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Abstract. We introduce a framework for studying and solving a class of CSP
formulations. The framework allows constraints to be expressed as linear and
non-linear equations, then compiles them into SAT instances via Boolean logic
circuits. While in general reduction to SAT may lead to the loss of structure, we
specifically detect several types of structure in high-level input and use them in
compilation. Linearity is preserved by the use of pseudo-Boolean (PB) constraints
in conjunction with a 0-1 ILP solver that extends common SAT-solving tech-
niques. Symmetries are detected in high-level constraints by solving the graph
automorphism problem on parse trees. Symmetry-breaking predicates are added
during compilation. Our system generalizes earlier work on symmetries in SAT
and O-1 ILP problems. Empirical evaluation is performed on instances of the
social golfers and Hamming code generation problems. We show substantial
speedups with symmetry-breaking, especially on unsatisfiable instances. In gen-
eral, our runtimes with the specialized 0-1 ILP solver Pueblo are competitive with
results recently reported for ILOG Solver.

1 Introduction

Traditional constraint programming (CP) techniques such as generalized arc consis-
tency (GAC) are frequently the methods of choice for hard problems arising in real-
world applications. Well-known packages such as ECL'PS® [22] and ILOG Solver [27]
offer powerful environments for constraint specification and solver deployment. These
systems provide for the development of problem-specific solvers using the best avail-
able techniques for a given problem. Another option is reduction — a problem for which
no solver is available can be reduced to one for which a solver does exist.

Boolean satisfiability (SAT) is commonly used in problem reductions, since it is
well-known and many SAT solvers are available in the public domain. Unfortunately,
in most cases reduction-based methods are not competitive with CP approaches devel-
oped for a problem. While CP-based techniques can take advantage of problem-specific
bounds to retain tighter control of the search, SAT solvers cannot. This disadvantage
is mitigated to some extent by recent breakthroughs in SAT-solving. With new exact
SAT solvers such as ZChaff [19], the size and scope of application-derived instances
that can be solved has widened [20]. However, many applications do not benefit from
breakthroughs in SAT solving due to inefficiencies introduced while producing SAT en-
codings. The CNF format used for SAT instances is very restrictive, and even encoding
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simple linear constraints can result in a blowup in size. Another cause of inefficiency
is the loss of structure during problem reductions. Examples of structure in constraints
include linearity and symmetry.

The presence of symmetries slows down search due to the existence of redundant
search paths. The work in [9] describes how symmetries are detected in a SAT in-
stance by reduction to graph automorphism and broken by adding lexicographic order-
ing constraints, called MinLex symmetry-breaking predicates (SBPs). The addition of
these SBPs accelerates SAT solvers. In [14], symmetry-breaking ordering constraints
are proposed for CSPs with matrix models. Linear “counting” constraints popular in
applications are studied in [2]. These constraints can be efficiently expressed using ILP,
where linear equations are allowed, but expressing them in CNF may be expensive. On
the other hand, generic ILP solvers such as CPLEX are sometimes not competitive with
leading-edge SAT solvers for Boolean constraints. Linearity can be preserved using 0-1
ILP, a problem closely related to SAT but with an ILP-like input format. Specialized
techniques developed for SAT can be adapted to 0-1 ILP without paying any penalty
for generality. Recently, several specialized 0-1 ILP solvers such as PBS [2], Galena [7]
and Pueblo [25] have been introduced. Symmetry-breaking techniques from [9, 1] were
extended to 0-1 ILP in [4].

This work contributes a framework for structure-aware compilation of a class of
constraint programming problems by reduction to SAT and 0-1 ILP. We generalize tech-
niques proposed in [9, 4] to detect symmetries in high-level constraints via reduction to
graph automorphism. Our system facilitates comparison of different encoding strate-
gies and SAT reductions. This is useful since recent work [28, 5, 6] has shown that the
encoding used can dramatically affect search speed. Our goals here are (1) to generalize
earlier work on the detection of structure in SAT instances so that it is applicable to a
larger class of high-level CSPs (2) to automate the task of structure-aware reduction to
SAT/0-1 ILP (3) to use this framework to study the performance of structure-aware re-
duction techniques. Unlike earlier work [9, 2], our framework detects structure in high-
level input before reduction and uses it to produce more effective encodings. Our em-
pirical results for the social golfer and Hamming code generation problems show that
breaking symmetries during reduction considerably improves the performance of both
SAT and 0-1 ILP solvers. On many instances, our runtimes are competitive with results
reported using ILOG Solver [27] in [14]. Symmetries detected by our method can be
used by any constraints solver, not just one that assumes reduction to SAT, since we
detect symmetries in high-level input. While we add SBPs during preprocessing, there
are several methods that focus on breaking declared symmetries during search [24, 12]
that can make use of the symmetries we detect.

The rest of the paper is organized as follows. Section 2 discusses background and
previous work. Section 3 explains how symmetries are detected and broken in high-
level constraints. Section 4 discusses more comprehensive symmetry-breaking, with
empirical results in Section 5. Section 6 concludes the paper. The details of compilation
to SAT and 0-1 ILP and the encodings we use are discussed in the Appendix.
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2 Background and Previous Work

Boolean Satisfiability (SAT). A SAT instance consists of a set of 0-1 variables V, and
a set of clauses C, where each clause is a disjunction of literals. A literal is a variable or
its complement. The SAT problem asks to find an assignment to the variables in V' that
satisfies all clauses in C, or prove that no such assignment exists.

0-1 ILP. O-1 ILP allows a CNF formula to be augmented with Pseudo-Boolean (PB)
constraints, or linear inequalities with integer coefficients of the form: (a1x; + axxy +
oo +apx, < b)where a;,b € Z; a;,b # 0; x; are Boolean literals.

CNF vs. 0-1 ILP. Recent work has shown that formulating problem instances as 0-1
ILP instead of SAT can result in faster search. Specialized 0-1 ILP solvers have been
developed in [2,7,25], and have been shown to perform better than both leading-edge
SAT solvers [19] and generic ILP solvers such as CPLEX on some 0-1 ILP formulas.
However, this is not always the case. For an application, there can be several reductions
to SAT, and some encodings are more difficult to solve than others. CNF encodings
for circuit layout applications in [2] contain large numbers of symmetries, increasing
their difficulty. In [28], Warners proposes an efficient encoding where a PB constraint
is replaced by a linear number of CNF clauses. In [5], a tree-based linear conversion is
proposed to translate 0-1 ILP constraints to CNF. More recently, [6] discusses a GAC-
preserving encoding, with a solver modification that results in SAT instances that are
solved faster than their 0-1 ILP counterparts. Our approach constructs a parse tree and
instantiates Boolean circuits for addition, multiplication and subtraction. Most previous
work performs reduction to SAT on a per-problem basis, but we provide a high-level
specification language in which constraints can be easily expressed and conversion to
SAT/0-1 ILP is automated for all problems. Given the impact that efficient encodings
have on search speed, our framework is designed so that different encodings can be
easily plugged in and used with our symmetry-breaking infrastructure.

Symmetry Detection and Breaking. A symmetry of a discrete object is a reversible
transformation of its components that leaves the object unchanged, e.g., permutations of
graph vertices that map edges into edges. Symmetries occurring in a SAT instance indi-
cate the presence of redundant search paths, and breaking symmetries can reduce search
time. Detection of symmetries in CNF formulas by reduction to graph automorphism
is proposed in [9]. A graph is built from a CNF formula such that there is a one-one
correspondence between symmetries of the formula and the graph. The graph automor-
phism software Nauty [16] is used to detect graph symmetries. The symmetry group
induces an equivalence relation on the set of variable assignments for a CNF formula.
Lex-leader symmetry-breaking predicates (MinLex SBPs) that allow only the /exico-
graphically smallest assignment in an equivalence class are defined in [9] . A more effi-
cient SBP construction is proposed in [3]. Symmetry detection via graph automorphism
is extended to 0-1 ILP in [4]. Our work generalizes these methods to a broader class of
problems that use integer coefficients, non-binary variables and non-linear operations.
Symmetries are detected at a higher level, eliminating the risk that some symmetries
may be obscured during reduction. In [14], the author defines high-level lexicographic
(MinLex), anti-lexicographic (anti-Lex) and multiset ordering constraints for CSPs with
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matrix models that exhibit symmetry. However, row and column symmetries must first
be identified in matrix models for individual problems and constraints designed ac-
cordingly. Our system allows symmetries to be automatically detected in any problem
instance, not just a matrix model, and used by any solver. This functionality may be
useful to methods that focus on declared symmetries during search. A modified search
procedure that performs partial symmetry-breaking for matrix models is proposed in
[24], where SBPs are specified for a stabilizer set that is a subgroup of the symmetry
group. We find generators of the symmetry group using the graph automorphism pro-
gram Saucy [10], and these generators can be used by the algorithms in [24] to compute
SBPs. Another related work is [12], which takes as input some generators of the sym-
metry group and uses them to check for dominating elements in the search tree. Since
our system automatically detects generators it may be applicable to such algorithms.
At present, we use only MinLex SBPs from [9]. We have not yet studied other types
of SBPs such as those in [14]. Symmetries in linear programming problems have also
been discussed in [17].

3 Symmetry Detection

Earlier work [9, 4] detects symmetries in SAT/0-1 ILP instances after reduction. Our
approach is to detect symmetries in the high-level specification of constraints, where
they correspond directly to symmetries of the formula and can be used by multiple
solvers. Symmetries detected in a SAT instance can only be used by SAT solvers, or
must be traced back to the original instance to understand their significance. Also, some
symmetries may be obscured during reduction. For example, counting constraints are
symmetric, but the most compact encodings for these constraints [28] use comparator
circuits which are not symmetric.

Detecting symmetries in CNF and 0-1 ILP via graph automorphism was first pro-
posed in [9]. We follow a similar approach for high-level symmetry detection. A parse
graph is built from the constraints such that there is a one-to-one correspondence be-
tween the symmetries of the constraints and the graph symmetries. We describe the
graph construction only for the arithmetic operators ‘+’, *-’, and “*’, but it can be ex-
tended to include more arithmetic or logical operators by adding more colors. An ex-
ample formula in our specification language and the corresponding graph construction
are shown in Figure 1. The formula declares two 3-bit integers x; and x;, and the con-
straint x12 +x,> == 25. The specification language we use is described in the Appendix.
Vertex shapes in the figure indicate different colors. The figure shows the symmetry be-
tween vertices for x| and x.

The graph construction is outlined as follows.

Step 1. Each binary variable x; in a formula is represented by two positive and negative
literal vertices, v; and v;/, which are given the same color. v; and v;/ are connected by
an edge to ensure Boolean consistency. Each multi-bit variable x; is represented by a
single variable vertex v;. A unique color is associated with each bit size.

Step 2. For each constraint C;, two vertices 7; and R; represent the constraint type
(<,>,==,! =) and RHS value respectively. A unique color is associated with each
constraint type and RHS value. The vertices T; and R; for a constraint C; are connected
by an edge. Additionally, for each C;:
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int3 x1, x2; Formula
x1*x1 + x2*x2
x1l >= 1;

x2 >= 1;

== 25;

Fig. 1. Constraints declaration in our specification language and the corresponding parse graph.
Vertices are shaped differently to indicate different colors.

Step 2a. Variables/literals are grouped by the priority of operations in which they oc-
cur. Multiplication between variables or by coefficients has the highest priority. ‘+°, -’
and “** operators have distinct colors. Each distinct coefficient value in the formula is
also given a unique color. Variables connected by a ‘*’ operator are grouped under a
single coefficient vertex that represents the product of their coefficients (if the product
is unity, this vertex is omitted). This coefficient vertex is in turn attached to a multiplica-
tion vertex. Variables/literals not involved in multiplication operations are grouped by
coefficient, with all variables having the same coefficient value connected to a common
coefficient vertex.

Step 2b. After grouping multiplicative terms, we have single variables/literals or mul-
tiplicative groups connected by ‘+’ or ‘-’ operations. Variables/groups associated with
a ‘+ sign are connected directly to the constraint type vertex 7; (‘+ is the default op-
eration, so there are no special vertices for it). Variables/groups associated with a *-’
operation are connected to a negation vertex to indicate subtraction. The negation ver-
tex is connected to the type vertex 7;.

Theorem 3.1. Assume that a colored parse graph is constructed from a given formula
of constraints as outlined above. Then, the symmetries of the constraints correspond
one-to-one to the symmetries of the graph.

Proof. We first prove that a symmetry in the constraints is a symmetry in the parse
graph. Consider a formula with a set V of formula variables and a set C of constraints.
Consider two variables, v{,vy € V, and let C;,C, C C be the sets of constraints that v;
and v, occur in respectively. Let v; and v, be symmetric. Then, for every constraint ¢ in
C there is a corresponding constraint in C, that is its symmetric image.

We construct a colored parse graph G(X,E) for the formula where X is the set
of vertices in the graph and E the set of edges. Let x; and x; be the vertices created
for v; and v, respectively, and E; and E, be the edges incident on x; and x,. Assume
that x; and x; are not symmetric in the graph construction. For this to be true, it must
be true that the edge sets £y and E, are not symmetric. Without loss of generality,
assume there exists some edge e € E; that does not have an image in E,. From the graph
construction rules, an edge can connect a variable vertex to one of the following: (i) a
complementary literal (ii) a constraint type vertex (for addition with unit coefficient)
(iii) a negation vertex (for subtraction with unit coefficient) (iv) a multiplication vertex
(for multiplication with unit coefficients) and (v) a coefficient vertex that is connected to
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a multiplication/negation/constraint type vertex. In the first case, assume that e connects
X1 to a complementary literal vertex, and x, does not possess such an edge. Then, v, is
not a binary variable, and it cannot be symmetric to v;. In the second case, e indicates the
presence of a constraint ¢ € C; where v is added with a coefficient of 1. Since v; and v
are symmetric in the formula, there must be a constraint in C; that matches c. However,
if such a constraint existed, there would be an edge representing it in E, symmetric to
e. The same argument applies to cases (iii) and (iv). The only special case occurs in (v),
when variables are multiplied together with different coefficients. We use the product of
all coefficient values as the resulting coefficient. This reflects the fact that multiplication
is commutative, i.e. (avi)(bva) = (ab)(vi)(v2) and (cv3)(dva) = (cd)(vi)(v2), so if
ab = cd then the expressions are symmetric.

For the other direction, we note that symmetries in the parse graph can only exist be-
tween vertices of the same color. Additional vertices are created to represent operations,
but they can never be mapped to variable vertices. Thus, the only spurious symmetries
we need to consider are between variable vertices of the same bit size. It is clear that
the proof for the forward direction can be reversed for this case, i.e. edge sets incident
on both vertices must be symmetric and represent symmetric constraints in the formula.

O

Avoiding Abstraction Overhead. Our graph construction generalizes earlier work in
[9,4] for CNF and 0-1 ILP formulas. Often, generalization involves paying a perfor-
mance penalty — in this case, dealing with a more expressive input format that includes
non-linear constraints can introduce additional vertices. This penalty can be avoided
by modifying the graph when special cases are detected. Consider the case where an
instance contains only 0-1 ILP constraints with no non-linear operations and only 1-
bit variables. IN this case, our construction is designed to mimic the construction in
[4], and produce exactly the same graphs. For pure CNF formulas, some modification
is required to produce graphs as compact as the specialized constructions from [9, 1].
Since there are no coefficients or RHS values, constructions in [9] and [1] use only two
types (colors) of vertices: literal and clausal. A clause with > 2 literals is represented
by a clausal vertex, connected to its literal vertices. Binary clauses are represented by
an edge between both literals. Graphs created by our system require constraint type and
RHS value vertices for each constraint. However, CNF formulas are easy to detect. A
CNF formula involves only binary variables. All coefficients are unity. Clauses can be
expressed in two ways: as the logical-or (“||”) of literals, or as the additive constraint
that the sum of literals must be > 1. These characteristics can be tested for, and graph
construction altered accordingly.

Symmetry-Breaking Predicates (SBPs). The parse graph is analyzed for symmetries
using the efficient automorphism program Saucy [10], which returns generators of the
symmetry group. We generate high-level lex-leader SBPs from the generators, and add
them as constraints to the original instance. These SBPs are also compiled into SAT. For
multi-bit variables, SBPs may be large and complex if a generator has several cycles (for
a detailed description of cycles in a generator, and the resulting predicates, see [9]). We
break only the first few (1 or 2) cycles in multiple-cycle generators for simplicity. For
binary variables, we implement the efficient linear-sized SBP construction in [3] and
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add these SBPs to the CNF formula. The problems we test here all use matrix models
with binary variables. The design of efficient SBPs for multi-bit variables is a direction
for future research.

4 More Comprehensive Symmetry Breaking
This section discusses extensions to increase the system’s coverage of symmetries.

Symmetries in Associative Expressions. Many of the operators that we support, such
as ‘+” and ‘*’ are associative, i.e. x| +x2 +x3 = x +x3+x; and (x] +x2) +x3 =
X1 + (x2 + x3). However, parse trees built from constraints often do not reflect this
symmetry. In parsing, language rules are recursively matched. This imposes a non-
symmetric structure on the parse tree. We avoid this non-symmetric structure by group-
ing all variables connected by an associative operation together. Symmetry in asso-
ciative operations can also be missed when nested parentheses are used. Our system
currently does not support the nesting of expressions through the ‘(’ and )’ operators,
but can be easily extended to do so. Detecting symmetries in associative operations has
been addressed in the CGRASS system [11]. However, CGRASS detects symmetries
in an ad-hoc way, by keeping track of the number and type of constraints a variable
occurs in and matching these for different variables. Detection via graph automorphism
is more comprehensive, and given efficient software such as Saucy, incurs hardly any
overhead. Our method, like CGRASS, is not complete — it uses only the generators of
the symmetry group found by Saucy. For complete symmetry-breaking, the full group
would have to be reconstructed from the generators. This has been found to be very
time-consuming [9], whereas using only generators is more efficient and often just as
effective. CGRASS also undertakes simplification of constraints in other ways, which
our system does not cover.

Consider the expressions xj + (x2 +x3) +x4 and x; + (x2 + (x3 + x4)), which are
the same, but are evaluated differently due to parentheses. The order of evaluation im-
posed by parentheses hides the symmetry between variables, since expressions enclosed
within °()” symbols are treated as separate sub-expressions. However, it is possible to
simplify high-level input so that such symmetry is preserved. We list simplification
rules for the operators ‘+’, *-> and “*’.

Rule 1. Nested () symbols must be simplified before the outermost () operation. can
be simplified.

Rule 2. If an expression within () symbols is flanked by ‘+’ and ‘-* operations on
the left and right sides, parentheses are unnecessary, e.g., in ...+ (x; +x2) + ... the ()
operators can be ignored.

Rule 3. If an expression within () symbols is multiplied by a single term, the resulting
expression can be evaluated, e.g., x * (x| +x4) is written as xz % x| + x2 * x4. It is pos-
sible to simplify the parenthesized products, e.g.(x| 4+ x2) * (x3 +x4) by implementing
multiplication rules, but this may cause a size blowup in graphs for large expressions.
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X+ (x,+ X3) <= 2

Explicit
Symmetry

Hidden
symmetry

Fig. 2. Associative symmetry with parenthesized sub-expressions: x; and x3 are symmetric but
the original parse tree is asymmetric.

The above list of rules can be extended further, but it already facilitates the detection
of symmetries in simple associative expressions. This is illustrated in Figure 2, where
x1 and x3 are symmetric, but the symmetry is not visible in the parse graph. With the
proposed modifications the associative symmetry is preserved. Our system already im-
plements this feature for ‘+’ and ‘-’ operations without parentheses, where we ignore
the order in which the operations occur.

Value Symmetry. We detect formula symmetries, that are determined by the occur-
rence of variables in constraints. However, value symmetries that occur between the
actual domains of variables can also be significant. Ordering constraints for declared
value symmetries are discussed in [14], and [15] describes an algorithm to detect and
break value symmetries during search. We discuss how our system may be extended to
detect value symmetry.

Value symmetry can arise from operators that control the value of a variable, e.g. the
complement operation on binary variables: a’ = 1 — a. The mapping a < d’ is known as
a phase shift symmetry. In [1], the construction from [9] is modified to detect phase-shift
symmetries in almost all cases. For the non-binary case, such symmetries may arise in
problems with a cyclic nature, e.g., scheduling problems. Any scheduling solution for
{Monday, Tuesday, Wednesday} can often be shifted to {Tuesday, Wednesday, Thurs-
day}. Such shifts can also be described by an operator — if a variable’s domain is a cyclic
group modulo 4, we can say a’ = (a+ 1)%4. Intuitively, the graph construction to rep-
resent a cyclic group of values is a cycle of vertices. However, if the domain size is > 2,
this will result in spurious symmetries if all vertices are given the same color. Each ver-
tex in the cycle must be given a different color for this construction to work. However,
this prevents the detection of symmetries between values in the domain of the same
variable. A set of constraints satisfied when a = 0 may also be satisfied when a = 2.
This type of symmetry-detection is addressed in [15]. Adapting our techniques to de-
tect such symmetries is more difficult, since it may require the enumeration of variable
and constraint values in the graph, resulting in very large and complex graphs. Another
focus of our current work is developing efficient graph constructions for this case.

S Empirical Results

We test our system on constraint programming problems with matrix models with row
and/or column symmetries from [14]. Each problem is modeled using the constraints
described in [14] and specified in our system’s input language, followed by symmetry
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detection and compilation to SAT and 0-1 ILP. SBPs are added to the CNF or ILP
instances. We use Saucy [10] to detect symmetries, ZChaff to solve SAT instances,
and the new 0-1 ILP solver Pueblo [25] to solve 0-1 ILP instances. We show results
for the balanced incomplete block design problem (BIBD), social golfer problem (SG)
and Hamming code generation (HC) problems. Results here are obtained using a Intel
Pentium processor processor at IGHz for the SG and HC problems, and an Intel Xeon
dual processor at 2 GHz. Both systems have 1GB of RAM and run RedHat Linux 9.0.
ZChaff and Pueblo runtimes are the average of 3 starts. Timeout is set at 600 seconds.
For BIBD instances, we use the Xeon processor at 2GHz to compare our encodings
with those in [23]. For SG and HC instances, we use the 1GHz Pentium processor to
allow runtime comparisons with [14]. Symmetry-breaking ordering constraints in [14]
are implemented using ILOG Solver and tested on a 1 GHz Pentium processor running
Windows XP. We note that [ 14] also reports a “number of failures” metric, which is the
number of incorrect decisions made by Solver at nodes in the search tree. We do not
have access to Solver and the SAT/0-1 ILP solvers we use do not report such a statistic.
However, we use exactly the same hardware as [14] so that runtime comparisons are
fair. Since it is not possible for us to use Solver, we use results directly from [14].

Balanced Incomplete Block Design Problem (BIBD). This problem asks to find b > 0
subsets of a set V of v > 2 elements such that each subset contains exactly k elements
(v >k > 0), each element appears in exactly r > 0 subsets, and each pair of elements
appears together in exactly A > 0 subsets. An instance is expressed as (v,b,r,k, ), and
named bibd(v,b,r,k,A) in the results table. We use the matrix model described in
[14] (originally from [18]). We initially tested encodings with and without SBPs using
ZChaff and Pueblo on the large instances used in [14] (originally from [8]). However,
our observation on these instances was that adding MinLex SBPs actually affects per-
formance negatively for the Pueblo solver (ZChaff is unable to solve most instances
within the time limit, with or without SBPs). For satisfiable instances, this is not un-
usual and has been noted earlier in [9]. When there are several solutions, adding SBPs
may prevent some solutions from being found earlier in the search. However, this does
not explain the poor performance on unsatisfiable instances of this problem, which may
be because MinLex SBPs are not useful in this case. In [14], several types of SBPs are
tested, with anti-Lex constraints being most effective for BIBD. The anti-Lex SBPs are
the reverse of MinLex orderings, and permit different assignments than MinLex. We
can, however, use this problem to illustrate the importance of efficient encodings. SAT
encodings for the BIBD problem have been developed in [23], where the instances used

Table 1. ZChaff results and Saucy statistics for BIBD instances using our encodings and those in
[23], with and without SBPs. T/O indicates timeout at 600s. Pueblo is not tested on encodings in
[23], since they are not available as 0-1 ILP.

Symmetry Statistics Our Encoding Encoding in [23]
Instance Symm. |Gen.|Saucy| W. SBPs W/o. SBPs |W. SBPs|W/o. SBPs
Name Time [ZChaff|Pueblo|ZChaff[Pueblo| ZChaff | ZChaff

bibd(7,7,3,3,1) || 2.54e7 | 12 0 0.08 0 0.01 0 0.29 T/O
bibd(6,10,5,3,2)(| 2.61e9 | 14 | 0 0.54 0 0.03 0 54.24 T/O
bibd(7,14,6,3,2)((4.39e14| 19 | 0.01 | 0.38 | 0.01 | 1.25 | 0.01 T/O T/O
bibd(9,12,4,3,1)([1.73e14| 19 | 0.02 | 0.64 | 0.01 | 1.89 | 0.013| T/O T/O
bibd(8,14,7,4,3)|(3.51el15| 20 | 0.02 | 0.72 | 0.01 | 1.57 0 T/O T/O
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are difficult for many SAT solvers, but are solved by CP solvers in a few minutes. These
encodings are available at [13], with and without symmetry-breaking clauses from [23].
Table 1 shows a comparison of both encodings. The table shows instance parameters,
followed by Saucy statistics, ZChaff and Pueblo runtimes for our encoding, and ZChaff
runtimes for encodings from [23] with and without SBPs. Pueblo does not accept in-
stances without 0-1 ILP constraints. Both Pueblo and ZChaff solve all instances with
our encoding in a few seconds, but ZChaff times out on several instances from [23]. All
instances possess symmetries, but Saucy runtimes are negligible.

Social Golfers (SG). This problem seeks to divide g x s golfers into g groups of size
s for each of w weeks. Each golfer must play once a week. Any two golfers play in the
same group at most once. An instance is described by its parameters (g, s,w) and named
sg(g,s,w) in the results tables. We use the 3-D matrix model and instances from [14].
Instances are tested on ZChaff and Pueblo with and without SBPs.

Saucy runtimes and CNF and 0-1 ILP instances sizes with and without SBPs are
shown in Table 2. Runtimes for ZChaff, Pueblo, and Solver (from [14]!) are shown
in Table 3, with best runtimes for an instance in boldface. For this problem, adding
SBPs speeds up Pueblo considerably on unsatisfiable benchmarks. For all cases where
Pueblo is slower with SBPs, the instance is satisfiable. ZChaff is faster with SBPs for
both SAT and UNSAT cases, but is not competitive with Pueblo. All instances possess
large numbers of symmetries. Pueblo is usually competitive with Solver results from
[14] on SAT instances without the addition of SBPs. However, on UNSAT instances,
SBPs are needed to make it competitive, and are effective in doing so. For the larger
instances, Saucy runtimes are significant. This increases the overall time for our flow.
However, [14] requires SBPs to be designed and implemented separately for individual
problems. Our system is automated and generalized. Moreover, [14] reports results for
four models of SBPs: two basic models that assign values to a subset of the variables
in an instance (thus forcing assignments that satisfy constraints on the remaining vari-
ables), and MinLex and anti-Lex constraints. Here, we report the best results among all
models. Given an instance it may not be clear which model to use for best results until
several have been tried. There is no model in [14] which consistently performs well for
this problem. Our system uses only MinLex SBPs.

Hamming Code Generation (HC). This problem seeks to find b—bit code words
to code n symbols, where the Hamming distance between two symbols is at least d.
An instance is specified by the parameters (n,b,d). We use the matrix model from
[14], and report results with and without symmetry-breaking in the last four rows of
Tables 2 and 3. The instances hc(10,15,9) and hc (12, 20, 12) are unsatisfiable,
and the other two are satisfiable. Results for the first two instances are available in
[14], the last two are listed as N/A. We observe that symmetry-breaking is useful for
both SAT and UNSAT instances, with greater benefit for UNSAT instances. Adding
SBPs speeds up ZChaff in all cases, but it is not competitive with Pueblo and Solver.
Results reported from [14] are the best out of several combinations of lexicographic and
multiset-ordering SBPs. However, several of these combinations are not competitive
with our results using Pueblo with SBPs.

! Results in [14] are on a logarithmic scale, so our numbers are not exact, but all runtimes are
rounded down for fairness.
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Table 2. Saucy symmetry detection statistics and instance sizes for the social golfers and ham-
ming code generation problems, with and without SBPs. For 0-1 ILP instances, number of PB
constraints is given in addition to number of CNF clauses and variables. ‘K’ and ‘M’ in instance
sizes indicate multiples of one thousand and one million.

Saucy Stats Size with SBPs Size w/o SBPs
Instance Gen.| Time CNF 0-1 ILP CNF 0-1 ILP
Params Var. | CL. [Var.|CL [ PB | Var. [ CL. | Var. [ CL. | PB
sg(2,5,4) 16 [ 0.02 [6311] 33K [1694[1361| 141 | 6139 [ 32K | 1522|721 | 141
5g(2,6,4) 18 1 0.02 {9076 | 48K |2418(1835| 178 | 8868 | 46K |2210|1057| 178

5g(2,7.4) 20 [ 0.03 | 12K | 65K |3270(2373| 219 |12041|63894|3026 |1457| 219
5g(2,8,5) 24 10.07 | 22K | 125K |5320(3761| 300 | 22K | 123K | 4962 |2401| 300
5g(3,5.4) 25 1 0.09 | 26K | 155K |5645|4138| 249 | 26K | 152K | 5222|2521 249
5g(3,6,4) 28 [ 0.14 | 37K | 221K |8072(5629| 321 | 37K | 219K | 7562 |3673]| 321
5g(3,7.4) 31 021 | 51K [ 299K | 10K {7336 402 | 50K | 296K | 10K |5041| 402
sg(4,5.4) 34 1030 | 70K | 430K | 13K {9115 382 | 69K | 426K | 12K |6081| 382
52(4,6,5) 42 1 0.75 [134K| 837K | 23K | 15K | 556 | 132K | 831K | 22K | 11K | 556
sg(4,7.4) 42 1 0.79 [135K| 829K | 25K | 16K | 634 | 134K | 824K | 24K | 12K | 634
5g(4.9.4) 50 | 1.75 [221K|1.35M | 42K | 25K | 950 | 220K |1.34M| 40K | 20K | 950
5g(5,4,3) 33 | 0.26 | 64K | 394K | 12K {8502 340 | 64K | 391K | 11K |5701| 340
sg(5,5.4) 43 1 0.89 [145K| 911K | 25K | 16K | 540 | 144K | 906K | 24K | 12K | 540
sg(5,7.4) 53 [ 2.79 |281K|1.76M| 50K | 30K | 915 | 279K |1.75M| 48K | 23K | 915
5g(5,8,3) 53 | 2.3 [250K|1.51M| 48K | 29K |1050| 248K |[1.51M| 47K | 23K | 1050
5g(6,4,3) 40 | 0.61 [118K| 733K |21K | 14K | 456 | 117K | 729K | 20K |9937| 456
52(6,5,3) 46 | 1.25 [182K|1.13M| 33K | 20K | 651 | 181K |1.12M| 31K | 15K | 651
52(6,6,3) 52 | 2.51 [260K|1.61M|47K | 28K | 882 | 259K [1.60M| 46K | 22K | 882
5g(7,5,3) 54 1 3.06 [301K|1.89M | 52K | 32K | 847 | 299K |1.88M| 50K | 24K | 847
5g(7.,5.5) 68 | 11.4 [551K|3.55M| 87K | 54K |1015| 547K |3.53M| 84K | 41K |1015
he(10,15,9) || 38 | 0.07 | 32K | 206K [5842(3762| 45 | 32K | 205K | 5552 [2701| 45
he(10,10,5) || 28 | 0.04 | 19K | 122K (3892|2487 45 | 19K | 121K | 3702 [1801| 45
he(10,15,8) || 38 | 0.07 | 32K | 206K [5842(3762| 45 | 32K | 205K | 5552 (2701| 45
he(12,20,12)|] 50 | 0.19 | 66K | 426K | 11K |7023| 66 | 65K | 10K |424K| 10K | 66

Overall, the use of linearity through 0-1 ILP and symmetries by the addition of
SBPs — improves performance considerably. For most unsatisfiable instances, the best
results are obtained using Pueblo with SBPs added. For satisfiable instances, Pueblo is
not improved by SBPs, and in some cases is actually slower. However, ZChaff benefits
from SBPs for both SAT and UNSAT instances. This may be because SBPs have greater
impact on variable orderings for Pueblo. In most cases Pueblo’s results are competitive
with results reported for Solver in [14] over a variety of symmetry-breaking ordering
constraints. For the cases where Pueblo is faster with SBPs, the average speedup over its
performance without SBPs is 83.2, not including timeouts for the no-SBP version. On
satisfiable instances, the average slowdown with SBPs is 5.6, but it is much less than that
in most cases and there are no timeouts with SBPs. Our system uses academic solvers
whose source code and/or binaries are publicly available, but runtimes are comparable
with those of Solver, a highly optimized commercial tool.

All results here use problems with matrix models, which frequently possess large
numbers of symmetries by construction. While row and column symmetries can be
detected manually in a matrix model, our system provides a way to detect and break
these symmetries automatically without having to give it any knowledge of the problem
semantics. Moreover, it is not restricted to matrix models, and may be used for problems
that are likely to have symmetry, but for which matrix models do not exist. It is also
applicable in cases where added constraints may disrupt the symmetry in matrix models,
e.g. for instances with “customized” requirements. For example, in the social golfer
problem, we can add the constraint that certain pairs of golfers must never be in the same
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group. The present matrix model has symmetry along all three dimensions — groups,
weeks and golfers. Adding pairwise constraints for specific golfers would leave only
partial symmetry between golfers, which poses more effort for manual identification of
symmetries. However, with our method added constraints can be analyzed and surviving
symmetries detected without any modification. Even if row/column symmetry between
certain rows and columns is destroyed, we can still detect symmetries that exist between
specific variables in these rows and/or columns automatically. We also hope to identify
problems that can be analyzed using our system, but for which matrix models are not
applicable.

6 Conclusion

We present an integrated framework for studying and solving a class of CSPs by reduc-
tion to SAT and 0-1 ILP. The framework provides for the specification of constraints
in a high-level language and automatic compilation into SAT. Specialized methods for
SAT have improved considerably over the last 10 years, but these improvements do
not necessarily apply to more sophisticated domains because SAT encodings are not
always possible and may introduce inefficiencies due to the loss of structure in problem
reductions. Our system automatically detects certain types of structure (linearity and
symmetries) during compilation and uses them to produce more efficient encodings.
Linearity is preserved through the use of 0-1 ILP, a comparatively more sophisti-
cated problem with specialized solvers that can use leading-edge techniques for SAT
solving. We extend earlier work on symmetry-detection in SAT and 0-1 ILP [9,4] to
a more general class of CSPs that use non-binary variables and non-linear operations.
Symmetries are detected in high-level input by solving the graph automorphism prob-
lem on parse trees. MinLex symmetry-breaking predicates (SBPs) from [3] are added
to the resulting SAT/0-1 ILP encodings. Other work [14] has focused on symmetry-
breaking ordering constraints for known or declared symmetries in generalized CSPs,
but we detect and break symmetries automatically. Empirically, we evaluate our sys-
tem on the balanced incomplete block design (BIBD), social golfers (SG) and Ham-
ming code generation (HC) problems. We detect large numbers of symmetries in all
instances, and show that breaking symmetries produces substantial speedups for the
0-1 ILP solver Pueblo [25] on unsatisfiable instances of the SG and HC problems.
For CNF reductions, the SAT solver ZChaff [19] exhibits speedups for both satisfi-
able and unsatisfiable instances when symmetries are broken. Overall, CNF reductions
are not competitive with 0-1 ILP reductions. A somewhat surprising observation is that
on many satisfiable instances, Pueblo is slowed down by the addition of symmetry-
breaking predicates (SBPs). This may be because adding SBPs to satisfiable instances
prevents some solutions from being found by Pueblo. More effective SBPs need to be
developed for this case. Runtimes for Pueblo with SBPs added are competitive with
Solver runtimes reported in [14] on unsatisfiable instances of the SG and HC problems.
We also show that our circuit-based CNF encodings for the BIBD problem are more
efficient than those proposed in [23]. In general, our system facilitates the comparison
of different SAT encodings, since any encoding can be plugged into our framework and
automatically tested on several instances. Also, symmetries detected in high-level in-
put can be used by any constraints solver, and by methods that add SBPs for declared
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symmetries [24, 12]. Our framework can be easily extended to include other types of
constraints, and to detect additional symmetry such as value symmetry discussed in
Section 4. We plan to release code in the public domain to facilitate experimentation
with different problems and encodings. At present, information on how to obtain source
code, binaries and sample input files for this project is available at [26].

Our current and future work is focused on extending our system to allow more
comprehensive coverage of symmetries. We plan to extend our compiler to allow more
operations and different types of constraints, and to support more OPL-like [21] syntax.
Another direction is the development of efficient SBPs for non-binary variables and of
symmetry-breaking constraints that are more effective on satisfiable instances.
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Appendix: Compilation into SAT/0-1 ILP

Below, we describe how constraints are translated into CNF and 0-1 ILP. We use a C-
like language for high-level constraint specification, and a customized parser that builds
a parse tree for the system of constraints. Compilers for SAT and 0-1 ILP walk the
parse tree and translate the constraints into CNF/O-1 ILP formulas, which are handed
to SAT/0-1 ILP solvers. Solutions are translated back into a form that is meaningful
to the original problem. The input language uses C-like syntax to declare variables and
specify constraints. Variables are specified as unsigned integers of varying bit sizes, e.g.
int1 represents a 1-bit (binary) variable, etc. The mathematical operators allowed are
addition (+), subtraction (-) and multiplication (*). Relational operators may be <=,
>=, ==, and | = (not-equal constraint). Complement notation is allowed to express
the negative literal for a binary variable (x1’ for x1). Numeric constants are allowed as
coefficients or as the right-hand-side (RHS) value of equations. Division is not presently
supported. The compiler also does not support the use of nested parentheses or unary
negation but can be easily extended to do so. Support for more sophisticated language
constructs, e.g., those used by OPL [21], may be added in the future. An example of
constraint declaration in the input language is shown in Figure 1 in Section 3.

To compile into SAT, Boolean “circuits” are instantiated to carry out mathematical
operations. An n—bit variable is represented by n binary variables in the CNF instance
plus a sign bit (to enable subtraction with 2’s complement notation). The size of the
CNF circuits depends on the operation to be performed. Ripple-carry adders are in-
stantiated for addition operations, and subtraction is performed using 2’s complement
representation. Both adder and subtractor circuits are linear in the input size. Multipli-
cation is implemented using circuits for Booth’s algorithm which are quadratic in the
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Table 3. Results for social golfers and Hamming code generation problems. Best results for a
given instance are boldfaced. T/O indicates timeout at 600s. The last column shows results from
[14]. For UNSAT instances, using Pueblo with SBPs generally performs best. For SAT instances
Pueblo is slowed down by SBPs, however ZChaff benefits from SBPs even on SAT instances. All
runtimes are in seconds. Results for the last two instances are not shown in [14], so they are listed
as N/A.

Runtime with SBPs|Runtime w/o SBPs| [14]
Instance ZChaff| Pueblo [ZChaff| Pueblo [Solver
Params Time Time Time Time Time
sg(2,5.4) 0.06 .003 0.12 0.01 01
sg(2,6,4) 0.14 .006 0.15 0.01 0.1
sg(2,7,4) 0.31 0.01 0.14 0.02 5
5g(2,8,5) 1.25 0.02 0.89 0.02 30
sg(3,5.4) 2.27 0.05 T/0 7.54 0.5
sg(3,6,4) 1.63 0.09 T/O 25.7 0.4
sg(3,7,4) 7.7 0.17 120 24.8 0.5
sg(4,5.4) 11.5 0.25 T/O T/O 0.2
$2(4,6,5) T/0 0.5 T/0 T/O 2
sg(4,7,4) T/0 0.62 T/0 T/0 5
5g(4,9.4) T/O 1.41 T/O T/O 2.5
sg(5,4,3) 17.1 0.37 315 0.07 0.1
sg(5,5.4) 300 1.3 T/O 1.17 0.9
sg(5,7.4) T/0 1.8 T/0 T/O 7
$2(5.8,3) 107 1.76 T/0 T/0 0.6
sg(6,4,3) 496 0.86 T/O 0.47 0.5
$g(6,5,3) T/O 1.9 T/O 1.02 0.6
$2(6,6,3) T/0 2.57 T/0 0.1 50
$g(7,5,3) T/0 3.85 T/0 1.9 1K
sg(7.5,5) T/0 59.2 T/0 37 20
he(10,15,9) || 93.4 0.59 T/O T/O 7.2
he(10,10,5) T/O 22.2 T/O T/O 0.4
he(10,15,8) T/O 275 T/O 286 N/A
he(12,20,12)|| T/O 2.77 T/O T/O N/A

input size. Comparison against RHS values uses a linear comparator circuit. There are
some built-in optimizations, e.g. smaller circuits for 1-bit addition and subtraction. 1-bit
multiplication uses an AND gate. Circuits with a constant as input are partially evalu-
ated. For compilation into 0-1 ILP, linearity is preserved by stating ‘+’ and ‘-’ operations
directly as 0-1 ILP constraints. Inequalities (<, >, ==) are also directly expressed in 0-
1 ILP, with no need for comparator circuits. Coefficients can be directly written and not
multiplied. Multiplication between variables uses CNF clauses, but multiplier outputs
can be added/subtracted as part of a linear constraint.



