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Abstract 
 
This paper uses an endogenous segmentation approach to model mode choice. This approach 

jointly determines the number of market segments in the travel population, assigns individuals 

probabilistically to each segment, and develops a distinct mode choice model for each segment 

group. The author proposes a stable and effective hybrid estimation approach for the endogenous 

segmentation model that combines an Expectation-Maximization (EM) algorithm with standard 

likelihood maximization routines. If access to general maximum-likelihood software is not 

available, the multinomial-logit based EM algorithm can be used in isolation. The endogenous 

segmentation model and other commonly used models in the travel demand field to capture 

systematic heterogeneity are estimated using a Canadian intercity mode choice dataset. The 

results show that the endogenous segmentation model fits the data best and provides intuitively 

more reasonable results compared to the other approaches.  

 

 

 



Introduction 

The estimation of travel mode choice models is an important component of urban and intercity 

travel demand analysis and has received substantial attention in the transportation literature (see 

Ben-Akiva and Lerman, 1985). The most widely used model for urban as well as intercity mode 

choice is the multinomial logit model (MNL). The MNL model is derived from random utility 

maximizing behavior at the disaggregate individual level. Therefore, ideally, we should estimate 

the logit model at the individual level and obtain individual-specific parameters for the intrinsic 

mode biases and for the mode level-of-service attributes. However, the data used for mode 

choice estimation is usually cross-sectional; that is, there is only one observation per individual. 

This precludes estimation of the logit parameters at the individual level and constrains the 

modeler to pool the data across individuals (even in panel data comprising repeated choices from 

the same individual, the number of observations per individual is rarely sufficient for consistent 

and efficient estimation of individual-specific parameters). In such pooled estimations, it is 

important to accommodate differences in intrinsic mode biases (preference heterogeneity) and 

differences in responsiveness to level-of-service attributes (response heterogeneity) across 

individuals. In particular, imposing an assumption of preference and response homogeneity in 

the population is rather strong and is untenable in most cases (Hensher, 1981). Further, if the 

assumption of homogeneity is imposed when, in fact, there is heterogeneity, the result is biased 

and inconsistent parameter and choice probability estimates (see Chamberlain, 1980). 

 An issue of interest then is: how can preference and response heterogeneity be 

incorporated into the multinomial logit model when studying mode choice behavior from cross-

sectional data? 

 One approach is to estimate a model with (pure) random coefficients where the logit 

mode bias and level-of-service parameters are assumed to be randomly distributed in the 

population. This approach ignores any systematic variations in preferences and response across 

individuals. As such, it cannot be considered as a substitute for careful identification of 

systematic variations in the population. The random coefficients cannot even be considered as an 

alternative approach (i.e., alternative to accommodating systematic effects) to account for 

heterogeneity in choice models; it can only be considered as a potential “add-on” to a model that 

has attributed as much heterogeneity to systematic variations as possible (Horowitz, 1991 makes 

a similar point in the context of the use of multinomial probit models in travel demand 
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modeling). Typical applications of the random-coefficients specification have used a base 

systematic model with some allowance for systematic preference heterogeneity (by including 

individual-related variables directly in the utility function), but with little (or no) allowance for 

systematic response heterogeneity.1  

 It is clear from above that accommodating systematic preference and response 

heterogeneity in multinomial logit models must be a critical focus in mode choice modeling. 

Systematic heterogeneity may be accommodated in one of two broad ways: exogenous market 

segmentation or endogenous market segmentation. We discuss each of these two approaches in 

the subsequent two paragraphs (as indicated earlier, a random coefficients specification can be 

super-imposed over the systematic model in each of these approaches; however, in the rest of 

this paper, we focus only on the systematic specifications). 

 The exogenous market segmentation approach to capturing systematic heterogeneity 

assumes the existence of a fixed, finite number of mutually-exclusive market segments (each 

individual can belong to one and only one segment). The segmentation is based on key socio-

demographic variables (sex, income, etc.) and possibly trip characteristics (whether an individual 

travels alone, distance of trip, etc.). Within each segment, all individuals are assumed to have 

identical preferences and identical sensitivities to level-of-service variables (i.e., the same utility 

function).2 The total number of segments is a function of the number of segmentation variables 

and the number of segments defined for each segmentation variable. Ideally, the analyst would 

consider all socio-demographic and trip-related variables available in the data for segmentation 

(we will refer to such a segmentation scheme as full-dimensional exogenous market 

segmentation). However, a practical problem with the full-dimensional exogenous segmentation 

scheme is that the number of segments grows very fast with the number of segmentation 

variables, creating both interpretational and estimation problems due to inadequate observations 

in each segment. To overcome this limitation, researchers have used one of two methods. The 

                                                 
1 The reader is referred to a report by Electric Power Research Institute, 1977 for an application of the random-

coefficients logit (RCL) formulation using cross-sectional data; Gonul and Srinivasan (1993) applied the RCL 
formulation to estimate brand choice models from panel data. The random-coefficients formulation has also been 
used in combination with the probit model of choice (Hausman and Wise, 1978; Fischer and Nagin, 1981; 
Horowitz, 1993).  

2 To be precise, all individuals in a segment are assumed to have identical preference patterns and sensitivity to 
level-of-service patterns, not necessarily identical preferences and level-of-service sensitivity. This is because 
continuous variables such as income and distance can appear in the segment-specific utility functions even if they 
are used as segmentation variables. For example, within each segment, preference may be a function of income 
and level-of-service sensitivity may be a function of trip distance. 
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first method, which we label as the Refined Utility Function Specification method, 

accommodates preference heterogeneity by introducing key segmentation variables directly into 

the utility function as alternative-specific variables and recognizes response heterogeneity by 

interacting the level-of-service variables with the segmentation variables (we will refer to socio-

demographic and trip characteristics that are likely to impact mode preferences and level of 

service sensitivity as segmentation variables). The refined utility function specification method is 

a restrictive version of the full-dimensional exogenous market segmentation approach where 

only lower-order interaction effects of the segmentation variables on preference and response are 

allowed. The second method, which we label the Limited-Dimensional Exogenous Market 

Segmentation method, overcomes the practical problem of the full-segmentation approach by 

using only a subset of the demographic and trip variables (typically one or two) for 

segmentation. The advantage of the two methods just discussed is that they are practical (the 

parameters can be efficiently estimated with data sizes generally available for mode choice 

analysis) and are easy to implement (requires only the MNL software). The disadvantage is that 

their practicality comes at the expense of suppressing potentially higher-order interaction effects 

of the segmentation variables on preference and response to level-of-service measures. In 

addition, an intrinsic problem with all exogenous market segmentation methods is that the 

threshold values of the continuous segmentation variables (for example, income) which define 

segments have to be established in a rather ad hoc fashion.  

 The endogenous market segmentation approach, on the other hand, attempts to 

accommodate systematic heterogeneity in a practical manner not by suppressing higher-order 

interaction effects of segmentation variables (on preference and response to level-of-service 

measures), but by reducing the dimensionality of the segment-space. Each segment, however, is 

allowed to be characterized by a large number of segmentation variables. The appropriate 

number of segments representing the reduced segment-space is determined statistically by 

successively adding an additional segment till a point is reached where an additional segment 

does not result in a significant improvement in fit. Individuals are assigned to segments in a 

probabilistic fashion based on the segmentation variables. The approach jointly determines the 

number of segments, the assignment of individuals to segments, and segment-specific choice 

model parameters. Since this approach identifies segments without requiring a multi-way 

partition of data as in the full-dimensional exogenous market segmentation method, it allows the 
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use of many segmentation variables in practice and, therefore, facilitates incorporation of the full 

order of interaction effects of the segmentation variables on preference and level-of-service 

sensitivity. The method also obviates the need to (arbitrarily) establish the threshold values 

defining segments for continuous segmentation variables. As we indicate later, the approach also 

does not exhibit the individual-level independence from irrelevant alternatives (IIA) property of 

the exogenous segmentation approach. A potential disadvantage is that the model cannot be 

estimated directly using the MNL software (we overcome this issue in the current paper). 

 The model formulation in this paper falls under the endogenous segmentation approach to 

accommodating systematic heterogeneity. We use a multinomial logit formulation for modeling 

both segment membership as well as mode choice. To the author's knowledge, no previous 

market segmentation analysis in the travel demand field has adopted this approach. But the 

approach has been applied earlier in the marketing field. Kamakura and Russell (1989) originally 

proposed such a method to model brand choice. Their model assumed that the segment 

membership probabilities were invariant across households (i.e., the only variables in their 

multinomial logit model for segment membership were segment-specific constants). Such a 

model is of limited value since the objective of segmentation schemes is to associate 

heterogeneity with observable individual characteristics. Gupta and Chintagunta (1994) extended 

the work of Kamakura and Russell by including segmentation variables in the segment 

membership MNL model (Dayton and Macready, 1988 also propose an endogenous 

segmentation model in which segment membership is functionally related to individual-related 

variables; however, the segment membership and choice probabilities do not take a MNL 

structure). 

 The model in this paper takes the same form as the model of Gupta and Chintagunta. 

However, the paper proposes and applies an efficient, stable, hybrid estimation procedure that 

combines an Expectation-Maximization (EM) formulation (which exploits the special structure 

of the model) with a traditional quasi-Newton maximization algorithm (both Kamakura and 

Russell, 1989 and Gupta and Chintagunta, 1994 use a direct maximum likelihood method, which 

we found to be rather unstable and to require more time than the method proposed here). The EM 

formulation requires only the standard MNL software and can be used in isolation to estimate the 

endogenous segmentation model. Hence, it should be of interest to researchers and practitioners 

who do not have access to, or who are not in a position to invest time and effort in learning to 
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use, general-purpose maximum likelihood software. The endogenous segmentation model is 

applied in a travel demand context to study intercity business mode choice behavior in the 

Toronto-Montreal corridor of Canada and its empirical performance is assessed relative to 

alternative methods to account for systematic preference and response heterogeneity. 

 The rest of this paper is structured as follows. The next section presents the structure for 

the mode choice model with endogenous market segmentation. Section 2 outlines the estimation 

procedure. Section 3 discusses the empirical results obtained from applying the model to 

intercity mode choice modeling. Section 4 presents the choice elasticities and examines the 

policy implications of the results. The final section provides a summary of the research findings. 

 

1.  Model Structure 

The mode choice model with endogenous segmentation rests on the assumption that there are S 

relatively homogenous segments in the inter-city travel market (S is to be determined); within 

each segment, the pattern of intrinsic mode preferences and the sensitivity to level of service 

measures are identical across individuals. However, there are differences in intrinsic preference 

patterns and level-of-service sensitivity among the segments. Thus, there is a distinct mode 

choice model for each segment s (s = 1,2,3,...S). 

We assume a random utility framework as the basis for individuals' choice of mode. We 

also assume that the random components in the mode utilities have a type I extreme value 

distribution and are independent and identically distributed. Then, the probability that an 

individual q chooses mode i from the set Cq of available alternatives, conditional on the 

individual belonging to segment s, takes the familiar multinomial logit form (McFadden, 1973): 

 

∑
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where xqi is a vector comprising level-of-service and alternative-specific variables associated 

with alternative i and individual q, and βs is a parameter vector to be estimated. 

The probability that individual q belongs to segment s is next written as a function of a 

vector zq of socio-demographic and trip-related variables associated with the individual (zq 

includes a constant). Using a multinomial logit formulation, this probability can be expressed as: 
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The unconditional (on segment membership) probability of individual q choosing mode i 

from the set Cq of available alternatives can be written from equations (1) and (2) as: 
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The assignment of individuals to segments based on socio-demographic and trip 

characteristics is a critical part of market segmentation, as discussed in section 1. In the current 

model, this assignment is probabilistic and is based on equation (2) after replacing the γs’s with 

their estimated counterparts. The size of each segment (in terms of share), Rs, may be obtained 

as: 
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where Q is the total number of individuals in the estimation sample. 

 The socio-demographic and trip-related attributes that characterize each segment can be 

inferred from the signs of the coefficients in equation (2). A more intuitive way is to estimate the 

mean of the attributes in each segment as follows: 
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The model can be used to predict the choice of mode at the individual level, segment 

level, or the market level. The individual-level choice probabilities can be obtained from 

equation (3). The segment-level mode choice shares can be obtained as: 
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Finally, the market-level mode choice shares may be computed as: 
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The elasticities of the effect of level-of-service attributes can also be computed at the 

individual-level, the segment-level, or the market-level. These can be derived in a straight-

forward fashion from the expressions above and are not presented here due to space 

considerations. An examination of the individual-level cross-elasticities from the model will 

show that the endogenous segmentation model is not saddled with the IIA property of the MNL 

model. 

 

2.  Model Estimation  

The parameters to be estimated in the mode choice model with endogenous market segmentation 

are the parameter vectors βs and γs for each s, and the number of segments S. The log likelihood 

function to be maximized for given S can be written as (we discuss the procedure employed to 

determine S in section 2.2): 
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Where Cq is the choice set of alternatives for the qth individual and δqi is defined as follows: 
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Equation (8) represents an unconditional likelihood of an observed choice sample and is 

characteristic of finite probability mixture models. It has been noted earlier (see McLachlan and 

Basford, 1988 and Redner and Walker, 1984) that maximization of the likelihood function using 

the usual Newton or quasi-Newton (secant) routines in such mixture models can be 

computationally unstable (we document our own experience of this unstable behavior in section 

3.4). A critical issue in such cases is to start the maximum likelihood iterations with good start 

parameter estimates. To obtain good start values, we develop a two-stage iterative method which 
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belongs to the Expectation-Maximization (EM) family of algorithms (Dempster et al., 1977). 

This family of algorithms has been suggested earlier as a natural candidate for estimation in the 

general class of finite-mixture models since it is stable and tends to increase the log-likelihood 

function more than usual quadratic maximization routines in areas of the parameter space distant 

from the likelihood maximum (Ruud, 1991). The specific EM method is discussed below. 

 

2.1  EM Method for Start Values 

 Consider the likelihood function in equation (8) and re-write it as: 
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The value Lqs is the choice likelihood for individual q conditional on the individual belonging to 

segment s. Next, note that the expected value of membership in segment s for individual q 

conditional on socio-demographic/trip characteristics and on the observed mode choice of the 

individual (i.e., the posterior segment membership probability qsP~ ) can be obtained by revising 

the expected value of segment membership conditional only on the individual's socio-

demographic/trip characteristics (i.e., the prior segment membership probability Pqs) in a 

Bayesian fashion as: 
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The necessary first-order conditions for maximizing the likelihood function can be written from 

equation (10) and (11) as: 
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Equation (12) indicates that for given values of qsP~ , the maximum likelihood estimate of each 

sβ  vector (s = 1,2,...S) is obtained from a standard multinomial logit estimation for choice of 

mode with the corresponding qsP~ values as weights (thus, there are S individual multinomial logit 

estimations). Equation (13) shows that for given values of qsP~ , the maximum likelihood estimate 

of the sγ  vector is obtained from a single multinomial logit estimation for choice of segment 

with the posterior probabilities qsP~  being used as the “dependent variable” instead of the 

“missing” segment choice data. A more efficient way to simultaneously obtain the estimates of 

sβ  for each segment and estimates of sγ  (for given values of qsP~ ) is to construct a new log 

likelihood function as follows: 
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Since the log-likelihood function above is a combination of MNL log-likelihood functions, it is 

globally concave for given qsP~  values. 

 Equations (11) and (15) lend themselves gainfully to the application of a EM algorithm. 

The E-step involves the computation of the a posteriori membership probabilities using equation 

(11) for some given initial guesses for the parameters. In the M-step, equation (15) is maximized 

with respect to parameters using the a posteriori membership probabilities computed in the E-

step. Since the function in equation (15) is globally concave for given qsP~ , a simple Newton-

Raphson search will converge quickly. The two steps are then alternated. Dempster et al. (1977) 

9 



prove (under a very general setting) that, at each iteration, the EM algorithm provides monotone 

increasing values of the original log-likelihood function in equation (8). 

In principle, the EM steps can be iterated until convergence (at convergence, the EM 

algorithm will return the maximum-likelihood estimates). But, as we show in section 3.4, the rate 

of convergence of the EM algorithm is slow in the neighborhood of the likelihood maximum 

(this has also been documented in other applications of the EM algorithm; see Redner and 

Walker, 1984 and Watson and Engle, 1983). So we stopped the EM algorithm prematurely after 

a few iterations and used the resulting parameter estimates as the start values for the direct 

maximization of the log-likelihood in equation (8). However, the reader will note that the EM 

algorithm proposed here can be used in isolation (without combining with the direct maximum 

likelihood procedure) to obtain the parameters of the endogenously segmented mode choice 

model if access to general maximum-likelihood software is not available (the EM method 

requires only the standard multinomial logit software). 

 

2.2  Determination of Number of Segments  

The estimation procedure discussed above is applicable for a given number of segments S. To 

identify the most appropriate value for S, we estimate the model for increasing values of S (S = 

2,3,4,...) until a point is reached where an additional segment does not significantly improve 

model fit. The evaluation of model fit is based on the Bayesian Information Criterion (BIC): 

 
BIC = –‹ + 0.5 · R · ln(N).              (16) 
 
The first term on the right side is the negative of the log-likelihood value at convergence; R is the 

number of parameters estimated and N is the number of observations (see Allenby, 1990). As the 

number of segments, S, increases, the BIC value keeps declining till a point is reached where an 

increase in S results in an increase in the BIC value. Estimation is terminated at this point and the 

number of segments corresponding to the lowest value of BIC is considered the appropriate 

number for S.3      

 
                                                 
3  An alternative procedure to determine the number of segments is to apply the Akaike Information Criterion (AIC) 

developed by Akaike (1974). This is the procedure adopted by Kamakura and Russell (1989). Gupta and 
Chintagunta (1994), on the other hand, use the Bayesian Information Criterion (BIC). An advantage of the BIC is 
that it takes into consideration the sample size used in the analysis. The AIC tends to unduly favor a model with 
more number of segments for large data samples; the BIC corrects this situation (see Allenby, 1990).  
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3.  An Application to Intercity Mode Choice Modeling 

3.1  Background 

In this section, we report the empirical results obtained from applying the endogenous 

segmentation model and other alternative methods of accommodating systematic heterogeneity 

to an analysis of intercity travel mode choice behavior. The data used in the current empirical 

analysis was assembled by VIA Rail (the Canadian national rail carrier) in 1989 to develop travel 

demand models to forecast future intercity travel in the Toronto-Montreal corridor and to 

estimate shifts in mode split in response to a variety of potential rail service improvements (see 

KPMG Peat Marwick and Koppelman, 1990 for a detailed description of this data). The data 

includes socio-demographic and general trip-making characteristics of the traveler, and detailed 

information on the current trip (purpose, party size, origin and destination cities, etc.). The set of 

modes available to travelers for their intercity travel was determined based on the geographic 

location of the trip (the universal choice set included car, air, train and bus). Level of service data 

were generated for each available mode and each trip based on the origin/destination information 

of the trip (the assembly of the level-of-service data was done by KPMG Peat Marwick for VIA 

Rail; for information on detailed procedures to compute level-of-service measures, the reader is 

referred to KPMG Peat Marwick and Koppelman, 1990). 

In this paper, we focus on intercity mode choice for paid business travel in the corridor. 

The study is further confined to a mode choice examination among air, train, and car due to the 

very few number of individuals choosing the bus mode in the sample and also because of the 

poor quality of the bus data (see Forinash, 1992). This is not likely to affect the applicability of 

the mode choice model in any serious way since the bus share for paid business travel in the 

corridor is less than one percent. The sample used is a choice-based sample and comprises 3593 

business travelers. The share of the choice of each mode in the population of travelers was 

available from supplementary aggregate data. Since the sample is choice-based with known 

aggregate shares, we employed the Weighted Exogenous Sample Maximum Likelihood 

(WESML) method proposed by Manski and Lerman (1977) in estimation. The asymptotic 

covariance matrix of parameters is computed as H-1 ∆ H-1, where H is the hessian and ∆ is the 

cross-product matrix of the gradients (H and ∆ are evaluated at the estimated parameter values). 

This provides consistent standard errors of the parameters (Borsch-Supan, 1987). 
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 Five variables associated with individual socio-demographics and trip characteristics 

were available in the data, and all of these were considered for market segmentation. The 

variables are: income, sex (female or male), travel group size (traveling alone or traveling in a 

group), day of travel (weekend travel or weekday travel), and (one-way) trip distance. The 

segmentation variables were introduced as alternative-specific variables in the logit model of 

equation (3) with the last segment being the base.   

 The level-of-service variables used to model choice of mode included modal level-of-

service measures (frequency of service, total cost, in-vehicle travel time and out-of-vehicle travel 

time) and a large city indicator which identified whether a trip originated, terminated, or 

originated and terminated in a large city. This variable may be viewed as a “proxy” level-of-

service measure capturing mode characteristics associated with large cities. Table 1 provides 

descriptive statistics on the modal level-of-service measures in the sample. 

 

3.2 Endogenous Market Segmentation Model Results  

We estimated the endogenous segmentation model with S = 2,3, and 4 segments. In all these 

estimations, travel time was best represented simply by decomposition into in-vehicle and out-

of-vehicle travel times. For all S, we found that the use of travel cost was preferred to travel cost 

deflated by income. The final mode choice model specification for the segmented models 

included the alternative specific mode-bias constants and the level-of-service variables (we 

examined if there were differences in preferences based on income and trip distance within each 

segment by including these variables as alternative specific variables in the mode choice utility, 

but did not find any statistically significant effects). 

 We computed the Bayesian Information Criterion (BIC) value as shown in equation (16) 

for each number of segments. The BIC value decreased as we moved from two to three 

segments, but increased when we added the fourth segment (the BIC value was 2291 for the two-

segment case, 2247.9 for the three-segment case and 2259.8 for the four-segment case). Thus, we 

selected three segments as the appropriate number of segments. 

 The estimation results for the three-segment solution are shown in Table 2. The signs of 

all the level-of-service variables in the segment-specific mode choice models are consistent with 

a priori expectations. However, there are clear differences in intrinsic preferences and 

sensitivities to level-of-service measures among the segments. Turning to the segmentation 
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model, the coefficients in this model are, in general, very significant.4 A comparison of the 

coefficients across the segments provides important qualitative information regarding the 

characteristics of each segment vis-a-vis other segments. The constants in the segmentation 

model contribute to the size of each segment and do not have any substantive interpretation. The 

segment sizes are computed using equation (4); segment one is largest (48.7% of intercity 

travelers) and segment two is the smallest (12.2% of intercity travelers).  

 Table 3 summarizes (qualitatively) the mode choice characteristics and the socio-

demographic and trip characteristics of individuals within each segment. Segment two has a high 

overall preference for train, is highly sensitive to cost, and is low in sensitivity to travel time. 

This result is reasonable since individuals in segment two earn low incomes, and travel in a 

group and on weekends; the high intrinsic preference for train in this segment can also be 

attributed to the intermediate trip distance of travel in the segment. Further, previous studies (for 

example, KPMG Peat Marwick et al., 1993) have indicated that women prefer common-carrier 

surface modes more than men do, which is consistent with the result obtained here (segment two 

has the highest female proportion). The high frequency sensitivity of segment two may be 

associated with group travel; individuals traveling together may have different schedule 

conveniences and may therefore place a high premium on frequency of service. Segment three 

has a high overall preference for air, is not very sensitive to cost, and is highly sensitive to travel 

time; this is consistent with the high-income of individuals in this segment and the single-

individual, weekday, long distance travel characteristics of the segment. The money value of 

time is very high in this segment. Segment one is the intermediate segment, both in level-of-

service sensitivity and socio-demographic/trip characteristics. Individuals in the first segment 

whose trips do not originate or end in a large city have an intrinsic preference for the car and air 

modes over the train mode, and for the car mode over the air mode. For individuals whose trips 

originate or end in a large city, there is a greater intrinsic preference for air over the car mode in 

this segment. 

 To characterize each segment more intuitively, we compute the mean values of the 

segmentation variables within each segment (see equations 5). The results are presented in Table 

4 and support our previous observations regarding segment characteristics. 

                                                 
4  It is useful to note that had we adopted a full-dimensional exogenous segmentation scheme, there would have 

been (assuming only two income segments and two trip-distance segments) 25 = 32 market segments with an 
average of only about 110 observations within each segment.  
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3.3  Comparison of Endogenous Market Segmentation with Alternative Approaches

In this section, we compare the empirical performance of the endogenous market segmentation 

approach relative to the two alternative extant methods to accommodating systematic 

heterogeneity in preference and response across the population (these alternative methods are the 

refined utility function specification method and the limited-dimensional exogenous market 

segmentation method). 

 Table 5 summarizes the results of models obtained using the refined utility function 

method. We present the overall measures of fit for three different specifications. The first 

specification includes a) first-order interactions of all the five segmentation variables with mode 

preferences, b) the large city indicator variable, and c) the four modal level-of-service variables: 

frequency, cost, and in-vehicle and out-of-vehicle travel times (variants of this specification that 

incorporate the cost level-of-service as cost/income and the out-of-vehicle time measure as out-

of-vehicle over distance, as has been done in some earlier mode choice analyses, were rejected 

by the specification reported here). All the five segmentation variables had a statistically 

significant impact on train and air mode preferences (car is the base; the impact of each of these 

variables was also not the same across the train and air modes). The second specification adds 

first-order interactions of the five segmentation variables with the level-of-service measures.5 

This specification, in its full version, effectively adds 28 level-of-service variables to the first 

specification. However, of these, only six of the interaction terms were significant and these are 

retained in the preferred version. The third specification, in its full version, adds all (ten) second-

order interactions of the five segmentation variables with mode preferences to the full version of 

the second specification (since there are three modes, this third specification adds 20 additional 

parameters to the full version of the second specification). In this third specification, only seven 

of the second-order interactions with preference and seven of the first-order interactions with the 

level-of-service variables were significant. These are retained in the preferred version. As can be 

observed from the table, the adjusted likelihood ratio index of the refined utility function 

specification models are smaller than that of the endogenous segmentation model. The 

                                                 
5  For the two continuous variables; income and trip distance; we defined three distinct ranges and allowed the level-

of-service sensitivity to be different for the different ranges. The income segments were: less than $40,000, 
$40,000-$65,000 and greater than $65,000. The segments for trip-distance were less than 250 miles, 250-500 
miles and greater than 500 miles.  
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endogenous segmentation model rejects the refined utility function models in Table 5 in non-

nested adjusted likelihood ratio tests (see Ben-Akiva and Lerman, 1985; page 172 for the 

structure of the test). Thus, it provides a better fit to the data. We also found that some of the 

statistically significant coefficients in the refined utility models were non-intuitive. For example, 

individuals in the lower income bracket were found to be less sensitive to cost and more sensitive 

to out-of-vehicle time than individuals in the middle and higher income brackets. 

 Table 6 presents model results for one-way segmentations and for all possible 

combinations of two-way variable segmentations in the spirit of the limited-dimensional 

exogenous market segmentation method. The specification adopted within each segment is based 

on the first specification of the refined utility function specification in Table 5.  

 The one-way segmentation results show that, on the basis of the adjusted likelihood ratio 

index 2ρ , distance is the most important segmentation variable (all segmentations reject the 

unsegmented model in nested likelihood ratio tests at the 0.05 significance level or better). We 

also find that all the exogenously segmented models have a 2ρ  which is significantly less than 

that of the endogenous segmentation model based on a non-nested test. Since these results may 

be deceiving (the analyst can specify improved exogenous segmentation models by constraining 

coefficients across segments), we computed the 2ρ  for the one-way segmented models under the 

most favorable (albeit unrealistic) scenario where the likelihood value corresponds to the 

exogenously segmented model, but the number of parameters is assumed to be equal to that of 

the unsegmented model. The resulting 2
favρ values are shown in the Table and indicate that, even 

in this most favorable scenario, the 2ρ  for the one-way segmentation models are significantly 

smaller than that of the endogenous segmentation model.  

 The results of the two-way exogenous segmentation models reject the corresponding one-

way segmentation models in nested likelihood ratio tests. This suggests that there is benefit to 

increasing the order of interaction effects of the segmentation variables on preference and 

response. But, even for these two-way segmentations, the 2ρ  values are significantly smaller 

than that of the endogenous segmentation model. As in the case of the one-way segmentation 

model, we computed a “favorable” 2ρ  value for the two-way models, this time assuming that the 

number of parameters in the two-way segmentation models is the same as in the endogenous 

segmentation model (i.e., 36 parameters). These values are presented in the final column and 
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indicate that, even under this favorable scenario, the only model that is close to the endogenous 

segmentation model is the one that segments by income and trip distance. However, a non-nested 

test convincingly rejects even this best “favorable-scenario”-specification relative to the 

endogenous segmentation model. In addition, as in the refined utility specifications, we obtained 

non-intuitive results in the income-distance two-way segmentation model; the parameter on cost 

was positive in all the segments (and in two segments, significantly so) except in the high 

income-high trip distance segment. Further, in all but two segments, the parameter on in-vehicle 

time was statistically insignificant (in part, this is a consequence of imprecision in coefficient 

estimates due to the small number of observations in the segments). 

 In summary, the empirical results indicate clearly that the endogenous segmentation 

model provides a better fit to the data and offers more intuitively appealing results compared to 

other extant approaches to incorporating systematic heterogeneity. This can be attributed to the 

inclusion of the full order of interaction effects of the segmentation variables on preference and 

level-of-service sensitivity. 

 

3.4  Assessment of the Performance of the Hybrid EM-DFP Algorithm  

The EM algorithm produces iteration sequences with good global convergence characteristics 

(i.e, the EM iteration sequence converges to a local maximizer of the likelihood function) in 

mixture models, even when the starting values are distant from the maximizing values (the 

theory and proofs of this result, and a review of an exhaustive body of empirical evidence to 

support this result, can be found in Redner and Walker, 1984). On the other hand, the complex 

nature of the dependence of the log-likelihood function on the mixture-model parameters can 

produce Newton and quasi-Newton iteration sequences that get stalled at some point and never 

make further progress toward convergence, especially when the starting parameter values are 

distant from the maximizing values (this is because the Newton and quasi-Newton iterative 

schemes rely on approximations that are valid only in the neighborhood of the maximizing 

parameter values; see Redner and Walker, 1984 and Cramer, 1986, page 72).  

 Our own empirical experience during the maximization of the likelihood function of the 

endogenous segmentation model reinforces the theoretical analysis and empirical evidence 

discussed earlier. A natural starting point for the iterations in the endogenous segmentation 

model is to use the unsegmented mode choice model parameters for the mode choice model in 
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each segment and set all segment membership model parameters to zero.6 We considered three 

algorithms for estimation: the EM method, the DFP (Davidson, Fletcher, Powell) algorithm 

(which is a widely used and effective quasi-Newton algorithm, see Greene, 1990; page 370), and 

a hybrid EM-DFP algorithm that starts the iteration with the EM algorithm but switches to the 

DFP algorithm later. 

 In terms of stability, we found that the EM algorithm outperformed the DFP algorithm. In 

particular, the EM algorithm was predictable; it produced very similar and monotonically-

increasing (in the likelihood function) iteration sequences in repeated trials. The DFP algorithm, 

on the other hand, was quite unpredictable in its iteration sequence in repeated trials. Some 

iteration sequences appeared to proceed well, while others wandered aimlessly without any 

improvement to the log-likelihood function and without ever converging. The cause of such 

behavior appeared to be due to the line search; the DFP algorithm had some difficulty in early 

iterations in finding an appropriate step length and, therefore, entered a random direction-search 

mode. The random search sometimes resulted in a subsequent stable iteration sequence and 

sometimes did not proceed anywhere. We never obtained a convergent iteration sequence with 

the DFP algorithm for the endogenous segmentation model with four segments. We obtained a 

convergent sequence in three out of five trials for the two-segment solution and in two of five 

trials for the three-segment solution.7 We did not encounter any stability problems in the hybrid 

EM-DFP method since the DFP iterations were started with parameter values close to their 

maximizing values.  

 We now compare the computational speeds of the EM algorithm, the DFP algorithm, and 

the hybrid EM-DFP algorithm. We focus on the three-segment solution. For the DFP algorithm, 

we present the results for the fastest successful run. All estimations were done using the GAUSS 

matrix programming language on a 486-DX2, 66 MHz. computer. The gradient of the log-

likelihood function was coded for the DFP algorithm and the gradient and hessian were coded 

                                                 
6  In practice, at least one mode choice parameter should be shifted slightly (up or down) in one of the segments to 

start the iterations; otherwise, there is no incentive for the segment membership parameters to be updated and 
“convergence” will be achieved immediately.    

7 Both Kamakura and Russell (1988) and Gupta and Chintagunta (1994) do not cite any problems in their 
estimations. It is not clear whether they did not encounter any problems or whether they just did not report them. 
It should also be emphasized that while the study here and many earlier empirical studies with mixture models 
have documented difficulties with the usual maximization algorithms, this need not be an universal finding in all 
data contexts. Theoretical and empirical examination of the relationship between data contexts and algorithm 
performance would be a useful direction for future research. 
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for the MNL estimation in the EM algorithm. The results are shown in Figure 1. Each point 

represents an iteration of the indicated algorithm. The vertical axis represents the log-likelihood 

function divided by the number of observations in the sample. 

 The EM algorithm has a stable S-shaped pattern. It takes a few small steps at the 

beginning before taking large steps toward increasing the log-likelihood function (this is in 

contrast to some earlier applications of the algorithm where the algorithm makes the largest leap 

in the first iteration and the rate of the leap decreases monotonically thereafter; see Ruud, 1991 

and Watson and Engle, 1984). The secondary MNL iterations in each main EM iteration ranged 

from two to three with the largest EM iteration leaps being associated with three MNL iterations. 

As documented in other applications of the EM algorithm (see Watson and Engle, 1984 and 

Redner and Walker, 1984), most of the change in the log-likelihood function is realized in the 

first few iterations and the algorithm is very slow in convergence rate near the likelihood 

maximum. 

 Each iteration of the DFP algorithm, in general, is less time-consuming than the EM 

iteration; however, because of entering into a random direction-search mode, some early 

iterations take a substantial amount of time. The iteration sequence for the DFP is not smooth; 

there are sequences with little improvement in the log-likelihood function. But the algorithm 

converges much more rapidly near the likelihood maximum relative to the EM method. 

 In the hybrid EM-DFP algorithm, we used a criterion of less than 0.01 difference in 

successive values of the average log-likelihood function of equation (15) to switch from the EM 

algorithm to the DFP algorithm (this criterion was applied only after a minimum of five EM 

iterations). The results clearly show the effectiveness of the hybrid algorithm which combines 

the large and stable steps of the EM algorithm at the beginning of the maximization with the 

stable and relatively rapid convergence of the DFP algorithm near the likelihood maximum.    

 

4.  Choice Elasticities and Policy Implications 

The results in Table 7 present the choice elasticities and the mode shares obtained from the 

endogenous segmentation model at the segment-level and the market level. We present the 
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relevant elasticities for changes in rail level of service characteristics only.8 The entries in the 

segment-level columns represent the contribution of the corresponding segment to the overall 

percentage change in market share of the modes due to a one percent increase in the train level-

of-service variables. We present these values rather than the actual segment-level elasticities 

since the current entries provide a better basis to examine the differential effects (across 

segments) of policy actions to improve rail level-of-service (the segment-level elasticities 

provide information only on within-segment shifts; they are not useful for cross-segment 

comparisons since they do not account for the different segment sizes and because they are a 

function of segment-level mode choice probabilities). 

 The choice elasticities in the table reflect our earlier qualitative discussion of the level-of-

service sensitivity differences among the segments. It is also useful to note that the market share 

sensitivity of car and air are about the same due to an increase in rail frequency or rail cost for 

segments two and three, but the sensitivity of the car mode is greater than air for segment one. 

 The mode choice shares in individual segments in the segmented model show that the car 

share is highest for segment one, the rail share is highest for segment two, and the air share is 

highest for segment three. The market share predictions from the segmented model are not 

exactly equal to the actual market shares (as represented by the weighted estimation sample) if 

we consider all significant digits; they are however the same as the actual market shares up to 

two decimal places in this empirical analysis (if we use the a posteriori segment membership 

probabilities instead of the a priori segment membership probabilities in computing the mode 

shares, then it is relatively straightforward to show using equation (12) that the market share 

predictions from the segmented model will equal the actual market shares represented by the 

weighted estimation sample). 

 The choice elasticities of the segmented model provide valuable insights for the targeting 

of informational campaigns regarding rail service improvements and for positioning of rail 

improvements in the travel market. In particular, the results indicate that it is most efficient to 

target individuals who have low-income earnings, who are female, and who travel in a group 

(segment two) for informational campaigns on rail frequency improvements or rail cost 

decreases. Rail frequency improvements and rail cost reductions are best positioned in the 

                                                 
8  Since the objective of the original study for which the data were collected was to examine the effect of alternative 

improvements in rail level of service characteristics, we focus on the elasticity matrix corresponding to changes in 
rail level of service here. 
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medium-distance intercity travel corridors and in the weekend business travel market. The above 

strategies lead to the maximum increase in rail share in response to frequency improvements and 

cost reductions, but the increase in rail share is due to almost equal percentage decreases in car 

and air shares. If the primary objective is to decrease auto-congestion on highways, while at the 

same time ensuring a reasonable increase in rail share, then it may be more appropriate to target 

the male traveling population with medium incomes, and to position frequency improvements 

and cost reductions in the short-distance travel corridors and in the weekday travel market 

(segment one). Informational campaigns regarding rail travel time improvements are best 

directed toward the high-income travelers; such improvements are best positioned in the long-

distance travel corridors and in the weekday travel market.  

 

5.  Summary and Conclusions 

In this paper, we propose the use of an endogenous market segmentation model in a travel 

demand context. In this model, membership in a segment is probabilistic and is a function of the 

socio-demographic and trip characteristics of each individual. The formulation enables the use of 

a number of segmentation variables without requiring the multi-way partition of data and 

obviates the need to establish ad hoc threshold values of continuous segmentation variables. An 

examination of the individual-level cross-elasticities indicates that the endogenous segmentation 

model does not have the IIA property of the standard multinomial logit formulation. We have 

also developed a stable, efficient estimation procedure for estimating the segmentation model. 

This procedure involves the use of an EM algorithm to obtain starting values for the subsequent 

direct maximization of the likelihood function of the segmentation model. While we have 

developed the hybrid EM-DFP technique in the context of a multinomial logit formulation for 

mode choice, the same technique can be used for more complex mode choice formulations such 

as the nested logit or multinomial probit. A particularly valuable contribution of our estimation 

approach is that the EM algorithm (which requires only the standard multinomial logit software 

for estimation) can be used in isolation to obtain the parameters of the segmentation model and 

their asymptotic standard errors if access to general maximum-likelihood software is not 

available (this approach will, however, be quite time-consuming due to the slow nature of 

convergence of the EM algorithm in the vicinity of the likelihood maximum). 
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We applied the endogenous segmentation model to the estimation of inter-city travel 

mode choice in the Toronto-Montreal corridor. Using the Bayesian Information Criterion, we 

found that the preferred specification used a three-segment solution. The probability of 

belonging to any segment was a function of income, sex, travel group size, day of travel, and trip 

distance. In a comparative empirical assessment of the endogenous segmentation model with 

other commonly used methods to account for systematic heterogeneity, we found the 

endogenous segmentation model to be the most appropriate based on fit to the data and 

reasonability of the results. Our assessment of the performance of the hybrid EM-DFP algorithm 

vis-a-vis the DFP method also clearly indicated the superiority of the former over the latter. 

 The results of the preferred three-segment solution of the endogenous segmentation 

model showed that the intrinsic preferences for modes and level-of-service sensitivity were quite 

different among the three segment groups. These differences, in combination with the socio-

demographic and trip-related characteristics of individuals in each segment, provide important 

information for effective targeting and strategic positioning of rail service improvements. More 

generally, the endogenous segmentation model represents a valuable methodology for evaluating 

the effects of intercity traffic congestion-alleviation strategies in urban and intercity travel 

contexts.       
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Figure 1. Performance of alternative algorithms for the three-segment solution 
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Table 1. Mean and (Standard Deviation) of Modal Level-of-Service Variables 

 

Mode Frequency 
(departures/day) 

Total cost  
(in Canadian $) 

In-vehicle time  
(in mins.) 

Out-of-vehicle time 
(in mins.) 

Train 4.21   (2.3) 58.58 (17.7) 244.50 (115.0) 86.32 (22.0) 

Air 25.24 (14.0) 157.33 (21.7) 57.72  (19.2) 106.74 (24.9) 

Car not applicable 70.56 (32.7) 249.60 (107.5) 0.00  (0.0) 

Note: All measures are one-way values. Air and train frequency refer to total departures by all carriers. 
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Table 2. Intercity Mode Choice Analysis: Parameter Estimates for Three-Segment Solution 
 

Segment 1 Segment 2 Segment 3 Model  
   

Variable
Parameter t-statistic Parameter t-statistic Parameter t-statistic

Mode Constants        
Train      -3.0617 -2.54 4.7763 2.12 1.1737 0.60
Air       -1.0516 -1.82 -1.3691 -1.01 4.3404 3.36

Large City Indicator       
Train 1.9273      2.20 0.2146 0.32 -0.0840 -0.12
Air       2.2240 3.46 -1.3691 -1.01 2.6892 2.37

Frequency of Service (deps./day) 0.1615 6.38 0.5784 3.49 0.1790 3.92 
Travel Cost (Canadian $) -0.0591 -4.53 -0.1728 -3.27 -0.0166 -0.54 
Travel Time (minutes)       

In-Vehicle -0.0254      -3.25 -0.0030 -1.20 -0.0657 -5.21

 
 
 
 
 
 
Segment-
Specific Mode 
Choice Model 

Out-of-Vehicle       -0.0436 -2.91 -0.0239 -1.84 -0.1627 -5.01
Constant 4.4227    7.62 1.5366 2.56
Income     -0.0293 -5.73 -0.0447 -8.60
Female Sex -0.7614 -3.46 0.9703 4.05 
Traveling Alone     -0.1657 -1.70 -0.7226 -4.07
Weekend Travel     0.2423 0.65 1.5326 4.71

 
 
Segmentation 
Model 

Trip Distance     -0.0047 -5.91 -0.0030 -3.79

Base Segment 

Segment Size 0.4866 0.1220 0.3914 
 
Note: The log-likelihood value at zero is -3947.3; the log-likelihood value for the unsegmented model with only alternative specific constants is -3648.2. The 
log-likelihood value at convergence for the three segment solution is -2100.5.  
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Table 3 Qualitative Characterization of Mode Choice Preferences and Socio-Demographic/Trip Attributes of Segments 
 

Preferences/Attributes Characteristic Segment 1 Segment 2 Segment 3 
Intrinsic Preference for Car; if trip originates or ends 

in large city, air is preferred 
Train Air 

Sensitivity to Frequency Low High Low 
Sensitivity to Cost 
 

Medium   High Low

Sensitivity to IVTT Medium 
(Money Value = $26/hour) 

Low 
(Money Value = $1.05/hour) 

High 
(Money Value = $237/hour) 

Mode Choice Preferences 

Sensitivity to OVTT Medium 
(Money Value = $44/hour) 

Low 
(Money Value = $8.30/hour) 

High 
(Money Value = $588/hour) 

Income 
 

About average market 
income 

Lower than average market 
income 

Higher than average market 
income 

Sex High proportion of males High proportion of females Same proportion as overall 
market 

Travel Group Size Same proportion as overall 
market 

High proportion of individuals 
traveling in a group 

High proportion of individuals 
traveling alone 

Day of Travel High proportion of weekday 
travelers 

High proportion of weekend 
travelers 

High proportion of weekday 
travelers 

Socio-Demographic and 
Trip Attributes 

Trip Distance 
 

Short   Medium Long

 
Note: MV stands for “money value of time” 
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Table 4. Mean Values of Demographic and Trip Variables in Each Segment 
 

Variable Segment 1 Segment 2 Segment 3 Overall 
Market 

Income (x 103 Can$) 52.16 44.09 60.28 54.36 

Female  0.13   0.48   0.20  0.20 

Traveling Alone  0.69   0.57   0.77  0.70 

Weekend Travel  0.20   0.62   0.19  0.25 

Trip Distance (km)     311.80     373.37     444.76     371.35 
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Table 5. Empirical Comparison of the Endogenous Segmentation Model with Refined Utility Function Specification Models 
 
 

First-order preference and first-order 
response interactions 

Second-order preference and first-order 
response interactions Statistic 

First-order 
preference 
interactions Full version Preferred version Full version Preferred version 

Number of parameters 18 46 24 66 32 

Log-likelihood at convergence -2299.38     -2199.07 -2211.48 -2154.09 -2174.71

Adjusted likelihood ratio index, 2ρ 1 0.4129     0.4312 0.4337 0.4376 0.4409

Result of non-nested likelihood ratio 
index test with endogenous 
segmentation model 

Reject very strongly the hypotheses that any (and each) of the above models is as good as the 
endogenous segmentation model. 

 
 
Note: The likelihood value at convergence for the endogenous segmentation model is -2100.5 and the adjusted likelihood ratio index for this 

model is 0.4587 (number of parameters in the model is 36). 

                                                 
1The adjusted likelihood ratio index is computed as 2ρ = 1-[(‹( ) - k) / ‹(0)], where ‹( ), ‹(0), and k are the log-likelihood function value 
at convergence, the log-likelihood value at zero, and the number of model parameters, respectively. 

β̂ β̂
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Table 6. Empirical Comparison of the Endogenous Segmentation Model with Limited-Dimensional Exogenous Segmentation Models 
 

Segmentation 
variable 

Number of 
Segms. 

Number 
of parms. 

LL at 
converg. 

2ρ 1 2
favρ 2 Two-way 

segmentation with… 
Number of 

Segms. 
Number 
of parms. 

LL at 
converg. 

2ρ  2
favρ 3

Sex 6 92 -2214.8 0.4156 0.4298 

Group size 6 92 -2208.9 0.4186 0.4313 

Day of travel 6 92 -2216.6 0.4151 0.4293 

Income4 3  52 -2242.9 0.4186 0.4272 

Trip distance 9 156 -2108.1 0.4264 0.4568 

Group size 4 64 -2262.0 0.4107 0.4178 

Day of travel 4 64 -2260.1 0.4112 0.4183 

Sex  2 32 -2287.4 0.4124 0.4160 

Trip distance 6 96 -2179.7 0.4235 0.4387 

Day of travel 4 64 -2250.9 0.4135 0.4206 Group size 2 32 -2278.5 0.4147 0.4182 

Trip distance 6 96 -2163.2 0.4277 0.4429 

Day of travel 2 32 -2279.3 0.4145 0.4180 Trip distance 6 96 -2172.3 0.4253 0.4406 

Trip distance 3 54 -2212.4 0.4258 0.4350 - - - - - - 

 
Note: The adjusted likelihood ratio index for the endogenous segmentation model is 0.4587 and the number of parameters in this model is 36.  
 
 
 
 
 
 

                                                 
1  The adjusted likelihood ratio index is computed as 2ρ = 1-[(‹( ) - k) / ‹(0)], where ‹( ), ‹(0), and k are the log-likelihood function value at 

convergence, the log-likelihood value at zero, and the number of model parameters, respectively. 
β̂ β̂

2  The “favorable” adjusted likelihood ratio index for the one-way segmentations is computed by using the log-likelihood value at convergence for 
the segmented models, but by assuming the number of parameters to be equal to that in the unsegmented model. 

3  The “favorable” adjusted likelihood ratio index for two-way segmentations is computed by using the log-likelihood at convergence from the 
segmented models, but assuming the number of parameters to be the same as that in the endogenous segmentation model. 

4  There was no variation in income in the highest income segment and hence income is not introduced as an alternative specific variable in the 
high-income segment. 
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Table 7. Choice Elasticities (in Response to Change in Rail Service) and Mode Choice Shares from the Endogenous Segmentation Mode 

Segment 1 Segment 2 Segment 3 Market 1Rail Level of Service 
Attribute Rail  Air Car      Rail  Air Car Rail  Air Car Rail Air Car

Frequency              0.15 -0.01 -0.04  0.20 -0.03 -0.04  0.06 -0.01 -0.01  0.41 -0.05 -0.10

Cost -0.57  0.06  0.14 -0.77  0.14  0.15 -0.14  0.03  0.03 -1.48  0.22  0.31 

IVTT 2 -0.32  0.01  0.09 -0.03  0.00  0.00 -0.51  0.07  0.12 -0.86  0.09  0.21 

OVTT 3 -0.35  0.03  0.09 -0.18  0.03  0.04 -0.67  0.08  0.16 -1.20  0.14  0.29 

Mode Choice Shares 4  0.07  0.20  0.73  0.80  0.07  0.13  0.06  0.76  0.18  0.15  0.40  0.44 

 

                                                 
1  The overall market elasticity is the sum of the “elasticity” entries in the individual segments. The “elasticity” entries at the segment level 

represent the contribution of the corresponding segment to the overall percentage change in market share due to a 1 % increase in rail level-of-
service attribute. The actual increase (decrease) in rail share at the market level is equal to the decrease (increase) in the air and car shares at the 
market level. These conditions do not hold exactly in the table due to rounding of the elasticity entries.  

2  IVTT represents In-Vehicle Travel Time. 
3  OVTT represents Out-of-Vehicle Travel Time. 
4  The overall market share of each mode in the joint segmentation/mode choice model is equal to the weighted average of the corresponding 

segment-level mode shares, where the weights are the segment sizes. 
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