71)u,ll —|— yénil)ulz + e + yfslnil)u’; = f(m)a

then y = uiy1 + u2y2 + - - - + upyy is a particular solution of

Y™ +ap1(2)y™ Y 4 ai(@)y + ao(z)y = f(x).
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2. This last result could also have been obtained by applying variation
of parameters to a system of linear first order ordinary differential
equations. Suppose we have the system

x' = P(t)x + g(t),

x(to) = %o (95.9)

where g(t) is a time-dependent vector and P(t) is a time-dependent
matrix. Then the solution can be written as

x(t) = V(oo + (0) [ 0 ()g(s)ds,

to

where ¥(¢) is a fundamental matrix of the system. This means that
U(t) satisfies
V' =Pt)W, U(ty) =1,

where [ is an identity matrix of appropriate size. See Boyce and
DiPrima [1] or Coddington and Levinson [2, pages 87-88] for details.

3. If equation (95.9) is stiff, that is P(t) has eigenvalues with widely

separated positive and negative real parts (see page 770), then the
fundamental matrix may become numerically singular for ¢ > ty. For
0 1
[)\2 0
cosh A(t —tg)  +sinh A(t —tg)
Asinh A\(t —tg)  cosh A(t —tp)
numerically singular even in 64-bit arithmetic.

example, the problem u’ = u has the fundamental matrix

} . For \(t —tg) > 16, this matrix is

4. See Ince [4, pages 122-123], Rainville and Bedient [5, pages 130-136],

and Simmons [6, pages 90-93].
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96. Vector Ordinary
Differential Equations

Applicable to A system of constant coefficient linear ordinary
differential equations.
Yields
An exact solution is obtained.
Idea

Very often a system of coupled equations with constant coefficients
can be transformed to a system of decoupled equations with constant
coefficients.

Procedure

Given a system of n ordinary differential equations with constant coef-
ficients, write the system as a vector ordinary differential equation in the
following form

y' = Ay, y(to) = yo, (96.1)

where y is a vector of the unknowns and A is a constant n x n matrix. Then
determine the eigenvectors of A (i.e., those vectors x that satisfy Ax = Ax
for some non-zero value of A), and construct a diagonalizing matrix S
whose columns are the eigenvectors of A. Then change variables by the
transformation y = Su, so that equation (96.1) becomes (Su)’ = A(Su),
or

u = S1ASu. (96.2)

By our choice of S, and assuming that A has n linearly independent
eigenvectors, the matrix S~™'AS will be diagonal. Hence, the equations
in equation (96.2) will decouple and each row of equation (96.2) will be an
ordinary differential equation in one dependent variable (u;). These equa-
tions can be solved by the method applicable to linear constant coefficient
ordinary differential equations (see page 247). Once u is known, then y
can be recovered from y = Su.

Example
Suppose we have the system of equations

dy1

— =9 2
dt Y1 + Y2,
dyo

— = 8.
ar Y1 + 3y2
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This system of equations can be written as a vector ordinary differential

equation as follows:
d lyr] 9 2| |n
dt [yg] B L 8} [yg ’ (96.3)

ory’ = Ay, where y = [y yg]T and A = [{2]. The eigenvalues of A

are A = 7 and A = 10 with the corresponding eigenvectors [1 —l]T and
[2 1}T. Therefore, the diagonalizing matrix, S, whose columns are the
eigenvectors of A, is S = [ _{ }]. We will also need the inverse of S, which
is §71 = [};g 7?;3} If we change variables by y = Su, then equation
(96.3) attains the form of equation (96.2). Specifically, we find

A R At | R e |

=[o /L)

Equation (96.4) can be expanded as

(96.4)

dul dul
— =Tu;,  —— = 10us.
Ul dt U2

Note that these last equations are decoupled and have constant coefficients.
The solutions to these equations are given by

uy = Be™, ug = Cet%,

where B and C are arbitrary constants. Therefore, using our original
transformation, we obtain y = Su, or

R B Rt

y1 = Be™ +2Ce,
Yo = —Be™ + Ce'"t,

and therefore
(96.5)

The constants B and C' may be found by evaluating equation (96.5) at
t =ty and using equation (96.1):

yo=1B {_ﬂ et 4 C [2] et
e7t0 2610t0 B
= _e7t0 eloto C *
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. Of course, some systems of equations that are not of first order can
also be reduced to the form of equation (96.1), see page 146.

Given the linear matrix differential equation
dR
— = B(t R, R(tg) = Ia
= B(t) (1)
where R and B are square matrices, note that the determinent of R,
|R| satisfies
d|R
% = trace(B) |R|, |R|i=t, = 1.
For a similar technique applied to partial differential equations, see
page 449.

. Given equation (96.1), a faster technique to find the solution (analo-
gous to the method for constant coefficient linear equations on page
247) is to find the eigenvalues {\;} and eigenvectors {x;} of A and
then write the most general solution in the form

n
y =) Cixel, (96.7)
i=1
where the {C;} are unknown constants. For the example given, we
can directly write the solution as
X = Clxlexlt + OQXQ@AQt
_ Ly 7 2| 1ot
_Cl[—l]e +CQ|:1 e,
which is identical to equation (96.5).
This method is the same as “solving” the system in equation (96.1)
by writing y = e4tyy, where the exponential of a matrix is another
matrix. See Coddington and Levinson [4, pages 67-77] or Moler and
Van Loan [6] for details.
Similar results apply when A is a function of ¢. The equation y’ =
A(t)y, with y(tg) = yo, has the solution y(t) = eZ®y(ty), where
B(t) := f:o A(t) dt, whenever BA = AB.
If the matrix A cannot be diagonalized (i.e., if A does not have n

linearly independent eigenvectors), then A has generalized eigenvec-
tors. If the vector z.™ satisfies (A - )\iI)mzl(m) = 0 and (A —

i
AiI)m*1z5m) # 0, then zgm) is called a generalized eigenvector of
order m. (Note that a generalized eigenvector of order 1 is a usual

cigenvector). Given z\"™, define z" " = (A — A D)z{"™ for n =

% %

m,m —1,...,2, and define

r—1
ot () (r—1) t (1)
Yir =¢€ <zi + tz; + (r—l)!zi )
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for r = 1,2,...,m. Then the {y;} will be a collection of linearly
independent vectors and all solutions of equation (96.1) will be of
the form >, >~ Ciyir (as in equation (96.7)). See Campbell [3] for
details.

An easier method to use when A does not have n linearly independent
eigenvectors is by the theorem of Leonard [5]:

Let A be a constant n X n matrix with characteristic polynomial
p(A) = det(M — A) = A" + ¢, 1 A" P+ + 1A + ¢o. Then
et = 2y () + 2o(t) A + x3(t)A% + - + 2, (t) A", where the
2k(t), 1 < k < n, are the solutions to the nth order scalar
differential equation

2™ e 2V 4 e’ ez =0

satisfying the following initial conditions:

21(0) =1 x2(0) =0 x,(0) =0
21(0) =0 z5(0) =1 2, (0)=0
2" V0)=0) 2 MO)=0 2l h(0) =1

Nonhomogeneous systems of linear equations, of the form

y' = A(t)y + g(t),

may also be analyzed (see Boyce and DiPrima [2, Chapter 7, pages
323-395]. The easiest method is a generalization of the method of
variation of parameters (see page 418). Alternately, if the nonhomo-
geneous system is of the form y’ = Ay + tu, where A is a constant
matrix and u is an arbitrary vector, then the system may be re-

written as
d ly| _ [Ay+tu] _[A u|l|y
ds |t| 1 0 1|t

which is now in the form of equation (96.1).
The solution of

dX
S = AX+XB,  X(0)=C, (96.8)
where A, B, C, and X are all matrices is X (t) = e4*CeP!. See
Bellman [1] for details. When A and B depend on ¢, we have
If U(t) is a solution to U" = A(¢)U with U'(0) = I and V() is
a solution to V' = BT(#)V with V’(0) = I, then the solution to
(96.8) is given by X = UCV'T.
For a review of eigenvalues and eigenvectors see Strang [7, Chapter
5, pages 171-230].
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97. Backlund
Transformations

Applicable to Nonlinear partial differential equations.
Yields

If a Béacklund transformation can be found, then the solution of a non-
linear partial differential equation can be used to obtain either a different
solution to the same partial differential equation, or to obtain a solution to
a different nonlinear partial differential equation.

Idea

From a solution of a nonlinear partial differential equation, we can
sometimes find a relationship that will generate the solution of

e A different partial differential equation (i.e., a Backlund transforma-
tion)

e The same partial differential equation (i.e., an auto-Bécklund trans-
formation)

Procedure

The first step (which is extremely difficult) is to determine a Bécklund
transformation between two partial differential equations. There are var-
ious methods described in the literature (see the references) that can be
utilized for certain classes of equations. This transformation will utilize a
solution of one of the partial differential equations to determine a solution
to the other partial differential equation.

Example 1

Suppose we wish to determine solutions to the sine-Gordon equation
Ugr = SINU. (97.1)

An auto-Béacklund transformation is given by the pair of partial differential
equations

Vg = Uy + 2)\Sin<U+Tu> ,

+2 o (v—u
Vg = —U —sin .
t Y 9

That is, given a solution u(z,t) to equation (97.1), if v(x,t) satisfies equa-
tion (97.2), then v(x,t) will also be a solution of equation (97.1). This may
be verified by determining v, both by differentiating equation (97.2.a) with

(97.2.a-b)
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respect to ¢t and by differentiating equation (97.2.b) with respect to z. This
results in
Upt = Uyt + 23111(“ ; u) cos(v ; u) ,

Vgt = —urt+281n<v—£u> cos(vgu) .

Equating the two expressions in equation (97.3) results in equation (97.1),
while adding them results in

(97.3)

Vg = sinv.

Starting with the solution u(z,t) = 0 of equation (97.1), we can use
the auto-Backlund transformation to determine another solution; equation
(97.2) becomes

2w
X Sin 5 .
This system of equations is easily solved to yield a new solution of the
sine—Gordon equation

.
U$:2)\sm§, vy =

tan% = Cexp(/\t + %) .

This solution may be used to determine another solution, and so on.

Example 2

Suppose we wish to find solutions to Burgers’s equation
Up + Uy = OUgy. (97.4)

Suppose that a solution of equation (97.4), w(z,t), is already known. If
¢(z,t) is defined to be any solution of the following linear partial differential
equation

o+ w(m7 t)¢r = 0¢ze, (975)
and v(z,t) is defined by

v(z,t) = —20— + w, (97.6)

then v(z,t) also satisfies Burgers’s equation. Hence, one solution of Burg-
ers’s equation (i.e., w(x,t)) can be used to generate another solution.

For example, a solution to equation (97.4) is clearly w(zx,t) = 0. Using
this in equation (97.5) results in ¢y = 0¢,,. Each solution of this equation
results in a new solution of (97.4). For example, one solution is ¢(x,t) =
e=@"/49t |\/ixot. Using this in equation (97.6) results in the different
solution to Burgers’s equation v(x,t) = x/¢. This solution may be utilized
to determine another solution, and the process can be repeated indefinitely.
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Notes
1. The transformations in equations (97.5) and (97.6) with

e w identically equal to zero is the Cole—Hopf transformation (see
Whitham [10, pages 97-98])
e w # 0 was first found in Fokas [6]

2. The Cole—Hopf transformation may also be written as the set of
partial differential equations for the unknown v(z,t)
U

Vp = 2% vy = (20u$ — u2)

v

40"

3. Sometimes a Backlund transformation cannot be used to generate an
infinite sequence of new solutions; the solutions repeat after some
point. See Chan and Zheng [4] for some techniques to find new
Bécklund transformations when this occurs.

4. Sakovich [9] determines all evolution equations (equations of the form
wy = f(Wg, Wegs -, We. o)) and all Klein-Gordon equations (equa-
tions of the form w,, = f(w)) that admit a Backlund autotransfor-
mation (i.e., a mapping of the form ¢ = a[w], where a[w] includes
finite derivatives of w, that maps a solution of an equation to itself).
Besides the linear equations, they include only the Liouville equation
and the Burgers equation hierarchy.

5. The Miura transformation u = ¢, + ¢> connects the solution u of the
KdV equation u; 4+ 40 + 6uu, = 0 and the solution g of the modified
KdV equation ¢; + 6¢¢zquez = 0.

6. The transformation ¢ = log(2w,w,/w?) connects the solution ¢ of
the Liouville equation ¢, = e? to the solution w of wy, = 0.

7. An interesting linearization from Calogero [3] takes the Eckhaus equa-
tion, ith + Vus + [|¢[* +2 (|¢]?),] ¥ = 0, and makes the invertible
change of variables

x

ote.t) = vtz ([ ot ar')

— 00
x

~1/2
|¢<x',t>|2dx’)

— 00

Y(x,t) = ¢(z,t) (1 + 2/

to obtain i¢s + ¢rr = 0.
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98. Method of
Characteristics

Applicable to Systems of quasilinear partial differential equations
(i.e., one or more partial differential equations linear in the first derivatives
of the dependent variables, with no higher order derivatives present).

Yields

If the initial data are not given along a characteristic, then an exact
solution can be obtained (generally implicit).

Idea

A quasilinear partial differential equation of hyperbolic type can be
transformed into a set of ordinary differential equations that define the
characteristics and a set of ordinary differential equations that describe
how the solution changes along any specific characteristic.

Procedure
Suppose we have the quasilinear partial differential equation

a1(X, w)ug, + ag(X, W)y, + -+ an (X, u)ug,y = b(x,u)
(98.1)

for the unknown u(x) = u(z1, z2,...,zn). If we were to differentiate u(x)
with respect to the variable s, then we obtain

du Oxy Oxs Oz N
s\ s )t T s e Tt T ) e
y (98.2)

If we define

0
% = ai(x,u), (98.3)
for k=1,2,..., N, then using equation (98.1) in equation (98.2) results in
d
d—z = b(x, u). (98.4)

To determine the solution of the partial differential equation (98.1), we
need to integrate the ordinary differential equations given in equation (98.3)
and (98.4). (Equation (98.3) may look like a partial differential equation,
but it is an ordinary differential equation with respect to s.) To perform
this integration, initial conditions are needed in s for the {z;} and for w.
Generally, the initial data for equation (98.1) will be given in the form

g(x,u) =0, (98.5)
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on some manifold in x space. We identify this surface as correspond-
ing to s = 0. If we think of x and u as depending on the variables
{s,t1,t2,...,tn_1}, then the variables {¢i,ts,...,txy_1} can be used to
parametrize the initial data in equation (98.5) (the examples will make
this clear). That is,

1?1(5 = 0) = hl(tl,tg, e ,tN_l),
332(5 = 0) = hg(tl,tg, e ,tN_l),

: (98.6)
rn(s=0)=hn(ti,t2,...,tn_1),

0
U(S = 0) = U(tl,tg, ce 7tN,1).

Hence equation (98.6) supplies the initial conditions for the differential
equations in (98.3) and (98.4).

After x and u are determined from equations (98.3), (98.4), and (98.6),
then an implicit solution will have been obtained. If the {s,t1,t2,...,tny—1}
can be analytically eliminated, then an explicit solution will be obtained.
It is not always possible to perform this elimination analytically.

The physical picture of the construction of the solution is shown in figure
98.1. The solution w is determined by the ordinary differential equation
(98.4) along each characteristic. A characteristic is specified by the {¢;}
values. The parameter s represents scaled distance along a characteristic.
When two characteristics cross, a shock is formed.

Note that a shock cannot form if the equation (98.1) is linear; that is,
each {a;} is only a function of x and not of u. At a shock, extra conditions
are required. (See Landau and Lifshitz [2, Chapter 9, pages 310-346])
for a discussion of the Rankine—Hugoniot adiabatic, which is used in fluid
mechanics.)

Example 1

Suppose we want to solve the quasilinear partial differential equation

z+ 2 = —Yyu,
te Ty = YU (98.7.a-b)
u=f(y) onz=0,

where f(y) is a given function. Forming du/ds we have

du  (Oz Jy

Comparing equation (98.8) to equation (98.7), we take

Oz Oy 2 du
8_ = ].7 8_ =, d_ = —yu.
5 5 y (98.9.a-c)
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shock

Figure 98.1: Depiction of the characteristics for a quasilinear equation.

The initial data in equation (98.7.b) can be written parametrically as

z(s=0)=0,
y(s =0) = t1, (98.10.a-c)
u(s =0) = f(t1).

That is, when s = 0, we have u = f(y) and = = 0. The solution of (98.9.a)
with (98.10.a) is

x(s,t1) = s. (98.11)
Therefore, equations (98.9.b) and (98.10.b) can be written as

9y _ 2

88_87 y(szo):tla
with the solution
53
yls,tr) = 5 + 1. (98.12)

Finally, the equation for u (from equations (98.9.c), (98.10.c), and (98.12))
becomes

3
Z_Z:_<%+tl>u, u(s =0) = f(t1),

with the solution

g
u(s,t1) = f(t1) exp (_ﬁ - st1> . (98.13)
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Equations (98.11), (98.12), and (98.13) constitute an implicit solution of
equation (98.7).

In this case, it is possible to analytically eliminate the s and ¢; variables
to obtain an explicit solution. From equation (98.11) we obtain s = z.
Using this in equation (98.12) results in t; = y — % Using these two
values in equation (98.13) results in the explicit solution

3 4
u(z,y) = f<y - %) eXP(% - wy) :
Example 2

If we have the quasilinear partial differential equation in three depen-
dent variables

Uy + Uy + TYU, = u2,

) : (98.14)

u=ux ony =z,

then we can write equations (98.3), (98.4), and (98.6) as

9z %y _, 0z _
ds ds 9s Y
du 9
as

z(s=0)=t, y(s=0)=ty, 2z(s5=0)=ty, wu(s=0)=1t]

The equations for = and y can be integrated to yield

x=s+t, Yy =5+ ts. (98.15)
Using these values for x and y, the equation for z becomes
% = (S + tg)(s + tl),
which can be integrated to yield
3 s2
z= ? + E(tg + tl) + stoty + to. (9816)

The equation for u can also be integrated to obtain
1
YTTC st?’
The equations in (98.15) (98.16), and (98.17) constitute an implicit

solution to equation (98.14). The variables ¢; and ¢2 can be eliminated to
yield

(98.17)

(- s)?
1 —s(z—s)?’
4 3 2
z= —% - %(x—!—y)—l—s(a:y—l—l)—ky. (98.18.a-b)
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To actually evaluate u(x,y, z) at some given value of z, y, and z requires
two steps. First, equation (98.18.b) must be solved for s, and then this
value is utilized in equation (98.18.a).

Alternatively, the method of resultants (see page 50) could be used to
obtain a single polynomial equation in terms of x, y, z, and u, alone. This
results in an equation with many terms; the implicit solution given by
equation (98.18) is more useful and more compact.

Notes

1. This technique extends naturally to systems of partial differential
equations, with virtually no increase in complexity. This allows a
single partial differential equation of higher order (and hyperbolic
type) to be analyzed. For example, the wave equation u,, = us can
be written, in the variables {v := u,, w := u;}, as the system of two
quasilinear equations {vy = wy, Wy = Vg }.

2. The general quasilinear system of N equations for the N unknowns
u = (uy,usa,...,u,) in the two independent variables {z,t} has the

form
N

ZAij(u,x —|—Zamux j—i—b =0,
i=1

for i = 1,2,...,N. This equatlon will be hyperbolic (and hence
solvable by the method of characteristics) if there exist N linearly

independent real-valued N-dimensional vectors {v(}), v(®) . v(")}
and N non-zero real-valued two-dimensional vectors {a*), B™1} such
that

N
Z ’Ul(k) {A”a(k) — Clmﬁ(k):| =0
i,j=1
for k = 1,...,N. See Whitham [4, Chapter 5, pages 113-142] for
details and several examples using this formalism.

3. Referring to equation (98.1), it turns out that discontinuities in Vu
can propagate along characteristics, but discontinuities in u cannot.
In fact, if u satisfies a second order linear hyperbolic partial differen-
tial equation in = and y, and if {u, Uy, Uy, Ugs, Uzy} are all continuous
across a curve C but u,, suffers a jump upon crossing C, then C is
necessarily a characteristic of the partial differential equation.

4. Eliminating the {s,t} variables at the end of the calculation will be
possible, in principle, whenever the Jacobian of the transformation
does not vanish; that is, % £ 0.

5. An equivalent way of writing equation (98.3) is the form
dxry . dzo _ dzn

—_— === —

ai az an

which are called the subsidiary equations. When one or more of the
ay, are zero, this equation looks peculiar, but it should be interpreted
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to be the same as equation (98.3). This form is used in place of
equation (98.3) in many older texts. This formulation has been used
occasionally in this book.

6. See Farlow [1, Lesson 27, pages 205-212], Moon and Spencer [3, pages
27-29], and Zauderer [5, Chapter 3, pages 78-121].
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99. Characteristic Strip
Equations

Applicable to Some partial differential equations in two indepen-
dent variables.

Yields

When the technique is applicable, an implicit solution.

Idea

This method appears to be a generalization of the method of charac-
teristics, but it can in fact be derived from that method. The formulae
presented here are handy to use directly.

Procedure
Given the partial differential equation

F(QZ, Yy, u,p, Q) = O; (991)

where p = u,, ¢ = u,, we search for a solution v = u(z,y). The technique
is to solve the system of “strip equations” given by

or dp

95 T gy THeTPRw
dy 9q

ou

% = pr + qu7

where we now consider {z,y, p, ¢, u} to all be functions of the two variables
{s,t}. The equations in equation (99.2) are also called Charpit’s equations.

The “initial” values for equation (99.2) (corresponding to s = 0) are
given in terms of the other independent variable ¢. It will be possible to
give initial values to all of the terms in equation (99.2) because the original
equation (99.1) will have data with it that can be parameterized in terms
of t.

After we have determined {z,y,u} as functions of {s,t}, we must solve
the equations implicitly to obtain the final solution in the form u = u(x, y).

Example
Suppose we have the nonlinear partial differential equation

Ugplly — U = 0, (99.3)
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with the initial data
u=y* onz=0. (99.4)

By comparing equation (99.3) with equation (99.1), we find that F' = pg—u.
Hence, the equations in equation (99.2) can be written as

9z _ 9 _

88 - q7 85 - pa

dy dq

2 _ = 99.5.a-
55 D 55 = (99.5.a-¢)
ou

95 2pq.

The initial conditions for equation (99.5) are given by parameterizing equa-
tion (99.4) in terms of the dummy variable ¢. One such parameterization
(there are always infinitely many) is

=0, y=t, u =t (99.6)
To determine the initial conditions for p and ¢, we utilize the chain rule

Ou _ dv dy
ot Tar T Yar
which can be evaluated at s = 0 (using equation (99.6)) to yield
2t = p(0,£) - 0+ q(0,¢) - 1

or q(0,t) = 2t. The original equation, (99.4), can be evaluated at s = 0 to
determine that p(0,t) = u(0,t)/q(0,t) = t/2. Now that we have the initial
conditions for all five variables appearing in equation (99.5), we can find
the solution.

Equations (99.5.b) and (99.5.d) can be integrated directly to yield

1
= —te’ = 2te®.
p 267 q e

Substituting these expressions in equations (99.5.a), (99.5.c), and (99.5.¢)
and integrating results in

x = 2t(e’ — 1),

1
Y= it(es +1), (99.7.a-c)
u = t2e?.

Equations (99.7.a) and (99.7.b) can be inverted to produce s and t as
functions of x and y:

s dy+z dy —=x
e’ = t

4y —a’ 4
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Using these relations in equation (99.7.c) yields the final answer

(z + 4y)2'

u(z,t) = 15

Notes

1. This method is sometimes called the Lagrange—Charpit method.

2. Frequently, inverting the variables at the end (i.e., finding s = s(x,y)
and t = t(x,y)) is the only step that cannot be carried out analyti-
cally.

3. The variable s really specifies a characteristic, whereas t represents
distance along any single characteristic.

4. This technique works, as the example shows, even when the original
equation is not quasilinear. That is, the method of characteristics
could not have been applied directly to equation (99.3).

5. See also Copson [1, pages 5-9], Garabedian [2, pages 24-31], Sneddon
[3, pages 61-66], and Zauderer [4, pages 56—68].

References

[1] CopsoN, E. T. Partial Differential Equations. Cambridge University Press,
New York, 1975.

[2] GARABEDIAN, P. R. Partial Differential Equations. John Wiley & Sons, New
York, 1964.

[3] SNEDDON, I. N. FElements of Partial Differential Equations. McGraw—Hill
Book Company, New York, 1957.

[4] ZAUDERER, E. Partial Differential Equations of Applied Mathematics. John
Wiley & Sons, New York, 1983.

CD-ROM Handbook of Differential Equations (©)Academic Press 1997




100.  Conformal Mappings 441

100. Conformal Mappings

Applicable to Laplace’s equation (VZu = 0) in two dimensions.
Yields

A reformulation of the original problem.
Idea

Laplace’s equation in two dimensions with a given boundary can be
transformed to Laplace’s equation with a different boundary by a conformal
map. The idea is to choose the conformal map in such a way that the new
boundary makes the problem easy to solve.

Procedure

Given Laplace’s equation in the variables {z,y} (i.e., VU = ugy+1uy, =
0), we define the complex variable z = x + iy, where i = /—1. All of the
boundaries of the original problem can now be described by values of z.

Any analytic transformation between two complex variables, say ( =
F(z), for which d(/dz is never zero, is said to be conformal. It turns out
that Laplace’s equation is invariant under a conformal map. That is, if
¢ =&+1in = F(2), Uge + uyy = 0, and F(z) is a conformal map, then
Uge + Upy = 0.

In the new variables, {&,n}, the boundary might be very simple. If
so, then Laplace’s equation can be solved in this new domain. Then the
solution of Laplace’s equation in the original domain can be found by the
change of variables induced by the conformal map.

A commonly used conformal map is the Schwartz—Christoffel transfor-
mation. This maps a closed polygonal figure (with n vertices) into a half
plane. The mapping is given by the solution of

= = QMG = G/ (= G
(100.1)

for appropriate {01, 2,...,0n} and {(1,(2,...,(n}. The {f;} are the
interior angles of the polygon, and the {(;} are the (complex valued)

positions of the polygon’s vertices.

After the differential equation (100.1) is formulated, it must be solved.
The unknown constant C, as well as the arbitrary constant resulting from
the integration, will be determined when the {(;} are prescribed. The
resulting function ¢ = F(z) is the conformal map that maps the interior
of the given polygonal figure into the half plane. See Trefethen [11] for a
numerical implementation.
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U <

Figure 100.1: The original domain for Laplace’s equation and the domain
after a conformal mapping has been applied.

Example 1

Suppose we have Laplace’s equation (uzg +uyy = 0) to solve in the half
plane H = {—0c0 < z < 00, 0 < y < oo} with the boundary conditions

w(,0) = 0 for |z > 1,
)1 for |z <1

Under the mapping
-1 iy — 1
(=¢+in=F(z) =log (Z—> = log <%> ,
z+1 41y +1 (100.2)

the half plane H is mapped into a strip of height 7 in the (£, ) plane. See
figure 100.1 for pictures of the two geometrical regions involved.

In the (£, n) plane the boundary conditions become

u(§7 0) = 07
u(€,m) = 1.

The solution to Laplace’s equation in this domain is simply u(§,n) = n/7.
To transform back to (z, y) coordinates, the transformation in equation
(100.2) must be inverted. After some algebra it can be shown that

z—1 tan—! 2y
=arg| —— | = tan _
T P2ty —1)

1 B 2y
U/(xvy) = ; tan I (m) .
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w=0 lw=11 w=0¢
a=-1 ¢=1

Figure 100.2: The original domain for Laplace’s equation and the domain
after the Schwartz—Christoffel transformation has been applied.

Example 2
Suppose we have Laplace’s equation (V2w = 0) in the channel open on
the right (see figure 100.2), with the boundary conditions

w(z,0) =0 for0 <z < o0
w(z,a) =0 for0 <z < o0
w(0,y) =1 for0 <y <1.

The polygon in which this problem is being solved has vertices at z; = ia
and zo = 0, with the corresponding interior angles §; = B2 = 7/2. Using
the Schwartz—Christoffel transformation, we choose the vertices in the z
plane to map to the vertices (; = —1 and (o = 1 in the { plane. The
differential equation (100.1) becomes

E—CH -
¢
with the solution z = C cosh™! ¢ + D, where D is an arbitrary constant.
To determine the constants C' and D, we must enforce that the vertices
in the z plane mapped to the vertices in the { plane. We have the two
simultaneous equations:

z1 =ia = Ccosh™ ((1) 4+ D = Ccosh™ ' (=1) 4+ D = Clin + D,
2g=0=Ccosh ' (¢)+D=Ccosh™*(1)+ D =D,

with the solution {D = 0, C = a/n}. Hence, the desired conformal
mapping is ( = cosh (%) The problem in the ¢ domain is now identical
to the problem solved in Example 1.

Notes
1. Conformal mappings are often used in hydrodynamics and electro-
statics because, under a conformal mapping, lines of flow and equipo-
tential lines are mapped into lines of flow and equipotential lines.
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. Conformal mappings are often used to obtain an orthogonal coordi-

nate system inside of a two-dimensional body. This may be used, for
instance, when a grid is required on which the solution to a partial
differential equation will be approximated numerically.

The mapping used in this method need not be conformal everywhere;
it needs to be conformal only in the domain in which Laplace’s
equation is being solved. (Very few maps are conformal everywhere.)

. The Joukowski transformation, given by ¢ = z+a?/z, maps an ellipse

into a circle or a circle into a strip.

Algebraic mappings, given by ¢ = 2%/7, with # > 0, map a corner
with angle « to a corner with angle of8/w. For instance, if § = 2,
then a quarter plane (o = 7/2) is mapped to a half plane.
Numerical implementation of the Schwartz—Christoffel transforma-
tion can fail on some seemingly very simple polygons. Mapping
a rectangle with an aspect ration of 20 to 1, or an other region
with a similar degree of elongation, onto a half-plane may cause
problems because the points in the transformed plane will be very
close together. (This is known as the “crowding phenomenon.”)
The Schwartz—Christoffel transformation can also be used for doubly
connected domains, see Iyanaga and Kawada [6, page 1156].

Even when an analytic conformal map cannot be found, there are
fast numerical techniques for finding an approximate conformal map.
Riemann’s mapping theorem states that all bounded simply con-
nected plane regions can be conformally mapped onto the unit disk,
and all bounded doubly connected plane regions can be conformally
mapped onto an annulus. Using Poisson’s formula (see page 478)
exact solutions can be written down for these two geometries. See
Fornberg [5] or Trefethen [12] for details.

Kober [8] has a large collection of conformal mappings, with the geo-
metric regions in both the (z,y) and (7, {) planes clearly illustrated.
Seymour [10] describes a computer package that permits real-time
manipulation and display of conformal mappings of one complex
plane onto another.

If Vi’y represents the Laplacian in {x,y} space, then under the con-
formal mapping ¢ = F(z) the operator Vi’y is mapped to the opera-
tor | F'(2)[?V3 .. Hence, the biharmonic equation V*u := V2 V2 u =
0 becomes |F'(2)[*V} . (|F’(z)|2V%’C) u=0.

See also Farlow [3, Lesson 47, pages 379-388], Kantorovich and Krylov

[7, Chapters 5 and 6, pages 358-615], and Levinson and Redheffer [9,
Chapter 5, pages 259-332].
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101. Method of Descent

Applicable to Partial differential equations (most often, wave
equations).

Yields

An exact solution.

Idea

For some partial differential equations (in particular, some wave equa-
tions) odd dimensional problems are “easier” than even dimensional prob-
lems. Hence it is reasonable, when given a 2n-dimensional problem, to
instead solve a 2n + 1-dimensional problem and then “come down one
dimension.”

Procedure
Given a partial differential equation in n dimensions for the quantity
U(X) = U((El, T2y .- 7xn)
Lu] =0,

it might be easier to solve the n 4+ 1-dimensional problem
L[v]+ H[v] =0,

for v(x,2) = v(x1,za,...,2,, z), where H[-] is a differential operator with
respect to z. Then, when v(x, z) is known, u(x) can be obtained by either
(1) an appropriate integral over z or (2) taking v to be independent of z.

Example
Suppose we are given the two-dimensional wave equation

upr = € (Ugy + Uyy) (101.1)
with the initial conditions
u(0,x) = f(x), ut(0,x) = g(x), (101.2)

where x = (z,y). We might choose to instead solve the three-dimensional
wave equation
Uit = 02 (vww + Vyy + Uzz) 5

with the initial conditions

v(0,x%,2) = f(x), v:(0, %, 2) = g(x).

The three-dimensional wave equation has the well-known solution (see page
501)

v(t,x,z) = ctM|g] + %(ctM[f]), (101.3)
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where M[-] is a functional defined to be the average value of its argument
on a circle of radius ct; that is,

1

1 T 27
:T/ / h(z + ctsinfcos ¢,y + ctsinfsin ¢, z + ct cos §)
et Jo Jo (101.4)

X sin 0 df d¢,

where S(t) is the surface of a sphere with origin at (z,y, z) and radius ct.

To solve the two-dimensional wave equation (101.1), we merely utilize
the fact that f and g are independent of the variable z. Performing some
algebraic manipulations, equation (101.4) becomes

1 h(¢,m)d¢ dn
M|h(z, = ’
Wz o)l = 5. U/(! VEE—(E- 0P~ w-1°  (1015)

where o(t) is the interior of the circle: (z — ¢)% 4 (y —n)? = c¢*t?. Using
equation (101.5) in equation (101.3) results in the solution to equations
(101.1) and (101.2).

Notes

1. This method is also called Hadamard’s method of descent.

2. If the descent step was applied once again, the solution of the one-
dimensional wave equation, wy = c?wge, could be obtained from
equations (101.3) and (101.5).

3. Note that a line source, in three dimensions, might be viewed as a
point source in two dimensions.

4. One reason that odd space dimensional problems are sometimes easier
than even dimensional problems is Huygen'’s principle. Huygen’s prin-
ciple (see Chester [1, pages 154-156] or Garabedian [4, Section 6.3,
pages 204-210]) states that the wave equation in an odd number of
space dimensions depends only on the initial data (and its derivatives)
on the perimeter of the domain of dependence. See the section on
exact solutions of the wave equation (on page 501).

5. See also Copson [2, pages 95-96], Farlow [3, pages 187-188], Whitham
[5, pages 219-235], and Zauderer [6, pages 226-232].
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102. Diagonalization of a
Linear System of PDEs

Applicable to A linear system of partial differential equations in
two independent variables, of the form u; + Au, = 0, where A is a constant
matrix.

Yields

A set of uncoupled equations.

Idea

By diagonalizing the coefficient matrix, the equations can be uncoupled
and then solved.

Procedure
Given the linear system of differential equations

u; + Au, =0, (102.1)

we change the dependent variables to decouple the system. If the ma-
trix A is n x n and has the eigenvectors {vi,va,...,v,} (which we as-
sume to be linearly independent), then we define the matrix S by S =
[vl Vo o ... vn}. Changing variables in equation (102.1) by u = Sw
results in Sw; + ASw, = 0, or

w; + Aw, =0, (102.2)

where A = S71AS is a diagonal matrix. The equations in (102.2) are now
decoupled and can be solved separately for {w; (x,t), wa(z,t),...,w,(z,t)}.
After they have been found, u may be determined from u = Sw.

Example
Given the system of linear partial differential equations in two indepen-
dent variables
8u1 6’11,1 8u2

e )

Ouo Ouy Ouy
_“ - - —_ % — 0’
o or | ox
we define the vector u = [j!] and the matrix A = [{ 2] so that equation
(102.3) may be written in the form of equation (102.1).
The eigenvalues of A are A = 7 and A = 10 with the corresponding
eigenvectors: vy = |1 —1]T and vy = [2 1]T. Hence, the matrix S is

given by S = [% _H, which has the inverse S~! = “g _;?g} Making the
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change of variables u = Sw turns equation (102.1) into equation (102.2)
with A defined by

A= S"1AS,
R
-[¢ ]

The equations in (102.2) can then be separated to obtain

8w1 Bwl

27 022 =
a0y =0
8w2 8w2_

Bn + 73x =0.

These equations have the solution
wy(z,t) = f(xz — 10t),
wa(z,1) = gz — 1),
where f and g are arbitrary functions of their arguments. Knowing w we
can determine u = Sw to be
up(z,t) = 2wy (x,t) + we(x,t) = 2f(x — 10t) + g(x — 7t),
t)=f

up(e, t) = wi(,t) —wa(w,t) = flx—106) = g(x =Tt). (109 4)

Knowing the general form of the solution, any initial conditions for us (z, t)
and ug(x,t) could be utilized. For example, if we had

,0) = 3sin 2z,
up(z,0) sin 2z (102.5)
uz(x,0) =0,

then utilizing equation (102.4) in equation (102.5) produces
2f(z) + g(x) = 3sin 2z,
f(x) —g(x) =0,
and so f(z) = g(z) = sin2z and the final solution can be written
up(x,t) = 2sin(2z — 20t) + sin(2zx — 14¢),
uz(x,t) = sin(2z — 20t) — sin(2x — 14¢).

Note
1. See Farlow [1, Lesson 29, pages 223-231]
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103. Duhamel’s Principle

Applicable to Linear parabolic and hyperbolic partial differential
equations.

Yields

An integral representation in terms of the solution of a more tractable
partial differential equation.

Idea

To solve a parabolic partial differential equation with a time-varying
source function and time-varying boundary conditions, only a parabolic
partial differential equation with a constant source term and constant
boundary conditions needs to be solved.

Procedure
Suppose we have the parabolic partial differential equation for u(x,t)

%U(x,t) = Llu(x,t)] + F(x,t),
u(y,t) = G(y, 1), for t > 0, (103.1)
U(X, O) = H(X)7

where L[] is an elliptic operator in x and y denotes a point on the boundary.
Note that equation (103.1) has a time-dependent source function F(x,t)
and time-dependent surface conditions G(y,t). Instead of solving equation
(103.1) for wu(x,t), we choose to solve the parabolic partial differential
equation

%v(x,t, T) = Llv(x,t,7)] + F(x,7),
v(y,t,7) = Gy, 1), for t > 0, (103.2)
v(x,0,7) = H(x),

for v(x,t,7). Note that the variable of integration in equation (103.2)
