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Abstract 

 i

Abstract 

This thesis is concerned with the ‘missing process’ of the Construction Integration 

Model (CIM - a model of Discourse Comprehension), namely the process that converts 

text into the logical representation required by that model and which was described only 

as a requirement by its authors, who expected that, in the fullness of time, suitable 

grammar parsers would become available to meet this requirement. The implication of 

this is that the conversion process is distinct from the comprehension process. This 

thesis does not agree with this position, proposing instead that the processes of the CIM 

have an active role in the conversion of text to a logical representation.  

 

In order to investigate this hypothesis, a pre-processor for the CIM is required, and 

much of this thesis is concerned with selection and evaluation of its constituent 

elements. The elements are: a Chunker that outputs all possible single words and 

compound words expressed in a text; a Categorial Grammar (CG) parser modified to 

allow compounds and their constituent words to coexist in the chart; classes from 

abridged WordNet noun and verb taxonomies comprising only the most informative 

classes; revised handling of CG syntactic categories to take account of structural 

inheritance, thereby permitting incremental interpretation, and finally extended CG 

semantic categories that allow sense lists to be attached to each instantiated semantic 

variable.  

In order to test the hypothesis, the elements are used to process a Garden Path sentence 

for which human parsing behaviour is known. The parse is shown to build interpretation 

incrementally, to appropriately sense-tag the words, derive the correct logical 
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representation and behave in a manner consistent with expectations. Importantly, the 

determination of coherence between proposed sense assignments of words and a 

knowledge base, a function of the CIM, is shown to play a part in the parse of the 

sentence. This provides evidence to support the hypothesis that the CIM and the pre-

processor are not distinct processes. 

 

The title of this thesis, ‘From E-Language to I-Language: Foundations of a Pre-

Processor for the Construction Integration Model’, is intended to circumscribe the work 

contained herein. Firstly, the reference to Chomsky’s notions of E-Language 

(External(ised) Language)  and I-language (Internal(ised) Language) make clear that we 

acknowledge these two aspects of language. Chomsky maintains that E-Language, such 

as English, German, and Korean, are mere ‘epiphenomena’, a body of knowledge or 

behavioural habits shared by a community, and as such are not suitable subjects for 

scientific study. I-Language, argues Chomsky, is a ‘mental object’, is 

biologically/genetically specified, equates to language itself and so is a suitable object 

of study. We shall not pursue the philosophical arguments and counter-arguments 

concerning E-Language and I-Language (but see for example [DUMM86], 

[CHOM96]), but shall use the notions of E-Language and I-Language to differentiate 

between the natural language text to be processed, which can be unique to a community, 

geographical and/or temporal location, or to some extent to an individual, and the 

internal, structured, world-consistent representation of that text, and the cognitive 

processes involved in the representation creation, which being ‘genetically specified’ 

can be assumed common to all humans. This thesis is therefore concerned with the 

interface between these two aspects of language, and specifically in how the internal 
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cognitive processes of I-Language, outlined in theories such as the Construction-

Integration Model, interact with external representations of language in order to 

construct internal representative models of that E-Language.   

Secondly, ‘Foundations’ indicates that this work does not deliver a fully functioning 

natural language processing system, but draws together ‘distinct’ linguistic research 

threads (e.g. Chunking, Word-Sense Disambiguation, Grammar Parsing, and theories of 

grammar acquisition), to describe the process of converting a natural language text into 

a logically structured and plausibly sense-tagged representation of that text. As such, 

this thesis is a ‘proof of concept’, and must be followed by future evaluative work. 
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1 Introduction 

As every user of web search-engines knows, plenty of chaff is returned with the wheat. 

A sighted user can quickly form value judgements as to the relevancy of each returned 

page by opening and visually scanning them – essentially having a quick look at the 

headings, images, text, and matching them against their own line of enquiry. A visually 

impaired user does not have this luxury of random access via the visual mode, instead 

relying instead on modal transducers such as refreshable Braille displays and 

synthesised speech to render the selected document’s text, both of which present the 

document text serially from beginning to end. 

BrookesTalk, a web browser for the blind and visually impaired developed at Oxford 

Brookes University, addresses these orientation issues by including a term-frequency 

based keyword and extract generator which provides the user with approximately ten 

keywords from the current page, allowing them to use their own cognitive abilities to 

rapidly identify a context into which the presented keywords fit, hopefully suggesting 

the general topic of the document without the need to listen to the speech-rendered 

document in its entirety. The extract served the same purpose, providing more sentential 

context for the keywords. 

Although the term-frequency based summariser produced agreeable results for single 

domain documents, such as journal articles, problems arise when attempting to 

summarise mixed-topic documents such as online newspapers, a confusing mix of 

keywords and sentences extracted from each topic being presented. This and the 

plethora of different document genres available on the web led to the decision to look 

for an alternative summarising technology to term-frequency for use in BrookesTalk, 
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resulting in this research work. However, because of the complexity of natural language 

processing systems, we took a step back from summarisation, concentrating on an 

underdeveloped element of the Construction Integration Model (CIM), a model of 

discourse comprehension that we have selected as the basis of a future summarisation 

system because of its robust and human-like processes. 

The underdeveloped process that became the focus of this thesis is that which converts 

text into the logical representation required by the CIM and which was described only 

as a requirement by its authors, who expected that, in the fullness of time, suitable 

grammar parsers would become available to meet this requirement. This implies that the 

conversion process is distinct from the comprehension process. This thesis does not 

agree with that position, proposing instead that the processes of the CIM have an active 

role in the conversion of text to a logical representation on the grounds that sense-based 

coherence is common to both, as is shown in Section 4.1.1.  

This question is important as it has implications for grammar parsing and word sense 

disambiguation in general; if the hypothesis is true, then grammar and sense are linked, 

and a successful grammar parser will have to take account of word sense. Similarly, a 

word sense disambiguation algorithm will have to take into consideration the plausible 

grammatical contexts of the words it is attempting to sense-tag.  

1.1 Structure of thesis 

The thesis consists of two parts consisting of chapters 2 to 4 and 5 to 9. The first part 

looks at automatic text summarisation and selects psychological and cognitive over 

statistical methods as they are involved in the only working language comprehension 

system available for study, i.e. the Human language facility, and therefore can 
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reasonably be expected to contribute to artificial language comprehension systems 

exhibiting qualities comparable to our own. Due to the complexity of performing full 

discourse comprehension, the thesis focuses on the early stages which are often glossed-

over by cognitive models of discourse comprehension such as the Construction 

Integration Model. 

The second part recognises the huge grammatical, linguistic and world knowledge 

requirements of the initial stages of a discourse comprehension system, along with the 

processing effort needed to use utilise them effectively. It addresses this by identifying 

areas in which efficiencies can be made, and in doing so shows that further consistency 

with the human language processor, in the form of incremental processing and handling 

of a class of sentence known as Garden Path sentences, is possible. 

Chapter 2 reviews summarisation techniques, grouping them into General, 

Psychological, AI and Current approaches. It also reviews summaries as cohesive text, 

and looks at summarisers designed specifically for use with the web. In selecting an 

approach for use in a future BrookesTalk, easily implemented surface-statistical and 

positional systems are compared to human-like but complex and resource-hungry 

psychological and cognitive techniques. As the statistical/positional methods are not 

compatible with all document types (e.g. stories, short texts) and cannot account for 

many linguistic phenomena or incorporate grammatical relations or word sense into 

their calculations, the more complex, human-like methods based on psychological and 

cognitive models of human language comprehension are selected as the basis for further 

study. 

Chapter 3 takes the view that effective summarisation is only possible through 

comprehension of the original text and consequently discourse comprehension should 
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be the initial step in summary production. The Construction Integration Model (CIM) is 

selected as a suitable model as it is consistent with psychological observations, and 

recognises that summarisation is a necessary step in discourse comprehension. 

Supporting evidence is presented, along with an overview of the CIM itself in which it 

is noted that the model requires a pre-processing step in which text is converted into a 

logical, sense-tagged representation. 

Chapter 4 looks at the requirements of the pre-processor in more detail, and focuses on 

the three main elements: logical form transformation, sense, and coherence. A 

cognitively viable grammatical parser, identified as one that is consistent with current 

theories of grammar acquisition (The Coalition Model) is proposed to complement the 

psychologically oriented CIM; Categorial Grammar (CG) is chosen for this component 

for these reasons, and for its impressive abilities in handling a wide variety of 

grammatical phenomena, as well as its consistency with current models of grammar 

acquisition. 

Chapter 5 recognises that the nature of the chart-parsing algorithm leads to high 

processing loads when processing longer sentences. An inability of the chart parser to 

build compounds from individual terms is also recognised, and both of these factors are 

used to justify the use of a Chunker to handle this inability. Chunking itself is justified 

in terms of the human visual system, theories of word recognition, and the processing of 

Garden Path sentences. As the proposed Chunker outputs individual words as well as 

compounds and their constituent words, allowing the grammar parser/coherence 

mechanism to select the grouping (if any) that is most plausible in terms of the current 

parse, the chart parser is extended to allow ‘Parallel Shifts’ (introduced in Section 5.2.3) 
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of both compounds and their constituent terms. The parallel-shifting chart parser is 

evaluated on a Garden Path sentence, the results being consistent with expectations. 

Chapter 6 focuses on the sense indicators that are needed to enable plausibility testing 

of propositions generated by the grammar parser. Recognising that a fine-grained sense 

representation will result in a huge number of permutations in a knowledge base built 

around them, a novel method of producing tree-cuts is presented, which is based on 

selection of WordNet classes (i.e. Specialisation Classes) that exhibit the maximum 

change of information along the noun and verb hypernym taxonomies. The method is 

demonstrated to reduce the number of senses significantly, and Specialisation Classes 

are shown in a recall exercise to retain the sense-distinctions necessary to discriminate 

between polysemous senses to a high degree. 

Chapter 7 qualifies Specialisation Classes by evaluating them in a Word Sense 

Disambiguation task, using Selectional Association as the sense selection mechanism. It 

is shown in a comparative evaluation that Specialisation Classes perform better than the 

full range of WordNet classes in this task. 

Chapter 8 returns to the CCG parser, and notes that the structure of syntactic categories 

prevents incremental interpretation and the benefits to parsing it brings. Comparison of 

an unconfigured and configured grammar reveals that only a very small proportion of 

the possible syntactic categories supported by the innate human language facility are 

actually used once configured to a particular language. Further study reveals that 

syntactic categories are related structurally through inheritance. Inheritance is 

demonstrated to promote incremental interpretation by giving early access to left-

embedded, right-looking categories.  
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Chapter 9 presents a walkthrough of the proposed pre-processor as a proof of concept. 

The walkthrough evaluates the elements of the pre-processor against expected human 

behaviour when processing a Garden Path sentence. Not only does the system meet 

expectations, and produce a correctly grammatically structured and sense-tagged parse 

of the sentence, but it demonstrates that coherence determination, an element of the 

Construction Integration Model, is instrumental in producing that parse, thereby 

supporting the hypothesis that the pre-processor and CIM are not separate processes. 
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2 Review of Summarisation Techniques 

A variety of automatic summarisation techniques have been developed since the 1950s 

when computer technology reached a sufficient level of ability and availability to make 

such processes possible, and when an increasing quantity of electronic texts and data 

made automatic summarisation desirable.  

This chapter presents an overview of those summarisation techniques, evaluating each 

in terms of their potential for summarising the mixed topic and multi-genre documents 

that typify web pages. In doing so it contrasts systems that are easily realised and 

rapidly executed but rely on surface statistics with those that operate along the lines of 

human language processing and require extensive lexical, grammatical, knowledge and 

processing resources. 

2.1 Early Summarisation Methods 

Early summarisation approaches were influenced by the contemporary computer 

technology; limited storage capacity and processing power, together with a dearth of 

linguistic resources (corpora, electronic dictionaries/thesauri, parsers etc.) dictated that 

implemented procedures were computationally inexpensive and required minimal 

linguistic resources. 

2.1.1 Statistical 

Luhn [LUHN58] produced the first automatic document abstract generator. It was based 

on the premise that the most important elements in a text will be presented more 

frequently than the less important ones. However, closed class words, comprising of a 

small set of frequently used terms (e.g. prepositions, articles, conjunctions) tend to 
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dominate [KUCE67], and must first be eliminated by means of a stopword list. 

Morphological variation thwarts conflation of terms, and a normalisation procedure is 

required; Luhn used substring matching, but stemming – the generation of artificial 

word roots by (repeated) removal of suffices – as delivered by the Porter Stemmer for 

example [PORT80], has replaced this. With the most frequent document terms 

identified, the top n words can be extracted as keywords. Luhn used the set of keywords 

to assign scores to each sentence, and presented the highest scoring sentences as an 

extract. 

A number of points may be raised concerning Luhn’s Term Frequency (TF) approach: 

Although morphological variation has, in part, been accounted for, other linguistic 

phenomena have not: It does not conflate synonyms or differentiate between homonyms; 

words of differing syntactic class are readily combined; no attempt is made to resolve 

anaphors, which are generally filtered out by the stopword list, whilst their antecedent 

enter into the term frequency calculation; nor is the sense of any word accounted for. 

Finally, arguments developed over a number of sentences may be inadequately 

represented in the resulting summary if some of those sentences’ scores fall below the 

selection threshold, and anaphors may be left dangling should the sentence containing 

the antecedent be similarly eliminated. 

Regarding homonymy, it has been argued that in any discourse, all occurrences of a 

word will have the same meaning 96% of the time [GALE92, YARO92, YARO95]. 

Krovetz [KROV98] argues convincingly against this, demonstrating that on average this 

occurs only 67% of the time - it would seem that the effects of homonymy are greater 

than first thought, and hence only the synonyms of comparable senses should contribute 

to a ‘term’ score in a TF based summariser [CHOD88]. 
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Krovetz also investigated the effects of tagging words with part of speech (POS) on an 

Information Retrieval (IR) task [KROV97], testing the intuition that conflating like 

terms across POS is beneficial. Results showed that POS-tagging harmed IR 

performance. As the source of the degradation could be attributed either to errors in 

POS designation or to the separation of related terms, Gonzalo et al [GONZ99] 

attempted to make this distinction. However, the results were inconclusive, finding no 

significant difference in IR performance using untagged, automatically POS-tagged and 

manually POS-tagged texts. They theorise that terms matching on both stem and POS 

are ranked more highly and improve IR performance, but this gain is counterbalanced 

by a reduction in performance due to fewer matches. 

2.1.2 Formal Patterns 

Formally written texts implement a number of conventions in order to better present 

information to the reader: Titles and subheadings orient the reader to text that follows, 

an abstract may be explicitly presented, and paragraphs and documents tend to follow 

the exposition (say what you’re going to say), development (say it), recapitulation (say 

what you’ve said) model. The Formal Pattern (FP) approach [EDMU61, EDMU63, 

EDMU69, WYLL68] attempts to utilise this knowledge of human writing conventions 

in the generation of summaries. Thus, selecting the first/last n sentences of a paragraph 

tend to introduce/recapitulate the information developed in the middle of the paragraph; 

in-text summaries can be identified by the headings ‘Abstract’ ‘Introduction’, 

‘Conclusion’, ‘Problem Statement’ and the like; Lexical or phrasal cues such as ‘in 

conclusion’, ‘our results show that’, ‘in a nutshell’, can indicate parts of text that are 

likely to contain information that should be contained in the extract. The document title 

and subtitles are also taken as sources of significant words, sentences containing these 
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words being weighted more highly. Each method is weighted (weights derived 

manually) and contributes to the score of a sentence. Again, sentences with the highest 

combined scores are then extracted into a summary.  

 

A related method was employed in the ADAM summariser [POLL75]. Here, each item 

in the list of lexical phrases and cues (the word control list, or WCL) includes a code 

indicating whether the lexical item denotes information to be extracted (bonus items), 

such as those mentioned above, or ignored (stigma items) such as ‘we believe’ and 

‘obviously’, which should not. To improve readability, dangling anaphors are eliminated 

through shallow cohesion streamlining as described by Mathis [MATH72, MATH73].  

2.1.3 Discussion 

The TF method defines the most significant terms in a document as those that, after 

stop-words have been removed, occur most frequently. This makes the method domain-

agnostic as the intuition behind the method holds for any non-narrative text. FP extends 

the TF method by providing cue phrases indicative of high-content text. These can be 

weighted positively and negatively. 

As an all-round web-page summarising technique, TF is attractive because of its simple 

knowledge requirements – a stop-word list and a stemmer/morphological normaliser – 

and because its algorithmic simplicity allows real-time summarising on even the most 

modest of computers. 

However, a basic assumption of both the TF and FP methods is that a single topic is 

being presented. If this is not the case the keywords, and hence the key sentences, 

selected will be drawn from all topics presented. I also speculate that the ‘significant’ 
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terms selected would contain general words, present in all topics, in preference to the 

topic-specific words, which will differ from topic to topic, the topical words effectively 

diluting each other. However, by taking the paragraph, rather than the document, as the 

unit processed, topic boundaries are detectable through change in the extracted terms, as 

in CHOI00. This would certainly be necessary when summarising web pages, which 

can be very magazine-like. 

Extracting sentences on the basis of how many high-frequency terms they contain is 

questionable; an argument may be built over more than one sentence, and an extract 

may misrepresent that argument if part of it is missing. A good summary would address 

this problem through discourse analysis. Similarly, an extracted sentence containing an 

anaphoric reference can lead to a misleading summary if the sentence containing its 

antecedent is not extracted. 

The FP method is less useful as a web page summariser as the inclusion of the WCL 

makes it topic and genre specific; a WCL suitable for summarising formally-written 

journal articles will not perform as well on newspaper articles for example. 

Finally, it should be noted that both the TF and FP methods are concerned only with the 

surface form of a document; no account is taken of part-of-speech, grammatical role, or 

sense, and no attempt is made to deal with other linguistic phenomena such as 

synonymy, homonymy, and compounds. 

2.2 Linguistic Approaches 

Linguistic approaches to summarisation follow the general pattern of transforming input 

sentences into some internal representation, followed by a compaction phase where 
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repeated and redundant information is removed. The condensate so formed then 

undergoes reverse transformation to yield the natural language summary. 

2.2.1 Linguistic String Transformation 

Chomsky [CHOM57] and Harris [HARR51] introduced the term kernel sentences to 

describe a set of simple irreducible sentences that are related to non-kernel sentences by 

a series of transformations. Conversion of a document to kernel sentences gives the 

opportunity to select only the most important kernels for inclusion in the summary, 

which is produced by reverse transformations upon the set of important kernels. This 

method has been examined in CLIM61 and NIST71. 

2.2.2 Micro to Macro Proposition Transformation 

Micro to Macro Proposition Transformation (MMPT), similar in principle to the 

Linguistic String Transformation (LST) method, involves the parsing of natural 

language input into predicate-argument-structured micro-propositions, rather than 

kernel sentences. Where necessary, inferences are made to coerce coherence of any 

surface-incoherent micro-propositions through consultation with knowledge in the form 

of similarly encoded propositions stored in long-term memory. This normalises the 

content of a text at a logical representation level (the micro-structural representation of 

the text). Again, a compaction/elimination phase is employed - macro rules, which 

embody domain knowledge, are applied to the micro propositions in order to generate a 

set of macro propositions. The macro rules also ensure that the resultant macro 

propositions are entailed by their corresponding micro propositions. The collection of 

macro propositions reflects the macro-structural representation of the text, constituting 

the condensate of the original text. [VAND77];[KINT73,74,78,88,90,92,94]. 
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2.2.3 Discussion 

These techniques attempt to use linguistic theory as a method of summarisation. Both 

require conversion of input text into some internal representation, a simple statement 

that belies the complex grammatical processing required to accomplish it. The 

generation of kernel sentences is also complex, requiring syntactic and lexical 

information [BERZ79], as is the conversion of text into a propositional form. 

Grammatical parsers of suitable robustness are only now becoming available (e.g. 

[STEE00]). The transformations of LST are essentially syntax-based, leaving the 

system open to the usual set of problems caused by insufficient linguistic processing 

(e.g. attachment, homonymy, synonymy etc). MMPT on the other hand employs 

domain knowledge in its macro rules, which permits semantic (as opposed to syntactic) 

interpretation. 

Using a greater depth of knowledge than LST, MMPT is more able to accurately 

process general texts and so seems to be the better choice of Linguistic Approach to 

web page summarisation. Additionally, MMPT is based on supporting experimental 

psychological evidence [GOMU56] [KINT73] [KINT74] [RATC78] [MCKO80], and 

as such might be said to model the processes by which humans read. However the sum 

of evidence is not yet conclusive. 

These techniques are largely theoretical, and the complex procedure and enormous 

linguistic and domain knowledge requirements of the Linguistic Approach have so far 

resulted in the absence of any implemented systems. 
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2.3 Psychological Approaches. 

2.3.1 Text-Structural Abstracting 

Text Structural Abstracting (TSA), developed in RUME75 and RUME77, involves the 

mapping of surface expressions onto a schematic text structure typical of a document 

genre. Typically this may involve identification of the introduction, hypothesis, 

experimentation and conclusion sections (and their subsidiaries) of a report. 

Supplementary nodes of the structure are then pruned, leaving the core of the document, 

say, the hypothesis and conclusions, by way of some a priori interest specification. The 

core of the document may consist of text chunks or knowledge representations, resulting 

in a summary or a condensate respectively. 

2.3.2 Discussion 

TSA requires the document to be parsed syntactically and semantically in order that 

elements of the text are assigned to appropriate portions of a rhetorical structure tree 

through application of schemata applicable to that document genre [HAHN98]. Hence 

TSA requires excellent linguistic capabilities, a collection of suitable schemata, and 

appropriate domain knowledge in order to produce a rhetorical structure tree. 

Additionally, text-structurally licensed pruning operations are also required to eliminate 

all but the essential elements of the tree. The pruning operation thus requires appropriate 

domain knowledge in the way of ontological data and inference rules. This, together 

with the genre-specific schemata make TSA unsuitable for automatic processing of web 

pages, where different document genres and domains will be encountered. 
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2.4 AI Approaches. 

AI approaches generally involve the mapping of document words onto representative 

knowledge structures. These are then combined through reasoning processes to form a 

representation of the document or its sentences, which is then presented to the user. 

2.4.1 FRUMP 

Working in the domain of newswire stories, FRUMP [DEJO82] interprets input text in 

terms of scripts that organise knowledge about common events. The occurrence of a 

particular word in a document will activate a (number of) script(s). The script states 

what is expected in that event, and instances of those expectations are sought in the 

document. Constraints on script variables attempt to eliminate erroneous agreement 

between expectations and elements of the document. This is necessary as frame 

activation is imperfect, being based on recognition of a cue word (or words), or implicit 

reference to the script by elements normally related to the event it covers. 

2.4.2 SUZY 

SUZY [FUM82] attempts to utilise the human approach to summarisation by employing 

a propositional text representation as outlined in KINT74,78. The concept of Word 

Expert Parsing [SMAL82] is extended to cover syntax and semantics and is then utilised 

in the grammatical parsing of the input text as a precursor to proposition generation. 

Logical text structure is determined through the location of conceptual relations 

between sentences and through rhetorical structure analysis via a supplied schema. 

Elements of the logical text structure are weighted according to importance, and the 

summary is formed by discarding the least important elements [FUM84]. The 
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discarding procedure makes use of structural, semantic and encyclopaedic rules 

[FUM85a, 85b]. 

2.4.3 TOPIC 

The TOPIC summariser [HAHN90, KUHL89] operates in the domain of Information 

and Communication Technology, and proceeds by identifying nouns and noun phrases 

in the input text. These activate word experts [SMAL82] that conspire, through patterns 

of textual cohesion, to identify superordinating concepts contained in TOPIC’s 

thesaurus-like ontological knowledge base. Reformulating natural language from text 

related to those superordinating concepts which posses frequently activated subordinate 

concepts generates a summary. 

2.4.4 SCISOR 

SCISOR [RAU89] uses conceptual knowledge about possible events to summarise 

news stories. It may be viewed as a retrieval system where the input document becomes 

a query used to retrieve conceptual structures from its knowledge base [JACO90]. 

SCISOR is thus applicable to multi-document summarisation. SCISOR employs three 

levels of abstraction in its memory organisation, inspired by current theories of human 

memory, these being semantic knowledge (concept meaning encoding), abstract 

knowledge (generalisations about events), and event knowledge (information relating to 

actual episodes, plus links to related abstract knowledge). In action, SCISOR responds 

to a user query by retrieving the most relevant elements of its knowledge base, using 

specific (event) and general (abstract) information as necessary, but currently can only 

respond to simple queries about well-defined events, such as corporate take-overs. 
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2.4.5 Discussion 

AI approaches to summarisation require language-processing elements (syntax, 

semantics, and grammar) plus expert knowledge. Often, full parsing of input text does 

not occur, the systems being satisfied with finding coherence between nouns, although 

this is due to the difficulty of producing a full parse rather than a necessity of the 

method. All AI approaches attempt to express relationships between semantic elements 

by grouping elements into knowledge structures. This is advantageous in that it allows 

for expectation-based processing and for inferencing on unspecified information. 

However, the activation of stored knowledge representations is not always accurate; 

these representations tend to look for positive evidence for activation and ignore 

evidence to the contrary, unless it is explicitly encoded as constraints within the 

representation. Given appropriate linguistic capabilities and word-scale knowledge, the 

AI approach promises to be a generally applicable summarisation procedure capable of 

processing documents and web pages alike. However, like the Linguistic Approaches, 

the huge linguistic and knowledge requirements limit its operation to a few domains in 

which appropriate knowledge structures have been constructed. 

2.5 Renaissance Approaches 

Renaissance approaches generally revisit existing techniques, enhancing them with 

modern lexical resources (e.g. corpora: BNC [BNC], Brown [KUCE67], SemCor 

[FELL90] and dictionaries: LDOCE [PROC78], WordNet [MILL90]), computational 

power and storage capacity. These permit a degree of semantic and statistical analysis 

not previously possible.  
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2.5.1 Paragraph extraction 

In order to improve coherence of generated summaries, MITR97 and SALT97 propose 

paragraph extraction as an alternative to sentence extraction. They represent each 

paragraph as a vector of weighted terms. Pairs of paragraph vectors are then compared 

for similarity through vocabulary overlap, a high similarity indicating semantic 

relationship between paragraphs. Links between semantically related paragraphs are 

forged, and those paragraphs with the greatest number of links, indicating that they are 

overview paragraphs, are considered worthy of extraction. 

2.5.2 Formal Patterns revisited 

KUPI95 and TEUF97 revised the FP approach proposed in EDMU69 by replacing the 

manual method-weighting scheme by weights obtained by training the system on a 

corpus of documents and hand selected extracts or author-written abstracts. The 

probability of each sentence being extracted is calculated for the training set, adjusting 

weights to maximise the probability of extracting the given extract/abstract sentences. 

These weights are then used to form new extracts from previously unseen documents. 

2.5.3 Lexical Cohesion 

Lexical cohesion refers to the syntactic or semantic connectivity of linguistic forms at a 

surface structural level of analysis [CRYS85], and might be said to express the notion 

that ’birds of a feather flock together’. Lexical cohesion exists where concepts refer (a) 

to previously mentioned concepts, and (b) to related concepts [HALL76]. Often, these 

aspects are used independently by researchers, and have been usefully employed in text 

segmentation (i.e. the identification of homogenous segments of text) and in word sense 

disambiguation. 
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BARZ97 uses lexical chains, based on the ideas presented in HALL76, formed around 

nouns to identify major concepts in a text. A part of speech tagger identifies nominal 

groups, which are subsequently presented as candidates for chaining. Lexical 

relationships are obtained from WordNet [MILL90], and these are used as the basis for 

forming links between the presented nominals. The length, shape, and WordNet relation 

type of the chain between nominals, along with the size of window over which nominals 

are captured, provide a means to classify relations as extra-strong, strong, and medium-

strong.  The sentences that relate to the chains thus formed are then extracted to form a 

summary. MORR88 and MORR91 also demonstrated that the distribution of lexical 

chains in a text was indicative of its discourse structure.  

WordNet is not the only source of relational knowledge. A document text may be used 

directly, a common vocabulary between parts of a text indicating that those parts belong 

to a coherent topic segment [HALL76], exploited in systems such as that described by 

Choi [CHOI00]. A common vocabulary thus consists of a set of terms that are cohesive 

within a topic.  

A number of approaches have been employed in the acquisition of cohesive 

vocabularies: Term repetition has been found to be a reasonable indicator of coherence 

[SKOR72, HALL76, TANN89, WALK91, RAYN94]. Through Corpus Statistical 

Analysis of known coherent texts, sets of domain-related terms may be identified. As 

Firth [FIRT57] says: 

“Collocations of a given word are statements of the habitual or customary 

places of that word.” 

Hearst’s Text Tiling algorithm [HEAR94] uses a cosine similarity measure on a vector 

space to identify cohesive chunks of text and hence identify the boundaries between 
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those chunks. Kozima [KOZI93a, KOZI93b, KOZI94] uses reinforcement of activation 

of nodes within a semantic network over a given text window to indicate cohesion, the 

system being automatically trained on a subset of the LDOCE. Similarly, Morris and 

Hirst [MORR88, MORR91] identify cohesive chunks through lexical chains, chains of 

related terms discovered through traversal of the relations in Roget’s Thesaurus. This 

approach has been adapted for use with WordNet [HIRS98] 

Latent Semantic Analysis (LSA) [BERR95, LAND96, LAND97] has gained recent 

favour. As a corpus-based statistical method, it is similar to those previously mentioned. 

However, Singular Value Decomposition (SVD) [BERR92] is used to decompose the 

document-by-term vector space into three related matrices, the product of which 

reproduces the original document-by-term matrix. Calculating the product of the three 

matrices restricted to k columns (where n is the number of unique terms in the document 

collection, and k << n) then results in a best least square approximation of the original 

document-by-term matrix having rank k, that is, having a reduced dimensionality. It has 

been shown that LSA’s performance is comparable to that of humans in a number of 

tasks: selection of appropriate word synonyms, rate of vocabulary growth [LAND96, 

LAND97], judgement of quality and quantity of knowledge contained in essays 

[FOLT99]. LSA also improves over the bag of words method of identifying related 

documents in IR [DEER90, DUMA91]. 

2.5.4 SUMMARIST 

SUMMARIST attempts to provide domain-agnostic extracts and abstracts. It employs a 

three subtask processing strategy [HOVY97]: 

 Summarisation = topic identification + interpretation + generation 
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An updated version the FP location method, Optimal Position Policy (OPP) is used for 

topic identification. OPP involves a list of the title and sentence numbers, obtained 

thorough corpus analysis, of the likely locations of topic-related sentences for a 

particular domain. Interpretation involves selecting concepts from WordNet, which, 

through exploitation of the WordNet relationships, subsume concepts in sentences 

selected by OPP, thereby presenting the semantically related concepts hierarchically. 

The dominant concept in any hierarchy can then be said to summarise that hierarchy. 

Interpretation also involves assigning concepts from the OPP selected sentences to a set 

of concept signatures, broad topic classifications such as finance, environment, etc. 

Generation involves the output of topic lists (i.e. keywords), phrases formed by 

integrating noun phrases and clauses, and natural language sentences resulting from 

sentence planning. 

2.5.5 Discussion 

In general, current approaches apply modern resources to previously explored 

techniques, improving elements of those techniques. The advent of electronic dictionary 

resources such as WordNet and LODCE has moved term-matching toward an ontology-

based concept matching, where semantic distance or similarity in information content 

replace simple string matching [RESN95a]. Such improvements in knowledge sources 

and similarity metrics are instrumental in the production of lexical chains and the 

identification of subsuming concepts, and ultimately give rise to the possibility of 

concept (as opposed to term) counting. Concept counting has distinct advantages over 

term counting as it, by definition, accounts for linguistic phenomena such as synonymy 

and homonymy. Also, as MORR88 and MORR91 suggest, topical boundaries may be 

more accurately located through concept matching. 
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Coherence is subject to the ‘chicken or egg’ problem; is a word’s sense defined by its 

inclusion in a group of cohesive words, or is the cohesive group created by collecting 

word senses that are related in some way? Lexical chaining involves the former, seeking 

some relation through traversal of the WordNet relations for example, thereby acting as 

a Word Sense Disambiguation (WSD) procedure. However, as the grammatical 

relations between the words are not factors, inappropriate sense disambiguations, and 

hence inaccurate coherence, are made. For example, the WordNet definition for alarm-

clock (below), when processed by the lexical chainer described in HEAR98, incorrectly 

identifies coherence: 

Alarm-clock: wakes sleeper at preset time. 

Seeking coherence between the first two nouns, alarm-clock and sleeper, a 

superordinate class DEVICE is found between the (given) sense of alarm-clock and the 

railway-sleeper sense of sleeper; the verb wakes is more closely associated with sleep, 

as is sleeper, and would have been the better choice to seek a relation. Although capable 

of discovering relations implicit in knowledge structures such as WordNet, lexical 

chaining is slow in operation due to the large number of relation-traversals and node 

comparisons necessary. 

Like lexical chainers, approaches based on LSA do not use grammatical information, 

treating documents as bags of words from which co-occurrence information is derived. 

LSA is the opposite of lexical chaining in that the sense of coherent words is defined by 

the context that the coherent group provides. However, the actual nature of the relations 

between the identified coherent terms is unknown. 
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2.6 Web Page Summarisation 

The approaches discussed so far have been concerned with plain text documents. Today, 

a huge number of documents are available over the Internet as Web Pages, and it is the 

production of summaries of these pages as an assistive technology for blind and visually 

impaired users that is the driving force behind this project. A number of summarisation 

techniques relate directly to the web itself.  

2.6.1 Page Layout Analysis 

Our early work attempted to use the HTML markup tags to identify features of the 

document, such as headings, which might be highly semantically loaded. However the 

lack of consistency between visual features and the tags used to generate them in 

different documents/document authors proved problematic. For example, headings may 

be defined by the tags <h1>..<h6>, or may be constructed by use of the size attribute of 

the <font> tag. To overcome this problem, information regarding the visual effect (e.g. 

size of text, text font, spacing around text) of the tag rather than the tag itself was used 

to provide a Page Layout Analysis similar to that employed when applying Document 

Image Analysis and Optical Character Recognition to a printed document [PAVL92], 

thereby allowing the identification of headings, text blocks, footnotes, figure and table 

labels. However this work has been temporarily abandoned in order to address the 

underlying problem of extracting meaning from text regardless of its source. 

2.6.2 BrookesTalk 

BrookesTalk [ZAJI97a, ZAJI97b, ZAJI99] implements a basic Term Frequency (TF) 

summariser, comprising a stopword list, porter stemmer [PORT80] and stem frequency 

analysis augmented by trigram analysis [ROSE97]. It also incorporates positive 
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weighting of words from headings and links in the assumption that these elements are 

indicative of important document topics; in general, headings summarise the 

information to follow and links provide access to related information. Although popular, 

TF suffers from a number of drawbacks, briefly: it cannot account for linguistic 

phenomena such as synonymy, lexical ambiguity, or multi-topic documents.  

2.6.3 Discourse segmentation 

Choi addresses the multi-topic problem by identifying discourse segments through 

linear text segmentation [CHOI00]. Discourse segments are then grouped into topics 

either through application of a clustering algorithm [RAYN94], or, as some alignment 

has been observed between topical shift and presentational features, through observation 

of those presentational features. With the topic boundaries defined, a combined word-

frequency, word-position and word length summarisation procedure [CHOI99] 

produces a keyword list for each topical segment within the document. In theory, short 

documents may suffer as a result of this procedure, as the further reduction in word 

count due to topicalisation may affect the word frequency statistics. Then again, the 

topicalisation procedure will have concentrated related words, possibly assisting the 

frequency statistics.  

2.6.4 Gists 

Other methods use external data to draw-in additional related words, which in part 

addresses the linguistic phenomena issues: Berg [BERG00], noting that web pages 

contain “a chaotic jumble of phrases, links, graphics and formatting commands which 

are not suited to standard statistical extraction methods”, utilises word frequency, 

trigram and word relatedness models derived from a collection of human generated web 
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page summaries [OPENDP] to select and arrange words from a web page to form a gist. 

A related method uses the hyper structure of the web to provide alternative defining 

information for a web page - as a hyperlink generally points to a page related to the 

paragraph containing that link, Amitay et al [AMIT00] collect paragraphs around links 

pointing to a target page. A filter, constructed through analysis of human-selected ‘best 

paragraphs’, is then applied to those paragraphs to identify the best description of the 

target page. 

2.6.5 The Semantic Web 

As recognised in Section 2.6.1, the HTML markup used by today’s web pages is 

concerned with formatting for human readability. This is because the means of 

accessing information in a web page is expected to be natural language. The Semantic 

Web [BERN00] is a vision of machine-readable documents and data, canonically 

annotated to allow software agents to determine the document topic(s), and the people, 

places and other entities mentioned within. Documents marked up in this way would be, 

given appropriate software agents, be amenable to such applications as knowledge 

discovery and summary production.  

The Semantic Web requires two classes of metadata to facilitate this: Ontological 

support services to maintain and to provide on demand the entity-related metadata, and 

large-scale document annotation using semantic markup formulations such as XML, 

RDF [W3C99] and OWL [OWL].   

Retro-fitting semantic metadata to the billions of existing web pages would be 

impossible to achieve by hand, leaving automatic annotation as the only viable route. 

Attempts have been made to use Machine Learning (ML) (e.g. Naïve Bayes [MITC97], 
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K-Nearest Neighbour [DUDA75]) to extract structured information from web pages 

[KOSH97; LERM01; COHE01], but these require significant training before they can 

be productive [DILL03]. Edwards [EDWA02] proposes that: 

“Once content has been extracted from documents, the next step is to apply 

information retrieval techniques, such as stopword removal, stemming, term 

weighting and so on. A bag-of words representation is then used to form the 

training instances required by the learning algorithm.” 
 

As has been stated previously, these approaches do not attempt any linguistic analysis 

and are subject to the linguistic phenomena outlined in Section 2.1.1. Their utility as a 

means of producing training data for ML algorithms is therefore questionable. However, 

Natural Language Processing (NLP) techniques, such as the system proposed in this 

thesis, applied to the plain text of web pages would permit ‘cleaner’ training datasets to 

be obtained.  

The Semantic Web and NLP of the kind proposed here share a common interest in the 

ontological support services, which is a fundamental element of both. As shall be seen 

in Chapter 6, the WordNet 1.6 lexical database is used in this work as a ready-made 

sense ontology. Although WordNet is an excellent lexical research tool, it has many 

lexical and relational omissions that prevent it from being a world-scale ontology. The 

ontological support services developed as part of the Semantic Web project will be 

beneficial to the NLP community in this respect. 

2.6.6 Discussion 

The above methods involve extensions to the TF method, either by attempting to 

identify topic boundaries, or by drawing in additional information from related web 

pages in order to bolster the statistics. Ultimately, these approaches rely on analysis of 

surface features and do not attempt any form of linguistic processing such as 
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grammatical parsing, WSD, etc, and so are subject to the same problems as the TF 

method.  

2.7 Conclusions 

The summarisation techniques presented above present a spectrum of capabilities and 

requirements: TF based summarisation requires little knowledge, executes rapidly, and 

is domain-agnostic. However, it is not amenable to certain document types, such as 

narratives or short texts, where there is no overall theme to detect or insufficient 

information to reliably detect significant words. Also it is subject to error induced by the 

lack of linguistic processing: anaphors are left dangling, synonyms are not identified, 

etc. Although ingenious, these approaches ultimately rest on statistical features derived 

from the surface analysis and clustering of surface elements from web pages and/or 

training text. Our impression of surface feature based techniques is that by not utilising 

the full spectrum of linguistic information available (for example, they don’t make use 

of sense or grammar), they are imposing an upper limit on their performance.  

 

At the other extreme are those techniques that heavily involve linguistic processing, 

requiring wide coverage grammars, WSD, kernel transformations and the like. These 

promise excellent summarisation capabilities, and have support from psychological 

studies, but require a huge amount of knowledge which in turn requires a significant 

amount of processing, resulting in current systems that operate on limited domains.  

The choice then is between systems that are easily realised and rapidly executed but rely 

on surface statistics, and those that operate along the lines of human language 
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processing (which is the only working language processing system we know of) but 

which require huge amounts of knowledge and processing effort. 

As it would appear that there is little progress to be made by pursuing the statistical, 

non-linguistic approaches, the only option is to look at the psychologically oriented 

methods of summarisation. However, although not necessarily computationally 

intractable, the complex nature of psychological approaches and their huge linguistic, 

grammatical and knowledge requirements make the production of a wide coverage 

summariser built along such lines unfeasible within the context of a thesis. As a 

precursor to such a system however, an attempt to quantify and reduce the workload of 

a psychologically based summariser would seem prudent.   
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3  A Model for Discourse Comprehension 

This chapter proposes discourse comprehension as an initial step in summary 

production, and presents the Construction Integration Model as a suitable model to 

perform that task. Evidence for the model is presented, and in doing so, we note that the 

model proper accepts input in a logical form; the details of how natural language is 

converted into logical form is not a defined part of the model.  

 

When a human summarises a text, the basic operations involved are the reading and 

comprehension of that text, followed by the reproduction of that which was 

comprehended, but in a more concise and/or tailored form. From this we suggest that 

the task of producing indicative summaries includes that of discourse comprehension. It 

would therefore seem appropriate to approach the task of automatic summarisation from 

the direction of discourse comprehension, that is, via the Linguistic, Psychological, 

and/or AI approaches introduced in Chapter 2. Of these, the Linguistic approaches of 

LST and MMPT offer the better starting point as they: 

1. do not require knowledge of rhetorical structures as would Psychological 

approaches; 

2. do not require the scripts employed by AI approaches. 

The scripts and rhetorical structures above place constraints on the capabilities of a 

discourse comprehension system as these items firstly must be prepared beforehand, 

secondly a missing script or structure description will impair accurate comprehension 

and/or induce domain specificity, and thirdly, a mechanism must be employed to select 
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the appropriate scripts and structure definitions in any situation. Of course Linguistic 

approaches have their own requirements such as kernel sentence extraction and macro 

rules, but these are of a very general nature, trading efficiency for coverage [KINT90]. 

As a development of MMPT, the Construction Integration Model (CIM), has been 

selected as the framework for study in this work as it proposes a model of discourse 

comprehension based upon and supported by psychological evidence, although the 

evidence is in no way conclusive.  

The CIM makes an interesting setting for a summarisation system as it also 

acknowledges summarisation as a necessary step in human text comprehension. The 

reading of text involves the recognition of written symbols and the subsequent 

construction of some meaning representation based upon them This in turn requires the 

combination of current symbols with symbols read previously and now residing in 

memory. However, Miller [MILL56] demonstrated that the human short-term memory 

(STM), used for active processing, had a capacity of 7±2 chunks of integrated pieces of 

information. As limited STM is available for active processing, it follows that the 

representations (i.e. integrated chunks) are necessarily summarised in the natural course 

of the reading process [ENDR98].  

3.1 Background to the CIM 

Chomsky suggested that External Languages (E-Languages), such as English and 

German, were mere ‘epiphenomena’ that required further definition with ‘socio-political 

and normative factors’, presenting as evidence the observation that there exist 

similarities in dialects across the borders of countries such as Germany and the 

Netherlands (where the languages are different but similar) and local dialects and shifts 

in grammar within a country (where the language is the same but different) [CHOM88]. 
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Essentially Chomsky said that the development of an E-Language is subject to the 

behavioural response to external factors, and that these are difficult or impossible to 

predict or incorporate into definite rules. This view was also put forward by the 

descriptive linguist Twaddle when he said: 

‘We know that the habit is the reality and the rule is a mere summary of the 

habit.’ [TWAD48].  

Attempts are being made to describe E-Language grammars as complex adaptive 

systems [DILL97], but if E-Language is, as Chomsky and Twaddle suggest, a tradition 

perpetuated for convenience, then the real work of comprehension occurs at the I-

Language level (i.e. at the internal rather than external representational level). Indeed, 

the CIM is mostly concerned with I-Language; only the first step of the Construction 

process involves E-Language (see Section 3.3). 

3.2 Experimental Evidence Supporting the CIM 

Gomulicki showed that it was extremely difficult for people to distinguish between a 

précis of a story and the recalled memory of that story, the conclusion being that a 

précis resembles a story memory, as both contain the main points and ignore 

unnecessary detail. This is understandable when one again considers the storage 

limitations of working memory [GOMU56].  

Kintsch and Keenan demonstrated that time taken to read sentences with a fixed number 

of words increased according to the number of propositions they contained, concluding 

that extra cognitive effort is required to integrate the additional propositions into the 

internal representation. [KINT73]. 
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3.2.1 Evidence for Propositions 

 

Although Gomulicki’s experiment indicates a reduced representation, it does not 

suggest what that representation might be, or how it is structured. Kintsch and van Dijk 

proposed a model of story comprehension which consisted of two basic elements: the 

argument, equating to the representation of the meaning of a word, and the proposition 

equating to the smallest unit of meaning to which a truth value can be assigned (a 

phrase or clause in general). In addition, it was proposed that the story is processed to 

form two main structures: the micro-structure, being the connected structure formed by 

the propositions extracted from the text, and the macro-structure, being the reduced 

version of the micro-structure (i.e. the main points of the story) [KINT78]. This was 

partly based upon the experiment performed by Kintsch and Keenan where subjects 

were presented with sentences of a fixed number of words but varying numbers of 

propositions. In recording the subjects’ reading times of the sentences it was found that 

reading time increased by around one second for each additional preposition in a 

sentence [KINT73]. Their conclusion was that the increase in reading time could be 

accounted for by the additional cognitive effort required to incorporate the increased 

number of propositions into the internal representation.  

 

An experiment by Ratcliff and McKoon demonstrated that propositions might be the 

basis of internal representations. They presented subjects with a number of sentences, 

and followed this with a word recognition test. The subjects had to decide as quickly as 

possible whether words presented by the experimenters were from the previously 

presented sentences. It was found that recognition times decreased for any word where 
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the preceding word was from the same proposition. This priming effect suggests that the 

first word causes the recall into working memory of the proposition relating to that 

word. If the subsequent word is from the same proposition, then the representation is 

already in working memory and the recall overhead is avoided [RATC78]. 

Further evidence for the importance of propositions was provided by Johnson-Laird and 

Stevenson: They presented experimental subjects with sentences, and later performed 

recognition memory tests on those subjects. In the recognition test some of the original 

sentences were replaced by others with the same meaning but different wording and 

syntax. In these cases, the test subjects mistakenly reported that they recognised the 

sentences and that they had been previously presented; the meanings of the sentences 

were remembered rather than the words of those sentences. Thus, as propositions 

express meanings rather than words, it can be concluded that the propositions are an 

integral part of the internal representation. 

3.2.2 Evidence for Micro and Macro Structures. 

 

There is also evidence for the existence of the micro and macro-structures. An 

experiment by McKoon & Ratcliff [MCKO80] involving subjects reading a paragraph, 

and then being tested for recognition memory through presentation of additional 

sentences, and finally having to determine whether the concepts expressed by the 

sentences were contained in the original paragraph. The response times to the 

recognition test were recorded and used to demonstrate that the fastest recognition times 

were obtained when two sentences from the paragraph that formed part of the same 

micro-structure were presented consecutively. This priming effect was not shown in 
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cases where the two consecutively presented sentences were not part of the same micro-

structure. 

 

Kintsch also demonstrated the difference between micro and macro-structures 

[KINT74]. Subjects were given a text to read, and immediately after reading were asked 

whether certain explicit or implicit inferences were contained within the text, and their 

recognition times recorded. A second group of subjects were given the same task, but 

the recognition test was performed 15 minutes after the text was read. Again recognition 

times were recorded. Analysis of the results showed that, for the immediately tested 

subjects, the explicitly presented propositions were recognised faster than implicitly 

presented propositions. However, for the subjects tested 15 minutes after reading the 

text, there was no discernible difference in recognition times. The conclusion drawn was 

that the micro-structure representation of explicit propositions is better than that for 

implicit propositions, but the representation of both is comparable in the macro-

structure. The information contained within the micro-structure is available immediately 

but appears to degrade quickly, whereas the macro-structure appears to be a more 

permanent entity. 

3.3 The Construction-Integration Model 

 

Kintsch further developed the model described above into the Construction-Integration 

model [KINT88, 92, 94]. The stages of the process are as follows: 

Construction: 

1. Propositions are formed from the input sentences. 
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2. The propositions form a propositional net in a short-term buffer. 

3. Propositions related to those in the propositional net are recalled from long-

term memory and combined with the propositional net to form the 

elaborated propositional net. 

Integration: 

4. The most highly interconnected propositions within the elaborated 

propositional net are selected through a spreading activation process. 

5. The selected propositions are organised into a text representation, which is 

stored in episodic memory. 

6. Through a learning process, episodic memory is transferred to long term 

memory, where it becomes available for subsequent constructions of 

elaborated propositional nets. 

 

The model improves upon the previous model in a number of ways: It shows how stored 

knowledge can interact with textual information, and provides a framework for 

inference-making. The model also makes the assumption that during the construction of 

the elaborated propositional net, many possible propositions are included. Most of these 

will be irrelevant, making the process inefficient but generally applicable. The 

alternative is to use ‘intelligent’ rules to select the correct propositions each time, an 

approach that possibly eliminates the flexibility and robustness of the construction-

integration model [KINT90]. 
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What evidence is there for the CIM itself? It predicts three levels of representation, the 

surface level (the text itself), the propositional level, and a situational level (or episodic 

memory, equating to a representation similar to that obtained through direct experience 

of the situation). As we have seen, it also predicts that memory for the original text form 

degrades more rapidly than that for the more summarised propositional memory. It 

follows from the model that propositional memory should degrade more rapidly than 

episodic memory, episodic memory being a generalised version of propositional 

memory. These predictions were compared against experimental observations of 

subjects given recognition tests immediately, or at varying time intervals ranging up to 

four days, after being presented with a situation (going to a restaurant, going to see a 

film) [KINT90]. Analysis of results showed that the surface representation was quickly 

forgotten, the propositional representation was partially forgotten, but there was no 

forgetting of the situational representation. Thus the predictions of the model were 

consistent with observation. 

3.4 Conclusion. 

 

The construction-integration model proposed by Kintsch & van Dijk is reasonably well 

supported by experimental evidence; observation of memory recognition and retention 

at the surface, propositional and situational representational levels are consistent with 

the theory, thus supporting the idea of micro and macro-structural levels in discourse 

processing. It is possible that propositions frequently recalled into working memory, or 

remaining in working memory for extended periods, are those that relate to the main 

themes of a text. However there is evidence to show that factors other than re-

presentation of arguments or propositions are also involved in the production of an 



Chapter 3: A Model for Discourse Comprehension 

 37

internal representation of a text. For example, sentences that are linked causally are read 

more quickly than those that are not [TRAB85]. This suggests that structures other than 

propositions linked by similarity are needed in order to fully describe a discourse 

comprehension system. However, this underlines a general problem of the CIM as it 

currently stands; although defined in general terms, which has previously been 

recognised as promoting coverage, no specific details of the operation and underlying 

structures of the model are given – the question ‘how are propositions formed, 

inferences made, and how do stored propositional and situational representations 

interact with textual representations?’ remains unanswered. To be fair, Kintsch 

recognises this when he says: 

‘comprehension always involves knowledge use and inference processes. 

The model does not specify the details of these processes’. [KINT78]. 

It seems that the issue of transforming a text into propositional form has also been 

sidestepped: 

‘the model takes as its input a list of propositions that represent the meaning 

of a text.’ [KINT78]. 

This statement places the CIM entirely in the I-Language domain. Recognition of 

the E-Language to I-Language transformation is given however: 

‘a full grammar, including parser, which is necessary for the interpretation 

of input sentences and for the production of output sentences, will not be 

included’. [KINT78]. 

It would seem from the above statements that the conversion of text into 

propositional form (step 1 of the CIM) is being relegated to a pre-processing step. 



Chapter 3: A Model for Discourse Comprehension 

 38

We do not believe this position to be accurate, and a study of a grammar 

compatible with the CIM demonstrates why. 
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4 A Psychologically Plausible Grammar 

Chapter 3 showed that the CI model is attractive as a model of discourse comprehension 

as: 

• it has psychological validity; 

• it addresses both local and global coherence; 

• it results in a coherent text-base from which kernel sentences may be extracted 

and used as the basis of a summary. 

This chapter examines the fundamental elements of a pre-processor for the CIM, which 

are identified as being the conversion of text to logical form, sense assignment, and 

coherence determination. It shows that sense is instrumental in the conversion to logical 

form and to coherence determination, and consequently proposes that these elements are 

interrelated and should not be treated as autonomous processes. It further proposes that 

to achieve this integration, the processes of the CIM should extend into the pre-

processor itself. After proposing that the grammar parser is the process that unites the 

three elements, theories of grammar acquisition are examined, and Categorial Grammar 

is selected for this work as it is shown to be consistent with those theories of grammar 

and capable of producing output in logical form.  

4.1 Elements of a CIM Pre-Processor 

An implemented summariser based on full language comprehension is of course beyond 

the scope of this thesis. However, in accepting the CIM as the basis for such a system, 

the major elements of a summariser become those of the CIM itself, which in this work 

are taken to be: 
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1. conversion of surface form to logical form; 

2. assigning senses to the predicates and arguments of the logical form; 

3. seeking coherence between logical units. 

At first inspection, it would appear that each of the above elements of the CI model 

might be investigated separately: Point 1 involves the conversion of text from surface to 

logical form, essentially a grammatical analysis of an input sentence - the discovery of 

the underlying relationships between the input units. Many grammar parsing 

methodologies are in existence which could potentially perform this function, for 

instance Phrase Structure Grammar [CHOM57, GAZD85, POLL94]; Tree Adjoining 

Grammar [JOSH75, XTAG]; Categorial Grammar [BAR53, LAMB58]; Dependency 

Grammar [MELC88]; Government and Binding/Principles and Parameters [CHOM82, 

HAEG94]. 

Point 3 is concerned with the seeking of coherence between the propositional units 

discovered by grammatical analysis, which involves the matching of arguments of one 

proposition against those of another [VAND77];[KINT78].  

However, the second point, that of assigning senses to predicates and arguments, is 

central to both points 1 and 3, as shown below: 

4.1.1 Sense is central to grammatical form 

It is straightforward to demonstrate through prepositional attachment ambiguity that 

sense information (point 2) is needed to successfully determine the grammatical 

structure of a sentence (point 1). Consider the following sentence: 

John made the cake in the X.     (1) 
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The grammatical structure of sentence (1), specifically the site of prepositional phrase 

(PP) attachment, is dependent upon how the meaning of the word X interacts with the 

meaning of the other words, as illustrated below: 

John made the cake (in the box).    (2) 

John made the cake (in the kitchen).   (3) 

John made the cake (in the nude).    (4) 

In sentences (2)-(4) the site of PP attachment is underlined, and is determined 

pragmatically – cakes are stored, not made, in boxes; cakes are typically made in 

kitchens; only people may be nude. If no account of word sense is taken during the 

parse, then the parser must generate all parses licensed by a PoS grammar or lexicalised 

grammar.  

4.1.2 Sense is central to coherence discovery 

Regarding coherence (point three), Kintsch and van Dijk present a worked example of 

coherence checking, using the document “Bumper Stickers and the Cops” [KINT78]. In 

their example, coherence is found (for example) between the argument terms ‘law 

enforcement officer’ and ‘police’. The problem here is that, working at the surface level 

of representation, these two terms cannot possibly be identified as similar as they have 

different surface forms. This exemplifies the problems encountered when seeking 

coherence between words, for example, between synonyms such as dog and hound, car 

and jalopy, and between polysemes such as bicycle and unicycle, car and lorry, 

breakfast and dinner. The simple conclusion is that coherence may not be sought 

between the surface forms of arguments and predicates, only between their meaning 
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representations, implying that some notion of sense be employed during the coherence 

seeking exercise.  

4.1.3 A mutually constraining approach 

The above has shown that sense is central to both grammar parsing and coherence 

discovery. However, determining the sense of words (Word Sense Disambiguation – 

WSD) is an extremely difficult problem that has received much attention (e.g. 

[LESK86];[RESN95b];[YARO95];[BRUC94]). We propose that to avoid this problem, 

the processes of grammatical parsing, WSD and coherence discovery should not be 

viewed as separate sequential processes. Instead we propose that parallel, mutually 

constraining processes better describe the situation presented in Sections 4.1.1 and 

4.1.2, which show that grammar, coherence and sense are related. So, given a system 

that produces all possible grammatical parses with all possible senses assigned to the 

grammatical constituents, selection of the correctly sensed grammatical parse is 

achieved as a consequence of identifying the most pragmatic and world-consistent 

coherent grammatical structures. This approach is consistent with the CIM in that 

context is provided by the entire body of text processed (the local and global contexts) 

together with world-knowledge from long-term memory, not by the current sentence 

alone (the local context) as is the norm for PoS taggers, WSD algorithms and grammar 

parsers. This is of course an extension of the CIM into the E-Language domain; rather 

than seeking coherence between correctly parsed and sensed logical elements, the CIM 

would select from the possible logical units and senses by seeking those most coherent, 

that is, those most consistent with local, global and world knowledge. In this way the 

discovery of coherence, grammatical structure and sense are integrated into the CIM 
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itself. However, a mutually constraining system of this type will still need a lexicon, 

grammar parser, and some sense representation, together with appropriate knowledge to 

allow pragmatic coherence discovery to take place.  

4.2 Selection of the grammar parser 

A grammar parser is needed to identify structural relations between the terms of a 

sentence, a precursor to the conversion of a natural language text into a logical 

representation. We propose that the grammar parser is the site at which the sense and 

cohesion elements intersect because the parser is the process that generates logical 

forms, and these have been shown in Section 4.1.1 to be affected by sense, and in 

[KINT78] to be subject to coherence testing.    

In order to complement the psychologically valid CIM, a similarly valid system of 

grammar acquisition/processing was sought. This was because, having only one 

example of an implemented language system available for study, i.e. the human 

language system, it seemed prudent to follow this as closely as possible. 

 There are two major schools of thought regarding the acquisition of language, 

differentiated by the terms Inside-Out and Outside-In. Essentially, Inside-Out theories 

assume that language-specific cognitive processes are involved in language acquisition 

and comprehension, that is, language arises from specialised processes inside the brain. 

Outside-In theories assume that language is just another type of input to the brain, and 

its acquisition and comprehension requires only general cognitive processes which are 

applicable to any form of input. In this case, language is an external phenomena 

occurring outside the brain. 
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4.3 Inside-Out Theories 

The essence of Inside-Out theories was presented by Karmiloff-Smith [KARM89] who 

noted that all species seem to be endowed “with a considerable amount of biologically 

specified knowledge”. Chomsky [CHOM88] justified this position through his Poverty 

of the Stimulus argument, noting that linguistic input is “far too impoverished and 

indeterminate” for a distributional analysis to be the basis of the acquisition mechanism.  

4.3.1 Evidence for the Poverty of the Stimulus Argument. 

Observation of linguistic phenomena provides evidence for the Poverty of the Stimulus 

Argument. Here we shall examine three phenomena: Empty Categories, Hierarchical 

Organisation, and Surface Cues. 

Empty Categories [CHOM75, CHOM81] are categories not present in the linguistic 

input, but which nevertheless must exist at some abstract level for full comprehension to 

occur by the recipient. For example, the imperative sentence “Stop that!” implies the 

empty category “you”, as in “You stop that!”. The existence of the abstract 

representation of empty categories is supported by results of online sentence processing 

[BEVE88], showing that learning from imperative sentences such as “Get dressed!”, 

leads to the generation of parallel sentences such as “Get dressed yourself!” by the 

recipient, whereas incorrect sentences like “Get dressed himself!” are not.  

Hierarchical organisation of sentence structure cannot be derived directly from 

sentence surface form, again suggesting that some innate knowledge is employed in 

revealing the structure. The following example (from [HIRS99]) demonstrates that 

identification of the main clause of a statement is required in order to convert that 

statement into a question via verb ‘fronting’:  
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 The man who will come is John. 

The verb of the main clause of the sentence (The man is John) may be fronted to 

make the question: 

 Is the man who will come John? 

However, the verb from the subordinate noun phrase (who will come) may not be 

fronted, as to do so would result in the ungrammatical question: 

 Will the man who come is John? 

Identification of main and subordinate clauses via parsing of surface form is not 

guaranteed to provide just one derivation, hence hierarchical organisation is ambiguous, 

making generalisations (such as ‘question formation by verb fronting’) difficult, if not 

impossible, to acquire. 

Surface cues can be used to make generalisations about thematic structure, as described 

by the Competition Model [BATE87]. However, when no surface cues are present, 

humans do not make the errors in interpretation due to overgeneralisation that the 

Competition Model predicts. For example, in the following three (impoverished) 

sentences (from [GIBS92]), the preverbal noun is predicted to be associated with 

agency: 

i. The chicken cooked the dinner. 

ii. The chicken was cooked. 

iii. The chicken cooked. 

As Gibson [GIBS92] points out, only in the first sentence is the preverbal noun 

(chicken) the agent, becoming the theme in the latter two. However, despite the lack of 



Chapter 4: A Psychologically Plausible Grammar 

 46

surface cues in the above sentences, children seem to correctly identify agent and 

theme, again suggesting a mechanism not reliant upon analysis of an impoverished 

surface form.  

 

The evidence presented above supports the Poverty of the Stimulus argument as a 

justification for Inside-Out theories of language acquisition mainly because the Inside-

Out viewpoint denies the possibility of a language system built on general cognitive 

principles from bootstrapping from input alone – the input is too impoverished for such 

a feat, and therefore the suggestion is that language-specific cognitive processes must 

exist which are sensitive to the above phenomena. 

4.3.2 Principles and Parameters 

Chomsky [CHOM72] proposed the Language Acquisition Device, consisting of 

linguistic rules and transformations, as the mechanism for dealing with all linguistic 

phenomena that could not otherwise be accounted for by analysis of linguistic input. 

However, the ever increasing number of rules and transformations resulted in 

Chomsky’s development of his Principles and Parameters Theory [CHOM81], 

consisting of a set of invariant parameters, such as the projection of nouns and verbs 

into noun phrases and verb phrases, which are configured by parameters set by the local 

linguistic environment, an example being verb position (SVO, SOV etc.). Thus 

Principles provide a mechanism for expectation of behaviour, and Parameters configure 

the Principles for local use. The Principles and Parameters Theory is equated with the 

Language Facility [CHOM88], that is, the innate linguistic system before exposure to a 

linguistic environment. Chomsky also assumes that the Language Facility is replete 
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with knowledge of concepts such as physical objects, causality, intention and goal, and 

proposed that exposure to a few examples would be sufficient to set the parameters to 

the local environment. However, experimental evidence [WEXL85] involving the late 

appearance of Principle B of the binding theory caused parameter setting to be relegated 

to ‘biological maturation’. 

In addition to the inherent knowledge listed above, Pinker [PINK84] includes 

knowledge of syntactic class, word class, grammar structure and primitives, and 

assumes that the language learner is sensitive to them in the input. Pinker therefore 

suggests that language learning becomes Semantic Bootstrapping, where identified 

elements in the input are mapped onto innate elements in the Language Facility. 

However, this presupposes an ability on the part of the language learner to select/make 

certain mapping hypotheses over others regarding words and grammar, in order to 

obtain a correct mapping [GLEI90]. 

4.3.3 Against the Inside-Out Theories 

As an Inside-Out theory, Chomsky’s Principles and Parameters addresses the Poverty of 

the Stimulus argument by providing a mechanism for innate knowledge to interact with 

impoverished input, leading to the bootstrapping, via configuration and sensitivity, of a 

local language processing system. However, arguments have been levelled against the 

theory: firstly, that the Language Facility is innate is unfalsifiable [FODO87], secondly, 

evidence that the Language Facility develops rather than is merely configured has been 

presented [KUCZ77], and finally, stating that biological maturation is responsible for 

parameter setting does not improve the understanding of how and when principles come 

into play [WEIN87]. 
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4.4 Outside-In Theories 

Outside-In theories were developed as a response to the Chomskyan view, and propose 

that general cognitive processes perform language acquisition and understanding, 

removing the need for a Language Facility by relegating language to ‘just another input’ 

which may be processed through application of the same domain-general learning 

techniques as any other learning task. 

4.4.1 Evidence for domain-general language acquisition 

Social Interactions have provided evidence that general learning techniques are 

employed in language acquisition. Brunner [BRUN75] proposed that children at play 

take on, for example, the roles of ‘giver’ and ‘receiver’ of actions, and that these map 

directly onto the linguistic roles of ‘agent’ and ‘recipient of action’, hence social 

interaction promotes language learning. It has also been proposed that Social 

interactions provide source material for the construction of scripts, which themselves 

form the substrate upon which language is constructed [NELS85].  

In this social-interaction view of language acquisition, the language learner has no need 

to bring specific linguistic knowledge to the task because language develops as a means 

of interpreting the social interactions the learner observes or is involved in. 

Cognitive Semantic Categories and Relations such as agency, animacy, causality, 

location, it has been proposed, provide a child with the means to interpret their 

environment, and acquiring a language involves learning how to express these 

categories and relations, evidenced by child event perception and memory studies 

[SCHL88]. Evidence has been presented for categories such as agency [GOLI81], 

animacy [GOLI84], causality [COHE93] and location [MAND88, MAND92] 
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Bates and MacWhinney [BATE87, BATE89] similarly propose a domain-general 

model of language acquisition which possesses little initial linguistic structure and in 

which the grammatical properties are founded on non-linguistic categories and 

processes. Within the model, a grammar is learned by distributional analysis of the input 

through use of general-purpose cognitive mechanisms such as induction and hypothesis 

testing. This approach to language learning has been modelled by Plunkett [PLUN95]. 

4.4.2 Against the Outside-In Theories 

Outside-In theories of language acquisition demonstrate that it is possible to learn 

language using domain-general cognitive processes. However, the theories make a 

number of assumptions: Firstly they presuppose the existence of ‘categories’ upon 

which the processes act, without describing how they were gained. Secondly, although 

general purpose reasoning processes can be used to analyse input in terms of those 

categories, how this ultimately becomes an adult language processing system is not 

clear [BLOO75]. Thirdly, Chomsky’s Poverty of the Stimulus argument indicates that 

the input is not ideal for distributional analysis because some information is omitted 

from the surface representation. 

4.5 The Coalition Model 

Initially, Inside-Out and Outside-In theories appear to be in opposition, making initial 

language either ‘structure linguistic and innate’ or ‘cognitive/social and constructed’, 

and language learning either domain-specific or domain-general (respectively).  

Hirsh-Patek and Golinkoff [HIRS99] note that the above theories each contain aspects 

of the other, and attempt to show, by way of their ‘Coalition Model’, that the theories 

“differ more in degree than in kind”. For example, Chomsky [CHOM88] assumes that 
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both social understanding (e.g. a knowledge of theta-roles) and general cognitive 

processes, normally associated with Outside-In theories, contribute to language learning 

within the Inside-Out theory. Conversely, Schlesinger [SCHL71, SCHL88] presupposes 

sensitivity to inflectional markers, a position which would not be out of place in an 

Inside-Out theory. It appears then that both schools of thought allow for initial 

(although undeveloped) linguistic sensitivities, and are capable of making language-

relevant generalisations about their environment. 

 

In order to make linguistic generalisations via domain-general learning processes (i.e. 

Outside-In) the language learner must possess knowledge that enables linguistic 

elements to be identified. For example, research has shown that language learners are 

sensitive to word order, inflectional marking, tense [SCHL79, BATE87], and even 

verbs [GIBS92]. Thus the Outside-In theories employ knowledge of linguistic units that 

belong in the Inside-Out theories, and the learning processes become more domain-

specific. The effect of employing language-specific knowledge is to reduce the 

hypothesis space of the domain-general learning processes, thereby promoting the 

formation of appropriate linguistic generalisations, and ultimately acknowledges a 

degree of innateness in the language processing system. 

 

Hirsh-Pasek and Golinkoff [HIRS99] formulate the Coalition model by taking all 

elements from Outside-In and Inside-Out theories, as opposed to their intersection, and 

placing them in a framework of three questions: 



Chapter 4: A Psychologically Plausible Grammar 

 51

What does the language-learner initially bring to the task? Both theories assume that 

the language-learner is sensitive to linguistic elements (e.g. nouns, verbs, phrases and 

clauses, inflectional markings) and their possible arrangements, Inside-out theories 

accounting for this in an innate knowledge of structure, whereas Outside-In theories 

look to the general analytical processes employed. In either case, linguistic elements are 

made available to the language learner. 

What mechanisms are employed in language acquisition? Both theories employ 

processes, be they language specific or general, to process the language units. These 

processes detect hierarchical structure by noting the order/relation of language elements 

with respect to the larger language elements that contain them. The processes must also 

deal with impoverished input, such as Empty Categories, in order to accomplish this 

task. 

What input types drive language-acquisition? The variety of input types needing 

analysis, such as social interaction, prosody, and syntactic patterns are each taken as 

central by different theorists. The Coalition Model accepts that all are important, and 

that “reliable covariance” between the input types provides a strong force driving 

language development forward. 

4.6 Categorial Grammar  

The Coalition Model recognises the importance of elements of grammar acquisition 

regardless of the founding theories of those elements, and a grammar system for use 

with the CIM should also acknowledge those elements in order to achieve cognitive 

validity. We believe Categorial Grammar (CG) [WOOD93];[STEE00] to be such a 
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system of grammar. Before showing consistency with the Coalition Model, a brief 

introduction to CG is presented. 

CG is an explanatory theory of grammar, much research showing that it can account for 

many linguistic phenomena such as empty categories, relativisation, parasitic gaps, 

subject/object asymmetries, coordination, extraction of subject/object from embedded 

clauses, and gapping; this wide coverage of linguistic phenomena therefore make it 

suitable as a general grammar processor. CG employs syntactic and semantic categories 

and a system of combinators to syntactically parse a given sentence and reveal its 

logical structure in propositional form.  

The basic claim of CG is that: 

‘ …syntactic structure is the characterisation of the process of constructing 

a logical form, rather than a representational level of structure that actually 

needs to be built.’ [STEE00] 

 

 

CG thus attempts to account for the surface-level syntactic structure of a text in terms of 

the logical form a representation of that text must take. This is accomplished primarily 

through recognition of the rule-to-rule relation between syntax and semantics, which 

gives rise to three consequences: 

1. Every syntactic rule has a semantic interpretation. This in itself implies that 

syntactic rules can only combine or yield rules. This consequence is known as 

The Constituent Condition on Rules. 

2. Only grammatical entities that have interpretations are constituents. 

3. Syntax and semantics should have the property of monotonicity – no rule should 

transform an ill-formed structure into a well-formed one. This should be true 

whether the rule is being applied to constituents derived from the surface 
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structure, constituents which express a fragment of a sentence, or combination of 

either. 

From these consequences a general implementational framework may be devised which 

consists of syntax, semantics and compositional rules. The following subsections 

present a brief CG primer; for a full introduction see [WOOD93, STEE96, STEE00]. 

4.6.1 Syntax. 

CG utilises a simple alphabet, comprising N (noun), NP (noun phrase), PP 

(prepositional phrase) and S (sentence), together with the forward and backward slashes 

‘/’ and ‘\’. These may be combined to form constituents which are assigned to input 

words through lexicon lookup, or derived through application of combinatory rules. 

A categorial grammar is in general equivalent to phrase structure (PS) grammars in that 

it expresses the same ordering of syntactic components. Consider the following simple 

PS grammar rule: 

S → NP VP  

The PS rule for the sentence (S) states that a sentence is formed by a noun phrase (NP) 

followed by a verb phrase (VP). This could be rewritten to state that a VP is a sentence 

with an NP missing: 

 VP := S-NP 

From the order of nodes on the rhs of the PS rule, it can be seen that the NP occurs to 

the left of the VP, and consequently the NP is also missing from the left of the sentence. 

CG uses the slash operator to indicate the location of the missing node: forward slash ‘/’ 

indicates that the node is missing to the right, backslash ‘\’ to the left. The VP rule may 
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be now rewritten using the slash operator, presenting the CG syntactic category for 

intransitive verbs: 

 VP := S\NP 

Using CG syntactic categories, the sentence ‘John likes cake’ is parsed, using forward 

and backward functional application, as follows: 

 

 

 

 

Fig. 4.1  CG Syntactic parse.  

Here, the transitive verb ‘likes’ is given the syntactic category (S\NP)/NP, which states 

that the verb is a sentence with an NP missing to the right (the object) and an NP 

missing to the left (the subject).  

4.6.2 Semantics 

A logical representation of a syntactic category is provided by an associated lambda 

expression that defines the ways arguments are bound into logical forms. Thus the 

transitive syntactic category (S\NP)/NP may be associated with the semantic category: 

λo.λs.v’(o s), where the lambda-variable o represents the verbal objects, s 

the subject, and v’ a literal verb. 

Using a colon separator, the syntactic category and semantic interpretation of a 

transitive verb may be written as: 

likes John cake 

(S\NP)/NP NP NP 

S\NP 

S 

> 

< 
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 (S\NP)/NP:λo.λs.v’(o s) 

The sentence above may now be parsed both syntactically and semantically, producing 

an output in logical form: 

 

 

 

 

 

Fig. 4.2  CG Syntactic and semantic parse. 

The semantic derivation obtained reveals the logical relationships between predicate and 

arguments; john’ is the verbal subject, cake’ is the verbal object. 

4.6.3 Combinatory Rules 

CG proves grammatical correctness of a given text by unifying the constituents obtained 

at the surface-level through application of combinatory rules, such as the typical set 

shown in Table 4.1: 

Rule name Argument 1 Argument 2 Result category 

Functional application (>) X/Y:f Y:a X:fa 

Functional application (<) Y:a X\Y:f X:fa 

Coordination <Φ> X:g CONJ:b X’:f X’’:b(f)(g) 

Forward composition (>B) X/Y:f Y/Z:g X/Z:λx.f(gx) 

Backward composition (<B) Y\Z X\Y X\Z 

Subject type-raising (>T) T/(T\NP):λf.fa 

Subject type-raising (<T) 

NP:a 

T\(T/NP) :λf.fa 

Table 4.1 Typical rules of syntactic and semantic category combination. 

> 

likes John cake 

(S\NP)/NP:λx.λy.like’(x y) NP:john’ NP:cake’ 

S\NP:λy.like’(cake’ y) 

S:like’(cake’ john’) 

< 
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The combinatory operators control constituent building through pattern-matching of 

categories. Application allows constituents to be derived from combination of functions 

and arguments, Composition and Substitution allows constituents to be derived from 

non-traditional constituents, such as functions, and Type-raising transforms an argument 

into a function, thereby permitting composition and substitution. 

4.6.4 The parsing process 

A CG parse generally proceeds by shifting words, one at a time, into a CKY chart 

parser [KASA65], [YOUN67], after having first assigned appropriate syntactic and 

semantic categories to the current word through lexicon-lookup. As each word - and its 

categories - is shifted-in, attempts are made to build new constituents from the current 

and previously shifted categories through application of the combinatory rules above. 

4.7 CG Compatibility with the Coalition Model 

To show that CG is compatible with the coalition model, and hence is consistent with a 

cognitively viable system of grammar it is necessary to compare it with the main 

elements of the coalition model as outlined in Section 4.5 above, and to the Principles 

and Parameters theory: 

4.7.1 Sensitivity to input elements and their arrangement 

CG does indeed express sensitivity to input type in that it uses the simple alphabet N, 

NP, PP and S, termed atomic categories. Complex categories, i.e. those constructed 

from atomic categories, limit the acceptable sequences of categorised input elements, 

for example, intransitive, transitive and ditransitive verbs have the forms S\NP, 

(S\NP)/NP and ((S\NP)/NP)/NP respectively. It is not necessarily the direct ordering of 
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the constituents within these categories, but the fact that the transitive category contains 

an embedded intransitive category, and that the ditransitive category contains an 

embedded transitive category, that we attribute to sensitivity to arrangement. Without 

sensitivity to arrangement of this kind, a grammar would consist of random 

arrangements such as S\NP, (S/NP)\NP, and ((S\NP)/(NP\NP) for the three verbal 

categories in question, which we propose would make the grammar cumbersome and 

difficult to learn and understand as it would be drawn from non-contiguous areas of the 

problem-space and would have, we believe, implications for incremental parsing, which 

will be discussed further in Chapters 8 and 9. Indeed, the Universal Alignment 

Hypothesis (UAH) of Relational Grammar [PERL84], which states that for any given 

language, initial semantic relations can be allocated on the basis of semantic roles, 

represents this kind of hierarchy. Although the UAH has been weakened in the light of 

work such as that of Rosen [ROSE84] who demonstrates the difference between 

objective and culturally perceived (i.e. subjective) assignment of semantic relations, it 

generally involves the hierarchy: 

subject direct object indirect object obliques   

1 2 3 

4.7.2 Capable processes act on language units 

CG describes the universal combinatory operators (Table 4.1) which may act on atomic 

and complex categories, which are assumed to be innate and common to all humans. 

The descriptions of the combinatory operators themselves deal with complex categories, 

for example, categories of forms X/Y, X\Y, and (X\Y)/Z, suggesting that complex 

categories are expected by the innate processing system. Through use of operators and 

complex categories, CG is capable of dealing with linguistic phenomena such as 

anaphoric binding, auxiliary verbs, causatives, clitics, co-ordination, grammatical 
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relations, inflexional morphology, intonation, long-distance dependency, modifiers and 

specifiers, nominal compounding, parasitic gaps, passives, raising, reflexives, relative 

clauses, switch reference, synthetic compounding, verb gapping and word order 

[WOOD93]. 

4.7.3 Principles and Parameters 

CG is compatible with Chomsky’s Principles and Parameters Theory in that the general 

elements it consists of, that is, the syntactic and semantic categories and combinatory 

rules, are applicable to all human languages, insofar as it has been shown to cope with 

Dutch, Dyrbal, English, Finnish, French, German, Hopi, Icelandic, Italian, Japanese, 

Korean, Luiseño, Malagasy, Maori, Russian, Spanish, Tairora, Turkish and Warlpiri 

texts [WOOD93]. As human infants are not genetically predisposed to any particular 

human language, the variety of complex categories permissible by the innate system 

must therefore include all human languages whatever their syntax scheme, and so the 

processor can not be limited initially in its categoric expectations to exclude any of 

these. Applicability to all human languages is a property of the Principles and 

Parameters Theory described by Chomsky [CHOM81], which describes configuration 

of an innate linguistic processor to local linguistic environments. 

4.7.4 CG demonstrates configuration of innate language processor 

Configuration can be demonstrated by parsing two parallel sentences, one English, the 

other German: 

The sentence ‘I like dogs’ is parsed as shown in Figure 4.3 below. Using forward and 

backward functional application, the sentence is parsed, revealing ‘I’ as the subject of 

the sentence, and ‘dogs’ the object.  
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The parallel German sentence ‘Ich hunds möge’ is parsed as follows: 

 

 

 

 

The logical forms are shown to be identical in structure, Verb(DObj Subj); the subjects 

(I, Ich) and direct objects (dogs, hunds) occupying the same argument positions with 

respect to their verbal predicates (love, möge). This is desirable as, according to 

Chomsky’s theory, the logical form exists within the I-Language domain, is 

representational in nature, and is E-Language independent.  

The above parallel sentences show that local configurations with respect to English and 

German occur in three places: 

1. The syntactic form of the verb – (S\NP)/NPEnglish and (S\NP)\NPGerman 

2. The combinatory operator required to combine the verb and direct object - 

>English (forward application) and <German (backward application) - being 

necessary to accommodate the SVO and SOV structures of English and German 

respectively. 

    I 

NP: i’ 

     like 

(S\NP)/NP: λx.λy.like’(x y) 

   dogs 

NP: dogs’ 

S\NP: λy.like’(dogs’ y) 

S: like’(dogs’ i’) 
< 

> 

Fig. 4.3  CG parse of sentence ‘I like dogs’. 

   Ich 

NP: ich’ 

   möge 

(S\NP)\NP: λx.λy.möge’(x y) 

    hunds 

NP: hunds’ 

S\NP: λy. möge’(hunds’ y) 

S: möge’(hunds’ ich’) 
< 

< 

Fig. 4.4  CG parse of sentence ‘Ich hunds möge’. 
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3. The surface form of the words used to occupy the predicate and argument 

positions – like/möge. 

The above demonstrates that the same grammar-parsing scheme has been successfully 

applied to parallel English and German sentences, resulting in the same logical structure 

for each. The only real differences between the two are lexical – i.e. English and 

German words - and syntactic – different syntactic categories are required to 

accommodate the difference in syntactic expectation. Note however, no changes are 

necessary to the semantic categories or the combinatory operators; both English and 

German make use of forward and backward application.  

If CG is taken as the E-Language syntactic/semantic processor responsible for 

generating logical-form I-Language representations of the E-Language, then some 

conclusions regarding the nature of the Language Facility may be drawn: 

1. In its innate form, the language facility presents a small and finite set 

of combinatory operators, such as those presented in Table 4.1, and 

appears to utilise a relatively small set of semantic categories 

2. In order to accommodate all human languages, the innate language 

facility must be capable of dealing with a potentially infinite set of 

(complex) categories built upon a very small set of primitive categories, 

such as N, NP, PP and S. 

3. Configuration of the innate facility to some local environment 

consists of the selection of some (complex) syntactic categories over 

others from those available (e.g. selecting (S\NP)/NP or (S\NP)\NP as the 

syntax for transitive verbs), equating to the local syntax scheme. 
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4. Configuration to a local environment includes the mapping of local 

word-forms onto the semantic and selected syntactic categories. 

4.8 Conclusions 

In this chapter it has been proposed that the major initial components of an automatic 

text comprehension system consist of conversion of text from surface to logical form, 

sense assignment to the predicates and arguments of the logical form, and the seeking of 

coherence between elements of the logical form. From this, it has been demonstrated 

that, as sense is an important factor in the logical-form transformation and of coherence 

determination, the transformation, sense-assignment and coherence cannot be treated as 

separate processes or attributes. It s proposed that these elements can become mutually 

constraining if the processes of the CIM are extended from the I-Language into E-

Language domain, and augmented by a grammar parser to reveal possible relations. As 

only the human language system is available for study, a cognitively valid grammar 

system in the form of CG was selected for this component, which was then shown to be 

consistent with the Coalition Model, and configurable as expected by the Principles and 

Parameters theory of grammar acquisition.  
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5 The Chunking Element 

This chapter proposes that the decision of whether a sequence of words represents 

individual words or a compound word requires grammatical analysis. It also argues that 

the chart parser should not have the responsibility of constructing compounds itself on 

grounds of the non-compositionality of many compounds, and consequently compounds 

are recognised prior to shifting into the chart. Compounds and phrases can be detected 

by chunking, and justifications for the inclusion of a Chunker in a psychological model 

of text comprehension are presented. Chunking is shown to have positive advantages in 

that it effectively reduces the number of terms input into the chart, and allows the N and 

NP atomic categories to be merged. However, it is also shown that compound words 

and their constituent words must be evaluated in parallel, which is addressed by the 

introduction of a novel parallel-shift enabled chart structure. 

 

Parsing methodologies employing bottom-up strategies, such as CG, are commonly 

constructed around Chart Parsers, which typically use the CKY [KASA65];[YOUN67] 

or Earley [EARL70] algorithms. The impetus for using such schemes is that they 

eliminate the backtracking responsible for the exponential complexity of such parsing 

methods; a chart parser records all parse-tree edges as they are discovered, and does so 

only once, whereas standard parsing techniques, when encountering an insoluble 

subgoal, will  ‘unwind’ all work done since the point of the most recently solved goal. 

Subtrees may be traversed many times before a soluble rule is found. Note however that 

the CKY algorithm comprises three nested loops giving an algorithmic complexity of 
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N
3
, where N is the number of words to be parsed, leading to extensive processing effort 

for longer sentences. 

To summarise the chart parsing process, a chart parser mechanically discovers all edges 

licensed by the grammar over the words of the sentence by application of a two-step 

procedure. Firstly all appropriate categories are assigned to the sentence words by 

lexicon lookup [HOCK03]. Secondly, the categories are combined using the CG 

combinatory rules. Complete parses are identified by edges that span the entire 

sentence. 

Using this approach, the parser calculates all possible combinatory fragments and 

complete parses of the given sentence, and so expends effort unnecessarily building not 

only correct parses, but also complete but incorrect parses as well as constituent 

fragments which ultimately do not feature in any complete parse, a situation first noted 

by [KAY96]. 

The situation is complicated by Spurious Ambiguity, which manifests itself as a set of 

alternative but ‘equivalent’ constituent derivations. Take for example the noun phrase 

‘The big black dog’, which requires the following lexicon expressed using CG notation 

(Sections 4.6.1 to 4.6.3). 

{The : NP/NP} 

{Big : NP/NP} 

{Black : NP/NP} 

{Dog : NP} 

To parse this sentence a further combinator, functional composition, (B), is needed, 

which is specified as 

i. X/Y Y/Z ⇒ X/Z      (>B) 

ii. Y\Z X\Y ⇒ X\Z      (<B) 
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Using the lexical categories with just forward composition and forward application, the 

noun phrase can be parsed in five ways. The first is obtained by the following 

derivation: 

 

 

 

 

resulting in: i. ((The big) black) dog NP. 

The second, The (big (black dog)) NP, is obtained as follows: 

 

 

 

 

Similarly: 

iii. The ((big black) dog) NP 

iv. (The (big black)) dog NP 

v. ((The big)(black dog))NP 

Technically, the right branching derivation: ‘The (big (black dog))’ is the only correctly 

structured parse, but all resultant derivations have the same syntactic category of NP; 

the parser has done a lot of unnecessary work to determine that ‘The big black dog’ is a 

noun-phrase. That one derivation may be arrived at via alternative parses is an 

expression of Spurious Ambiguity.  

NP/NP NP/NP NP/NP NP 

The big black dog 

NP 

NP/NP 

NP/NP 
>B 

> 

>B 

The big black dog 

NP/NP NP/NP NP/NP NP 

NP 

NP 

NP 
> 

> 

> 
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Spurious ambiguity also features when processing compounds, these being “a habitual 

co-occurrence of individual elements” [CRYS85], which can be subdivided into lexical 

phrases (Computer programmer, Washing machine), idiomatic phrases (an eye for an eye, 

Beat about the bush), and proper nouns (New York, George W. Bush). Verbal compounds 

are also possible (send for, pick up). A compound, using more than one term to 

represent one object or action, poses a problem for the parser in that, using the standard 

method described above, each of its component terms is assigned a category from the 

lexicon as it is shifted in to the chart; no single category is assigned to the compound as 

a whole, leaving the parser to identify the compound through mechanical application of 

rules as shown above. For example, the individual terms of a proper noun will each 

receive categories, assuming the lexicon contains plenty of names: 

{George : NP, NP/NP } 

{W. : NP, NP/NP } 

{Bush : NP, NP/NP } 

Again an NP will result, expressed by the two bracketings ((George W) Bush)NP and 

(George (W Bush)) NP, but redundant processing has occurred. 

The lexical phrase ‘washing machine’ is more complex in that ‘washing’ may be a verb or a 

gerund, resulting in the assignment of both verbal and gerundive categories from the 

lexicon and an increase in the processing load and time.  

Idiomatic phrases may or may not be parsed correctly by assignment of categories to 

individual terms, depending on the representation of the constituent terms in the 

lexicon. For example, the first two sentences below have the same meaning, and the 

underlined constituent is parsed to give the category S\NP in each case.  

 The suspect gave information about the crime. 
S\NP 

The suspect spilled the beans. 
S\NP 
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The same is not true of the following pair of sentences, and the idiom ‘a piece of cake’ 

cannot be assigned an adjectival category to match that of ‘easy’, although this is most 

likely due to the behaviour of the verb ‘to be’, which takes the syntactic categories 

VP/AP and VP/NP
1
 [KEEN88]: 

 

 

 

Also, being non-compositional, no semantic information about the idiomatic phrase ‘a 

piece of cake’ may be gained from any of the constituent terms. Idiomatic phrases may 

therefore lead to a parse failure, or to incorrectly structured parses. In any case, 

processing effort is again wasted.  

Attempts have been made to reduce the amount of work the parser has to do: Eisner 

proposes a constraint whereby a constituent resulting from forward or backward 

composition is disallowed from being the primary functor in another forward or 

backward composition or application [EISN96]. The number of categories assigned by 

the lexicon to a word may be limited both by assigning only those categories that occur 

more than a given frequency (Clark uses a cutoff of 10) in the lexicon training data 

[CLAR02]. Supertagging, using PoS features over a five-word window, has also been 

used to reduce the number of assigned categories with little loss of coverage and an 

improvement in performance [CLAR02]. Additionally, allowing categories to combine 

by a combinatory rule only if that particular combination of categories and rule has been 

seen in the training data (sections 2-21 of CCGBank) reduces the number of 

combinations performed [HOCK03].  

                                                
1
 Where VP is the verb phrase S\NP, AP is the adjective phrase N/N, and NP is a noun phrase. 

The task will be easy. 
N/ N 

The task will be a piece of cake. 
NP 
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The above approaches operate by either eliminating unnecessary category/combinator 

combinations, or by assigning the most probable categories from the lexicon to a term. 

None addresses the fundamental problem posed by multi-term words and phrases. 

Possibly this is because it is difficult to reconcile a system that appears to work 

incrementally with a need to process grouped terms as found in compounds.  

5.1 Chunking 

Sentence 1 below consists of 8 terms, each of which would normally be shifted into a 

chart parser individually: 

The big black dog chased the ginger cat (1) 

However, by identifying phrasal chunks, the sentence is reduced to just 3 terms (2). 

(The big black dog)NP (chased)(S\NP)/NP (the ginger cat)NP (2) 

Considering the CKY algorithm’s complexity of N
3
, the computational saving is readily 

apparent.  

The chunking of sentences in this way was initially proposed as a shallow parsing 

strategy by Abney [ABNE91], is often used to provide robust parsing in Information 

Retrieval and Terminology Extraction applications [GREF92], [APPE93], and is 

commonly accomplished by recognition of syntactic patterns in PoS-tagged text by 

application of finite state recognisers [ABNE91].  

Parse trees may be constructed from identified chunks, for example, through application 

of separate processes to the chunks [EJER83];[ABNE91], or by application of a 

Maximum Entropy tagger [RATN96] trained on a subset of the Penn-Treebank 

[MARC93] to successively identify base chunks in the current parse state. Memory 
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Based Learning techniques [TJON02], Hidden Markov Models [MOLI02], and PoS 

taggers [MEGY02] have all been used to induce chunking rules, complementing the 

regular expressions over PoS tagged texts method used by Abney [ABNE90], 

[ABNE91]. 

Chunking has recently been applied to chart parsing, along with Index Filtering and n-

gram based Edge Pruning, together demonstrating that sentences can be syntactically 

parsed in approximately one second whilst exhibiting less overgeneration.  

Abney [ABNE91] suggested that Chunking is computationally less expensive than full 

parsing. This can be demonstrated intuitively by consideration of the complexity of 

phrase recognition. As has been stated above, the complexity of the CKY chart-parsing 

algorithm is N
3
. The complexity of a Chunker may be stated as N * P, where N is once 

again the number of input terms, and P the number of patterns that may be recognised. 

Trivially, both methods require the same number of computations to recognise a string 

of length N when P = N
2
. So, to recognise a noun-phrase of length 2, eight chart 

computations can be performed. To recognise the same phrase by chunking, four 

patterns are permissible before chunking becomes more expensive. However, only three 

patterns are necessary to recognise a two-term noun-phrase, these being (Noun, Noun), 

(Determiner, Noun), and (Adjective, Noun). The situation is further improved by both 

the exponential growth of the number of permissible patterns necessary to recognise 

phrases of increasing length, and the fact that regular expressions can economically 

represent a number of patterns as a single expression. For example, the regular 

expression 

[Determiner]?[Adjective]*[Noun]+ 
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is a single pattern as far as complexity is concerned, but recognises typical noun phrases 

of length 1 to n, including: 

dog, dogs, the dog, old dog, the old dog, the big black dog, the dog food, … 

If P is taken not as first stated the number of patterns to be recognised, but instead the 

number of pattern recognisers, as evidenced by the regular expression above, then it 

appears likely that P will always be less than N
2
, and that the intuition regarding the 

economy of chunking over full parsing is correct. 

Although chunking provides a useful reduction in the number of terms shifted into a 

chart parser, does it have any place in a psychologically-oriented language processor? 

Specifically, is there any mechanism by which the human equivalent of the chart parser 

receives chunks rather than individual, space-delimited terms? In order to answer this 

question, it is necessary to examine the human visual system, which lies between the 

printed page and the parsing system discussed so far. 

5.2 Justification of chunking in a psychological model 

5.2.1 Visual Acquisition 

The eye, when reading, does not scan smoothly from left to right across a line of printed 

text, but proceeds by an alternating sequence of fixations and saccades. A fixation 

 
Roadside joggers endure sweat, pain and angry drivers in the name of fitness. 

1 4 

Figure 5.1  Saccadic eye movements. From [LARS04] 
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occurs when the eye stops moving and fixes focus upon a point on the page; a saccade is 

a rapid movement of the eye from one fixation to another point of fixation. 

Not every word in a text receives a fixation – the eye appears to use its acuity to acquire 

a number of words in one ‘gulp’. The Moving Window Paradigm is a technique that 

allows the number of characters taken in during a fixation to be measured through use 

of an eye-tracker. The eye tracker measures precisely the subject’s point of fixation on 

text displayed on a computer screen, and software corrupts all text beyond a given 

distance from that point of fixation [MCCO75]. When the subject’s eye fixates after a 

saccade, the display is updated to corrupt all text except that around the new fixation 

point. Figure 5.2 illustrates the fixation point, moving window, and corrupted display of 

the technique. Selecting too small a window, that is, corrupting text too close to the 

fixation, degrades reading speed and comprehension, whereas selecting an overly large 

window has no such effect. The boundary condition was found when the foveal + 

parafoveal information (i.e. the window) comprised 4 characters prior to and 15 

characters following the fixation point (the fixation point providing the foveal 

information) left uncorrupted; reduction in window size beyond this, on either side of 

the fixation, resulted in reduced reading speed and comprehension whereas an increase 

beyond these sizes had no effect. (Interestingly, for right-to-left readers, the 15-

character window extends to the left and the 4-character to the right of the fixation 

point.) This result suggests that when reading, visual information is acquired as a series 

of images, each image containing up to 20 characters.  

Additional work has identified three zones on the visual field:  the zone closest to the 

fixation is usually large enough to encompass the entire fixated word and smaller 

closed-class words to the right of the fixation, and is where word recognition occurs. 
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The second zone covers a few letters immediately following the recognition zone, and 

provides a look-ahead, gathering information about the beginning of the next word. The 

third zone includes the remaining characters to the right of the fixation, and is thought 

to give information about the lengths of the next words, which is then used for planning 

the location of the next fixation. Figure 5.1 shows that, for example fixation 1 

recognises the word ‘Roadside’, and acquires the first two letters and word length of the 

word ‘joggers’, whilst fixation 4 recognises the short words  ‘sweat’ and ‘pain’, 

including the intervening comma, and acquires the initial letters of the word ‘and’, 

which being a high frequency closed-class word, is enough to allow ‘and’ to be skipped 

entirely. 

Words can then be extracted from the visual image in different ways: The Parallel 

Allocation Hypothesis [ERIK86, HEND91, ENGB02, REIL04] proposes that attention 

is allocated to the foveal and parafoveal word(s) in parallel during a fixation, whereas 

the Sequential Allocation Hypothesis [HEND88, FERR90, POLL90, MORR84, 

REIC98] allocates attention sequentially to parafoveal words only when foveal 

processing is complete. Later work [HEND95] supports the Sequential Allocation 

Hypothesis, but recognises the benefits afforded by preview of parafoveal words, that is, 

by Parallel Allocation. Engbert [ENG04] unifies these two hypotheses by proposing that 

words are processed in parallel, but due to decreasing visual accuity at greater distances 

XXXX XXXXXX XXXX XXXse found in less deXXXXXXX XXXXXXXXX 

Fixation 

Fig. 5.2  Simulation of the Moving Window Paradigm visual field. 
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from the fovea, the fixated word is processed fastest. It follows that the most extreme 

parafoveal word will be completed last, and the overall impression is of sequential 

processing. 

5.2.2 Word Recognition 

Looking more closely at word recognition, three explanatory models have been 

proposed: The Word Shape model assumes word recognition occurs on the basis of 

overall word shape, or Bouma, and was first proposed by Cattell [CATT86]. The Serial 

Letter Recognition model assumes that reading occurs letter-by-letter from left to right, 

each letter subdividing the lexical search space further until the word is recognised. The 

Parallel Recognition Model assumes that letters from a word are recognised in parallel, 

and is now the favoured model as it explains phenomena, such as the Word Superiority 

Effect, which states that letters in the context of a word are more quickly recognised 

than in isolation, which is impossible to explain in terms of the Serial Recognition 

Model, and although initially predictable by the Word Shape Model, is not sustainable 

in the light of evidence obtained by manipulation of the shape and letter combinations 

of words and pseudo words in test sentences [MCCL77]. 

As the Parallel Recognition Model best fits the facts, perhaps it can provide a 

justification for chunking text prior to shifting into a chart. Figure 5.3 (from [LARS04]) 

depicts the Parallel Recognition Model, showing how parallel recognition of letters 

leads to word recognition. 

From the stimulus, feature detectors analyse the visual image, resulting in sequentially 

arranged recognised letters, and each word in the lexicon is activated for each 
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corresponding letter position. In Figure 5.3, FORK and WORD each receive three 

activations, but WORK receives four activations and so becomes the recognised word. 

As an interesting aside, the Parallel Recognition model is able to explain many of the 

impressive party tricks the visual/recognition system is capable of (although 

phonological and contextual information will also play a part), for instance recognising 

words using only the top half of the text. Sntncs wtht vwls cn b rd, and so can th.se wi.h 

eve.y fif.h let.er mi.sing. Similarly every fifth word … be omitted from a … without 

losing the meaning [RUSS79].  

Using the Parallel Recognition Model, it is possible to show how compounds can be 

recognised. Consider the system depicted in Figure 5.4.  

Presenting the visual system with the words ‘washing machine’, letters are detected and 

activate lexical entries with letters matching in corresponding positions. The lexical 

entry ‘washing’ is fully activated, and even ‘machine’ is partially activated, having four 

FORK WORD WORK 

W O R K 

W      O      R      K 

Word Detectors 

Stimulus 

Feature Detectors 

Letter Detectors 

Fig. 5.3  The Parallel Recognition Model 
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positional character matches with ‘washing’, although one would expect the 

mismatching letters to inhibit the activation somewhat.  

If it is accepted that entities in the real world have a conceptual representation in the 

mind, and that this representation includes the linguistic label associated with the entity, 

then it is reasonable to assume that, as a washing machine is a real-world entity, its 

linguistic label ‘washing machine’ will exist in the lexicon also. In this case the entry 

‘washing machine’ will also become activated; although it receives the same number of 

activations as ‘washing’, it is not fully activated.  

However, the letters ‘ma’, the initial letters of ‘machine’ have been acquired by zone 2 

of the visual system and further activate the entry for ‘washing machine’. Upcoming 

word length gained from zone 3 may also provide some degree of activation by 

matching the length of the stimulus ‘ma-----’ with the expected continuation of the 

partially activated ‘washing machine’. 

w  a  s  h  i  n  g m  a  c  h  i  n  e w  a  s  h  i  n  g    m a c h i n e 

w a n s i h g 

w    a    s    h    i    n    g         m    a    c    h   i    n    e 

m a 

Zone 1 Zone 2 Zone 3 

Fig. 5.4  Parallel Recognition of a compound 
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Of course, ‘washing machine’ is not necessarily a compound, as shown by the pair of 

sentences (3) and (4) below: 

Washing machines are expensive. (3) 

Washing machines is my job. (4) 

The simple/compound decision appears to be made on the basis of verbal number 

agreement in this case; up to the point where the verb is integrated into the sentence 

representation, ‘washing’ + ‘machines’ and ‘washing machines’ are both potential 

interpretations. From this it can be expected that the parallel recognition model will 

output the following in parallel: 

1. washing 

2. machine 

3. washing machine 

What can be taken from this discussion is that within the most likely model of word 

recognition there is scope for actual recognition of compounds in their entirety, that is, 

before being shifted into a parser, and so the incorporation of a chunking component in 

a pre-processor to the chart parser would seem to be cognitively viable.  

5.2.3 Evidence for Chunking from a garden path sentence 

Garden Path sentences have been used to demonstrate early plausibility filtering during 

parsing [BEVE70], [WINO72], [HIRS87], [CRAI85], [ALTM88]. Given the pair of 

famous sentences below it is possible to explain why sentence (5) exhibits the garden 

path effect whilst sentence (6) does not. 

The doctor sent for the patient arrived. (5) 
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The flowers sent for the patient arrived. (6) 

The accepted explanation is that, as ‘flowers’ cannot ‘send for’ things, the interpretation 

in which the flowers are doing the sending is eliminated early, resulting in the correct 

interpretation of the sentence at the first attempt. ‘Doctors’, on the other hand can ‘send 

for’ things, and in particular they might be expected to ‘send for’ ‘patients’, and so this 

interpretation is initially preferred. It is only at the disambiguating term arrived that the 

error is noticed and backtracking occurs. Although we shall return to this point in 

Section 5.4 and in Chapter 8, there is another aspect to these sentences: in sentence (5) 

the verb is a compound (send_for) whereas in sentence (6) it is not. (send). Note also 

that in sentence (5), ‘doctor’ is the subject of the verb ‘sent_for’, whereas in sentence 

(6) ‘flowers’ is the direct object of the verb ‘sent’. The truth table below (Table 5.1) 

shows the result of applying a pragmatic filter to the verbs and arguments of the two 

sentences: 

X X send send X X send_for send_for X 

doctor true true true true 

flowers false true false true 

Table 5.1  Truth table showing viability of doctor and flowers as verbal arguments. 

The table shows that the only rejections on grounds of plausibility occur when ‘flowers’ 

is the subject of either verb; flowers cannot send things or send_for things. More 

interestingly, it also shows that ‘doctor’ is suitable both as subject or object for either 

verb. When applied to sentence (5) above, this information prompts consideration of 

why the verb ‘sent_for’, requiring the construction of a compound and ultimately 

ending in parse failure, was recognised in preference to the simple verb ‘sent’, as a 

parallel interpretation to sentence (6) which would have resulted in a successful parse 

when, as the truth table shows, both verbs are possible. The explanation we offer is that, 
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as doctors typically send_for patients, the noun ‘patients’ influences the recognition of 

the verb, selecting ‘send_for’ over ‘send’ as in this context it is the most plausible 

interpretation. In order for this test to occur, both ‘sent’ and ‘sent_for’ must be 

evaluated against each other, requiring that the compound ‘sent_for’ be constructed, 

recognised, and shifted into the parser in parallel with the simple verb ‘send’, resulting 

in a beam search of the possibilities at the next synchronisation point, that is, when both 

paths once again accept the same word, i.e. ‘patient’: 

 

 

 

 

Fig. 5.5  Parallel paths required to parse ‘the doctor sent for the patient…’ 

The above shows that there is a requirement to evaluate the alternative groupings of 

words in order to select one for continued processing. It has also been shown that the 

grammar parser itself cannot be guaranteed to combine elements of a compound to give 

a category for that compound. From this we conclude that some other mechanism must 

be at work performing this task and providing the alternatives, and that it must do this 

before the shift into the chart. The non-compositionality of some compounds requires 

that they be represented in their entirety, either directly in the lexicon as would be the 

case for idioms and compounds like ‘kick the bucket’ and ‘washing machine’, or as 

patterns or templates that allow proper nouns like ‘The Institute for Interesting Science’, 

numerical quantities like ‘300000 kps’ etc. to be recognised.  

doctor 

sent_for 

sent 

patient 

for 

Parallel shifts Simple shifts Simple shifts 

Resynchronisation 
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The visual system, being able to acquire a number of word images at one fixation, is 

therefore compatible with a language that employs compound words and deals with 

them as distinct ‘entities’. The images provided contain one or more words that can be 

recognised by the lexicon both individually and as a full or partial compound.  

5.3 Quantification of work reduction through chunking. 

In the introduction to this chapter, the theoretical benefit of chunking text before 

shifting into a chart parser was described; the cubic relation between the number of 

words input and the number of operations involved means that great savings in 

processing effort may be obtained by reducing the number of input terms. Here, an 

estimation of processing effort as number of operations performed is obtained for raw 

and chunked sentences. 

To estimate the average reduction in sentence length caused by chunking a sentence, the 

Chunker described by Abney [ABNE96] was applied to SemCor [FELL98]; comparing 

the resulting number of chunks to the original number of words allows the number of 

operations required to parse the sentences to be estimated. 

To obtain a true word count from SemCor, the pre-detected compounds it contains were 

first replaced by their constituent words. This resulted in a total of 378743 words in 186 

documents, with sentence lengths ranging from 1 to 240 words.  

The Abney Chunker produced 234339 chunks using the same documents, resulting in 

chunked sentences on average 61.4% of the size of the original corpus. 

Corpus No. of Words 

SemCor 378743 

Chunked SemCor 234339 

Relative size  61.36% 

Table 5.2 Word counts from raw and chunked SemCor. 
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The graph of Figure 5.6 presents a relatively smooth line up to a sentence length of 64 

words after which it becomes increasingly eccentric. This is to be expected, as 96.89% 

of the words (366965 words) are drawn from sentences of length 64 words or less - after 

this point the lack of data points leads to an increasingly noisy signal.  

5.3.1 Results 

Prior to chunking, the average sentence length calculated from the 378743 words in the 

20138 SemCor sentences was 18.81 words per sentence. After chunking, the average 

falls to 11.64 chunks per sentence. The number of basic parser iterations for the average 

sentence length for SemCor and chunked SemCor can be calculated as N
3
, 

corresponding to 6655.28 and 1577.10 operations respectively, reducing the number of 

operations by 76.3% and representing a very useful reduction in parsing effort required. 

Figure 5.6.  Reduction in size due to chunking for sentences of given length. 
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5.4 A proposal for a parallel-shift enabled chart parser 

A basic implementation of such a system would involve cloning the chart to date, 

creating one instance for each of the alternative shifts. Later plausibility testing would 

then destroy the less viable chart(s), resulting in the single most favoured chart. 

However, as working memory in the human cognitive system is subject to limitations, 

this approach would appear unsustainable, and a more economical solution must be 

sought. A modification to the chart structure, involving a temporary increase in the 

number of dimensions of a chart column, provides just such a solution, and enables 

reactivation, a current research thread from the Neural Processing community 

[GURN04]. 

Consider the state of a chart having three terms previously shifted into it, with a fourth 

about to be shifted, as shown in Figure 5.7.  

The standard chart arrangement shown above has no mechanism for accepting parallel 

shifts; each shift resulting in the creation of a new chart column that represents the next 

word from the sentence. 

shift 
Categories shifted 

from lexicon. 

Derived 

categories. 

Links to source 

categories. 

Fig. 5.7 Chart with three terms shifted. 
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If a chart is to accept parallel shifts, each item shifted must be tagged to indicate its start 

and end position in the sentence, where space-delimited words are numbered 

incrementally from one from left to right. The start and end positions, or extent, can be 

indicated by two digits, for example, a single space-delimited word would be assigned 

the extent x-x, whereas a compound would receive the extent x-y, where x and y are the 

start and end positions respectively. So, for a sentence such as ‘Say goodbye to washing 

machine noise’, the shifts and their extents would be: 

(1-1 say) (2-2 goodbye) (3-3 to) (4-4 washing) (5-5 machine) (4-5 washing machine) 

(6-6 noise) 

By associating an extent with each column it becomes obvious when a parallel shift 

occurs as the incoming extent overlaps with already shifted terms, and so gives the 

signal to increase the dimensionality of an existing column. Using the above sentence, 

the chart behaves as normal for the first five shifts as the extents are sequential. When 

the sixth shift (4-5 washing machine) occurs however, its start position is not greater by 

one than the end position of the last shift, and the start position of the sixth shift is used 

to identify the chart column to which a new dimension, and hence a parallel column, 

must be added to accommodate the new shift. The chart has effectively branched at 

position 4 to allow parallel paths to be followed. 

The next shift (6-6 noise) is the next in sequence expected by both chart dimensions, as 

the end position indicated by both of them is 5. At this point the parallel chart paths 

converge again. This situation is illustrated by Figure 5.8, which for clarity shows 

incremental derivations only. Note that the (reversed) pointers to each derivation’s 

source categories (shown as arrows) provide a means to identify the parent path of any 
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derivation, for example the derivation labelled ‘a’ is following the compound path, 

whereas ‘b’ is following the single word path. 

After convergence, memory constraints dictate that one of the paths must be selected, 

following the Principle of Parsimony [CRAI85], [ALTM88] which states that: 

The analysis whose interpretation carries fewest unsatisfied but accommodatable 

presuppositions or consistent entailments will be preferred. [STEE00]  

Any unselected columns are deactivated, which may be achieved simply by setting a 

flag associated with each column; when set, the flag disallows that column from 

3-3 6-6 

5-5 4-4 

4-5 

1-1 2-2 7-7 

shift 

b 

a 

Figure 5.8 Parallel-shift enabled chart showing increased dimensionality of column 4 and 

convergence at column 6. 
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participating in future derivations. Derivations obtained after convergence must also be 

deactivated by flagging, and may be located by following links back to the deactivated 

column(s), resulting in the chart shown in Figure 5.9. 

We see column and derivation deactivation as analogous to moving information out of 

working memory; although the deactivated chart elements have not actually moved 

anywhere, they are no longer in a position to use any cognitive resources. 

Keeping deactivated chart elements in situ is also advantageous when the parser is 

required to backtrack to repair an error made in the selection of the most plausible path 

5-5 4-4 

4-5 3-3 1-1 2-2 7-7 

shift 

6-6 

b

a

* 

* 

* 
Deactivation 

flag 

Fig. 5.9. Chart after column deactivation. 
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(i.e. the selection of the wrong parallel column), as might be the case in garden path 

sentences: firstly, the columns in which the error was made are identifiable by their 

multi-dimensionality, the human equivalent being a regressive saccade in which the eye 

jumps backwards to some earlier position in the sentence, allowing all or part of the 

sentence to be re-read from that point. Secondly, the deactivated columns are present 

and able to participate immediately in a re-evaluation of the path selection. Should the 

re-evaluation result in a different parallel path being selected, the new most plausible 

column can be reactivated, along with any existing derivations it is involved in, and the 

previously favoured column and its derivations deactivated.  

5.4.1 Impact of Parallel-Shifts on performance 

The introduction of Parallel Shifts will of course increase the workload of the parser. 

Take for instance the sentence represented by Fig. 5.5. As Parallel Shifts allow potential 

compounds of different numbers of terms to coexist in the parser, an initial estimate of 

workload may be obtained from the parser N
3
 complexity, and by examining each path 

in turn. The upper path has four terms and so requires 64 operations to fully complete 

the parse, whereas the lower path, having only three terms, requires 27 operations. This 

results in 91 operations to parse both paths. However, the Parallel Shift proposed here 

allows paths (via chart columns) to be deactivated on the basis of the Principle of 

Parsimony as shown in Section 5.4. In the best case (i.e. when no reactivation is 

necessary) this results in the abortion of the processing of one of the parallel paths and a 

consequent reduction to less than the full 91 parsing operations required. As the 

sentence and its set of individual and possible compound terms will affect the overall 

number of operations performed, we can only state that: 
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Parallel-Shift parser complexity >= N
3
 

This may at first appear to be a retrograde step. However, the pay-off is that the parallel-

shifts enable the senses of both simple and compound terms to be represented in the 

parser. As will be demonstrated in Chapters 8 and 9, sense is a further constraint on the 

parsing process, the constraint resulting in additional eliminations of chart entries 

through plausibility testing and elimination of implausible derivations. This ultimately 

leads to sense and structural disambiguation of the input sentence. Further comparative 

work is required to determine whether parallel-shifts actually reduce the overall 

processing effort required however. 

5.5 Merging N and NP categories, a justification 

The incorporation of a Chunker into the parser has a useful consequence with respect to 

the atomic syntactic categories typically employed by CG. These atomic categories are 

N (noun), NP (noun phrase), PP (prepositional phrase), and S (sentence), and it is from 

these that all complex syntactic categories are built. 

The consequence is that the N and NP atomic categories can now been combined, 

reusing the NP label for both. It is important to realise that we are not advocating the 

wholesale substitution of N categories by NP categories, as shown in Figures 5.10a and 

b below, as this dangerous action would allow grammatically incorrect sentences to be 

parsed, as illustrated by Figure 5.10c. 

a)      John            is                a          big     boy 

          NP     (S\NP)/NP     NP/N      N/N      N 

 

b)      John            is                a             big         boy 

          NP     (S\NP)/NP     NP/NP      NP/NP      NP 

 

c)    * John            is              big         boy 

           NP     (S\NP)/NP     NP/NP      NP 

 

Fig. 5.10  Simple substitution of N by NP. 
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However, by employing a Chunker as a noun-phrase recogniser, the parser is relieved of 

the burden of building noun-phrases, and instead is only involved in integrating those 

noun-phrases into logical structures. This follows Abney’s proposal for a Chunking 

Parser [ABNE91], comprising the two elements of a Chunker and an Attacher in which  

“The chunker converts a stream of words into a stream of chunks, and the 

attacher converts the stream of chunks into a stream of sentences.” 
 

The Attacher assembles chunks into full parse-trees through addition of missing arcs 

between chunks and parse-tree nodes, a role here filled by the CG parser. Due to the 

Chunker, the Attacher/CG parser never encounters bare nouns, only noun phrases, 

hence the global use of NP. Quantifiers are traditionally type-raised in the lexicon 

[STEE00] and are easily accommodated by a Chunker. The lexicon delivers syntactic 

categories such as: 

  Every := (T/(T\NP))/N Every := (T\(T/NP))/N 

  Some := (T/(T\NP))/N Some := (T\(T/NP))/N 

  Some := (T/(T\NP))/NP Some := (T\(T/NP))/NP 

It is a simple matter to arrange for the syntactic category of a chunked/recognised 

quantified noun-phrase to reflect the type-raising within the syntactic category of a 

chunked quantifier, as shown in Fig. 5.11 below. More complex quantified 

constructions may be handled similarly, but may result in ambiguity that must be 

resolved further into the analysis. For example, the phrase ‘some dogs and cats’ most 

likely means ‘some dogs and SOME cats’, but it is possible that it could also mean 

‘some dogs and ALL cats’. Only by seeking the most plausible interpretation of ‘some 

[Some(T/(T\NP))/N boyN] T/(T\NP)  [Some(T/(T\NP))/N boysNP] T/(T\NP) 

 

Fig. 5.11 Chunker-assigned type-raised quantified noun phrases. 
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dogs and cats’ within the context of the sentence in which the phrase is presented can 

this ambiguity be resolved. The Parallel-Shift introduced above provides a mechanism 

for the evaluation of such interpretations, allowing both forms to co-exist within the 

parser. 

 

However, by recognizing noun-phrasal chunks and assigning the NP category as 

described above, it once again becomes possible to parse sentence 5.10c above: 

[John]NP    [is](S\NP)/NP    [big boy]NP 

Now, we believe it is important to acknowledge a distinction between a socially correct 

grammar and a grammar for comprehension: A ‘correct’ grammar might for example be 

used by a proof-reader as a ‘gold standard’ by which texts are judged and corrected, and 

will include prescriptive rules such as ‘thou shalt not split an infinitive’ and the like. A 

grammar for comprehension on the other hand is ‘merely’ concerned with the I-

Language aspects of the grammar, that is, with the construction of plausible 

representational structures through selection from candidate predicates and arguments 

as presented by grammatical analysis. The sentence 5.10c contains sufficient 

grammatical conformity to allow comprehension in that the syntactically categorised 

chunks can be combined unambiguously into a logical form in which ‘John’ is the 

subject, ‘is’ a transitive verb, and ‘boy’ is the object, with the object modified by the 

adjective ‘big’. This is particularly true if the chunker firstly converts the adjective + 

noun into a noun phrase. 

Abney was aware of the difficulty in determining chunk end points, these being 

unmarked in the sentence, and addressed this problem by ‘slipping-in’ fake end-of-

chunk markers into the look-ahead buffer of his Chunker. The fake markers did not 
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impact performance to any extent, but did allow for error-recovery in unanticipated 

grammatical structures [ABNE91]: 

“Since sentences often contain structures that were not anticipated in the 

grammar, and since we want to get as much information as possible even out of 

sentences we cannot completely parse, error recovery of this sort is very 

important.” 

 

The above is perhaps slightly out of context, but in reading for comprehension, rather 

than for some E-Language notion of grammatical correctness, we do indeed want to 

extract as much information as possible and so a degree of error-recovery in chunk 

detection, and hence in situations such as that of sentence 5.10c, is desirable. The effect 

of using NP categories in place of N and NP categories promotes this kind of error-

correction, but it may also introduce further parsing ambiguities, which shall be 

investigated in future work. 

5.6 Conclusion. 

The traditional chart parser accepts one space-delimited term at a time, and because of 

the N
3
 complexity of the chart-parsing algorithm, longer sentences impact heavily on 

processing resources available. Chunking of text has been shown to be beneficial in that 

it reduces the number of terms shifted into a chart parser, thereby significantly reducing 

the number of operations necessary to parse the source sentence. Justification of the 

inclusion of a Chunker in a psychological model of text comprehension is presented in 

terms of the Parallel Recognition Model, the human visual system being shown to 

acquire a number of words at one fixation, leading to activation of compounds in the 

lexicon prior to shifting. It is also reasoned that non-compositionality of the syntactic 

categories of a compound’s constituent words makes compound detection prior to 
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shifting a necessity. An explanation of errors made by humans when reading two 

parallel sentences, one of which is a garden path sentence, requires the selection of a 

compound over a single word on grounds of plausibility in one instance, whilst the 

reverse is true in the other. This leads to the conclusion that both alternatives (the single 

and compound words) must coexist for a selection to occur, and hence any chart parser 

must be capable of supporting single and compound words in parallel. A novel chart 

structure is presented to address this conclusion, extending the standard chart model by 

offering support for parallel shifts, doing so in a resource-efficient manner, and by 

permitting deactivation of parallel chart columns and their reactivation when an error is 

detected and re-evaluation is required. The new parallel shift chart parser is 

demonstrated in Chapter 9.  

It is also proposed that, on the grounds that nouns and noun phrases take the same role 

in the overall grammatical structure of a sentence, and that the Chunker has 

responsibility for building noun-phrases, the atomic CG categories N and NP may be 

unified into a single category NP, resulting in fewer complex category variants. 

The implication to be drawn from the chunking described above, particularly from the 

examination of the parallel parses, is that the chunking process is closely coupled with 

the chart itself; the purpose of the Chunker is to present the parser with all potential 

single and compound words present in any given sentence, thereby making them 

available for plausibility testing when building derivations. This is not to suggest that 

stand alone Chunkers such as Abney’s have no place; the system described above 

utilises the lexicon as its recogniser. The lexicon contains words classified as common, 

and perhaps idioms, but will not necessarily contain any from the class proper, which, 
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like phrases, are more readily detected by a pattern-matching Chunker, and intuitively 

are not likely to generate output that requires parallel shifts. 

The discussion presented here therefore supports the notion of chunking as not only 

cognitively viable and algorithmically possible, but also a necessity. 
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6 The Sense Element 

This chapter argues that fine-grained sense representations will have a detrimental 

impact on processing resources because the large number of possible permutations of 

those senses, when combined to form knowledge representations, and will have to be 

evaluated against each other in the decision making processes (such as coherence 

determination in the Construction Integration Model - Chapter 3). A novel method of 

abridging the WordNet noun and verb hypernym taxonomies (effectively a new tree-cut 

model) is presented to address this problem; the Specialisation Classes at the cuts are 

shown to be few in number but to retain the sense-distinctions of the original 

taxonomies to a high degree. 

As the basic representation of linguistic knowledge used by the Construction Integration 

Model is propositional, it follows that the knowledge integrated into working memory 

from long-term memory is also propositional. Although the nature of the propositional 

arguments is not known [KINT78], it can be deduced that as, according to [KINT78], 

the argument is the basic unit of meaning, it should at the very least provide some index 

into a larger meaning representation which would provide explicit information 

regarding the entity represented by the argument. For example, the argument DOG 

provides an index to a knowledge structure associated with dogs, which would contain 

information such as: 

• Has four legs 

• Covered in fur 

• Wags tail when happy 

• Barks when excited 

• Likes to eat sausages 

• Likes chasing cats 

• Kept as pets by humans 
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This use of a ‘lexical’ key into a knowledge structure has been explored primarily as a 

means of constructing knowledge bases, generally using WordNet [MILL95] as the raw 

lexical/knowledge resource, for example [HARA98], [HIRS98], [POWE00]. 

In terms of efficient storage and processing, a propositional approach to representation 

may cause problems. Take for example knowledge about things that are suitable for 

drinking, that is, which entities can realistically take the direct-object position of the 

verb drink: tea, coffee, beer, wine, whisky, water, … are all candidates, and to store 

these individually, along with all other knowledge, would result in a large search space. 

The consequently lengthy search times would make this fine-grained knowledge 

representation unsuitable for a real-time task such as summarising web pages. This 

chapter addresses this problem by proposing a novel method of abstracting the WordNet 

noun and verb hypernym/hyponym taxonomies that significantly reduces the number of 

entries with little loss of sense distinction. This is achieved through observance of sense 

similarity. 

6.1 Similarity 

Various methods of assessing word similarity have been proposed: Using a taxonomy 

such as WordNet, two nodes are similar if they share a hypernymically related node. 

The degree of similarity may be determined by counting edges [RADA89]; [LEAC98]. 

Semantic Similarity [RESN95a] measures similarity as information content of the 

common subsumer, obtained from taxonomy node probabilities assigned through corpus 

frequency analysis. This approach has been augmented by factoring-in path length 

[JIAN97], itself similar to the Similarity Theorem based Lin Measure [LIN97]. 

Relations other than hypernym/hyponym have been used, employing defined sequences 
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of directed relational types [HIRS98]. Tree-Cut Models (TCM) employing Minimum 

Description Length [QUIN89] have been used to partition noun taxonomies on 

similarity of case-frame slot fillers [LI95a]; [LI96]. As an alternative to these 

approaches, Lesk proposes dictionary definition overlap [LESK86], where increasing 

definition-word overlap indicates greater similarity. 

The similarity metrics above, with the exception of the Tree-Cut Model, all produce a 

measure of how similar two senses are (or will state that they are not similar). So, given 

CAR and LORRY, these metrics will report that they are very similar, and share the 

hypernym MOTOR VEHICLE. CAR and SKATEBOARD are less similar, but similar 

nonetheless, and share the hypernym ARTEFACT. However, by the same token, CAR and 

PENCIL are also similar, again sharing the hypernym ARTEFACT. To avoid this 

unacceptable result, a similarity threshold would be required; those cases where the 

similarity value was found to be above the threshold accepted as similar, and those 

below rejected. This presents yet another problem in that a suitable threshold must be 

selected. The Tree-Cut Model on the other hand partitions the hypernym/hyponym 

taxonomy, thereby collecting similar senses under each cut. Using this scheme it is 

possible to give a yes/no answer to the question ‘are these senses similar?’. However, 

the proposed TCM is designed to identify senses that are similar with respect to their 

roles in case frames, requiring consideration of their coocurrence probabilities with 

some predicate. Nevertheless, having a preselected set of cuts, and hence groups of 

similar senses, is attractive considering the real-time application we have in mind. 
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6.2 A Method for Predefining Groups of Similar Senses 

A method of defining sets of similar senses presents itself if one considers Resnik’s 

procedure for calculating the information content (IC) of nodes in the WordNet noun 

hypernym taxonomy [RESN95a]; [RESN98]. Recall that in the construction of the 

probabilistic model of WordNet, the frequency of any class c is calculated recursively as 

the number of occurrences of that class plus the sum of the frequencies of its hyponyms, 

shown in equation 1 from [RESN98] below. 

 

 (1) 

where words(c) is the set of words in any synset subsumed by c, and where classes(w) is 

the set {c | w ∈ words(c)}. 

 

Two factors are involved in the calculation of the IC value of a WordNet class: Firstly, 

the raw frequency of occurrence of terms, as derived from corpus analysis, is assigned 

Σ freq(c) =  

w ∈ words(c) 

1 

| classes(w) | 

freq(w)   

β 

Hypernym 
relation 

2 

2 

10 

2 

α 2 

2 

2 

2 2 2 

Σ = 12 

Σ = 10 

ΣΣΣΣ = 8 

Σ = 2 

Σ = 2 Σ = 2 

δ = 8 

δ = 0 

δ = - 8 

δ = 6 

δ = 2 

δ = 2 

(a) Corpus Term Frequency  (b) Connected Hypernyms 

Fig. 6.1. The derived frequency of a class depends upon both term frequency 

(a), and on number of hyponyms (b). Individual term frequencies 

are shown within nodes, sum indicates cumulative class frequency. 

δ signifies the change in (cumulative) frequency between a class 

and its subsumer. 



Chapter 6: The Sense Element 

 95

to appropriate classes. This results in the more frequently occurring classes having a 

higher frequency score than less occurring classes, as illustrated by node α in Fig. 6.1a. 

In some way, this echoes Luhn’s observation that term frequency and term significance 

are related [LUHN58]. Secondly, the frequency scores are cumulatively propagated 

along the hypernym relation, resulting in the summed class frequency being additionally 

influenced by its hyponyms, as shown by node β in Fig. 6.1b, which is reminiscent of a 

spreading-activation network.  

In the two examples above, it can be said that the labelled nodes form abstract classes; 

node α is similar to a term frequency based keyword within its hypernym chain, and 

node β is highly activated by its subordinate nodes. Observe in each case, there is a 

large change in value (frequency and summed frequency respectively) between the 

labelled node and its immediate hyponym(s). This effect is shown clearly in Table 6.1, 

the cumulative frequency data for the hypernym chain of DOG (canine). Word frequency 

data is derived from the 100 million word British National Corpus (BNC) and applied to 

the noun taxonomy of WordNet 1.6. 

 

Class ΣΣΣΣFreq 

ENTITY 963909 

ORGANISM 385594 

ANIMAL 38913 

CHORDATE 21502 

VERTEBRATE 21496 

MAMMAL 13657 

PLACENTAL 13391 

CARNIVORE 2803 

CANINE 1203 

DOG 995 
 

Table 6.1. Cumulative frequencies of hypernyms of DOG (canine) 
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Note that in Table 6.1 the summed frequencies do not change smoothly; there are 

particularly large changes when moving from ANIMAL to ORGANISM (∆=346681), and 

from ORGANISM to ENTITY (∆=578315). These are caused by the summation of 

frequencies of all subordinates of ORGANISM (including ANIMAL), and of all 

subordinates of ENTITY (including ORGANISM) respectively, of which there are many. 

From this we deduce that ORGANISM and ENTITY strongly abstract the hypernyms of 

dog. However, in an ideal situation we would prefer just the right level of abstraction, 

not strong abstraction - clearly ORGANISM does not discriminate between DOG and CAT, 

or even PLANT and ANIMAL. Worse still, ENTITY cannot discriminate between DOG and 

BICYCLE.  

Following Resnik [RESN98], the information content value I for each class c was 

calculated using equation 3, after first deriving the class probabilities p(c) from the 

cumulative frequencies via equation 2. 

 

 p(c) =        

 

where N =  Σc’freq(c’)       for c’ ranging over all classes (2) 

 

Ic = -log p(c) (3) 

 

Table 6.2 shows that, as expected, the classes near the top of the taxonomy express 

relatively little information (column IC). Calculating the change (increase) in 

information (column ∆∆∆∆IC) reveals the greatest change takes place in the move from 

ORGANISM to ANIMAL. 

freq(c) 

    N 
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Table 6.2. Class-based probability and information values for the hypernym chain of 

dog 

 

If ENTITY and ORGANISM are strong abstractions of DOG, then it can be said that the 

classes ANIMAL..DOG are specialisations of the strong abstractions, Further, as the move 

from ORGANISM to ANIMAL presents the greatest change in IC, then the greatest 

specialisation happens at ANIMAL. We have chosen to designate the node that incurs the 

greatest positive change in IC a Specialisation Class (SC). Thus ANIMAL is the SC of 

those classes within the DOG hypernym chain. Intuitively, ANIMAL does seem to present 

a plausible abstraction of DOG, and it certainly discriminates between DOG and 

BICYCLE. By applying cuts to the WordNet noun hypernym taxonomy at the SCs we 

can construct an abridged WordNet noun hypernym taxonomy; the nodes of the 

taxonomy will be the SCs, and each SC will ‘contain’ all subordinate similar senses.  

An SC can be formally defined using the ‘Z’ notation as follows: 

Given: (4) 

 

 [CLASS] the set of WordNet noun classes. 

 

 c: CLASS c is of type CLASS 

 

I: c ß REAL Function I returns the information content of class c. 

 

The hypernym function Η can be defined as: (5) 

Class ΣΣΣΣFreq Prob IC ∆∆∆∆IC

ENTITY 963909 0.03962 1.40212

ORGANISM 385594 0.01585 1.80003 0.39790

ANIMAL 38913 0.00160 2.79606 0.99603

CHORDATE 21502 0.00088 3.05367 0.25761

VERTEBRATE 21496 0.00088 3.05380 0.00013

MAMMAL 13657 0.00056 3.25081 0.19701

PLACENTAL 13391 0.00055 3.25933 0.00852

CARNIVORE 2803 0.00012 3.93848 0.67915

CANINE 1203 0.00005 4.30596 0.36748

DOG 995 0.00004 4.38817 0.08221
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 H: CLASS j CLASS 

 

Η(c) = ch | c IS_A ch 

 

Note that: (6) 

 H
n
(c) represents n applications of H  

 

   Hence: H
2
(c) ≠ H(H(c)) 

 

and  

 

 H
0
 represents the identity, that is, H

0
(c) = c 

 

 

The Specialisation Class selection function SC can now be defined: (7) 

 

 SC: CLASS ß CLASS 

 

SC(c) = H
n
(c) where  

∃ n : N | n ≥ 0 • MAX(I(H
n
(c)) – I(H

n+1
(c))) 

 

6.3 Identifying the Specialisation Classes 

 

Using the BNC as the reference source, the information content of each WordNet noun 

class was calculated as per equations 1 to 3 above. The specialisation class selection 

function SC, defined in equation 7, was then applied to identify the subset of WordNet 

noun classes that constitute the Specialisation Classes, as shown in equation 8. Initial 

examination of the results showed that for many nouns, the immediate hypernym of a 

root class was selected as the SC - an unsatisfactory result precipitated by the fact that 

these classes are the focus of many subordinate classes. To counteract this, the roots and 

their immediate hypernyms were disallowed as candidates for selection. SUBSTANCE, a 

third-level class, was also found to have a very high change in information content, 
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leading to its preferential selection, and so was similarly disallowed. This resulted in 

145 noun base classes being disallowed. Although we have addressed the need to 

eliminate classes high in the taxonomies from being selected as Specialisation Classes 

simply by ‘lopping-off’ the top two or three levels of the taxonomies, other approaches 

are possible. For example, the number of subsumed classes and/or the depth of a subtree 

below a class under consideration could be factored in to the Specialisation Class 

selection algorithm. However, these more considered approaches shall be addressed by 

future research.  

 

 [CLASS]  The set of WordNet noun classes. 

 

 SCLASS: PCLASS The set of noun Specialisation Classes. 

 

 SCLASS = {∀ c: CLASS • SC(c)} (8) 

 

The verb taxonomy was similarly processed, with the exception that as no bias was 

found towards the top of the taxonomy, possibly due to the shallow, bushy nature of the 

verb taxonomies, there was no need to disallow any verb classes from the selection 

process. However, as the selection mechanism can never select the root of a taxonomy, 

618 verb base classes were nevertheless ignored. We will return to this issue in Section 

6.5. 

6.3.1 Abridging Hypernym Chains 

It is interesting to note that a class c selected as the SC of a noun sense s is not 

necessarily selected as the SC of all hyponyms of s. Take for example the classes DOG 

and HAMSTER. As has been seen above, ANIMAL is the SC of DOG, and is also a 

hypernym of HAMSTER. However, the SC of HAMSTER is RODENT. This observation 
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permits an abridged representation of HAMSTER to be constructed by selecting only the 

identified SCs, as shown in Fig. 6.2. 

 
 HAMSTER: RODENT → PLACENTAL → MAMMAL → VERTEBRATE → 

 CHORDATE → ANIMAL → LIFE_FORM → ENTITY 

 

HAMSTER: RODENT → ANIMAL 

 

Fig. 6.2  Abridged hypernym representation of HAMSTER using SCs 
 

Complex taxonomic structures, such as that for BEER, see Fig. 6.3, are easily 

accommodated by traversing each hypernym path from leaf to root separately. Table 6.3 

gives the change in information content values for the three paths associated with BEER, 

and shows that BEVERAGE, FLUID and DRUG are directly selected as SCs of BEER. 

 

 

Table 6.3. Change in information content for hypernyms of BEER 

 

Processing the entire noun taxonomy in this way selects 4373 of the available 66025 

WordNet noun classes. Similarly, 931 of the 12127 verb classes were selected. 

6.3.2 A Fully Abridged Taxonomy 

Recall that the base classes disallowed by the selection process do not appear in the set 

of extracted SCs. Nevertheless, they may be encountered in texts, and are required in 

Path A Path B Path C 

Class Info ∆∆∆∆Info Class Info ∆∆∆∆Info Class Info ∆∆∆∆Info 

ENTITY 1.40212   ENTITY 1.40212   ENTITY 1.40212  

OBJECT 1.59641 0.19429  OBJECT 1.59641 0.19429  OBJECT 1.59641 0.19429 

SUBSTANCE 2.30612 0.70971  SUBSTANCE 2.30612 0.70971  ARTEFACT 1.83769 0.24128 

FOOD 2.76016 0.45404  FLUID 3.45593 1.14981  DRUG 3.22856 1.39088 

   LIQUID 3.47550 0.01957  D ABUSE 3.59402 0.36545 

BEVERAGE 3.64836 0.88820  BEVERAGE 3.64836 0.17286    

ALCOHOL 3.78927 0.14092  ALCOHOL 3.78927 0.14092  ALCOHOL 3.78927 0.19526 

BREW 4.57581 0.78654  BREW 4.57581 0.78654  BREW 4.57581 0.78654 

BEER 4.87778 0.30197  BEER 4.87778 0.30197  BEER 4.87778 0.30197 
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order to reconstruct (in abridged form) the original noun and verb taxonomies. For these 

reasons the base classes were added to the set of SCs, resulting in a total of 4518 noun 

and 1625 verb classes in the abridged WordNet noun and verb taxonomies. This 

corresponds to an abridged noun taxonomy 6.8% of the size of the original, and an 

abridged verb taxonomy 13.4% the size of the original. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The abridged representation of BEER, constructed only of SCs, is shown without base 

classes in Fig. 6.4a, and with base classes in Fig. 6.4b. Note that BREW and FOOD are 

selected as SCs by processing other senses not shown here. 

Entity 

Object 

Artefact Substance 

Drug 

Drug of 

Abuse 

Fluid Food 

Liquid 

Beverage 

Alcohol 

Brew 

Beer 

Path C 

Path B 

Path A 

Fig. 6.3. WordNet Hypernym representation of BEER. 
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6.3.3 Discussion 

Tables 6.4 and 6.5 show the distribution of noun and verb classes within their respective 

specialisation classes. Size indicates the number of classes subsumed by an SC, and 

Freq the number of occurrences of an SC containing Size classes.  

Table 6.4 shows that 54 noun SCs do not subsume any other class, and consequently 

only synonymous lemmas can be grouped by these SCs.  This is also true of the 271 

instances of single-class verb SCs. The most frequent number of classes subsumed by a 

noun or verb SC is 2, corresponding to the SC class and one hyponym of that class. 

Although SCs containing few senses are frequent, the tables show that some SCs 

subsume a high number of senses – the highest containing 1920 nouns and 830 verbs. 

Examination of the data revealed that the PLANT (flora) SC held the most noun senses, 

closely followed by ANIMAL (animate being), FAMILY (taxonomic) and COMPOUND 

(chemical). For verbs, CHANGE (transform) was the most populous SC, followed by 

Brew 

Drug Beverage 

Fluid Food 

Brew 

Drug Beverage 

Fluid Food 

Entity 

Object 

Substance 

Fig. 6.4a. Abridged representation of Beer Fig 6.4b. Fully abridged representation 

of Beer 
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CHANGE (undergo change), MOVE (locomote) and MOVE (displace). Considering the 

large numbers of animals, plants, and taxonomic classifications, together with ways to 

or be changed or moved, contained within a dictionary such as WordNet, it is entirely 

predictable that highly subsuming SCs will exist. However, as the senses within an SC 

are not distinguished from each other in any way (other than by lemma), no 

subdivisions within an SC exist. This results in no distinction being made between 

PARROT and DOG for example - both map on to the SC ANIMAL. This may be 

problematic if SCs are to be used as the basis for selectional association calculations; 

where it would only be possible to state FLY(ANIMAL), and not FLY(BIRD) for example. 

A solution to the above problem, should one be necessary, would be to add all populous 

SCs to the base classes during SC extraction; as these are disallowed by the selection 

process, the class scoring the next highest change in information would be selected in its 

stead. So in the case of DOG (Table 6.2), ANIMAL would be disallowed, and CARNIVORE 

would be selected, and as a consequence the SC ANIMAL would no longer contain any 

carnivores directly. The process could be repeated until all SCs contained less than a 

predefined number of senses. On completion, base classes are combined with the 

selected classes to form the abridged taxonomy, and so ANIMAL, and all other senses 

shunted into the set of base classes, would again become available as an SC, albeit with 

fewer subsumed senses. However, this would lead to an increase in the number of SCs, 

and consequently increase the number of relations expressed in a World Model based 

upon them. Unless this recursive selection of SCs is performed in moderation, it is 

possible to reproduce the high-granularity of the original taxonomy. 
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Size Freq Size Freq Size Freq Size Freq Size Freq Size Freq 

1 54 31 9 61 3 96 3 146 1 255 1 

2 1022 32 17 62 6 97 3 148 2 261 1 

3 663 33 15 63 2 99 1 150 1 276 1 

4 460 34 11 64 2 100 1 152 1 286 1 

5 322 35 11 66 3 101 1 153 1 288 1 
6 231 36 5 67 2 103 1 155 1 299 1 

7 183 37 11 68 4 105 1 160 2 300 1 
8 168 38 5 69 4 106 2 162 1 303 1 

9 144 39 8 70 2 107 1 169 1 306 1 

10 104 40 5 71 1 110 2 170 1 308 1 
11 105 41 10 72 4 111 2 178 1 313 1 

12 82 42 8 73 1 112 1 179 2 322 1 
13 79 43 6 74 1 115 1 183 2 324 1 

14 65 44 5 75 3 116 1 190 1 333 1 
15 56 45 7 76 3 118 1 191 1 334 1 

16 47 46 5 78 4 120 1 193 1 364 1 

17 43 47 10 79 2 122 2 198 1 367 1 
18 30 48 6 80 2 127 1 199 1 370 1 

19 38 49 3 81 1 129 1 202 3 385 1 
20 30 50 10 82 2 130 2 204 3 401 1 

21 34 51 4 83 2 133 1 206 1 423 1 

22 23 52 3 84 2 134 1 207 2 524 1 
23 20 53 4 85 3 135 2 208 1 558 1 

24 16 54 6 87 1 136 2 215 1 607 1 
25 18 55 10 88 1 138 1 218 1 774 1 

26 14 56 1 89 1 140 2 227 1 860 1 
27 18 57 6 91 2 141 1 229 1 1070 1 

28 23 58 4 92 1 143 2 239 1 1824 1 

29 18 59 2 93 1 144 1 242 1 1920 1 
30 19 60 3 94 3 129 1 245 1   

 

Table 6.4.  Number of noun classes subsumed by noun SCs 

 
Size Freq Size Freq Size Freq Size Freq 

1 271 17 15 33 3 71 1 
2 425 18 10 35 4 74 1 

3 234 19 12 36 2 75 1 

4 130 20 4 38 1 80 2 

5 107 21 4 40 1 87 1 
6 93 22 12 41 2 91 1 

7 51 23 7 43 1 143 1 
8 48 24 1 45 1 150 1 

9 30 25 2 49 1 152 1 

10 19 26 7 50 1 154 1 

11 22 27 2 53 1 187 1 

12 21 28 4 55 1 236 1 
13 12 29 5 58 1 295 2 

14 14 30 3 61 1 376 1 

15 7 31 1 64 1 830 1 

16 9 32 3 65 1   

 

Table 6.5.  Number of verb classes subsumed by verb SCs 
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6.4 Evaluation of SC Sense Distinctions 

To determine the degree to which sense distinctions have been preserved in the abridged 

noun and verb hypernym taxonomies, a precision/recall experiment was devised to 

evaluate the ability of SCs to disjointly partition the senses of polysemic lemmas: by 

recognising that the function SC simply maps a given class on to itself or one of its 

hypernyms it can be seen that, ideally, the n senses of a polysemic lemma should map 

on to n SCs. The senses of that lemma may thus be considered query terms, and the 

mapped SCs the target set. Recall will always be 100% as the SCs will always be 

hypernyms of the query terms (or the query terms themselves), whereas Precision may 

be reduced if two or more query terms map on to the same SC. Precision is therefore 

calculated as follows: 

 

 Let Λ be a lemma, σ(Λ) a function returning the set of senses of Λ, and 

χ(Λ) a function returning the collection of SCs for all senses of Λ. 

 

Precision  =  (9) 

  

6.4.1 Evaluation datasets 

To evaluate the ability of SCs to discriminate between senses of a lemma, all 94474 

noun (10319 verb) lemmas from the WordNet NOUN.IDX (VERB.IDX) tables were 

processed. Along with the set of 4518 noun (1625 verb) SCs extracted by the above 

method, for comparative purposes two additional sets of SCs were generated: (a) a 

baseline containing only the 145 noun (618 verb) base classes, and (b) a randomly 

selected set of 3907 noun (1605 verb) SCs (including the base classes). 

Precision was calculated for each lemma obtained from the noun (verb) index according 

to equation 9 and recorded in an array indexed on #σ(Λ). For completeness, 

  #σ (Λ) 

 #χ (Λ) 
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monosemous lemma occurrences were recorded and, as only one sense is available to its 

SC, assigned a recall of 100%. 

6.4.2 Results 

The precision values for the three evaluations, for both nouns and verbs, are presented 

in Table 6.6. Column #σσσσ(ΛΛΛΛ) indicates the number of senses obtained for a lemma, 

Count the number of lemmas contained in each of the above groups, and Bases, 

Rnd+Bases, and SC+Bases the precision of the three abridgement sets. 

In calculating the average precision, monosemous lemmas (#σ(Λ) = 1) were ignored, as 

were those values of #σ(Λ) for which no data was seen (Count = 0), resulting in 21 

noun and 39 verb precision values. Of the 4518 noun (1625 verb) SCs, 432 (28) 

corresponded to monosemous lemmas, the remaining 4086 (1597) to polysemous 

lemmas.  

The relatively low number of noun bases presents a coarse-grained abridgement, which 

is reflected in its low recall (0.5381) in the polysemous lemma discrimination task. The 

random selection, covering more classes lower in the taxonomy, provides a better 

precision (0.7574), but the best precision is obtained using the extracted SCs (0.9464). 

The situation is similar for the verb discrimination task, the extracted SCs producing the 

highest precision (0.8328). 

On three occasions the random verb precision equalled the SC verb precision (#σ(Λ) = 

14, 17, 48) and on one occasion bettered it (#σ(Λ) = 30). No SC noun precision was 

equalled or beaten by a random noun precision. 
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Table 6.6  Precision of sense distinctions of three abridgements for both nouns and 

verbs  

 

 Noun Precision Verb Precision 

Size 145 3907 4518 618 1605 1625 

#σσσσ(ΛΛΛΛ) Count Bases Rnd + 

Bases 

SC + 

Bases 

Count Bases Rnd + 

Bases 

SC + 

Bases 
1 81910 1.000 1.0000 1.0000 5752 1.0000 1.0000 1.0000 

2 8345 0.7901 0.8991 0.9434 2199 0.9038 0.9293 0.9611 
3 2225 0.7112 0.8661 0.9426 979 0.8488 0.8931 0.9302 

4 873 0.6804 0.8411 0.9444 502 0.8237 0.8675 0.9268 

5 451 0.6718 0.8483 0.9512 318 0.7679 0.8277 0.8931 

6 259 0.6274 0.8346 0.9556 188 0.7660 0.8333 0.9069 

7 140 0.5898 0.8102 0.9541 102 0.7507 0.8305 0.8978 
8 82 0.5762 0.7835 0.9482 75 0.7333 0.7767 0.8867 

9 68 0.5376 0.7598 0.9493 39 0.7009 0.7664 0.8803 

10 42 0.5476 0.7429 0.9286 39 0.7359 0.7897 0.8769 

11 23 0.5415 0.7312 0.9605 32 0.7358 0.8097 0.8835 

12 18 0.5602 0.7500 0.9861 15 0.7444 0.8056 0.8833 

13 9 0.5470 0.7436 0.9487 16 0.6827 0.7692 0.8606 

14 8 0.4643 0.6696 0.9464 5 0.7571 0.8429 0.8429 
15 7 0.4952 0.7333 0.9333 8 0.7667 0.7917 0.9167 

16 3 0.4583 0.7083 0.9167 8 0.6641 0.7422 0.8359 

17 6 0.4412 0.6275 0.9216 4 0.6324 0.7647 0.7647 

18 1 0.5556 0.8333 1.0000 4 0.6528 0.7222 0.8333 

19 1 0.4737 0.8421 0.8947 2 0.5789 0.7632 0.8158 

20 0    2 0.5000 0.6250 0.7000 

21 0    3 0.8095 0.8413 0.9048 

22 0    3 0.5758 0.6212 0.8182 

23 0    1 0.4783 0.5652 0.6087 

24 1 0.2500 0.4583 0.9167 3 0.6528 0.7083 0.7222 

25 0    2 0.6800 0.7800 0.9000 

26 0    3 0.5769 0.7308 0.7821 

27 0    1 0.5185 0.6296 0.6667 

28 0    1 0.7500 0.7857 0.8571 

29 1 0.4138 0.6897 0.9655 1 0.6552 0.6897 0.8966 

30 1 0.3667 0.7333 0.9667 1 0.7333 0.8333 0.8000 

32 0    1 0.5313 0.6875 0.7500 

33 0    1 0.5455 0.7273 0.8182 

36 0    1 0.6944 0.7778 0.8889 

37 0    1 0.6757 0.7838 0.8378 

38 0    1 0.6316 0.7105 0.7632 

41 0    2 0.6341 0.7195 0.8293 

42 0    1 0.5476 0.6667 0.8095 
45 0    1 0.5556 0.6667 0.9333 

48 0    1 0.5625 0.6667 0.6667 

63 0    1 0.4921 0.6349 0.7302 

Total 94474    10319    

 21 polysemous lemma groups 39 polysemous lemma groups 

Average 0.5381 0.7574 0.9464  0.6671 0.7533 0.8328 
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6.5 Verbal Specialisation Classes and Polysemy 

It is interesting to note that although the precision using SCs is not 100%, it does not 

necessarily follow that the SC selection procedure is somehow flawed. Take for 

example the lemma MUSIC, for which WordNet 1.6 lists 6 senses. Of these, senses 

MUSIC#2 and MUSIC#5 are described as ‘any agreeable (pleasing and harmonious) 

sounds’ and ‘the sounds produced by singers and musical instruments’ respectively. 

Both of these senses map on to the SC PERCEPTION#3. Further, these two senses of 

MUSIC share the immediate hypernym SOUND#2 (auditory sensation). It is therefore not 

surprising, and should be expected, that a certain number of one-to-many mappings 

between SCs and senses will be encountered.  

The one-to-many mapping between SCs and lemma senses may be of use in identifying 

polysemous lemmas, that is, those lemmas that have different but related senses, such as 

MUSIC#2 and MUSIC#5 above. If the lemma senses are related through hypernymy, then 

polysemous lemmas will share a hypernym that is not too distant from the sense of the 

lemmas (distant common hypernyms, such as entity, would include many senses of 

seemingly unrelated lemmas). For example, WordNet 1.6 lists 5 senses for the verb 

DRINK, these being: 

Sense Synonyms Definition 

Drink#1 drink, imbibe take in liquid 

Drink#2 drink, booze, fuddle consume alcohol 

Drink#3 toast, drink, pledge, salute propose a toast to 

Drink#4 drink_in, drink be fascinated or spellbound by 

Drink#5 drink, tope drink alcohol, be an alcoholic 

 

     

Senses 1,2 and 5 all relate to consumption of liquid, senses 2 and 5 making that liquid 

alcohol. Sense 3 is an activity undertaken to honour someone or something, and sense 4 



Chapter 6: The Sense Element 

 109

is a state of mind. The 5 senses of DRINK therefore divide into 3 homonymous groups 

relating to consumption, honouring, and cognition. 

The SCs of the 5 senses of DRINK are shown in Table 6.7 together with their WordNet 

hereiam field values, which are commonly used to identify/locate senses within the 

WordNet databases. The table shows that senses 1,2 and 5 of DRINK map on to the same 

SC CONSUME and so have been identified as polysemous. Sense 3 maps onto the SC 

PRIZE, and sense 4 to STEEP, which with CONSUME gives 3 homonymous groups in 

total.  

Sense Specialisation Class hereiam 

1 consume   786286 

2 consume    786286 

3 prize    

   → consider 

      → judge    

1544040 

   → 466852 

      → 452184 

4 steep    

   → cogitate 

406072 

   → 426277 

5 consume 786286 

 

Table 6.7.  Specialisation Classes of senses of the verb DRINK. 

consume 

booze tope imbibe 

(1) (2) (5) 

judge 

think 

consider 

prize 

recognise 

honour 

toast 

(3) 

cogitate 

concentrate 

steep 

drink_in 

(4) 

Figure 6.5. Hypernyms of senses of DRINK, SCs shown emboldened. 
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In this instance the SCs have successfully grouped polysemous senses, and have 

distinguished between homonyms. Without a definitive list of polysemous senses and 

homonymic partitions for senses expressed in WordNet, evaluation of the Specialisation 

Classes abilities in this respect is difficult to quantify. A feel for the homonymic 

partitioning may be obtained however by examination of a small sample of verbs. The 

six verbs selected, WRITE, READ, WARN, HEAR, REMEMBER, and EXPECT are taken from 

Resnik’s table of selectional association for plausible objects [RESN98]. 

6.5.1 Write 

Sense Definition 

(WRITE) 

Specialisation 

Class 

hereiam Group 

1 indite WRITE 

 → make 

1164896 

 → 1111638 

A’ 

2 communicate by 

writing 

WRITE 

→ communicate 

  → act 

671763 

→ 502333 

  → 1612822 

B’ 

3 publish make 1111638 A 

4 drop a line correspond 680786 C 

5 communicate by 

letter 

communicate  

→ act 

502333 

→ 1612822 

B 

6 compose music make 1111638 A 

7 mark a surface trace 

→ change 

1089750 

→ 83947 

D 

8 record data WRITE 

→ record 

  → save 

   → have 

675295 

→ 675051 

  → 1522764 

   → 1508689 

E 

9 spell spell 1166173 F 

Table 6.8. Specialisation classes of the verb WRITE. 

Table 6.8 shows that the nine senses of WRITE map directly on to eight Specialisation 

classes. Group A contains two polysemous senses, PUBLISH and COMPOSE_MUSIC, 

which map on to the SC MAKE (make or cause to be or to become). Sense 1 also maps 

on to MAKE, but not directly. Similarly, senses 2 and 5 both contain the SC INDITE, but 
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only as an immediate SC for sense 5. In these cases, the common SC is an indication of 

similarity, not polysemy. 

Sense 1 could be coerced into the MAKE group (A) if reflexive SCs (which are shown 

capitalised) are ignored during polysemy determination; the SC of WRITE/671736 is 

WRITE/671736, which if ignored promotes the SC MAKE/1111638, resulting in a 

polysemous group containing INDITE, PUBLISH, and COMPOSE_MUSIC, which are all 

forms of bringing something written into being. Sense 2 also maps on to a reflexive SC, 

which if removed, enables a polysemous group concerned with COMMUNICATION to 

be formed with sense 5. None of the other senses of WRITE have any common 

hypernyms and so cannot form polysemous groupings. 

6.5.2 Read 

Sense Definition (READ) SC hereiam Group 
1 interpret READ 

→ understand 

423416 

→ 397666 

A’ 

2 a certain wording have 1794357 B 

3 say out loud talk 

→ communicate 

  → act 

638109 

→ 502333 

  → 1612822 

C 

4 scan READ 

→ understand 

425290 

→ 397666 

A’ 

5 interpret significance guess 

→ speculate 

  → think 

620765 

→ 627205 

  → 426277 

D 

6 interpret in a certain 

way 

READ 

→ understand 

422928 

→ 397666 

A’ 

7 study READ 405251 E 

8 register indicate 

→ inform 

   → communicate 

    → act 

627736 

→ 564266 

   → 502333 

    → 
1612822 

F 

9 hear & understand understand 397666 A 

10 make sense of understand 397666 A 

Table 6.9. Specialisation classes of the verb READ. 
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Here, only one polysemous grouping can be directly constructed, consisting of senses 9 

and 10, and is concerned with understanding. However, senses 1 4 and 6 possess 

reflexive SCs at the highest level. Again if these are eliminated, the five senses 

INTERPRET_IN_A_CERTAIN_WAY, INTERPRET, SCAN, HEAR_AND_UNDERSTAND, and 

MAKE_SENSE_OF can form a polysemous group. With the exception of sense 4 (SCAN), 

which has more to do with computers reading magnetic tape, the understanding sense of 

the group is acceptable. However, in the case of the computer, the ‘understanding’ is in 

the correct decoding of the data on the tape/media and its subsequent incorporation into 

some calculation etc. This is not the same as human interpretive understanding, but it 

can be viewed as analogous, and so we would argue that SCAN, in the context of 

computing devices, is a reasonable inclusion in the polysemous group. 

Senses 3 and 8 cannot form a polysemous group as, although they both contain 

COMMUNICATE, making them similar, COMMUNICATE is buried within their SC 

taxonomies. 

6.5.3 Warn 

Sense Definition (WARN) Specialisation 

Class 

hereiam Group 

1 notify WARN 

→ inform 

  → communicate 

   → act 

589833 

→ 564266 

  → 502333 

   → 1612822 

A 

2 discourage talk 

→ communicate 

  → act 

638109 

→ 502333 

   → 1612822 

B 

Table 6.10. Specialisation classes of the verb WARN. 

The verb WARN has only two senses, both of which include the SC COMMUNICATE. 

Again, the common SC is buried within the respective taxonomies, resulting in the two 

senses of WARN being similar but not polysemous. 
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6.5.4 Hear 

Sense Definition (HEAR) Specialisation 

Class 

hereiam Group 

1 perceive sound perceive 1442173 A 

2 learn, get wind of HEAR 404522 B 

3 examine evidence probe 

→ analyse 

535682 

→ 435242 

C 

4 receive 

communication 

perceive 1442173 A 

5 Take heed think 426277 D 

 

Table 6.11. Specialisation classes of the verb HEAR. 

 

Senses 1 and 4 of the verb HEAR both map on to the SC PERCEIVE, presenting a 

polysemous grouping. None of the other senses have any common SCs and so are all 

unrelated.  

6.5.5 Remember 

Sense Definition 

(REMEMBER) 

Specialisation 

Class 

hereiam Group 

1 recall REMEMBER 410666 A 

2 think of REMEMBER 412253 B 

3 think back REMEMBER 413589 C 

4 reward give 1506956 D 

5 mention  think_of 

→ think 

494966 

→ 426277 

E 

6 commend think_of 

→ think 

494966 

→ 426277 

E 

7 exercise memory think 426277 F 

8 commemorate REMEMBER 413778 G 

Table 6.12. Specialisation classes of the verb REMEMBER. 

Senses 5 and 6 of REMEMBER map directly on to the SC THINK_OF. No other senses 

have any common hypernyms, although sense 7 maps on to THINK, which is common to 

senses 5 and 6, making exercise_memory similar to the polysemous group containing 

mention and commend. 
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6.5.6 Expect 

Sense Definition (EXPECT) Specialisation 

Class 

hereiam Group 

1 anticipate judge 452184 A 

2 require EXPECT 

→ demand 

  → request 

   → convey 

    → move 

513425 

→ 512630 

  → 510998 

   → 1527059 

     → 1263706 

B 

3 await EXPECT 487408 C 

4 consider reasonable consider 

→ judge 

466852 

→ 452184 

D 

5 bear/carry EXPECT 41553 E 

6 expect child await 487408 F 

Table 6.13. Specialisation classes of the verb EXPECT. 

No polysemous groups may be formed by the senses of EXPECT, although ANTICIPATE 

(regard something as possible or likely) and CONSIDER (consider reasonable or due) are 

similar, sharing the SC JUDGE. 

Senses 5 (be pregnant with) and 6 (look forward to the birth of a child) might be 

expected to form a polysemous group, both being related to childbirth, however, the 

WordNet compilers have discriminated between carrying an unborn child and looking 

forward to its birth, which seems reasonable, and have placed the two senses in different 

subtrees of the WordNet verb taxonomy, thereby making them dissimilar. 

6.6 Nominal Specialisation Classes and Polysemy 

The nouns letter, article, driver, story, reply and visit, which are the objects in Resnik’s 

table of selectional association for plausible objects [RESN98] will now be examined 

for polysemous grouping. Here, only the primary SC(s) will be shown, unless it is 

reflexive. 
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6.6.1 Letter, Article, Driver, Story, Reply, Visit 

Sense Definition (LETTER) Specialisation Class hereiam 

1 missive material 4799150 

2 alphabetic character signal 5085885 

3 literal interpretation interpretation 5361340 

4 varsity letter commendation 

signal 

5013089 

5085885 

Table 6.14. Specialisation classes of the noun LETTER. 

 

Sense Definition 

(ARTICLE) 

Specialisation Class hereiam 

1 prose expressive_style 

piece 

5293492 

4740201 

2 class of artefact ARTICLE 

→object 

12704 

→9457 

3 legal clause ARTICLE 

→written_communication 

4819775 

→4786785 

4 determiner function_word 4767687 

Table 6.15. Specialisation classes of the noun ARTICLE. 

 

Sense Definition (DRIVER) Specialisation Class hereiam 

1 operates vehicle operator 7444457 

2 drives animals DRIVER 

→worker 

7228604 

→6957738 

3 golfer contestant 6944043 

4 software writing 4794515 

5 golf club golf_equipment 2761965 

Table 6.16. Specialisation classes of the noun DRIVER. 

 

Sense Definition (STORY) Specialisation Class hereiam 

1 narrative informing 5388175 

2 fiction literary_composition 4798536 

3 building floor STORY 

→structure 

2700186 

→3431817 

4 chronicle STORY 

→signal 

4889518 

→5085885 

5 news report STORY 

→information 

5009122 

→4977171 

6 fib lie 5063005 

Table 6.17. Specialisation classes of the noun STORY. 
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Sense Definition (REPLY) Specialisation Class hereiam 

1 answer REPLY 

→statement 

5055491 

→5040541 

2 Speech exchange REPLY 

→speech_act 

5379686 

5354574 

Table 6.18. Specialisation classes of the noun REPLY. 

 

 

 

Sense Definition (VISIT) Specialisation Class hereiam 

1 visit a person assembly 798100 

2 arrangement social_gathering 6126145 

3 residence as guest sojourn 683061 

4 call for inspection investigation 416938 

Table 6.19. Specialisation classes of the noun VISIT. 

It is evident from the above tables that none of the six nouns form polysemous groups, 

although this should not be surprising; Table 6.6 shows that noun recall is 94.64%, 

suggesting that very few noun senses are grouped polysemically through their mapping 

on to SCs.  

6.6.2 Kiss 

A noun example showing polysemic grouping may be seen using the noun KISS (only 

primary SC is shown, unless it is reflexive): 

Sense Definition (KISS) Specialisation Class hereiam 

1 caress with lips KISS 

→touch 

90133 

→79716 

2 a small candy treat 5647296 

3 glancing brush touch 79716 

Table 6.20. Specialisation classes of the verb KISS. 

By eliminating the reflexive SC (KISS/90133) from sense 1 the secondary SC TOUCH is 

revealed, allowing senses 1 and 3 to form a polysemous group.  
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6.7 Reducing sense ambiguity through Specialisation Class mapping. 

The above has demonstrated that the less-than-100% precision of lemma senses by use 

of their primary Specialisation Class as a search key is not necessarily a less than ideal 

result; grouping senses of a lemma on correspondence of their SCs results in polysemic 

groupings – lemma senses are grouped if they are similar. It can be argued that this is 

desirable, as by grouping similar senses the search space is being reduced without 

abstracting too far and the general sense is not lost. Additionally, ignoring primary 

Specialisation Classes that are reflexive with respect to an actual sense of the lemma in 

question facilitates greater polysemic grouping. This is a reasonable step to take as 

polysemy can only be detected by examination of the hypernyms of a lemma’s senses 

and identifying those common to more than one sense; lemma senses are disjoint by 

definition and so cannot express polysemy through their primary WordNet sense. 

When assigning a WordNet sense to a word, all senses must initially be considered. 

Contrary to the one word per sense assumption [GALE92, YARO92, YARO95] it 

cannot be assumed that all occurrences of a word within a text have the same sense 

[KROV98], and so every instance of every word must be similarly considered. 

The reduction in the number of senses to be considered by using Specialisation Classes 

as surrogate senses can be determined for a sentence, document or corpus simply by 

comparing the number of possible WordNet senses with the number of possible 

Specialisation Classes for that collection. 

Using SemCor once more as the test corpus, the number of WordNet senses for each 

noun and verb was found through WordNet lookup. The senses were then mapped on to 

their primary Specialisation Class, or the secondary where the primary was reflexive. 



Chapter 6: The Sense Element 

 118

Those compounds mapped onto PERSON, LOCATION and GROUP were also ignored. The 

results are presented in Table 6.21. 

 Noun 

Lemmas 

Noun 

Senses 

Noun 

SCs 

Verb 

Lemmas 

Verb 

Senses 

Verb 

SCs 

Count 78959 353453 323186 47698 494410 409866 

Av. Senses  4.48 4.09  10.37 8.59 

Reduction   8.56%   17.10% 

 

Table 6.21. Reduction in lemma senses due to SC grouping. 

For the noun and verb data extracted from SemCor, the average reduction in noun 

lemma senses is 8.56%, which is not particularly large. However, the verb sense 

reduction is 17.10% which, when one recalls that each verb sense will have up to four 

arguments to consider, is probably worth having as the argument evaluation calculations 

will also be reduced by 17.10%. 

6.8 Conclusion 

This chapter has presented and formally specified a novel method for abridging the 

WordNet noun and verb taxonomies, using change in class information content to 

identify those classes at which major specialisations occur. Although few in number 

when compared to the total number of classes in the taxonomy, these Specialisation 

Classes have been shown to retain the underlying sense distinctions of multi-sensed 

lemmas to a high degree. It has been argued that the reduction in precision of lemma 

senses, when keyed on specialisation classes, is a desirable property as the reduction is 

caused by conflation of similar lemma senses, that is, by polysemic grouping of senses. 

Further, as the abridgement algorithm effectively produces cuts in a taxonomy at 

specialisation classes, the classes under each cut may be viewed as similar, and 

therefore allows words of similar meaning to be grouped together.  
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It can be shown that the Specialisation Class selection mechanism bears some 

resemblance to the Category Utility (CU) function introduced by Gluck and Corter 

[GLUC85]. CU is used to rate the quality of partitioning functions employed as feature 

clustering algorithms for machine learning. Essentially, given a partition C, the CU of 

that partition is calculated as the average sum of the statistical contingency measure of 

decrease (i.e. delta value) in the proportion of incorrect predictions made by C. By 

varying the clustering algorithm, for example by varying the number or type of 

attributes used as the basis for the cluster, an optimal clustering algorithm can be 

selected for any given purpose. The Specialisation Class selection algorithm is not a 

cluster quality-ranking algorithm per se as it actually generates the clusters. However, in 

parallel with CU, the delta value is the change in information value of adjacent classes 

along a hypernym chain. The predictions as to the inclusion of a class in any 

cluster/partition are related to the class information value; classes, if taken as the point 

of partition, near the end of the hypernym chain have low information values and will 

make general predictions (i.e. a large cluster), whereas those near the beginning have 

higher information values and will make specific predictions (i.e. a small cluster). As 

large clusters and small clusters can potentially make erroneous predictions by inclusion 

and exclusion respectively, the Specialisation Class selection algorithm attempts to 

identify the optimal partition point at which the predictions are neither too general nor 

too specific. Therefore, if any class in a hypernym chain is a potential partition point 

between clusters, then the Specialisation Class selection algorithm is analogous to 

applying the CU function over a set of possible clusters - both range over a number of 

potential partitions in order to identify the best quality clusters. 
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The accuracy to which Specialisation Classes partition the senses of polysemous 

lemmas, along with the high degree of abridgement they afford, suggests that 

specialisation classes may be used as surrogates for noun and verb senses, effectively 

reducing the search space of any sense-discrimination procedure. It is this aspect of 

Specialisation Classes that shall be investigated in the following chapter. 
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7 Evaluation of Specialisation Classes in a Word Sense 

Disambiguation task 

Chapter 6 detailed the creation of a compact sense taxonomy through detection of 

Specialisation Classes. Although SCs have been shown to significantly reduce the 

number of senses in the WordNet noun and verb hypernym/hyponym taxonomies whilst 

retaining lemma sense distinctiveness, their usefulness in linguistic applications has not 

yet been demonstrated. This chapter addresses this point by presenting a comparative 

study of the full and abridged WordNet taxonomies in the ‘standard’ linguistic task of 

Word Sense Disambiguation (WSD). This is achieved through use of Selectional 

Association, an approach to WSD that has been developed in conjunction with the 

WordNet hypernym taxonomy [RESN97], and employs a novel sense identification 

string that allows senses to be identified as the same, something not possible using 

WordNet Sense Keys. 

 

Resnik proposes that the Selectional Association (SA) between a verb and an argument 

may be determined from the difference between the prior distribution of a noun in a 

given relation with any verb, and the posterior distribution of that noun with a particular 

verb within that grammatical relation. He goes on to demonstrate that, by calculating 

SA values from noun and verb-noun relation frequency data extracted from the 

structurally-annotated Brown Corpus [FRAN82], SA can assess the semantic fit of an 

argument in a given relation with a verb [RESN98]. The procedure for calculating SA 

values, as used by Resnik, is as follows: 
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• Calculate the probability of each noun class, c, expressed in the corpus. 

This gives the prior distribution of the noun classes PR(c). 

• Calculate the probability of each Noun class and Verb pairing, c|x, 

expressed in the corpus. This gives the posterior distribution PR(c|x). 

• Calculate the Selectional Preference value SR(x) of each verb, (x), in the 

verb taxonomy as: 

   SR(x) =         (1) 

• Calculate the Selectional Association value AR(x,c) of each verb/noun-

class relation: 

AR(x,c) =          (2) 

 

The selectional preference (SP) value indicates how strongly the verb selects for its 

argument, for example the verb eat has a high SP value and selects strongly for its direct 

object (types of food), whereas find has a low SP as almost anything will serve as its 

direct object. 

7.1 Resnik’s Corpus Approach to Selectional Association 

As the word frequency data is drawn from a text corpus in which neither noun nor verb 

has been sense-tagged, Resnik evenly distributes the credit for any observed noun 

among all the classes subsuming that noun. For example, given the verb-object pairs of 

(DRINK WINE) and (DRINK WATER), the credit for WINE is distributed amongst the 

senses WINE(beverage) and WINE(wine_coloured). Similarly, for WATER, the credit is 

distributed amongst the seven senses of water expressed in WordNet, these being 

Σ p(c|x) log 
p(c|x) 

 p(c) 

   1 

SR(x) 
p(c|x) log 

p(c|x) 

 p(c) 
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WATER(liquid), WATER(body_of_water), WATER(water_supply), WATER(archaic_element), 

WATER(perspiration), WATER(urine), and WATER(lachrymal_secretion). The above clearly 

shows that, as Resnik points out, related words are ambiguous in different ways 

[RESN98]. The contributions from the senses of WINE and WATER will therefore be 

cumulative only for shared hypernyms of those senses, for example LIQUID, which is 

common to both WINE(beverage) and WATER(liquid). Those hypernymic senses not 

shared will be distributed throughout the taxonomy and will not receive cumulative 

contributions. The result is a strengthening of the signal that (for example) LIQUID is 

associated with the verb DRINK in the object relation. Resnik shows that the SA model 

makes reasonable predictions of verb/noun-sense relations when compared to human 

judgements [RESN96, OLSE97], making the model a useable method of selecting the 

more appropriate senses from the full range of possibilities, if not necessarily providing 

a full WSD mechanism. Resnik’s method of WSD using SA values performs rather 

poorly, Resnik reporting 44.3% accuracy of noun sense assignments, when compared to 

the ‘first sense’ algorithm, which selects the most frequently used sense of any word 

and provides 82.5% accuracy.  

The attraction of the SA method here is twofold: firstly, as reported above, it allows 

human-like prediction of verb/noun-sense relations, and secondly it presents association 

values for information that may be described as propositional, that is between a verb 

and a noun, or predicate and argument.  
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7.1.1 Extending the SA model to verb classes 

The model Resnik describes calculates SA values for relations holding between noun 

classes (senses) and verb lemmas (Fig. 7.1). The upshot of this is that the SA value tells 

us nothing about the semantic class of the verb. 

We propose an extension to the model that replaces the verb lemma with all senses of 

that lemma (Fig. 7.2). This will of course introduce additional noise into an already 

noisy system. However, Resnik’s argument above, that related words are ambiguous in 

different ways, applies to verbs also and so we would expect an accumulation of co-

occurrences only in those cases where there is an actual association, assuming of course 

a sufficiently large training set is available to generate a detectable signal above the 

noise. 
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Fig. 7.1.  SA is calculated between noun classes and verb lemmas. 
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Fig. 7.2.  SA is calculated between noun classes and verb classes. 
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Thus in Fig. 7.2, the consumption senses of drink (IMBIBE, BOOZE, TOPE) would 

associate with the WINE#1 senses of WINE, whereas the cogitative sense of drink 

(DRINK_IN) might associate more strongly with WINE#2. 

The system depicted by Figure 7.2 is incomplete in that one symbol (drink) has been 

replaced with five synonyms (IMBIBE, BOOZE, TOAST, DRINK_IN, TOPE), to which each 

occurrence of drink contributes equally, resulting in five equal SA values; the problem 

of distinguishing between verb senses would remain. To overcome this, the subsuming 

senses of each sense of the verb must enter into the SA calculation (Fig. 7.3). 

 

 

 

 

 

 

 

 

To facilitate this change in the model, the algorithm for calculating the conditional 

frequencies must be modified. The original conditional frequency (from which the 

conditional probability is derived) calculation is based upon observed predicate-

argument co-ocurrences (x, w) as shown in equation (3) [RESN98]. The modification 

involves taking the predicate (x) and mapping it onto its set of WordNet classes, as 

shown in equation (4). 
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Fig. 7.3.  SA is calculated between all subsuming classes of all noun and verb 

senses. Only first three senses of drink shown for clarity. 
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           (3) 

 

 

           (4) 

7.2 Generating the training data 

The text corpus used to generate the Selectional Association (SA) values was the BNC 

Sampler [BNC], a 2% sample of the full BNC comprising one million written and one 

million transcribed spoken words. In order to calculate SA values, verb-subject, verb-

object and verb-indirect object pairs must be extracted from the corpus
2
. As the BNC 

(and the sampler) are PoS tagged, but otherwise not marked-up for either grammatical 

structure or sense (Fig. 7.4), the grammatical structure necessary for verbal relation 

pairs to be extracted must first be imposed upon the corpus texts. To accomplish this, all 

mark-up was first removed from the sampler texts, resulting in reconstituted plain-text 

documents having one sentence per line (Fig. 7.5). 

                                                
2
 On reflection it would have been better to use just the written-word corpus as the paralinguistic 

utterances and colloquialisms of the spoken-word corpus appear to upset the grammar parser and hence 

affect the extracted predicate/argument pairs, as evidenced in Section 7.2.2 

<s n=0020><w PPY>You <w VM>will <w VVI>need <w AT1>a  

<w JJ>Polish <w NN1>visa <w DDQ>which <w PPIS2>we <w VM>will 

<w VVI>obtain <w IF>for <w PPY>you <c YSTP>.</s> 

 

Fig. 7.4.  Marked-up sentence from BNC Sampler (wrapped). 

You will need a Polish visa which we will obtain for you. 

 

Fig. 7.5.  Reconstituted plain-text sentence from BNC Sampler. 

Σ freq(x, c) =  

w ∈ words(c) 

freq(x, w) 

| classes(w) | 

freq(v, c) =  Σ 
x ∈ words(v) , w ∈ words(c) 

freq(x, w)   

| classes(x) | X | classes(w) |
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The cleaned-up documents were then parsed by MINIPAR [LIN93] in order to obtain 

the required grammatical structure (Fig. 7.6).  

MINIPAR indicates relations in the central field of the parser output: subjects with the 

:subj: string, direct objects with the :obj: or :obj1: string, and indirect objects with the 

:obj2: string. The relation predicate (verb) is presented in the left hand field and the 

argument (noun) in the right. An AWK script was used to extract the predicate and 

argument from the parser output for the required relations, prefixing them with the 

characters ‘s’, ‘d’ and ‘i’ to indicate subject, direct-object and indirect-object 

respectively (Fig. 7.7).  In total, 377651 relations were extracted. 

d require visa 

s need you 

d need visa 

d obtain which 

s obtain we 

 

Fig. 7.7.  Extracted verbal relations  

fin  C:i:V  need 

need  V:s:N  you 

need  V:aux:Aux  will 

need  V:subj:N  you 

need  V:obj:N  visa 

visa  N:det:Det  a 

visa  N:mod:A  polish 

visa  N:rel:C  fin 

fin  C:whn:N  which 

fin  C:i:V  obtain 

obtain V:s:N  we 

obtain V:aux:Aux  will 

obtain V:obj:N  which 

obtain V:subj:N  we 

obtain V:mod:Prep for 

for  Prep:pcomp-n:N you 

 

Fig. 7.6.  MINIPAR processed sentence from BNC Sampler  
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Possible WordNet senses of each verb and noun were determined through WordNet 

lookup, the senses being recorded as the sense location (SnsID) in the WordNet 

database (the ‘hereiam’ field of the synset structure). As each verb and noun may map 

onto more than one sense, the SnsIDs were concatenated by a semicolon (Fig 7.8), 

thereby retaining the three field {relation verb noun} structure. 

d 1847498;1848500;588515 503611;494444 

Fig. 7.8.  Lemmas converted to WordNet SnsIDs  

7.2.1 Assigning senses to pronouns 

As WordNet does not contain senses for pronouns, these were assigned general senses 

wherever possible using the following algorithm, which also handles proper nouns and 

numerics in terms of WordNet classes: 

if lemma in WordNet 

 Assign the WordNet senses(s) 

otherwise 

 If lemma in {i, me, my, you, they, we, he, she, him, his, her, hers, their} 

  Sense := SOMEBODY 

 elseif lemma in {this, it} 

  Sense := PHYSICAL_OBJECT;EVENT;LOCATION 

 elseif lemma = ‘that’ 

  Sense := PHYSICAL_OBJECT;EVENT 

 elseif lemma = ‘these’ 

  Sense = PHYSICAL_OBJECT 

 elseif lemma = ‘there’ 

  Sense := LOCATION 

 elseif  lemma in {they, them, ours, our} 

  Sense := GROUP;SOMEBODY 

 elseif lemma is numeric 

  Sense := NUMBER 

 elseif PoS in {NNP, NNPS} (i.e. a proper noun) 

  Sense := SOMEBODY;GROUP;LOCATION 

 else FAIL 

  

Fig. 7.9. Algorithm for assigning general senses to pronouns, numerics and proper 

nouns. For readability, SnsIDs have been replaced by text equivalents.  
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7.2.2 Failure Analysis 

After WordNet sense assignment, 285746 useable sense relations were obtained from 

the 377651 lemma relations. Those 91905 (~24%) lemma relations failing the lemma to 

sense translation were written to a log for later examination. Due to the large number of 

failures, each of which would require individual scrutiny, only a cursory analysis was 

performed to reveal the general types of failure. These were: 

1. Error in relation – MINIPAR imposes an incorrect grammatical structure. For 

example, in the extracted relation (s Graham phone), ‘Graham’ occupies the 

verbal position.  

2. Unhandled exception – The algorithm for assigning senses to non verbs and 

nouns (Fig. 6) handles only relatively straightforward cases, and does not 

generalise the more difficult ones. For example, in the relation (d hate what), 

‘what’ is not mapped to any WordNet sense. 

3. PoS mismatch – There is disagreement between MINIPAR and WordNet with 

respect to the part of speech assigned to a word. For example, in the relation       

(s ugly cat), MINIPAR deems ‘ugly’ a verb, whereas in WordNet it is an 

adjective only. 

4. Non-verbal utterances – As the spoken-word section of the BNC Sampler corpus 

was processed alongside the written-word section, it contains words like ‘er’, 

‘um’, etc. MINIPAR attempts to parse sentences containing these, but any 

resultant extracted relation will contain the utterances, which are of course 

unknown to WordNet, for example: (s have erm). 
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5. Colloquialisms – WordNet does not account for dialectic or other cultural 

speech effects. As the transcription of the spoken-word is faithful to the speaker, 

it contains ‘popular’ words like ‘wot’, ‘innit’ etc that WordNet does not know, 

as in (s innit farmhouse). 

7.2.3 Optimising the data for SA calculation 

Recognising that processing 285746 data items, each consisting of multiple WordNet 

senses, would take some time to complete, a final optimisation of the data was made. As 

lines in the sense relation data prepared so far are repeated whenever the same verb and 

noun lemmas are extracted in a relation by MINIPAR, duplicates were removed and a 

count of the number of occurrences of that relation appended to the remaining instance 

(Fig. 7.10). This reduced the number of relations to process from 285746 to 112863, 

that is, by just over 60%. 

d 101662;1791776;1789797;1863319 4123 2 

d 101662;1791776;1789797;1863319 4123;14887 12 

 

Fig. 7.10 Duplicate entries removed and count of instances appended. 

 

7.2.4 Generation of Selectional Association values 

SA data was generated using the modified Conditional Frequency value (eqn. 4 above) 

in the Selectional Preference and Selectional Association calculations, which were 

modified as follows: 

• Calculate the Selectional Preference value SR(v) of each verb class, (v), in 

the verb taxonomy as: 

   SR(v) =          (5) Σ p(c|v) log 
p(c|v) 

 p(c) 
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• Calculate the Selectional Association value AR(v,c) of each verb-

class/noun-class relation: 

AR(v,c) =          (6) 

The algorithm for processing the data generated in Section 7.2 above is given in Figure 

7.11, and is described as follows: 

Step 2 of the algorithm extracts the data items from a line of the data set prepared as 

described above. Step 3 calculates the ‘evenly distributed’ contribution value, contrib, 

which is to be propagated along the hypernym taxonomy items. 

Steps 4 and 5 select each verb-sense|noun-sense pair permutation (vSns|nSns) from 

those senses specified in the extracted data.  

Given the structure of a training data record: {cnt, reln, vList, nList} 

 

      Where: cnt // number of occurrences 

reln // the relation 

vList // the list of verb senses 

nList // the list of noun senses 

 
 1 foreach line of training data 

 2 extract reln, vList, nList, cnt from data 

 3 contrib := cnt / (|vList| * |nList|) 

4  foreach vSns in vList 

5  foreach nSns in nList 

6  foreach vHyp Hypernym of vSns 

7  foreach nHyp Hypernym of nSns 

8  AddToFreq(reln, vHyp, nHyp, contrib) 

 9 CalcProbs 

 10 CalcPrefs 

 11 CalcAssocs 

12 OutputAssocs 

Fig. 7.11. Algorithm for calculating Selectional Associations from WordNet taxonomies 

 

   1 

SR(v) 
p(c|v) log 

p(c|v) 

 p(c) 
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Similarly, steps 6 and 7 select each of the possible verb-hypernym|noun-hypernym 

sense permutations (vHyp|nHyp) of the verb|noun senses selected by steps 4 and 5, as 

depicted by Figure 7.3.  

Step 8, the function AddToFreq, adds the calculated contribution contrib to a structure 

indexed on the given verb-sense|noun-sense pair for use in the posterior probability 

calculation, and also to another structure indexed on the noun-sense only, for the prior 

probability calculation. 

Finally, steps 9 to 11 use the accumulated contrib values calculated above in both 

structures to calculate the Probability, Selectional Preference, and Selectional 

Association values according to equations 1..4 above. 

The calculated Selectional Association values for each of the subject, direct-object, and 

indirect-object relations were written to separate files, using SGML markup for 

portability, and in the order of increasing verb id to facilitate searching on verb. A 

fragment of the direct-object relation file is presented in Fig. 7.12, and the markup tags 

used in Fig. 7.13. 

<p id=795711  sp=1.014891 > 
<a id=1740 cnt=21.759257 Ppre=0.088637 Ppost=0.111248 sa=0.024906 /a> 
<a id=2086 cnt=9.250474 Ppre=0.034328 Ppost=0.047295 sa =0.014933 /a> 
<a id=3731 cnt=8.074447 Ppre=0.033161 Ppost=0.041282 sa =0.008911 /a> 
<a id=4123 cnt=7.867814 Ppre=0.032458 Ppost=0.040226 sa =0.008504 /a> 
<a id=8019 cnt=0.684891 Ppre=0.001100 Ppost=0.003502 sa =0.003995 /a> 
… 
<a id=10972097 cnt=0.040000 Ppre=0.000022 Ppost=0.000205 sa =0.000445 /a> 
<a id=10972592 cnt=0.040000 Ppre=0.000004 Ppost=0.000205 sa =0.000785 /a> 
<a id=10978183 cnt=0.014286 Ppre=0.000015 Ppost=0.000073 sa =0.000114 /a> 
<a id=10980504 cnt=0.014286 Ppre=0.000089 Ppost=0.000073, sa =-0.000015 /a> 

</p> 
 

Fig. 7.12. Sample of SA calculation output for direct-object of verb drink (imbibe)  
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The tags used are as follows: 

p : preference structure 

id  : WordNet sense id (hereiam) 

sp : selectional preference of predicate 

cnt : the calculated frequency f(c|v) 

Ppre  : prior distribution probability p(c|v) 

Ppost : posterior distribution probability p(c|v) 

sa  : selectional association of predicate for argument) 

a  : argument 

Fig. 7.13. Tags used in markup of calculated SA output. 

7.2.5 The two training datasets 

The above describes the creation of a training dataset using the entire WordNet noun 

and verb hypernym taxonomies. The evaluation of Specialisation Classes in a WSD task 

will of course require an equivalent Selectional Association training dataset built around 

the abridged taxonomies, that is, taxonomies consisting only of SCs. This is 

accomplished by a small modification to the algorithm given in Fig. 7.11 in lines 6 and 

7, instead of iterating each hypernym of the given verb and noun sense, the algorithm 

iterates each specialisation class of those senses. The modified algorithm is shown in 

Figure 7.14: 

 1 foreach line of training data 

 2 extract cnt, reln, vList, nList from data 

 3 contrib := cnt / (|vList| * |nList|) 

4  foreach vSns in vList 

5  foreach nSns in nList 

6  foreach vSC SpecClass of vSns 

7  foreach nSC SpecClass of nSns 

8  AddToFreq(reln, vSC, nSC, contrib) 

9 CalcProbs 

10 CalcPrefs 

11 CalcAssocs 

12 OutputAssocs 

 

Fig. 7.14. Algorithm for calculating Selectional Associations from abridged WordNet 

taxonomies 
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7.3 Generating the Evaluation data 

The SemCor [FELL98] semantically-tagged corpus will provide the evaluation data; 

being already marked-up with WordNet senses SemCor provides a ‘gold standard’ for 

WSD task evaluations. Like the BNC, SemCor contains no structural information and 

so cannot be used to generate verb-sense|noun-sense pairs directly. 

The SUSANNE Corpus [SAMS95], like SemCor, is a freely available subset of the 

Brown Corpus, and has been manually marked-up for grammatical structure. As there is 

a 32-document overlap between SemCor and SUSANNE, it is possible to create a 

sense-tagged and grammatically marked-up corpus from this intersection. 

A01:0010.06 - AT The the [O[S[Nns:s. 
A01:0010.09 - NP1s Fulton Fulton [Nns. 
A01:0010.12 - NNL1cb County county .Nns] 
A01:0010.15 - JJ Grand grand . 
A01:0010.18 - NN1c Jury jury .Nns:s] 
A01:0010.21 - VVDv said say [Vd.Vd] 
A01:0010.24 - NPD1 Friday Friday [Nns:t.Nns:t] 
A01:0010.27 - AT1 an an [Fn:o[Ns:s. 
A01:0010.30 - NN1n investigation investigation . 
A01:0020.03 - IO of of [Po. 
A01:0020.06 - NP1t Atlanta Atlanta [Ns[G[Nns.Nns] 
A01:0020.09 - GG +<apos>s - .G] 
A01:0020.12 - JJ recent recent . 
A01:0020.15 - JJ primary primary . 
A01:0020.18 - NN1n election election .Ns]Po]Ns:s] 
A01:0020.21 - VVDv produced produce [Vd.Vd] 
A01:0020.24 - YIL <ldquo> - . 
A01:0020.27 - ATn +no no [Ns:o. 
A01:0020.30 - NN1u evidence evidence . 
A01:0020.33 - YIR +<rdquo> - . 
A01:0020.39 - CST that that [Fn. 
A01:0030.03 - DDy any any [Np:s. 
A01:0030.06 - NN2 irregularities irregularity .Np:s] 
A01:0030.09 - VVDv took take [Vd.Vd] 
A01:0030.12 - NNL1c place place [Ns:o.Ns:o]Fn]Ns:o]Fn:o]S] 

 

Fig 7.15. Fragment of the SUSANNE Corpus. 
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SUSANNE uses a flat, six field, one word per line format, an example being shown in 

Figure 7.15. Structural information is encoded in the sixth (parse) field, which includes 

logical and surface indicators for verb subject and direct and indirect objects. 

SemCor on the other hand expresses one sense per line, and uses SGML tags to identify 

line components such as word, lemma, PoS, sense etc. Figure 7.16 presents the SemCor 

representation of the sentence shown in 7.15. 

<s snum=1> 
<wf cmd=ignore pos=DT>The</wf> 
<wf cmd=done rdf=group pos=NNP lemma=group wnsn=1 lexsn=1:03:00:: 

pn=group>Fulton_County_Grand_Jury</wf> 
<wf cmd=done pos=VB lemma=say wnsn=1 lexsn=2:32:00::>said</wf> 
<wf cmd=done pos=NN lemma=friday wnsn=1 lexsn=1:28:00::>Friday</wf> 
<wf cmd=ignore pos=DT>an</wf> 
<wf cmd=done pos=NN lemma=investigation wnsn=1 lexsn=1:09:00::>investigation</wf> 
<wf cmd=ignore pos=IN>of</wf> 
<wf cmd=done pos=NN lemma=atlanta wnsn=1 lexsn=1:15:00::>Atlanta</wf> 
<wf cmd=ignore pos=POS>'s</wf> 
<wf cmd=done pos=JJ lemma=recent wnsn=2 lexsn=5:00:00:past:00>recent</wf> 
<wf cmd=done pos=NN lemma=primary_election wnsn=1 

lexsn=1:04:00::>primary_election</wf> 
<wf cmd=done pos=VB lemma=produce wnsn=4 lexsn=2:39:01::>produced</wf> 
<punc>``</punc> 
<wf cmd=ignore pos=DT>no</wf> 
<wf cmd=done pos=NN lemma=evidence wnsn=1 lexsn=1:09:00::>evidence</wf> 
<punc>''</punc> 
<wf cmd=ignore pos=IN>that</wf> 
<wf cmd=ignore pos=DT>any</wf> 
<wf cmd=done pos=NN lemma=irregularity wnsn=1 lexsn=1:04:00::>irregularities</wf> 
<wf cmd=done pos=VB lemma=take_place wnsn=1 lexsn=2:30:00::>took_place</wf> 
<punc>.</punc> 
</s> 

 

Fig 7.16 Fragment of SemCor 

As the addition of structural information to SemCor is more difficult than adding sense 

data to SUSANNE (achieved by simply adding fields), SUSANNE was augmented by 

senses drawn from SemCor. The sentence shown above is displayed in its final sense-

tagged form in Fig. 7.19, and also shows that the sense field for closed-class words is, in 

SUSANNE style, filled by a hyphen (unless it is an easily identified personal pronoun). 
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However, before attempting to sense-tag SUSANNE, the structural and representational 

differences between the two corpora must be considered. 

7.3.1 Unique representation of WordNet Sense Keys 

The word sense information of SemCor is encoded by the fields lemma and lexsn, which 

must be combined to form a WordNet Sense Key of the form lemma%lexsn. Thus the 

Sense Key of the following SemCor entry is irregularity%1:04:00. 

<wf cmd=done pos=NN lemma=irregularity wnsn=1 lexsn=1:04:00::>irregularities</wf> 

The WordNet API provides search functions to locate the WordNet entry identified by 

any Sense Key. To make location of WordNet entries faster, and to provide a more 

compact representation, we propose that each WordNet Sense Key be transformed into 

a Sense Identifier String (SIS) of form DB, where D is a single character drawn from 

{n,v,j,r} signifying the noun, verb, adjective or adverb (resp.) database to which the 

Sense Key points, and B the byte offset within that database at which the entry indexed 

by the Sense Key begins
3
, and referred to previously as the SnsID. Thus the Sense Key 

irregularity%1:04:00 becomes the SIS ‘n475542’. Such a representation has an advantage 

over Sense Keys when directly comparing senses of synonyms as it eliminates all traces 

of the surface form from the representation. For example the sense of irregularity 

pointed to by the Sense Key irregularity%1:04:00 is also pointed to by its synonym 

abnormality%1:04:00; the SIS identifies the senses as identical, whereas the WordNet 

Sense Keys do not. 

                                                
3
 The byte offset (WordNet hereiam field) is included as part of the WordNet synset structure as supplied 

by Princeton University and is commonly employed by researchers using WordNet to discriminate 

between synsets of homonyms. The byte offset is not transportable between different knowledge bases or 

even between different versions of WordNet. 
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7.3.2 Compounds 

SemCor represents compounds by concatenating the lemmas of the constituent words 

by use of the underscore character. Each SemCor compound has been assigned the most 

appropriate sense from WordNet. Thus SemCor presents one sense per line, as may be 

seen by reference to Figure 7.16, particularly the entry for the compound verb 

took_place. SUSANNE, on the other hand, presents one word per line, representing 

compounds by bracketing, for example the bracketing of ‘The Fulton County Grand 

Jury’ in Fig. 7.15. This presents a structural mismatch between the two corpora that 

must be resolved. 

Dealing with SemCor compounds is relatively simple: by splitting each SemCor 

compound into its constituent words and assigning the compound’s SIS to each 

constituent, a 1:1 corespondence between SemCor and SUSANNE is achieved, and the 

SemCor SIS may then be appended to the appropriate SUSANNE line. For 

completeness, an additional index field is added to each SUSANNE entry: a hyphen for 

closed-class words other than easily identifiable personal pronouns, a zero for simple 

words, and an incrementing number, beginning at one, for consecutive words from a 

SemCor compound, resulting in the structure shown in Fig. 7.17. An example of the 

final encoding is shown in Figure 7.19. 

A01:0030.03  -  DDy  any  any  [Np:s.  -  - 
A01:0030.06  -  NN2  irregularities  irregularity  .Np:s]  0  n475542 
A01:0030.09  -  VVDv  took  take  [Vd.Vd]  1  v235191 
A01:0030.12  -  NNL1c  place  place  [Ns:o.Ns:o]Fn]Ns:o]Fn:o]S]  2  v235191 

Fig. 7.17 SUSANNE corpus with appended compound-count and WordNet sense 

indicating fields 

7.3.3 An algorithm for appending sense indicators to SUSANNE 

The 33 overlapping documents were processed using the following algorithm: 
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For each SemCor document represented in SUSANNE 

Open the corresponding SUSANNE document 

For each line in SemCor document 

If the line expresses a closed-class word 

Set strLemma to the closed class word 

If the word is a singular pronoun 

Set strCompCnt to 0 

Set strSIS to the SIS of ‘Person’ 

Else If the word is a plural pronoun 

Set strCompCnt to 0 

Set strSIS to the SIS of ‘Group’ 

Else 

Set both strCompCnt and strSIS to “-“ 

SuzAppend(strLemma, strCompCnt, strSIS) 

Else 

Set strSIS to correspond to the SemCor Sense Key 

Set strCompCnt to “0” 

If word is not compound 

Set strLemma to the encoded lemma 

SuzAppend(strLemma, strCompCnt, strSIS) 

Else 

For each constituent word of the compound 

Increment strCompCnt 

Set strLemma to the current constituent word 

SuzAppend(strLemma, strCompCnt, strSIS) 

Fig. 7.18 Algorithm for appending WordNet sense information to SUSANNE 

The function SuzAppend(strLemma, strCompCnt, strSIS) seeks strLemma in the 

current SUSANNE file, starting at the current position and stepping down for up to five 

lines until either a match is found, in which case  strCompCnt and strSIS are 

appended, or not found, in which case they, along with the SUSANNE line number (i.e. 

the first SUSANNE field) of the current line are written to an error log. Limiting the 

search to five lines from the current position allows the stepping-over of the SUSANNE 

-specific mark-up lines, such as <bmajhd>, <emajhd>, <majbrk>, <minbrk>, whilst 

limiting the possibility of accidental matches caused by descending too far into the 

document. The error log, which contained around 200 entries after executing the above 
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algorithm, was used to guide a manual repair of the resulting sense tagged SUSANNE 

corpus. 

The result of the above is a structurally annotated SUSANNE corpus augmented by two 

additional fields that indicate compound constituency and WordNet sense, as shown in 

Figure 7.19 below: 

A01:0010.06  - AT The the [O[S[Nns:s. - - 
A01:0010.09  - NP1s Fulton Fulton [Nns. 1 n17954 
A01:0010.12  - NNL1cb County county .Nns] 2 n17954 
A01:0010.15  - JJ Grand grand . 3 n17954 
A01:0010.18  - NN1c Jury jury .Nns:s] 4 n17954 
A01:0010.21  - VVDv said say [Vd.Vd] 0 v682542 
A01:0010.24  - NPD1 Friday Friday [Nns:t.Nns:t] 0 n10883362 
A01:0010.27  - AT1 an an [Fn:o[Ns:s. - - 
A01:0010.30  - NN1n investigation investigation . 0 n4470360 
A01:0020.03  - IO of of [Po. - - 
A01:0020.06  - NP1t Atlanta Atlanta [Ns[G[Nns.Nns] 0 n6609298 
A01:0020.09  - GG +<apos>s - .G] - - 
A01:0020.12  - JJ recent recent . 0 j1666848 
A01:0020.15  - JJ primary primary . 1 n119389 
A01:0020.18  - NN1n election election .Ns]Po]Ns:s] 2 n119389 
A01:0020.21  - VVDv produced produce [Vd.Vd] 0 v1465746 
A01:0020.24  - YIL <ldquo> - . - - 
A01:0020.27  - ATn +no no [Ns:o. - - 
A01:0020.30  - NN1u evidence evidence . 0 n4485976 
A01:0020.33  - YIR +<rdquo> - . - - 
A01:0020.39  - CST that that [Fn. - - 
A01:0030.03  - DDy any any [Np:s. - - 
A01:0030.06  - NN2 irregularities irregularity .Np:s] 0 n475542 
A01:0030.09  - VVDv took take [Vd.Vd] 1 v235191 
A01:0030.12  - NNL1c place place [Ns:o.Ns:o]Fn]Ns:o]Fn:o]S] 2    v235191 

Fig. 7.19 Structure of the sense-tagged SUSANNE corpus. 

7.3.4 Selecting the test data 

Having created a sense-tagged version of the SUSANNE corpus, all that remains is to 

extract sense-relation data from it. This is accomplished by seeking logical subject tags 

(s), logical object tags (o), surface subject tags (S), surface object tags (O), logical 

indirect object tags (i), verb tags (V), and pronoun tags (p) within clauses identified by 

the clause tags: S, F, T, Z, L, A, and W. Passive verbs are marked by the tag ‘p’, which 



Chapter 7: Evaluation of Specialisation Classes in a Word Sense Disambiguation task 

 140

here is used to indicates that, should the verb’s arguments be marked as surface, then its 

arguments should switch roles, that is, the object become the subject and the subject the 

object. In total, 32658 relations were extracted from the sense-tagged SUSANNE 

corpus, consisting of 18397 verb-subject, 13870 verb-object, and 391 verb-indirect 

object relations. Each relation was written to its own file, again using the {relation, verb 

sense-list, noun sense-list} structure shown in Fig. 7.8.  

Following Resnik [RESN98], the evaluation will be performed on the verb-direct object 

relation, and a random sample of 331 items from the data extracted above was 

automatically selected, comprising approximately 13 items for each alphabetic character 

on the basis of the verb’s initial character. 

7.4 Comparing WSD Performance 

After construction of the WordNet and Abridged WordNet training datasets and the 

evaluation dataset as described above, the evaluation was performed as follows (using 

‘Z’ notation): 

Given: 

 [NLEMMA]     The set of WordNet noun lemmas 

 [VLEMMA]     The set of WordNet verb lemmas 

 [NCLASS]     The set of WordNet noun classes 

 [VCLASS]     The set of WordNet verb classes 

 

 assocSns: P(NCLASS x VCLASS)  associated noun/verb senses 

 

 nSensesOf: NLEMMA f PNCLASS Functions to return the senses of

 vSensesOf: VLEMMA f PVCLASS  the given noun/verb lemma 

  

nHypSenses: PNCLASS f PNCLASS Functions to return all subsuming  

vHypSenses: PVCLASS f PVCLASS classes of the noun/verb senses. 
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MaxSA:  (PNCLASS, PVCLASS) f assocSns Function to return the most 

strongly associated noun and verb 

classes. 

 

The nSensesOf function uses the findtheinfo_ds function of the WordNet API to return 

all WordNet noun senses associated with the supplied noun lemma; vSensesOf is 

similarly defined. 

The nHypSenses function is defined as follows, using the hypernym function H from 

Section 6.2. The vHypSenses function is similarly defined: 

 nc: PNCLASS    Senses of a noun lemma 

nHypSenses (nc) Í   

E h: NCLASS • A c: NCLASS;x: N Æc e nc, x ˘ 0 • h = H
x
(c) 

 

The MaxSA function is defined as follows, using a function FindSA(n,v) which looks 

up the Selectional Association value between the supplied arguments in the calculated 

selectional association dataset for a given relation: 

 nh: PNCLASS   Hypernym senses of a noun lemma 

 vh: PVCLASS   Hypernym senses of a verb lemma 

MaxSA(nh, vh) Í  

E(n: NCLASS, v: VCLASS) Æn e nh, v e vh • MAX(FindSA(n, v)) 

 
Sense disambiguating the lemmas from each line of evaluation data, within the context 

of a relation, is then a matter of applying the given functions as follows: 

 nl: NLEMMA    a noun lemma 

 vl: VLEMMA    a verb lemma 

 result: assocSns    set of most associated senses 

result = MaxSA(nHypSenses(nSensesOf (nl)), vHypSenses(vSensesOf(vl))) 
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7.4.1 Metrics 

The basic comparison was the accuracy to which the noun and verb senses given on 

each line of the evaluation data were reproduced by application of the MaxSA function 

to the noun and verb lemmas on that line, and this was made by the Recall/Precision 

measure. 

The second metric was the time taken to perform the evaluation, which is relevant to the 

need for real-time performance. Note that due to the large size of the SA data files 

calculated from the BNC (the verb-object SA data for the full WordNet hypernym 

taxonomy is over 631Mb, whilst the equivalent for the abridged WordNet is nearly 4 

Mb), the SA data could not be read into memory. Both datasets therefore remained as 

disk files, and retrieval of specific association data involved a binary search and 

consequent disk-access time penalty.  

The third metric was the number of comparisons made, that is, how many times the 

FindSA function was called. 

7.4.2 Results 

The results of applying the MaxSA function to the evaluation data for both the original 

WordNet SA values and the abridged WordNet SA values are presented in Table 7.1 

below. 

The table shows an across the board improvement in a WSD task, using the 

Specialisation Classes based abridged WordNet hypernym taxonomy over the original 

WordNet hypernym taxonomy, where Selectional Association is the disambiguation 

method; fewer noun and verb senses are recalled using SCs, but more of them are 

correct, verbs showing the greatest improvement. 
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Metric WordNet SA Abridged SA 

Nouns recalled 667 551 

Nouns correct 189 198 

Noun Recall  57.10% 59.82% 

Noun Precision 28.34% 35.93% 

Verbs recalled 474 356 

Verbs correct 92 114 

Verb Recall 27.79% 34.44% 

Verb Precision 19.41% 32.02% 

Time 20min 48s 2min 40s 

Comparisons 219,481 31,962 

Table 7.1. Results of Selectional Association-based WSD evaluation using original and 

abridged WordNet. Both WordNet and Abridged SA data stored on disk. 

 

 

The improvement in recall and precision is perhaps more interesting in the context of 

execution time and number of comparisons performed; the original WordNet taxonomy 

allows on average 0.27 disambiguations to be performed per second, whereas the 

abridged version manages 2.07. Similarly, 880.61 comparisons are made per 

disambiguation using the original taxonomies, whereas only 96.56 are required by the 

abridged version. Considering the size of the two SA datasets as well, 631Mb vs. 4Mb, 

the SC based disambiguator has produced better results by doing far less work with 

much less (but presumably higher quality) knowledge. This is an encouraging result as 

the reduction in workload brings the desired real-time processing ever closer.  

Correct Original WordNet SA Abridged WordNet SA 

Neither 104 101 

All Nouns 189 198 

All Verbs   92 114 

Noun + Verb   54   82 

Table 7.2. Breakdown of disambiguation results. 
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As Table 7.1 shows, the number of nouns and verbs correctly disambiguated are 

different using both datasets, meaning that in some cases, one is disambiguated 

correctly whilst the other is not. This information is presented in Table 7.2. 

 

The table shows very little difference in the number of entirely incorrect 

disambiguations between the original and abridged WordNet SA methods. However, 

the number of correct noun or verb disambiguations is higher for the abridged version, 

as is the number of disambiguations where both noun and verb are both correct.  

7.5 Conclusions 

The results of the WSD exercise show that Selectional Association between 

Specialisation Classes is able to more accurately model the association between a verb 

and an argument than an equivalent system built around the full set of WordNet senses. 

We propose that this can be explained by consideration of the selection mechanism: in 

general, disambiguations are made by identifying from the possible senses those that 

associate most strongly, those senses being identified by novel Sense Indicator Strings. 

When using the original taxonomies, the simple maximum SA value is found, that is, 

every permutation of possible senses is explored and the pair(s) with the highest overall 

SA value is/are returned. Using the abridged taxonomies however, the search is limited 

to a subset of the possible senses that have been previously identified as exhibiting the 

greatest degree of sense specialisation within their hypernym chain. By exploring 

associations between SCs only, the system is able to ignore the simple maximum and 

instead seek the maximum SA between highly sense-discriminatory senses. 
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From the evidence presented in Chapter 6, that SCs are able to both compactly represent 

the senses of the fine-grained WordNet and retain the sense distinctions of the lemmas 

contained therein, and from Chapter 7, that SCs are better able to model Selectional 

Association between a predicate and argument and greatly reduce the number of 

calculations necessary to disambiguate noun/verb pairs, it is concluded that a 

cognitively-oriented language understanding system with a requirement for real-time 

operation will benefit from the use of Specialisation Classes as the underlying sense-

representation. Note however that we do not consider a Specialisation Class to be the 

actual representation – what can 1595188 tell us about dogs? – but more of a surrogate 

or primary key that activates some representational structure.  
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8 The Grammar Element 

This chapter proposes that the standard, discrete CG syntactic categories are an 

impediment to incremental interpretation, and hence to the early resolution of sense and 

structural ambiguity needed to minimise the workload of the Construction Integration 

Model. Type-raising is shown not to be a viable solution, and the grammatical theories 

of Chapter 4 are revisited for inspiration, and we propose that the acquisition of 

grammar through configuration of an innate language facility provides those insights: A 

calculation of the syntactic category problem space size is presented and used in a 

comparison with the number of categories extracted from a configured system (English 

verbs). The comparison not only shows that that a very small proportion of the innate 

(unconfigured) category problem space is actually expressed in a configured system, but 

also that the configured categories exhibit structural inheritance. This finding is used to 

formulate a view of syntactic categories expressed as trees rather than distinct 

categories. Using this new ‘Inheritance Model of Syntactic Categories’ it is shown that 

incremental interpretation is possible in that partial semantic interpretations can be 

produced incrementally, and without modification to the overall CG derivation process. 

In order to achieve this, the description of semantic categories is extended to incorporate 

a notion of sense. 

  

Chapters 5 and 6 have presented two elements of the pre-processor needed to bridge the 

gap between printed (or electronic) text and the logical representation of that text 

required by the Construction Integration Model. These are a chunking model that allows 

parallel shifts into the parser, and compact sense representations in the form of abridged 



Chapter 8: The Grammar Element 

 147

WordNet noun and verb taxonomies. Parallel shifting supports the expression of 

alternative word groupings (compounds) within the parser, necessary because 

identification of the most appropriate grouping can require integration with additional 

knowledge supplied by long term memory, an activity performed by the Construction 

Integration Model proper. Sense representations are needed by the pre-processor 

because coherence is taken as the mechanism by which the Construction Integration 

Model builds truthful (in terms of reflecting real-world objects, actions and relations) 

interpretations of input text, and, as has been shown in Chapter 4, coherence is sought 

between senses, not surface forms. The description of the pre-processor to the CIM is 

not yet complete as the grammar necessary to drive the logical-form construction as 

performed by the chart parser has not yet been included.  

8.1 Lexicalised Grammars 

As CG is a lexicalised grammar, the surface form of a word is used as a key into a 

lexicon that associates surface forms with syntactic and semantic categories. After 

lookup, the categories are retrieved and shifted into the chart parser. CCGBank 

[HOCK03] is a wide-coverage set of automatically extracted syntactic categories that 

has been shown to perform well in evaluations [CLAR02], Table 8.1 shows the 

fragment of CCGBank associated with the surface-form ‘drink’, and presents categories 

associated with three parts-of-speech: common, singular or mass noun (NN), base form 

of verb (VB), and present tense, singular (not 3
rd

 person) verb (VBP). Parts-of-speech 

are expressed using the Penn-Treebank tag-set. 
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Term PoS Syntactic Category 
drink NN N 
drink VB (S[b]\NP)/NP 
drink VB (S[b]\NP)/PP 
drink VB S[b]\NP 
drink VBP (S[dcl]\NP)/NP 
drink VBP (S[dcl]\NP)/PP 
drink VBP S[dcl]\NP 

Table 8.1. Fragment of CCGBank showing PoS and Syntactic Categories for 

the word ‘drink’ 

 

When presented with the word ‘drink’ from a sentence, the seven categories from Table 

8.1 are shifted into the chart. The CKY algorithm then combines these categories with 

those shifted previously, along with those to come, through application of the 

combinatory rules to ideally arrive at a single derivation for the whole sentence. That 

derivation will therefore involve just one of the seven categories from Table 8.1.  

 

The process described above is reasonable and, given appropriate lexical and 

grammatical resources, readily implemented. However, as it produces sentential parses 

in a non-incremental fashion, as demonstrated by Figure 8.1, we question the accuracy 

of the procedure as an analogue of the cognitive process employed by humans when 

reading, for whom the experience of reading is incremental. 

8.2 Incremental Interpretation 

Intuitively, humans appear to process sentences incrementally, that is, as each word is 

read it is added to the interpretation of the sentence read so far, thereby building up an 

interpretation incrementally. Incremental processing of sentences has received some 

attention, for example Milward describes Dynamic Dependency Grammars as a means 



Chapter 8: The Grammar Element 

 149

to provide incremental parsing and interpretation for Lexicalised Dependency 

Grammars [MILW92], and Costa et al propose a recursive neural network, trained on a 

parsed corpus (Penn Treebank), to predict the correctness of partial syntactic structures 

as they are discovered in incremental fashion [COST01]. 

 

The CKY algorithm initially appears to follow the incremental interpretation intuition 

because words are shifted in to it starting with the first word of a sentence and ending 

with the last. However, it is easily demonstrated that the chart parser does not build 

interpretations incrementally by parsing the simple sentence shown in Figure 8.1. Note 

that the structure of the verbal category dictates that the verb ‘ate’ must first combine 

with its object ‘kippers’ - the last word of the sentence - before the first word ‘John’ 

S 

kippers 

 

NP 

ate 

 

(S\NP)/NP 

John 

 

NP 

S\NP 
< 

> 

Fig. 8.1. The parse of ‘John ate kippers’ does not proceed incrementally. 

S/NP 

S 

> 

kippers 

 

NP 

ate 

 

(S\NP)/NP 

John 

 

NP 

 

S/(S\NP) 
>B 

Fig. 8.2. Type-raising can force incremental parsing. 

>T 
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enters into any combination, resulting in a non-incremental parse. This is counter-

intuitive as it is not necessary for humans to read the word ‘kippers’ before 

understanding that ‘John ate’. 

 

Type-raising may be used to coerce incremental parsing, as shown in Figure 8.2. The 

type-raised category S/(S\NP) of ‘John’ combines with the verbal category (S\NP)/NP via 

the forward functional composition rule (>B) to give S/NP, which in turn combines with 

the NP category of ‘kippers’ and results in an incremental parse; the right-branching 

interpretation of Fig. 8.1 has been converted into a left-branching interpretation in Fig. 

8.2. Of course, to apply type-raising freely would result in all manner of new 

derivations in the chart, some desirable, other not, and ultimately would lead to 

overgeneration. A further argument against type-raising freely is that to do so would 

result in additional resource usage to support and evaluate the multitude of type-raised 

categories and their derivations, impacting on the memory/processing limitations of the 

human cognitive system.  

 

In the following sections we demonstrate that the Inside-Out theory of grammar 

acquisition, in particular the configuration of an innate language system to a local 

linguistic environment, provides insights into the problem of incremental interpretation 

with respect to syntactic categories  

8.3 Configuration 

In Section 4.7.4 it was shown by comparison of English and German transitive verbs 

that CG embodies the notion of configuration in its syntactic categories. Here we follow 
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the argument presented earlier, that the syntactic abilities of the innate language system 

must encompass all human languages, by proposing that the syntactic component of the 

innate language system be viewed as a problem space, and that configuration comprises 

the selection/activation of certain points within that space. Firstly, the degree of 

syntactic configuration necessary for any human language may be found by comparing 

the size of the innate problem space with the number of categories expressed by that 

language. 

8.3.1 Size of problem space 

The size of the syntactic category problem space may be calculated for complex 

categories composed of a number, a, of atomic categories by consideration of the 

components of a complex category: 

1. There are three atomic categories: NP, PP and S; 

2. There are two functor slashes ‘\’ and ‘/’; 

3. There are two brackets ‘(‘ and ‘)’; 

Given that the structure of a complex category may be recursively defined as: 

(α|β) where α and β are atomic or complex categories, 

and | a slash functor. 

The above definition states that a complex category always consists of two components, 

which may themselves be atomic of complex. Two components, separated by a slash, 

shall be referred to here as a binary bracketing. 

The calculation must take the following factors into consideration: 
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1. The number of atomic categories in any given complex category (henceforth the 

length); 

2. The number of binary bracketings of any category of given length; 

3. The number of categories of a given length that may be generated from the set of 

atomic categories; 

4. The number of variations of the bracketed string due to the slash operators. 

 

The number of binary bracketings of a string of length a is given by its Catalan 

Number, C(n), calculated as: 

 

 C(n)  =     where n = a -1 

 

Thus for strings of length 3, the Catalan Number is: 

 

     

i.e.  ((x x) x)  and  (x (x x)) 

 

Given that there are three atomic categories, the number of permutations of a atomic 

categories, P(a), may be calculated as: 

 P(a)  =  3
a
 

(2n)! 

(n+1)!n! 

C(2)  =    =  2 
(4)! 

3!(2)! 
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So for complex categories of length 3, the number of strings generated is: 

P(3)   =   3
3
   =   27 i.e. xxx yxx zxx 

   xxy yxy zxy 

     xxz yxz zxz 

   xyx yyx zyx 

     xyy yyy zyy 

     xyz yyz zyz 

     xzx yzx zzx 

     xzy yzy zzy 

     xzz yzz zzz 

 

Finally, as the slashes interleave with the atomic categories, there are a-1 slashes in a 

category of length a. As the ‘alphabet’ here consists of only two symbols, the number of 

category variations due to slashes, V(a), is calculated as: 

 V(a)  =  2
a-1

 

Again, for a category of length 3, the number of slashed categories generated is: 

V(3)  =  2
3-1

  = 2
2
         = 4  i.e.  //, /\, \/, \\ 

  giving  x/x/x, x/x\x, x\x/x, x\x\x, …  

The size of the language encompassing all complex categories of length a, L(a), that is, 

the size of the problem space, is given by the product of the Catalan number for a, the 

number of atomic category combinations for a, and the number of slash-variants for a: 

L(a) = C(a-1)  *  P(a)  *  V(a) 

Thus for strings of length 3, the size of the problem space is therefore: 

 L(a)  =  C(3-1)  *  3
3
  *  2

3-1
 

         =  2  *  27  * 4 

         =  216 
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Thus 216 unique bracketed categories are possible using any three of the three atomic 

categories and any two of the two slashes. 

8.3.2 Problem space size for given category lengths 

As a grammar is not limited to complex categories of any one length (CCGBank ranges 

from 2 to 48 atomic categories in any complex category), the total problem space, T(a),  

includes all categories up to and including a given length: 

 

  

The size of the problem space, that is, the total number of grammatical categories, for 

category lengths 1 to 8 are listed in Table 8.1: 

Category 

Length (a) 

C(a) P(a) V(a) L(a) T(a) 

1 1 3 1 3 3 

2 1 9 2 18 21 

3 2 27 4 216 237 

4 5 81 8 3240 3477 

5 14 243 16 54432 57909 
6 42 729 32 979776 1037685 
7 132 2187 64 18475776 19513461 
8 429 6561 128 360277632 379791093 

Table 8.1. Problem space size for categories of up to 8 atomic categories 

8.3.3 Problem space reduction through merging of N and NP 

In Section 5.5 an argument was presented to justify the merging of the N and NP 

categories, and it was reasoned that this would result in a reduction in the number of 

categories necessary to parse a language such as English. Using the above calculation, it 

is possible to show the degree to which the total problem space has been reduced. Table 

8.2 presents total problem space sizes for grammars using three and four atomic 

 

T(a) =    Σ   L(n) 
n=1 

a 
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categories for category lengths of 8 or less, the problem space reduces from 

approximately 3.7 billion to around 380 million categories. 

Category 

Length (a) 

T(a) 

3 atoms 

T(a)  

4 atoms 

1 3 4 

2 21 36 

3 237 548 

4 3477 10788 

5 57909 240164 
6 1037685 5745188 
7 19513461 144157220 
8 379791093 3742870052 

Table 8.2. Comparison of problem space sizes when using 3 and 4 atomic categories. 

8.3.4 Comparison of Innate and Configured syntactic problem space 

CCGBank (sections 2-21) provides the raw syntactic category data for the configured 

problem space. As the syntactic categories of CCGBank include the N and NP atomic 

categories, all instances of N were replaced by NP, thereby aligning the grammar with 

the three-atom system in use here. Additionally, all category features were eliminated 

for clarity, as they play no part in this argument. Finally, following [CLAR02], all 

categories with a frequency < 10 were ignored. Eliminating duplicate categories from 

the resultant set showed that only 155 unique syntactic classes were expressed, each of 

which comprised between 1 and 4 four atomic categories. 

The 155 categories of maximum length 4 occupy approximately 4.46% of the 3477 

(from Table 8.2) points in the innate problem space for categories of length 4 or less. 

These results show that only a small proportion of the problem space categories are 

actually needed in a basic description of the syntax of English. However, the results say 

nothing about why any particular category is selected over another. The driving force 

behind configuration is, according to the Principles and Parameters theory [CHOM81], 
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the external linguistic environment; exposure to certain categories in the environment 

leads to those categories being selected from the set of innate categories. This 

explanation is convenient, but still does not explain why any particular category is fit 

for inclusion in a grammar of a natural language. To answer this question, it is 

necessary to examine the selected categories themselves. 

8.3.5 Selection of syntactic categories for a grammar 

Two facts relevant to category selection are that: 

1. Languages can be described in terms of the order in which verbal arguments are 

presented relative to the verb: English is an SVO (subject-verb-object) language, 

in which the verb is placed after the subject and before the object, whereas 

German is an SOV language, placing the verb after the subject and object; 

2. Verbs can be described in terms of the number of arguments they take; 

Intransitive verbs take the subject only, Transitive a subject and direct-object, 

and Ditransitive a subject, direct-object and indirect object. The argument order 

of point 1 above is adhered to throughout for a given language. 

Both points are illustrated by consideration of some basic verbal categories for 

intransitive, transitive, ditransitive, and ditransitive-preposition categories: 

Intransitive:  S\NP   SV 

Transitive:  (S\NP)/NP  SVO 

Ditransitive:  ((S\NP)/NP)/NP SVO 

Ditransitive-PP: ((S\NP)/PP)/NP SVO 
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Shown this way, it is evident from the categories presented that the intransitive category 

is the leftmost constituent of the transitive category, itself the leftmost constituent of the 

ditransitive category, that is, the ditransitive form inherits the transitive form, which in 

turn inherits the intransitive form, which we shall refer to as the Inheritance Model of 

Syntactic Categories. It is therefore possible to represent left-branching categories such 

as these, not as discrete categories, but as a tree, as shown in Fig. 8.3. 

Although outside the remit of this work, we postulate that the inheritance of syntactic 

categories is relevant to the learning of syntax by reasoning that without inheritance, 

there is no regularity (other than by chance) between intransitive, transitive and 

ditransitive forms, leading to the situation where each is a random selection of a point in 

the problem space, thereby giving rise to sentences like the following within one 

language: 

John ate. 

Kippers ate John. 

Kippers John for breakfast ate. 

S\NP S\NP 

•/NP 

•/NP 

•/PP 

•/NP 

Fig. 8.3. Inheritance structure of intransitive, transitive and ditransitive verbal 

categories. •  signifies the inherited category. 

(S\NP)/PP (S\NP)/NP

((S\NP)/NP)/NP ((S\NP)/PP)/NP 
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Extracting syntactic information from a linguistic environment populated by sentences 

such as these would seem far more difficult than from an environment in which a 

regular structure is the norm; a pattern can be extracted only if a pattern is there to 

extract. 

8.3.6 Evidence from CCGBank for configuration as syntactic inheritance  

If inheritance is an aspect of configuration, then it should be evident in a configured 

system such as the syntactic categories of English. CCGBank again provides the raw 

data from which evidence of configuration may be sought: Working with verbal data 

identified by the VB, VBD, VBN, VBP and VBZ parts of speech, all category 

occurrences having a frequency < 10 were eliminated, resulting in the 31 unique verbal 

syntactic categories shown, with their frequency of occurrence, in Table 8.3. 

Category Freq Category Freq 
(S\NP)/(S\NP) 27285 ((S\NP)/(S\NP))/PP 81 
(S\NP)/NP 22798 (S\(S\NP))/NP 59 
S\NP 8924 S/NP 56 
(S\NP)/S 7225 (S/S)/NP 49 
(S\NP)/PP 3817 (S/(S\NP))/NP 44 
(S\S)\NP 1610 ((S\NP)/NP)/(S\NP) 43 
(S\S)/NP 1384 (S\PP)/NP 41 
((S\NP)/PP)/NP 1223 NP 37 
((S\NP)/(S\NP))/NP 1179 ((S\NP)/PP)/(S\NP) 34 
NP/NP 780 ((S\NP)/(NP\NP))/NP 31 
((S\NP)/NP)/NP 364 (NP/NP)\NP 29 
((S\NP)\(S\NP))/PP 190 (((S\NP)/PP)/PP)/NP 25 
((S\NP)/(S\NP))/(S\NP) 134 ((S\S)\NP)/NP 18 
((S\NP)/S)/(S\NP) 113 ((S\NP)\(S\NP))/NP 13 
((S\NP)/S)/NP 101 (((S\NP)/S)/(S\NP))/NP 11 
(NP\NP)/PP 82   

Table 8.3. Verbal syntactic categories extracted from CCGBank parts 2-21. 

The tabled categories can be represented by two trees, one rooted in S, the other in NP. 

For clarity, the tree rooted in S is split into two subtrees, one for the initial complex 

category (S|NP) and the other for the remaining categories (Figures 8.3b and 8.3c).
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Figures 8.3a to 8.3c show that the verbal syntactic categories extracted from CCGBank 

do indeed form tree structures, each child category inheriting its left-hand category from 

its parent. We therefore propose that, given the evidence that only 31 categories in a 

total space of 57909 categories (from Table 8.2) are present in the configured verbal 

syntactic categories as defined by CCGBank, and that those 31 categories are related in 

structure through inheritance of the parent category, a configured verbal category space 

•\NP •/NP 

•\NP •/PP 

NP 

Fig. 8.3a. Verbal syntactic categories rooted in NP. 

S 

•/NP 

•\S 

•\NP •/NP •/NP 

•/S 

•/NP 

•/(S\NP) 

•/NP 

•\(S\

•/NP 

•\PP 

Fig. 8.3b. Verbal categories rooted in S but not (S|NP) 
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is a subset of that space in which the points are related structurally and from which the 

discrete syntactic categories as traditionally used by CG are derived. 

Representing syntactic categories as trees has the effect of exposing the inner structure 

of categories, making it available to the parser, and having implications for incremental 

interpretation. 

8.4 Incremental interpretation using a tree-representation of a 

configured syntax 

In Section 8.2 it was shown that to parse the sentence ‘John ate kippers’ incrementally, 

it was necessary to introduce type-raising (Figs. 8.1 and 8.2). In that example, only the 

•\NP 

•/NP 

•/(NP\NP) 

•/(S\NP) •/NP 

•/NP 

•/PP 

•/PP 

•/(S\NP) 

•/NP 

•/NP 

•/S 

•/NP 

•/(S\NP) •/NP 

•/(S\NP) 

•/NP •/PP 

•/(S\NP) 

•\(S\NP) 

•/NP •/PP 

S 

•/NP 

Fig. 8.3c. Verbal categories rooted in S 
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correct verbal category (S\NP)/NP was shown for brevity, however, it is understood that 

all verbal categories (such as those of Table 8.3) would be identified by lexicon lookup 

of the verb’s surface form, and would be shifted into the chart with the verb. 

For simplicity of argument, the verbal syntactic categories to be used here will consist 

of the basic intransitive, transitive and ditransitive categories described by the tree in 

Figure 8.3. The first derivation of the sentence, involving the words ‘John’ and ‘ate’ are 

presented in Figure 8.4, and shows that there is no difference in the result; only NP and 

S\NP can combine through backward functional application to yield the category S. The 

difference, however, is in what this derivation means. As the (S\NP) root of the verb 

syntactic category tree has successfully combined with NP, the implication is that all 

descendants of the root have the potential to combine with NP, once all right-hand 

categories have been stripped-away through future combinations; involving the now 

exposed innermost (left embedded) category of the distinct S\NP, (S\NP)/NP, 

((S\NP)/NP)/NP and ((S\NP)/PP)/NP categories has licensed those categories for use in 

future combinations.  

John ate kippers 

 NP NP S\NP 

      •/NP 

            •/NP 

      •/PP 

            •/NP 

Fig. 8.4. Lexicalised shifts into the parser, verbal categories 

in tree representation. 

 

<:S 
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The rule-to-rule hypothesis [GAZD85] maintains that each syntactic rule is associated 

with a semantic rule. Thus the licensing of syntactic categories will be reflected in the 

semantic categories; if the syntax can be licensed then so can the semantics. The 

intuition behind semantic licensing is that the sense of an intransitive verb is the same as 

that of its transitive and ditransitive forms; drinking is drinking, regardless of what is 

being drunk and why. If the intransitive sense of a verb can be found, or at least the 

possible senses reduced, then the sense (or senses) will be applicable in the transitive 

and ditransitive cases. The relevance of licensed syntactic categories will become 

apparent when they are used in conjunction with the parallel-shifting Chunker of 

Chapter 5 and the Specialisation Classes of Chapter 6, that is, when all elements are 

integrated into a pre-processor to the Construction Integration Model. A worked 

example is given in Chapter 9. 

8.5 Indicating Sense in Semantic Categories 

So far, only the syntactic elements of the grammar have been discussed. However, it is 

necessary to incorporate a notion of sense to the semantic categories that partner the 

syntactic ones. This is easily accomplished by assigning a list of appropriate senses to 

each instantiated variable in a semantic category as follows: 

 

A typical semantic category is initially a template of the form λy.λx.*(y, x), where * 

takes the place of the predicate, and x and y are the argument variables. The predicate is 

assigned its value by the lexicon as each input term is looked-up, so given the word 

‘drink’, the lexicon returns the semantic category λy.λx.drink’(y, x). However, the 
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lexicon also assigns possible senses to the predicate, requiring a list containing those 

senses to be associated with that predicate. We propose the following notation: 

λy.λx.drink’{#1, #2, … ,#n}(y, x)  where #1 etc are sense indicators. 

In the work to follow the list of senses will comprise Specialisation Classes, and as the 

list may be lengthy, it will be abbreviated to {SC}, hence: 

λy.λx.drink’{SC}(y, x) 

8.6 A criticism of the Inheritance Model 

The Inheritance Model presented here is applicable only to a special class of syntactic 

categories, those that are left branching and rooted in a compound with a single 

backward slash, that is, from the series: 

 a\b,  (a\b)/c,  ((a\b)/c)/d,  (((a\b)/c)/d)/e, … 

In each element of the series, a\b is the leftmost embedded category, and all slashes, 

other than the one in a\b, are forward slashes unless they are embedded in their own 

complex category such as: 

 ((S\NP)/(S\NP))/NP 

The category above still has the form (a\b)/c, the bracketing ensuring the overall 

structure is correct.  

Examining the categories given in Table 8.3, it can be seen that of the 31 presented, 20 

are of this form (64.5%), including 8 of the 10 most frequently used CCGBank verbal 

categories, suggesting that the inheritance model will be applicable more times than it is 

not, however, the relevance of inheritance to categories from outside the given series 
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will not be discussed here as this thesis intends to present a general framework for 

future work, not a fully detailed and implemented system. 

8.7 Conclusions 

Recognising that incremental interpretation is hampered by the structure of syntactic 

categories, this chapter has proposed that semantic categories occupy points in a 

problem space of all possible categories. A method of calculating the size of that 

problem space for all categories comprising up to a given number of atomic categories 

is presented and used to compare this to the number of actual verbal categories used in 

English (as extracted from CCGBank). It was found that very few of the available 

categories were actually used. Furthermore, in examining the structure of the extracted 

categories it was found that they are closely related through inheritance. Applying this 

to the configurational theories of the Inside-Out theorists, it was proposed that 

configuration of an innate grammar system consists of selection of related categories 

expressed in the problem space. This proposal was supported firstly by showing that 

very few syntactic categories are present in a configured grammar (that is, the verbal 

categories extracted from CCGBank), and secondly that the syntactic categories of a 

configured grammar are related structurally, each category inheriting its parent in its 

entirety. It was also shown that this ‘Inheritance Model of Syntactic Categories’ allows 

left-embedded rightward-looking categories to be accessed early and used in 

combinations that promote incremental parsing, thereby addressing the inhibitory nature 

of the standard syntactic category forms to incremental processing. However, there is 

some question as to whether this technique is generally applicable; not all categories are 

of the correct form, although they are in the minority. Standard CG semantic categories 

have no mechanism whereby sense may be expressed, but as has been shown in Chapter 
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4, sense is instrumental in the determination of correct grammatical structure. To 

address this, a proposal for an extended CG semantic category structure able to 

accommodate sense indicators was presented. 
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9 Combining the Elements 

Chapters 5, 6 and 8 present the individual (but interoperating) elements of the proposed 

CIM pre-processor. This chapter unites those elements and presents a walk-through of 

the processes as they parse a sentence. Like the CIM, the pre-processor is inspired by 

psychological evidence, and it is proposed that a system such as this should therefore 

exhibit similar properties to a real psychological/cognitive language processor. The 

Garden Path effect is selected as a suitable property and a parallel pair of garden 

path/non-garden path sentences is used to show the unified elements of the pre-

processor perform in accordance with expectation. The results also show that 

incremental interpretations are built without interfering with the CG derivation process 

or invoking the criticisms levelled at other approaches to incremental interpretation, and 

that a correctly grammatically structured derivation results, even when parallel shifts are 

involved.  

The derivation is also shown to be sense tagged with Specialisation Classes that give an 

overall impression of the sense of the sentence. The process of selecting senses from the 

initial set of Specialisation Classes assigned to each term involves plausibility testing, 

that is, testing the senses for coherence with a world model, simulated here by 

Selectional Association values. Here then is the evidence that the Construction 

Integration Model is involved in the translation of text into a logical representation, 

coherence determination being a component of the CIM (tacitly referred to in point 3 of 

the ‘Construction’ phase of the model – Section 3.3). 
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A pre-processor to the Construction Integration Model that is built using elements 

inspired by theories and evidence concerning the cognitive functions of the human brain 

might reasonably be expected to exhibit similar properties to its human counterpart. To 

study this aspect of the pre-processor elements, a Garden Path sentence shall be 

processed; the ability of such sentences to induce parse errors in human readers, as 

discussed in Chapter 5, is an effect that should be reproducible by an analogue of the 

human system. 

The sentence pairs (5) and (6) of Chapter 5, reproduced below as (1) and (2), shall be 

used to evaluate the performance of the pre-processor elements. 

The doctor sent for the patient arrived. (1) 

The flowers sent for the patient arrived. (2) 

9.1 Standard CG parse of the Garden Path Sentences 

Before proceeding with the evaluation, the standard CG parse of sentences (1) and (2) 

are presented below as (3) and (5): 

 

 

S: A’(SF’(P’, D’)) 

< * 

arrived 
 

S\S:λx.A’(x) 

the patient 
 

NP: P’ 

sent_for 
 

(S\NP)/NP: 

λy.λx.SF’(y, x) 

The doctor 
 

NP: D’ 

S: SF’(P’, D’) 
< 

S\NP: λx.SF’(P’, x) 

> 
(3) 

The doctor sent for the patient arrived. 
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As discussed in Section 5.2.3, the transitive constituent representing a doctor requesting 

a patient appears correct. However, at the disambiguating term ‘arrived’ a parse failure 

occurs and an alternative parse must be sought, resulting in the parse shown as 

derivation (4). 

Sentence (2) is not a Garden Path, the sense of ‘flowers’ as plants being incompatible 

with the required animate subject sense of the verb ‘send_for’. The sentence therefore 

parses without failure, as shown by derivation (5), which, apart from the word ‘flowers’ 

is identical to (4). 

< 
S\NP: .λp.S’(P’,A’(p),(ana’ x)) 

arrived 
 

S\S:λx.A’(x) 

the patient 
 

NP: P’ 

for 
 

PP/NP:λx.x 

sent 
 

(S\NP)/PP: 

λz.λy.S’(z,y,(ana’ x)) 

The doctor 
 

NP: D’ 

PP: P’ 
> 

S\NP: .λy.S’(P’,y,(ana’ x)) 

> 

<B 

S: .S’(P’,A’(D’),(ana’ x)) 

(4) 

< 
S\NP: .λp.S’(P’,A’(p),(ana’ x)) 

arrived 
 

S\S:λx.A’(x) 

the patient 
 

NP: P’ 

for 
 

PP/NP:λx.x 

sent 
 

(S\NP)/PP: 

λz.λy.S’(z,y,(ana’ x)) 

The flowers 
 

NP: F’ 

PPio: P’ 
> 

S\NP: .λy.S’(P’,y,(ana’ x)) 

> 

<B 

S: .S’(P’,A’(F’),(ana’ x)) 

(5) 

The flowers sent for the patient arrived. 
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9.2 Parsing using the pre-processor 

For comparative and explanatory purposes, the proposed elements of a pre-processor to 

the CIM shall now be used in concert to parse the Garden Path sentence ‘the doctor sent 

for the patient arrived’.  

9.2.1 The action of the Chunker 

The terms of the sentence are streamed into the Chunker which identifies the potential 

compound terms within the sentence, and outputs all possible grouping permutations of 

adjacent terms as items to be shifted into the parser. With reference to Figures 9.1 and 

9.2, the Chunker firstly identifies the noun phrase ‘the doctor’. Following this, two 

parallel elements comprising the two individual elements ‘sent’ and ‘for’, and the 

compound verb ‘sent_for’ are identified. Next, another noun phrase ‘the patient’ is 

found, followed by the single term ‘arrived’. During this process, extents based on the 

individual terms’ indices (Fig. 9.1) are assigned to the Chunker-identified terms (Fig. 

9.2). 

Firstly, the space-delimited terms are indexed: 

Fig. 9.1. Sentence with term indices. 

The Chunker then identifies the chunks to be shifted, adding extents: 

Sentence: The doctor sent for the patient arrived. 

Term Index :   1        2       3     4    5      6          7  

sent 

(3) 

for 

(4) 

sent_for 

(3-4) 

the patient 

(5-6) 

The doctor 

(1-2) 

arrived 

(7) 

Fig. 9.2. Identified chunks with extents. 
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9.2.2 Specialisation Class assignment 

The possible senses of identified chunk heads are identified via the lexicon as follows: 

Sense # Doctor Sent Sent_for Patient Arrived 

1 Physician Cause to 

go 

Request Person requiring 

medical care 

Reach 

destination 

2 Theologian Transmit   Succeed 

3 Role in game Mail    

4 A Ph.D Transport    

5  Posting    

6  Transfer    

7  Commit to 

institution 

   

8  Broadcast    

Table 9.1. WordNet senses of sentence words. 

Specialisation Classes are assigned on the basis of the possible senses according to the 

procedure presented in Chapter 6: 

Sense # Doctor Sent Sent_for Patient Arrived 

1  Person Move Order Person Get 

2 Person Move   Succeed 

3 Diversion Move    

4 Person Move    

5  Move    

6  Move    

7  Transfer    

8  Tell    

Table 9.2. Specialisation Classes assigned to sentence words. 

9.2.3 Category Assignment 

Along with Senses and Specialisation Classes, the lexicon also supplies the possible 

syntactic and semantic categories for each word. For clarity of argument, a restricted set 

of categories will be used here: 

Noun:  NP: * 

Preposition: PP/NP: λx.x 
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Verb:  S\NP: λx.*(x) 

   (S\NP)/NP: λy.λx.*(y, x)  

   (S\NP)/NP: λz.λy.*(z,y,(ana’ x)) 

   (S\NP)/PP: λy.λx.*(y, x)  

   (S\NP)/PP: λz.λy.*(z,y,(ana’ x)) 

   S\S: λx.*(x) 

With reference to Chapter 8, the verbal categories are expressed by the following tree: 

9.2.4 Shifting into the chart 

The sentence has now been prepared for shifting into the parser; chunks have been 

identified and assigned extents, categories and potential senses. The first chunk to be 

shifted is ‘The doctor’, the chunk comprising the categories, extent and list of SCs: 

Next, a parallel shift is necessary to accommodate the two paths corresponding to ‘sent 

for’ and ‘sent_for’. Both parallel elements also include the categories, Specialisation 

Class list and extent. 

The doctor 

NP:D’{SC} 

Extent: 1-2 

 

Fig. 9.4. Initial shift into the chart contains the syntactic and 

semantic categories of the chunk words, plus the word’s 

Specialisation Class list. 

S 

•\S •\NP 

•/PP 
(S\NP)/PP: 

λz.λy.*(z,y,(ana’ x)) 

λx.λy.*(x,y) 

(S\NP): 

λx.*(x) 
S\S:

λx.*( x)

Fig. 9.3. Verbal category tree. 

λy.*(y,(ana’ x)) 

•/NP 
(S\NP)/NP:

λz.λy.*(z,y,(ana’ x))

λx.λy.*(x,y)
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9.3 The initial combination 

With the first two cells of the chart populated, the initial combination can be made. As 

column 2 has two dimensions, one for ‘sent’ and the other for ‘sent_for’, two 

combinations are necessary, although as the same categories have been applied to both 

verb forms, the categorial combinations will be the same. 

The only derivations possible using the verbal categories listed above involve backward 

functional application between the noun and verb: 

 

 

Fig. 9.6. The first derivations. Verbal predicate V’ refers to either 

‘send’ or ‘send_for’. 

NP:D’{SC} S\NP: λx.V’{SC}(x) 

 

S: V’{SC} (D’{SC}) 
< 

NP:D’{SC} S\NP: λy.V’{SC}(y,(ana’ x)) 

 

S: V’{SC} (D’{SC},(ana’ x)) 
< 

Fig. 9.5. Chart state after one shift and one parallel shift. 

The doctor 

NP:D’{SC} 

Extent: 1-2 

S\NP:λx.S’{SC}(x) 

S\NP:λy.S’{SC}(y,(ana’ x)) 

(S\NP)/NP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/NP:λx.λy.S’{SC}(x,y) 

(S\NP)/PP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/PP:λx.λy.S’{SC}(x,y) 

Extent: 3-4 

sent_for 

sent 

S\NP:λx.S’{SC}(x) 

S\NP:λy.S’{SC}(y,(ana’ x)) 

(S\NP)/NP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/NP:λx.λy.S’{SC}(x,y) 

(S\NP)/PP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/PP:λx.λy.S’{SC}(x,y) 

Extent: 3-3 
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Although as has been seen in derivations (3), (4) and (5) of Section 9.1, this derivation 

plays no part in the final parse of the sentence; it does however license those categories 

in which (S\NP) is left-embedded. The effect of licensing, that of promoting word sense 

disambiguation, is demonstrated below.  

9.3.1 Licensing promotes sense-disambiguation. 

The combinations above produced the semantic interpretations sent’{SC}(doctor’{SC}) 

and sent_for’{SC}(doctor’{SC}) for the cases where ‘doctor’ is the subject, and 

sent’{SC}(doctor’{SC},(ana’ x)) and sent_for’{SC}(doctor’{SC},(ana’ x)) for the cases 

where the subject is unspecified and ‘doctor’ is the direct object. Each of these 

propositions is available for plausibility testing by comparing their possible senses 

(specified by the list {SC}) with real-world knowledge.  

Plausibility testing, or coherence determination, at this point is important in terms of 

this thesis as, in a full discourse comprehension system, it is the Construction 

Integration Model that ‘performs’ the tests by matching input propositions against those 

in working memory and/or long-term memory either directly or through inference 

[KINT78]. As it is reasonable to expect that there is only one plausibility checking 

mechanism for linguistic information, it follows that this mechanism is used by the 

Construction Integration Model and the proposed pre-processor, thereby providing 

evidence that elements of the CIM are used in the pre-processor. 

 

World-scale knowledge bases are currently not available for use in this work, however it 

is possible to simulate a suitable knowledge base for the purposes of this thesis. In 

Chapter 7, Selectional Association as a method of Word Sense Disambiguation was 
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used to assess the performance of Specialisation Classes. The Selectional Association 

data will be used here to determine the semantic fit of predicates and their arguments in 

the propositions created above, that is, to simulate the plausibility testing performed by 

the CIM (point 3 of the ‘Construction’ phase - Section 3.3)  

 

Taking sent’{SC}(doctor’) first, the Selectional Association values for verbs and their 

objects were calculated for all permutations of the associated predicate and argument 

Specialisation Classes, the values shown in Table 9.3. The table shows the strongest 

association is between ‘move’ and ‘person’, which includes all senses of ‘doctor’ except 

‘diversion’, and all senses of ‘send’ except ‘commit to an institution’ and ‘broadcast’ 

(i.e. the senses having nothing to do with moving). 

SC move transfer tell 

adult    

person 0.060  0.0218 

religionist    

diversion    

intellectual    

Table 9.3. Selectional Association values for all SV Specialisation Classes of ‘doctor’ 

and ‘sent’. Empty cells indicate no association. 

 

Similarly, the Selectional Associations values for sent_for’{SC}(doctor’{SC}) were 

calculated: 

SC order 

adult  

person 0.068 

religionist  

diversion  

intellectual  

Table 9.4. Selectional Association values for all SV Specialisation Classes of ‘doctor’ 

and ‘sent_for’. 
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Here, the strongest (and only) association is between ‘person’ and ‘order’, and as the 

association value is higher than that obtained in Table 9.3 for the ‘sent’ form of the 

verb, ‘send_for’ is currently the preferred interpretation, that is, sent_for’{SC}(doctor’) 

is the most plausible proposition. 

 

The Selectional Association values where the noun ‘the doctor’ is taken as the direct-

object of either verb form were similarly calculated, the result shown in Tables 9.5 and 

9.6. 

SC move transfer tell 

adult  0.000    

person 0.010  0.005 

religionist    

diversion    

intellectual    

Table 9.5. Selectional Association values for all VO Specialisation Classes of ‘doctor’ 

and ‘sent’. 

 

SC order 

adult  

person 0.041 

religionist  

diversion  

intellectual  

Table 9.6. Selectional Association values for all VO Specialisation Classes of ‘doctor’ 

and ‘sent_for’. 

 

 

Of these results, the association between ‘order’ and ‘person’, that is, send_for’ and 

‘doctor’, is the highest. However, it does not beat the value obtained for ‘doctor’ as the 

subject of the verb ‘sent_for’ (Table 9.4), and so the proposition sent_for’{SC}(doctor’), 

derived from the categories S\NP: λx.V’{SC}(x) is selected as the most plausible. This 

has two effects: firstly, the categories where ‘doctor’ is the direct-object of the verb (i.e. 
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S\NP:λy.V’{SC}(y,(ana’ x)) ) can be deactivated, removing them from further 

consideration, and secondly, the list of Specialisation Classes associated with the 

selected categories can be modified such that the verbal SC list contains only ‘order’, 

and the nominal SC list just ‘person’. The licensing of categories, made possible 

through exposure of the left-embedded (S\NP), permits this information to be 

The doctor 

NP:D’{SC} 

Extent: 1-2 

S\NP:λx.S’{SC}(x) 

S\NP:λy.S’{SC}(y,(ana’ x)) 

(S\NP)/NP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/NP:λx.λy.S’{SC}(x,y) 

(S\NP)/PP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/PP:λx.λy.S’{SC}(x,y) 

Extent: 3-4 

sent_for 

sent 

S\NP:λx.S’{SC}(x) 

S\NP:λy.S’{SC}(y,(ana’ x)) 

(S\NP)/NP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/NP:λx.λy.S’{SC}(x,y) 

(S\NP)/PP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/PP:λx.λy.S’{SC}(x,y) 

Extent: 3-3 

sent_for’(doctor’) 

S:SF’{order}(doctor’{person}) 

Extent: 1-4 

Fig. 9.7. Chart state after first combination. Senses have been identified 

and an entire parallel path has been deactivated. 

Deactivated column 

Deactivated category 

within active column 

Parallel 

columns 
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propagated through future combinations. The state of the chart after this step is shown 

in Fig. 9.7, and shows that an interpretation,  SF’{order}(doctor’{person}), has been 

constructed. 

9.4 The second combination 

The second combination requires ‘the patient’ to be shifted into the chart. Figure 9.8 

depicts the chart state after the shift. For clarity, the deactivated components are not 

shown. 

The only possible combination is between the categories 

(S\NP)/NP:λx.λy.SF’{order}(x,y) and NP:P’{person}, resulting in 

S\NP:λy.SF’{order}(patient{person},y). Table 9.6 shows that ‘person’ is a suitable direct 

object argument class for the verb ‘send_for’, and so this derivation is plausible. The 

chart state shown in Figure 9.9 shows the result after completing all derivations 

following this shift.  

Fig. 9.8. Chart state after third shift, showing only active columns. 

The doctor 

NP:D’{person} 

Extent: 1-2 

S\NP:λx.SF’{order}(x) 

(S\NP)/NP:λx.λy.SF’{order}(x,y) 

 (S\NP)/PP:λx.λy.SF’{order}(x,y) 

Extent: 3-4 

sent_for 

sent_for’(doctor’) 

S:SF’{order}(doctor’{person}) 

Extent: 1-4 

the patient 

NP:P’{person} 

Extent: 5-6 
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Because of the inheritance structure of the syntactic categories, it is possible to build the 

semantic interpretations, shown in emboldened boxes, in an incremental fashion: the 

construction of sent_for’{order}(patient’{person},doctor’{person}) is a direct descendant of  

sent_for’{order}(doctor’{person}). The derivation however follows the standard right-

branching approach of combining the direct-object with the verb, combining that 

derivation with the subject. 

9.4.1 The parse failure 

On attempting to combine ‘arrived’ with the derivation of ‘the doctor sent_for the 

patient’, a parse failure results; although the syntactic categories can combine, as shown 

in derivation (3), the semantic categories fail as it makes no sense to say that ‘the act of 

sending_for something’ has arrived. As we have not yet extracted Selectional 

Fig. 9.9. Chart state after third shift, showing all derivations, including 

complete interpretations in emboldened chart cells. 

the patient 

NP:P’{person} 

Extent: 5-6 

The doctor 

NP:D’{person} 

Extent: 1-2 

S\NP:λx.SF’{order}(x) 

(S\NP)/NP:λx.λy.SF’{order}(x,y) 

 (S\NP)/PP:λx.λy.SF’{order}(x,y) 

Extent: 3-4 

sent_for 

sent_for’(doctor’) 

S:SF’{order}(D’{person}) 

Extent: 1-4 

sent_for’(patient’,_) 

S\NP:λy.SF’{order}(P’{order},y)

Extent: 3-6 

sent_for’(patient’, doctor’) 

S:SF’{order}(P’{person},D’{person}) 

Extent: 1-6 
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Association data for verbs taking verbs as arguments, we cannot demonstrate the failure 

here and must fall back on our intuitions. 

 

Having recognised a parse failure, we reactivate the chart elements previously 

deactivated after selection of the most plausible parallel path, as described in Chapter 5. 

The next most plausible interpretation on the basis of Selectional Association is 

presented in Table 9.3, corresponding to the ‘send’ version of the verb with ‘doctor’ 

once again as the subject. However, this parse will fail semantically as well – the failure 

is caused by the inappropriate attachment of the verb ‘arrived’ to the sentence ‘the 

doctor sent for the patient’. The same is true of the second repair attempt, which selects 

‘doctor’ as the direct object of the verb ‘sent_for’ on the basis of its Selectional 

Association Value being the next plausible, having a SA value of 0.041 (Table 9.6). 

 

The 

doctor 

sent for the patient arrived 

NP:D’{SC} S\NP:λy.S’{SC}(y,(ana’x)) 

 

(S\NP)/PP:λz.λy.S’{SC}(z,y,(ana’ x)) 

PP/NP:λx.x NP:P’{person} S\S:λx.A’{SC} (x) 

S:S’{move}(D’{person},(ana’ x)) PP:P’{person}  

 S\NP:λy.S’{move}(P{person}’,y{person?},(ana’ x))  

 S\NP:λy.S{move}’(P’{person},A’{get}(y{person?}),(ana’ x)) 

S:S{move}’(P’{person},A’{get} (D’{person}),(ana’ x)) 

Fig. 9.10. Successful chart parse of ‘the doctor sent for the patient arrived’. Note that the initial 

derivation from ‘The doctor’ and ‘sent’ is not involved in any additional derivations, 

but can be used to predict that the sense of lambda-variable y of ‘send’ will be 

PERSON. This is indicated by the sense-tag,{PERSON?}.  

  

<
 

< 

< > 

> 

<B 
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The third repair attempt is successful; having the next highest Selectional Association 

value of 0.010 (Table 9.5), ‘doctor’ is selected as the direct object of the verb ‘send’. 

The full chart parse is shown in Figure 9.10 and shows all participating categories and 

derivations. ‘Arrive’ has been assigned the sense ‘get’ (i.e. arrive at destination) on the 

basis of the Selectional Association between itself and ‘doctor{person}‘ as its subject. 

Although the sentence is not fully sense disambiguated, it does carry sense indicators in 

the form of Specialisation Classes, which have been instrumental in defining that 

grammatical structure of the sentence by enabling plausibility testing at the predicate-

argument level, and which now give a general sense of the sentence, 

S{move}’(P’{person},A’{get} (D’{person}),(ana’ x)) 

which may be interpreted as: 

An unknown agent (ana’ x) moved (sent) a person (doctor) to another 

person (patient) and that person (doctor) has got there (arrived).  

9.4.2 Parsing a non-garden path sentence 

Processing the non-garden path sentence ‘the flowers sent for the patient arrived’ 

proceeds in similar fashion to the garden path sentence. After the chunks ‘the flowers’, 

‘sent’ and sent_for’ have been shifted into the parser, the plausibility tests are made, this 

time resulting in ‘sent’ being selected as the most plausible verb, with ‘the flowers’ as 

its object (Table 9.7). No SA values are available for the verb ‘send_for’ as plants 

cannot order or be ordered. Clearly, the parser has this time selected the correct path on 

the first attempt as expected, and the parse proceeds without the need for repair. 



Chapter 9: Combining the Elements 

 181

 

Verb Flowers as subject Flowers as object 

Send      (SC=move) 0.002    (SC=plant) 0.013   (SC=plant) 

Send for (SC=order)   

Table 9.7. Maximum SA values between SCs of the verbs ‘send’/’send_for’ and the 

noun ‘flowers’. 

 

The chart state after the first combination of the non-garden path sentence is shown in 

Figure 9.11. 

The flowers 

NP:F’{SC} 

Extent: 1-2 

S\NP:λx.S’{SC}(x) 

S\NP:λy.S’{SC}(y,(ana’ x)) 

(S\NP)/NP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/NP:λx.λy.S’{SC}(x,y) 

(S\NP)/PP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/PP:λx.λy.S’{SC}(x,y) 

Extent: 3-4 

sent_for 

sent 

S\NP:λx.S’{SC}(x) 

S\NP:λy.S’{SC}(y,(ana’ x)) 

(S\NP)/NP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/NP:λx.λy.S’{SC}(x,y) 

(S\NP)/PP:λz.λy.S’{SC} (z,y,(ana’ x)) 

(S\NP)/PP:λx.λy.S’{SC}(x,y) 

Extent: 3-3 

sent’(flowers’, _) 

S:S’{move}(flowers’{plant}, (ana’ x)) 

Extent: 1-4 

Fig. 9.11. Chart state after first combination. Senses have been 

identified and an entire parallel path has been deactivated. 



Chapter 9: Combining the Elements 

 182

9.5 Conclusions 

It was proposed that a pre-processor to the Construction Integration Model, if 

constructed in accordance with functional components that experimental data would 

suggest are in operation in the human equivalent, would exhibit similar properties to the 

human version. The property examined here was the parse error induced by garden path 

sentences. 

Using Selectional Association data as a means of determining plausibility, and the 

proposal that left-embedded syntactic categories can be represented as a tree thereby 

exposing their innermost sub-category, a typical garden path sentence was processed. 

The results obtained mirrored the actions of the human processor; parse errors resulting 

in repair attempts at the point of ambiguity. 

The results show that by exposing left-embedded categories, plausibility decisions can 

be made earlier than would be expected from examination of a standard complete parse 

of the sentence in which derivations to the right of the verb are obtained before 

incorporating categories to the left. Although these early derivations are not used in the 

remainder of the parse, the plausibility information they afford propagates throughout 

all related categories, that is, those sharing the left-embedded category. Thus given a 

verb with intransitive, transitive and ditransitive forms, the sense of the intransitive 

form, made available here through left-embedded category exposure, will also be that of 

the transitive and ditransitive forms, and so is already available when those verb forms 

are considered by the parser. We propose that the construction of intransitive partial 

interpretations (e.g. John{person} ate{consume}), which lead to transitive partial 

interpretations (e.g. John{person} ate{consume} kippers{food}), which in turn lead to 

ditransitive interpretations (e.g. John{person} ate{consume} kippers{food} for breakfast{meal}) is 
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an expression of incremental interpretation because of the elimination of superfluous 

senses and categories at each level of transitivity. 

 

Stabler [STAB91] has previously addressed the incremental interpretation problem, 

drawing an analogy between incremental interpretation and preparing a meal; the 

individual processes involved in meal preparation may proceed asynchronously as long 

as they all complete at the same time. Stabler’s view is that syntactic and semantic 

processes run incrementally but in parallel. Ultimately, the results of the processes are 

combined to provide the final parse of the sentence. However, Steedman [STEE00] 

argues against the theory of asynchronous processes, showing that Stabler does not 

attempt to handle any non-constituents of the type ‘John loves’, which would occur when 

attempting to process a sentence incrementally. 

 

This criticism cannot be levelled against the system described here; the formation and 

use of non-constituents is instrumental in the early elimination of less-plausible senses 

and categories. The parsing method described here is able to build incremental 

interpretations by integrating notions of sense and plausibility with the syntactic and 

semantic categories of the standard CG parsing mechanism, and by allowing the parser 

to select between chunks rather than having it build them.  

 

We conclude then that the actions of the described pre-processor not only avoid 

criticisms of asynchronous processes, but are also consistent with expectations with 
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regard to Garden Path sentences, and hence its operations in this context are consistent 

with those of the human processing element. 

 

Regarding the main thesis, that the translation of text into logical form is not handled by 

a separate process but involves elements of the Construction Integration Model, this 

work presents evidence that the thesis is correct. It has been demonstrated that the 

element of the CIM involved in the translation is that of coherence determination, and 

that it assists the translation process by testing the plausibility of sense-tagged 

propositions generated by the grammar-parsing element. In order to accomplish this 

effectively it has been necessary to introduce the Inheritance Model of Syntactic 

Categories, which permits interpretations to be built incrementally without affecting the 

overall CG parsing strategy, and to extend CG semantic categories to carry sense 

indicators. 



Chapter 10: Conclusions 

 185

10 Conclusions 

The main contributions of this thesis are presented here, along with suggested future 

work. 

 

The Construction Integration Model is not a complete model of discourse 

comprehension because it does not actually process text (or natural language); instead it 

accepts a logical representation of text as its input.  

The main thesis is that the translation of text into logical form is not handled by a 

separate process, but actively involves elements of the Construction Integration Model 

(CIM) itself. The thesis demonstrates this to be the case by drawing on current linguistic 

resources and techniques to build a system (henceforth called the pre-processor) capable 

of performing the translation, thereby revealing the elements of the CIM at work. The 

two philosophies underlying this work are that: 

1. A psychologically oriented model of discourse comprehension would be served 

best by a psychologically oriented pre-processor; 

2. A web page summariser should work in real-time, and so the 

linguistic/summarisation processes cannot be overly elaborate or resource-

hungry. 

This thesis has identified and explored three main elements of such a pre-processor in 

terms of these philosophies, justifying the inclusion of any technique that addresses 

these elements in terms of their psychological/cognitive validity, and processing effort 
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and quantity of ‘knowledge’ required to implement, presenting improvements or novel 

alternatives as necessary. 

10.1 Conclusions relating to the field of Linguistics 

The work presented here does not necessarily relate solely to the study of linguistic 

systems that involve the CIM; we believe it holds general implications for the field of 

Linguistics, and specifically for Parsing and for Word Sense Disambiguation (WSD). 

 

Firstly, this thesis demonstrates that the derivation of logical form is not independent 

from the processes of syntactic parsing and WSD. The implication here is that any one 

of the processes must take the other two into consideration if ambiguity is to be 

overcome. For instance, Section 4.1.1 demonstrates that the sense of sentential terms is 

a factor in determining the correct site of prepositional attachment – if sense is not taken 

into account, a syntactic parser can only suggest an ambiguous set of possible 

attachments. 

Similarly, Section 2.5.5 demonstrates that when attempting to discover the sense of 

terms through coherence (or any other WSD technique), false positives can be avoided 

if the terms in question are not randomly selected but chosen on the basis of a possible 

relation, that is, by selecting those terms that, in some logical derivation, hold (for 

example) a predicate-argument relation. 

We therefore propose that the processes of logical form derivation, syntactic parsing 

and WSD be viewed as interrelated and mutually constraining processes. 
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Secondly, it has been demonstrated in Section 5.2.3 that the mechanism of shifting 

space-delimited terms into a chart parser is incomplete once sense is added to the 

‘standard’ set of syntactic and semantic categories these parsers have been designed to 

process. This is because compositionality of syntactic (or semantic) categories and of 

term senses are different problems; syntactic categories such as N and N can be 

composed to give N, whereas the senses of individual terms of an idiom (for example) 

cannot be composed to give the sense of that idiom. If, as is accepted here, it is the 

lexicon that supplies not only the syntactic and semantic categories, but also possible 

senses to any recognised term, then the lexicon must also recognise compounds and 

idioms (Section 5.2.2) if the non-compositionality problem above is to be avoided. 

Simply put, the chart parser must support both compound and individual term paths in 

order to present all reasonable senses to the sense-selection process. The use of a 

parallel-shift enabled chart parser of the type proposed here is therefore a necessary step 

in integrating sense with syntactic and semantic categories into the parsing process. 

 

Thirdly, in order for the lexicon to supply possible term sense indicators, and for those 

senses to be carried by the CG semantic categories, the semantic categories must be 

extended to accept those indicators. This is accomplished here by attaching a list of 

possible senses to the lambda-variables of semantic categories in much the same way as 

feature bundles are attached to syntactic categories for control of number, person and 

gender agreement (although these agreement feature bundles have not played a part in 

this thesis). By carrying possible senses within the semantic categories it becomes 

possible to evaluate and rate the alternative categorial derivations for plausibility. By 

selecting those senses within a logical representation that conform most closely to the 
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‘world model’, both Word Sense Disambiguation and Structural Disambiguation are 

achieved, and single-terms/compound-term ambiguity is resolved.  

 

We believe that the Inheritance of Syntactic Categories is an important property of 

grammars when one considers both the difficulty of grammar acquisition and the 

penchant of the (human) brain for pattern detection. If, as discussed in Chapter 4, the 

process of grammar acquisition can be summarised as the configuration of an innate 

language facility, achieved by detection of regularities in the input signal, then 

acquisition is very much more achievable if the signal is constructed so as to make the 

regularities a feature. This is expressed at the E-Language level by relative word orders, 

in for example active and passive sentences, and in the inheritance of intransitive verb 

structures by transitive verbs, and so on. We believe that recognition of inheritance 

would be advantageous when attempting to induce grammars from, say, corpus 

analysis, where constituent that express inheritance could be selected over those that do 

not (although we appreciate that there will always be exceptions).  By the same token, 

inheritance may also be a useful element of error recovery. As an E-Language can 

potentially consist of an infinite number of sentences, it is likely that any induced or 

crafted grammar will not provide 100% coverage and will fail to parse some sentences. 

Should such a gap in the grammar be detected, inheritance provides a principled means 

of automatically extending the grammar. Plausibility testing can of course moderate the 

addition to the grammar of categories obtained in this way.  

 

Sense tag-sets could be said to come in two kinds: low granularity (such as the LDOCE) 

and high granularity (such as WordNet). The low granularity tag-sets comprise 
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relatively few sense tags (~2000) which in use enable high(er) precision sense-tagging; 

with fewer tags to choose from there is less chance for error. High granularity tag-sets 

consist of many sense tags (WordNet has 66025 noun and 12127 verb senses), and these 

offer the prospect of more informative sense assignments. However, as sense 

assignment algorithms for use with high-granularity tag-sets are necessarily more 

complex and difficult to devise, they have a low(er) sense-assignment precision. We 

have shown that low granularity Specialisation Classes can be mapped with high 

precision into high-granularity senses when used in conjunction with lemmas to form a 

key into the original taxonomy from which the Specialisation Classes were derived. 

Processes employing Specialisation Classes can therefore work at a reasonably high 

level of abstraction when applying low complexity reasoning methods, for example the 

Selectional Association between the verb RUN and a subject ANIMAL instead of, say, 

HORSE or DOG. Sense-tags so obtained can then be mapped onto detailed senses without 

recourse to more complex reasoning methods. Alternatively, the more detailed senses 

obtained through mapping can be used with more complex reasoning methods to further 

refine sense and structural ambiguity if necessary. 

 

Finally, at the time of writing, the 32 files from the SUSANNE corpus that have been 

sense-tagged with WordNet 1.6 senses drawn from the SemCor corpus are being 

prepared for inclusion on Geoffrey Sampson’s resources website, and will be available 

for download from http://www.grsampson.net/Resources.html by the end of 2005. 
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10.2 Main Conclusions 

Chapter 2 reviews available summarisation techniques, contrasting them in terms of 

their applicability to the summarisation of web pages, and their knowledge requirements 

and processing effort required to realise them. The chapter favours the psychologically 

inspired approaches because, although they require huge linguistic, grammatical and 

knowledge resources when compared to the surface feature oriented statistical 

techniques, in mimicking human language processing they offer better prospects for 

processing the diversity of document types and contents found on the web. 

 

Chapter 3 looks at the Construction Integration Model in detail, presenting the 

background evidence for its acceptance as a reasonable model upon which to build a 

discourse comprehension system. The CIM is selected as the model of discourse 

comprehension as it has psychological validity, addresses both local and global 

coherence, and utilises summarisation as an integral part of its processing. In presenting 

the individual processes of the model however it becomes evident that the initial step, 

that of converting text into a logical representation, is not part of the model as it is 

described. A contribution of this thesis is therefore the rectification of this situation.  

 

Chapter 4 identifies the main elements of the pre-processor as those dealing with 

logical form transformation, sense, and coherence. These seemingly distinct elements 

are demonstrated to be interrelated by presenting example sentences that show that the 

site of prepositional attachment, and hence grammatical structure, is dependent on sense 

(Section 4.1.1), and with reference to [KINT78] that coherence may only be sought 
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between senses, not surface forms (Section 4.1.2). From this it is concluded that these 

elements cannot be treated as distinct. The grammar parser is posited as the site of 

intersection of the elements on the basis that it is the parser that actually generates the 

logical forms, and logical forms are affected by sense (Section 4.1.1) and coherence 

testing [KINT78]. By uniting the elements at the grammar parser it is further proposed 

that they become interrelated, mutually constraining processes, and demonstration of 

these propositions (Chapter 9) are contributions of this thesis. 

As a grammar parser has been proposed as the site of element interaction, an 

experimental or implemented pre-processor requires a grammar parser that is 

compatible with those elements. A review of grammar acquisition theories results in the 

selection of the Coalition Model, which in accepting that differences in the Outside-In 

and Inside-Out theories of grammar acquisition are more of degree than of kind, offers a 

spectrum of attributes against which psychologically oriented systems of grammar may 

be compared. Categorial Grammar (CG – Section 4.6) is shown to be consistent with 

the Coalition Model as it is sensitive to input elements and their arrangement, can cope 

with a variety of linguistic phenomena, and is shown to be configurable to any e-

language. 

 

Chapter 5 builds on the CG parser introduced in Chapter 4. In keeping with the guiding 

philosophy that resource usage should be as low as possible, this chapter begins by 

concerning itself with the chart parser at the heart of an implemented CG parser. Two 

problems are identified and addressed. Firstly, the cubic complexity of the chart parsing 

algorithm results in high resource usage when processing longer sentences, and 

secondly non-compositionality of compounds (in a categorial sense) can lead to parse 
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failures if the constituent words of the compound are shifted into the parser one at a 

time. The technique of Chunking is presented as a solution (Section 5.1), and 

justification for its inclusion in a psychological model of text comprehension is 

presented by reference to Visual Acquisition (Section 5.2.1), the Parallel Recognition 

Model (Section 5.1.2), and the processing of Garden Path sentences.  When processing 

the Garden Path sentences, it is noted that the induced error involves the incorrect 

identification of a compound, whereas when processing a parallel, non Garden Path 

sentence, the individual words (of the compound) are correctly identified. This evidence 

is used to propose that the chart-parsing algorithm be modified to accept both a 

compound and its constituent words in parallel (Section 5.2.3). The modified chart and 

the additional information required by each ‘term’ shifted into it (i.e. the extent) are 

defined in Section 5.4. The modified chart is then shown to provide resource-efficient 

support for ‘Parallel Shifts’ (Section 5.4) and to allow deactivation of less plausible 

paths and their reactivation in the event of a parse failure (Section 5.4).  Finally, the 

modified chart is demonstrated to operate in accord with expectations with regard to the 

sense assignments and structural decisions made and to the occurrence of parse failures 

and repairs when presented with a Garden Path sentence (Chapter 9). 

As a side effect of moving compound construction away from the chart parser and on to 

the Chunker, it is argued that the CG atomic categories of N and NP may be merged 

into one category, say NP, which can be used for individual nouns and noun phrases 

alike. This is used in Section 8.3.3 to show a reduction in the number of syntactic 

categories needed to support a natural language like English. 
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Chapter 6 turns its attention away from the chart parser and toward the senses that are 

ultimately needed for coherence determination. Recognising that senses from a fine-

grained sense representation (such as WordNet) will impact heavily on processing 

resources when combined into knowledge representations that must be evaluated 

against each other, a more compact sense representation is sought. A novel tree-cut 

model for the WordNet noun and verb hypernym taxonomies, based on maximum 

change of information, is presented (Section 6.2). The intuition behind the model is that 

for any hypernym chain, an increase in information between a class and its descendant 

corresponds to a specialisation of sense, and the maximum change indicates the class 

exhibiting the greatest specialisation. The classes exhibiting the greatest information 

change in any hypernym chain are here named a Specialisation Class (Section 6.3). The 

technique is used to create heavily abridged versions of those taxonomies, which are 

shown to retain the sense distinctions of the original taxonomies to a high degree 

through a retrieval exercise (Section 6.4). It is demonstrated that the abridged 

taxonomies present a significantly reduced search space (Section 6.3.2) for use by class-

based reasoning processes such as Word Sense Discrimination, thereby allowing those 

processes to operate much more quickly, but with no (or little) loss of information, 

thereby addressing the real-time processing requirement without incurring a high 

cognitive loading. 

 

Chapter 7 evaluates the Specialisation Classes of chapter 6 in a Word Sense 

Disambiguation task using Selectional Association as the disambiguation mechanism. 

Recognising that Resnik’s method of Selectional Association determines the association 

between a noun class and a verb lemma, a novel extension to the method is presented to 
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enable noun-class/verb-class associations to be calculated from non sense-tagged 

training data (Section 7.1.1). In order to reliably compare two senses, a new Sense 

Indicator String is introduced which eliminates the ambiguity of the WordNet Sense 

Keys (Section 7.3.1). Two sets of Selectional Association values are generated, one for 

the original WordNet taxonomies, the other for the abridged versions, and both are used 

in a comparative WSD task using relations drawn from pre sense-tagged SemCor as the 

evaluation data. The improved disambiguation results obtained when using 

Specialisation Classes (Section 7.4.2) shows that Specialisation Classes are better able 

to model the associations between a verb and its argument than the full range of classes 

expressed in WordNet. The explanation offered is that by eliminating less informative 

classes, the maximum SA value search is performed on highly sense-discriminatory 

classes between which the association is more strongly expressed. It is also shown that 

the improved disambiguations resulted from fewer calculations, again addressing the 

real-time and cognitive loading requirements.  

 

Chapter 8 returns to the CG parser and proposes that the structure of syntactic 

categories as used by CG are an impediment to incremental interpretation by reference 

to example CG derivations (Section 8.2), where it is shown to be caused by an inability 

to access the left-embedded left-looking categories until the outer, right-looking 

categories have been dispatched.  

Type-raising allows incremental parsing, but is accompanied by overproduction caused 

by the introduction of new categories, and hence possible combinations, into the chart. 

Theories of grammar acquisition are reviewed for inspiration, and an analogy is drawn 

between the innate but unconfigured grammatical knowledge of a human and a problem 
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space that expresses all possible syntactic categories (Section 8.3). It is reasoned that 

configuration involves selection of categories from that space, and experimental 

evidence is presented to show that very few verbal syntactic categories are used in 

English when compared with the problem space (Section 8.3.4).  

Regularity of verbal form within a human language is used to reason that the selection 

of categories is not random, but follows a pattern (Section 8.3.5), and data is presented 

to show that ‘configured’ syntactic categories can be expressed as trees rather than as 

discrete categories, and the nodes of the tree exhibit inheritance (Section 8.3.6). This 

‘Inheritance Model of Syntactic Categories’ is presented as evidence for a configuration 

process (Section 8.3.6), as a means to promote incremental processing (Section 8.4), 

and to propose that structurally-related syntactic categories are easier to extract from the 

environment (i.e. learn) than a random selection (Section 8.3.5). 

It is shown that by expressing syntactic categories as trees and thereby exploiting the 

Inheritance Model, the left-embedded left-looking category may be accessed earlier 

than would be possible when using distinct categories (Section 8.4). In accordance with 

the rule-to-rule hypothesis, early semantic processing is performed (Section 8.4). This 

permits plausibility testing of derivations involving the left-embedded category, the 

resultant sense discrimination and category selection propagating down the tree.  

In order to support a notion of sense, a novel extension to the standard CG semantic 

categories is proposed that allows possible predicate/argument senses to be expressed 

within the semantic category (Section 8.5). 
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Chapter 9 combines the Chunking, Sense and Grammar elements and presents a 

worked example of their operation. To evaluate the system it is proposed that a 

psychologically oriented pre-processor should exhibit the Garden Path effect when 

processing garden path sentences. The evaluation showed that: 

• The Chunking element presents the input text in suitable chunks, including 

parallel paths for compounds; 

• The chart parser is able to represent the parallel paths, deactivating and 

reactivating them as necessary; 

• The lexicon supplies categories for each term and compound term, and 

represents all possible senses in the semantic categories; 

• Early access to left-embedded left-looking categories enables sense and category 

discrimination to occur in an incremental fashion, without affecting the overall 

derivation-building strategy; 

• Early access also permits interpretations of partial constituents to be built 

incrementally, mimicking the human experience of reading and comprehending 

incrementally; 

• The Garden Path effect leads to incorrect selection of the compound and the 

consequent repair attempts as expected. 

• The final derivation is partially sense-disambiguated and correctly 

grammatically structured. 

• A parallel, non-garden path version of the sentence also performed as expected, 

correctly identifying the non-compound path at the first attempt. 
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The evaluation shows that the proposed pre-processor meets expectations when 

processing a Garden Path sentence. More importantly, it is shown during the 

walkthrough that (im)plausibility of propositions is used to: a) reduce the number of 

Specialisation Classes (that is, senses) attached to each predicate, thereby 

disambiguating the words of the sentence, b) deactivate categories in the chart that are 

deemed implausible, thereby conserving processing resources whilst reducing the 

possibility of overproduction. 

10.3 Summary of Contributions 

The overall aim of the thesis was to determine whether elements of the Construction 

Integration Model are at work in the conversion of text into logical form, which is 

glossed over in the description of the CIM. The result of the walkthrough (Chapter 9) is 

presented as evidence that the coherence determination element of the model is 

instrumental in both sense and grammatical structure discovery, where it is shown that 

intermediate propositions of a CG parse are checked for plausibility and deactivated if 

not. 

This result has implications for grammar parsing and Word Sense Disambiguation: 

Research into grammar parsing must take account of the possible senses of the 

sentential terms, which must themselves be presented as both single terms and 

compounds wherever possible.  Similarly, research into Word Sense Disambiguation 

techniques will benefit from consideration of the structural relations between the term to 

be disambiguated and its cohorts that provide the context for the disambiguation 

decision. In fact, the effect of not taking both aspects into consideration has already 

been shown in this thesis; Section 2.5.5 presents the disambiguation of the dictionary 
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definition of ‘Alarm Clock’ through lexical chaining. As grammatical relation is not 

considered, ‘Alarm’ and ‘Sleeper’ are sense-tagged as ‘Alarm Clock’ and ‘Railway 

Sleeper’, as both these senses share the hypernym ‘device’. This error could have been 

avoided if the grammar of the sentence had been taken into consideration. 

 

It is shown that a chart parser cannot necessarily build compounds from individually 

shifted words, and so cannot take responsibility for the single-words/compound-word 

decision.  

 

A new, extended version of the chart structure is presented that allows ‘Parallel Shift’ of 

single-words/compound-word combinations provided by a Chunker, and does so in a 

resource-economical fashion. The new chart structure also allows 

deactivation/reactivation of chart columns and categories, allowing sections of it to be 

effectively ignored on grounds of plausibility (Chapter 5). 

 

A Chunker is employed to identify noun phrases by grouping input terms on the basis of 

their Part of Speech (for example ‘the:NP/N’ + ‘dog:N’ become ‘The_dog:NP’), 

controversially removing the need to distinguish between the syntactic categories N and 

NP when assigning categories to terms prior to shifting into the chart parser. This allows 

the N and NP atomic categories to be merged into the NP category, leading to a 

simplification of the lexicon and a reduction in the number of chart operations necessary 

to process a sentence (Chapter 5). 
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In order to make plausibility judgements in real-time, the fine-grained WordNet noun 

and verb hypernym taxonomies are abstracted onto ‘Specialisation Classes’ through 

application of a novel tree-cut model based on maximum change in information. 

Specialisation Classes are shown to significantly reduce the size of the taxonomies 

(Chapter 6), whilst performing better than the full range of WordNet senses in a 

Selectional Association based Word Sense Disambiguation task (Chapter 7).  

 

To take full advantage of coherence determination/plausibility testing in a grammar-

parsing situation, a re-evaluation of syntactic categories is necessary; by identifying the 

Inheritance Model of Syntactic Categories it is possible to build interpretations of 

sentences incrementally (Chapter 8). The Inheritance Model provides access to left-

embedded, right-looking categories that would otherwise not be available to participate 

in derivations until all external, right-looking categories have been dispatched. 

Incremental interpretation due to the Inheritance Model is begun in Chapter 8 and 

completed in Chapter 9. A justification of the model in terms of configuration of an 

innate grammar system is presented in Chapter 8. 

 

A modification to the structure of CG semantic categories is presented that allows those 

categories to carry sense information with respect to each of their arguments. These are 

shown to be effective in making plausibility decisions regarding derivations (Chapter 

8). 
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By uniting the sense coherence and grammar elements of the pre-processor at the 

grammar parser it is proposed that those elements become interrelated, mutually 

constraining processes. This is demonstrated in Chapter 9. 

 

10.4 Future Research 

The work in this thesis presents a ‘proof of concept’ for a future natural language 

processor capable of transforming plain text into a sense-tagged logical representation. 

We have demonstrated the viability of the proposed processor by applying it to two 

parallel sentences, one of which was a Garden Path sentence. The processor was shown 

to behave as expected, that is, its behaviour matched that of a human reader; the garden 

path sentence was initially parsed incorrectly, inducing re-evaluation, whilst the non-

garden path sentence was parsed without incident.  

We realise that additional testing will be necessary in order to determine the properties 

of the parser, and propose the following evaluations to achieve this: 

10.4.1 Further testing 

The sense-tagging (sense disambiguation) abilities of the parser described here requires 

quantification and comparison with other sense disambiguation schemes. This can be 

achieved by applying the parser to test datasets such as Senseval 2 [SENSEV], which 

uses WordNet senses and provides lexical sample (i.e. selected words) and all words 

tagging exercises, together with software to score the evaluation results.  

The logical-form building (structural disambiguation) abilities is perhaps more difficult 

to evaluate. Basic testing using pre-parsed sentences culled from CG (and other 
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grammar schemes) textbooks is one possibility. However, comparison of parses against 

structurally annotated corpora would provide a larger and more realistic sample. Both 

Clark [CLAR02] and Hockenmaier [HOCK03] have used section 23 of CCGBank as 

their test corpus, and to follow their example would again provide qualitative and 

quantitative data. However, as there are differences in structural annotation between a 

CG logical form and the structural markup used in CCGBank, evaluation of structural 

parsing is not straightforward. See Hockenmaier [HOCK01] and Clarke and 

Hockenmaier [CLAR02b] for a discussion of evaluation issues. 

As the Parallel-Shift chart parser relies on the Chunker/Recogniser to feed it with all 

viable phrasal elements as derived from the input terms, the abilities of the 

Chunker/Recogniser to identify those units requires evaluation. Again this may be 

achieved by processing texts previously marked-up for grammatical structure. However, 

as we need only to confirm that the required unit is present in the collection of 

possibilities, and are not concerned with the structure between the units, evaluation will 

be easier than that for logical structure. 

Given parallel phrasal units, the Parallel-Shift chart parser must select the most viable 

from those units. Again, no structural relationships are involved - we need only compare 

the selected unit to that marked in the evaluation texts.  

Finally, comparing the effect on processing time (or effort) the introduction of sense, 

parallel shift, Specialisation Class and Syntactic Inheritance has on a set of texts 

compared with a standard parser would be interesting. Our hope is that, although the 

parser presented here would seem to have more work to do in implementing the 

additional processes, the mutually constraining processes the parser embodies will lead 
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to early elimination of erroneous derivations and senses, thereby reducing the overall 

workload.  

10.4.2 Follow-up work 

In addition to further testing there are four aspects of this work that we find particularly 

interesting and hope to follow-up in the future: 

 

The first concerns the determination of coherence. This work employed Selectional 

Association as the means to determine coherence, but it is not the only method 

available. For example, lexical chains, dictionary definition overlap, and semantic nets 

have all been employed in this respect. The real interest for us however would be to use 

a sense-tagged corpus such as SemCor, where disambiguation decisions have been 

made by human annotators, and determine whether different lexical/sense/grammatical 

situations call for different approaches to coherence determination. Metadata of this 

type would be very useful in the design of both coherence determination algorithms and 

the knowledge bases they use.  

The second concerns the Specialisation Classes developed during the course of this 

work. They have been shown to heavily abridge the WordNet noun and verb classes 

whilst retaining the sense distinctions expressed hypernymically, and to give improved 

performance over the full set of WordNet senses in a WSD task. Although they have 

been used as static knowledge in the work presented here, the Specialisation Class 

selection algorithm is capable of generating sets of SCs at different levels of abstraction. 

These could be employed in a sense-tagging system that initially makes course-grained 

sense tagging decisions by using a highly abstract dataset, followed by repeated 
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operations at lower levels of abstraction. This would enable the system to ‘home-in’ on 

fine-grained sense tags. It would also be interesting to discover whether this ‘divide and 

conquer’ approach to sense tagging reduces the overall workload as, at high levels of 

abstraction there is little knowledge to process, whereas at later, higher levels more 

knowledge is available, but operates on the fewer remaining word senses. 

The third concerns the Inheritance Model of Syntactic Categories. As noted in the thesis 

(Section 8.6), the model is currently defined only for categories in the series a\b, (a\b)/c, 

((a\b)/c)/d …, and it must be determined if this is a limitation of the model or a special 

case of a more general model before the it can be usefully deployed as a component of 

CG. 

The fourth again concerns the Inheritance Model, but here the fact that categories are 

related structurally might be useable by allowing the viability of automatically extracted 

categories to be determined by their structure rather than frequency of occurrence 

 

Having demonstrated that coherence-determination acting on sensed propositions is an 

important factor in producing sense-tagged, correct grammatical structures, of general 

interest would be a parallel-shift enabled, Inheritance Model aware CG parser that 

accepts plug-in grammar and coherence modules. This would then provide a useful 

research tool for both grammars and knowledge bases for use in coherence 

determination. 
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Appendix 1: Glossary 

Coherence – A principle of organisation relating to the functional connectedness or 

identity of elements of a text. 

Construction Integration Model (CIM) – A theoretical model of discourse 

comprehension based on psychological evidence.  

E-Language – The external realisation of a language in the form of Natural Language. 

Garden Path sentence – A sentence that leads the reader to make an error when 

parsing its grammatical structure, thereby forcing a re-evaluation of the sentence. 

I-Language – The internal realisation of a language in the form of some universal 

logical representation. 

Incremental Interpretation – The perceived or actual process by which the 

interpretation of a sentence is constructed word by word in the order the words are 

presented. 

Inheritance Model of Syntactic Categories – A model that specifies that the syntactic 

categories of a verb of higher transitivity inherit the structure and properties of 

lower transitivity versions of that verb. 

Logical Form – A representation of a natural language text in which the relations 

between its terms are made explicit through use of predicate-argument structure. 

Logical Form Transformation – The conversion of a natural language text into logical 

form. 
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Parallel Path – Two or more paths through a segment of a text, where each path 

supports an alternate grouping (or non grouping) of the words in that segment, 

thereby allowing compounds and their individual terms to be processed 

separately. 

Parallel Shift – The process by which a compound term and its constituent terms are 

entered into a chart parser in parallel. 

Plausibility Testing – The evaluation of logical forms with respect to a World Model. 

Pre-Processor – The ‘missing’ component of the CIM, that is, the component that takes 

a natural language text and returns a representation of that text in logical form. 

Sense – A notion of the meaning of a term implemented as a reference to an entry in a 

dictionary of senses (WordNet). 

Sense Indicator String (SIS) – A string used to specify the sense of a word with 

respect to the WordNet lexical database. The SIS promotes like-sense detection as 

it removes all reference to surface form, thereby eliminating problems associated 

with synonymy and homonymy. 

Specialisation Class (SC) - A class node in a noun or verb hyponym taxonomy at 

which the greatest change in Mutual Information is exhibited with respect to that 

of the parent node. 

Surface Form – The natural language representation of a text (i.e. the text itself)
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The generation of representations of word meanings from dictionaries. 

Chris Powell, Mary Zajicek, Prof. David Duce 

Oxford Brookes University 

Abstract 
 

This paper describes the generation of iconic and categorical 

representations of word meaning, in propositional form, from 

the WordNet lexical database. These are derived from the list of 

synonyms, the descriptive gloss, and from the hypernym and 

meronym relations of each WordNet word sense. We 

demonstrate that these representations promote identification 

and discrimination, these being suggested qualities of 

representations of meaning, and finally suggest that these 

representations have further applications in language 

engineering 

 

1. Introduction 
 

Systems are available for the conversion of speech into text, 

such as IBM ViaVoice and Dragon Dictate. For text entry 

into a word processor this may be sufficient, but when 

extraction of the underlying semantics of the utterance is 

required by the task, in query expansion for example, further 

processing is necessary. 

  

The construction-integration model proposed by Kintsch and 

van Dijk [1, 2, 3, 4] models cognitive processes involved in 

story comprehension. Experimental evidence is available to 

support this model, particularly for the existence of arguments, 

propositions and the micro and macro-structural levels of 

representation [5]. The general nature of the model also makes 

it robust and applicable in virtually all situations when 

compared to other systems requiring complex and specific rules 

[6]. However, it has not yet been fully implemented, perhaps 

due to its enormous grammatical and domain knowledge 

requirements [7].  

 

Kintsch and van Dijk define an argument as the representation 

of the meaning of a word. Unfortunately, what a representation 

of word meaning might be is not given. We address this issue 

here. 

 

2. Representations 
 

Harnad proposes that symbolic representations, such as words, 

must be grounded in iconic and categorical representations [8]. 

He suggests that the non-symbolic sensory data we receive is 

processed, possibly by some connectionist approach, such that 

features of that data emerge and are used as the basis of these 

representations. Iconic representations are shown to be 

sufficient for discrimination (how different or alike things are) 

and categorical representations for identification (naming 

things). He also suggests that the features can be processed 

symbolically. 

 

WordNet [9, 10] is an electronic lexical database and has 

become an important tool for the linguistics researcher. The 

basic unit of WordNet is the synset. This consists of a set of 

synonyms of a word sense (e.g. speech, oral communication), a 

descriptive gloss much like a dictionary description, and a set of 

semantic relations that link the synset with a number of other 

synsets. The two relations used here are hypernymy (the ‘is a’ 

relation) and meronymy (the ‘has part’ relation). Each synset 

also has a sense key, which serves as the primary key to that 

synset. 

 

We propose that a WordNet synset is a suitable basis for the 

formation of a representation as the additional descriptive 

information outlined above can be viewed as analogous to the 

features discussed by Harnad, and which in concert define that 

synset. Lesk uses this property in his maximal overlap of 

dictionary definition terms method of word sense 

disambiguation [11]. For future compatibility with the 

construction-integration model, the representations generated 

consist of sets of propositions. 

 

2.1. Categorical Representation 
 

The gloss of zebra reads: 

 

Any of several fleet black and white striped African 

equines. 

 

Which becomes in propositional form: 

 

(OF, ANY, (SEVERAL, EQUINE)) 

(FLEET , EQUINE) 

(STRIPED, EQUINE , BLACK , WHITE) 

(AFRICAN , EQUINE) 

 

Referring to figure 1 it can be seen that equine is a hypernym of 

zebra and so its representation will contain the argument 

EQUINE. Thus EQUINE is not a unique (categorical) feature of 

zebra and is replaced by the null argument 0. No further words 

from the synset of equine conflict with zebra, and so the 

categorical representation of zebra becomes: 

 

(OF, ANY, (SEVERAL, 0)) 

(FLEET , 0) 

(STRIPED, 0 , BLACK , WHITE) 

(AFRICAN , 0) 

 

This representation now contains only the information 

necessary to distinguish a zebra from a general equine. 

 

2.2. Iconic Representation 
 

The iconic representation contains features that allow 

discrimination between entities. As any feature may be called 

upon as a criterion for discrimination, the iconic representations 

should comprise all features. These can be formed from the 

conjunction of categorical representations along a hypernym 

chain. For example: 
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Iconic(zebra) = Categorical(zebra) + 

Categorical(equine) + … + Categorical(entity) 

 

3.  Generation of word-sense representations 
 

The procedure for generating word sense representations 

consists of 4 steps to be followed in sequence. The procedure 

was implemented in C++, and was used to generate the 

representations used in the evaluation. The functions described 

in the evaluation were also implemented in C++. 

 

3.1.  Step 1: Segmenting WordNet Glosses 
 

A WordNet gloss consists of a general dictionary-style 

definition, optional example sentences, and occasional 

bracketed or quoted embedded sentences. For example, the 

gloss for one sense of the word speech reads: 

 

(Communication by word of mouth; “His speech was 

slurred”; “he uttered harsh language”; “he recorded the 

language of the streets”) 

 

Obviously, the raw form of the gloss is unsuitable for 

presentation to a part-of-speech (POS) tagger, and the gloss is 

segmented, breaking it into its constituent sentences and 

extracting any embedded sentences: 

 

Communication by word of mouth. 

His speech was slurred. 

He uttered harsh language. 

He recorded the language of the streets. 

  

Each gloss segment is now in a suitable form for POS tagging. 

 

3.2.  Step 2: Tagging WordNet Glosses 
 

The POS tagger used is probablistic and was constructed from 

word frequency/part-of-speech and part-of-speech/part-of-

speech bigrams derived from the British National Corpus. The 

Viterbi algorithm [12] is employed to determine the most 

probable path through the lattice of possibilities. Although 

generally not as good as, say, the Brill tagger [13], considering 

the relatively simplistic forms of the gloss sentences, and our 

requirement to identify only basic syntactic categories rather 

than the finer-grained categories of the CLAWS5 tagset used by 

the BNC, it is entirely acceptable. To date, no incorrect taggings 

have been detected. 

 

3.3.  Step 3: Compound Noun Detection 
 

Nouns are replaced by their WordNet lemmas after identifying 

them from noun phrases obtained from the tagged gloss 

segments. Each noun phrase is presented to WordNet, and if 

recognised, is replaced by its WordNet lemma. If not, it 

repeatedly undergoes head decomposition until it is recognised. 

In this way both simple and compound nouns are recognised. 

 

 

 

3.4. Step 4: Proposition Extraction 
 

Propositions from the gloss. The procedure described by 

Kintsch [14] is used to extract propositions from each gloss 

segment. The propositions formed consist of a predicate derived 

from verbs, adjectives, adverbs and sentence connectives, and 

the arguments, representing items such as agent, subject and 

goal (replaced by 0 as necessary). Predicates and arguments are 

shown in uppercase to distinguish them from words. Currently, 

our proposition generator is limited in that fragments such as 

black and white striped equine are represented by the 

proposition set: 

 

{(STRIPED, 0) , (BLACK , 0) , (WHITE , 0)} 

 

and not the more accurate: 

 

(STRIPED , 0, BLACK , WHITE) 

 

So far this is not a problem, but will need to be rectified before 

the representations are used in conjunction with the 

construction-integration model. 

 

Participles and Gerunds. The use of participles (verbal 

adjectives) and gerunds (verbal nouns) is common in English. 

For example, striped horse is equivalent to horse with stripes. 

Thus it is desirable to capture the equivalent noun form of any 

participle or gerund used in the gloss to assist argument 

matching. As these often contain their noun-form in their gloss 

(e.g. wheeled = having wheels, containing = include or contain), 

this is possible: The participle or gerund is stemmed using the 

Porter stemming algorithm [15], and is compared to the 

stemmed words from the gloss. If a match is found, a new 

proposition is added to the relation, predicated by EQUIV, e.g. 

(EQUIV, WHEELED, WHEEL). 

  

Synonyms, Hypernyms and Meronyms. Additional 

propositions are generated to reflect the synonyms and WordNet 

relations of hypernymy and meronymy, predicated by SYN, 

IS_A, and HAS_PART respectively: 

 

(SYN , RUBBER , PENCIL_ERASER , RUBBER_ERASER) 

(IS_A , ZEBRA , EQUINE) 

(HAS_PART , COAT , SLEEVE) 

 

4. Word-Sense Representation 
 

The representation of a word consists of the set of propositions 

generated from its synset as described above. This can be 

formally stated as follows: 

 

Let π be a proposition generated from a synset, and ρ a 

representation of a synset, then: 

 

ρ = {π} 

 

Now let ρs be the instance of a representation generated for 

synset s. The representation of zebra generated from its gloss is 

as follows (note, zebra has no synonyms): 

 

ρzebra = {(SYN , ZEBRA) , 

(IS_A , ZEBRA , EQUINE) , (FLEET , EQUINE) , 

(BLACK , EQUINE) , (WHITE , EQUINE) , 

(STRIPED , EQUINE) , (EQUIV , STRIPED , STRIPE) , 
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(AFRICAN , EQUINE) , 

(EQUIV, AFRICAN , AFRICAN) } 

 

The function Η (hypernym) can now be defined as: 

  

Η(ρs) = {ρx | ρs IS_A ρx} 

 

The function M (meronym) is similarly defined. 

 

Applying the hypernym function to the representation of zebra 

yields the representation of equine: 

 

Η(ρzebra) = {ρequine} 

 

The function Ε (entire) generates the entire representation of a 

synset, which consists of the union of all representations on the 

hypernym chain of that synset, i.e. the reflexive transitive 

closure of Η over ρs: 

 

Ε(ρs) = ρs ∪{n : N | n ≥ 1 • Ηn(ρs)} 

 

Thus the entire representation or zebra is: 

 

Ε(ρzebra) = {ρzebra , ρequine , ρmammal , ρanimal , ρentity } 

 

5.  Evaluation 
 

As discussed earlier, the properties of identification and 

discrimination have been proposed as desirable qualities of 

meaning representations. Thus the evaluation attempts to 

discover these properties in the representations generated by the 

procedure above. Representations for the animal words Horse, 

Zebra, Donkey, Panda, Parrot and for the marking words Stripe 

and Dapple, were generated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Hypernym relationships of WordNet evaluation 

synsets (condensed for brevity). 

 

5.1. Identification 
 

Harnad uses the example that a Zebra can be identified from the 

expression: Horse + Stripes. If identification is possible, then 

combining these representations should lead to the selection of 

the representation of zebra from all representations. 

Firstly, we define the L function (like) to return all 

representations containing the immediate hypernym of the given 

representation, i.e. its siblings and their descendants. The 

hypernym itself is not returned: 

 

L(ρs) = ran(Η-1(ρs r Η)) 

 

This essentially selects all categorical representations that are 

like the given representation, i.e. have the same hypernymic 

subsumer. Thus, given the representation of the synset of horse, 

function L produces the following: 

 

L(ρhorse) = {ρhorse , ρzebra , ρdonkey } 

 

 

The function Υ (identify) produces a set of representations for 

which the function’s arguments are satisfied: 

  

Υ(ρa , ρb) = {ρx | ∃πx ∈ ρx , πb ∈ ρb  

• ρx ∈ L(ρa) L C(πx , πb)} 

 

The function C tests for referential coherence, which is 

implemented by Kintsch and van Dijk [1] as argument overlap 

between propositions. Thus proposition (X, Y, Z) is 

referentially coherent with (F, Z, T) as they share argument Z. 

Null arguments are ignored. 

 

When supplied with the representations of horse and stripe, the 

Υ function firstly applies the L function to horse as shown 

above. Referential coherence is sought between the resulting set 

and ρstripe, and is found only when ρx = ρzebra, where πx = 

(EQUIV, STRIPED, STRIPE) and πb = (SYN, STRIPE, STREAK), 

both from categorical representations, giving: 

  

Υ(ρhorse , ρstripe) = {ρzebra } 

 

Thus Zebra has been identified from the representations of 

horse and stripes.  

 

5.2. Discrimination 
 

Given a representation drawn from the entire set of items under 

consideration, the discrimination function (∆) should accept or 

reject that representation on the basis of a second representation, 

the discrimination criterion: 

 

∆(ρ, ρ) : boolean  

 

If the representations are sufficient for discrimination, then they 

should allow, for example, the partitioning of the set ANIMALS 

into feathered and non-feathered types.  

 

Positive discrimination is attained when the iconic form of a 

representation contains the feature feather. For example, when 

ρparrot, which contains the proposition (CHARACTERISED, 

FEATHER) from the synset of bird, is tested against ρfeather, which 

contains the proposition (SYN, FEATHER, PLUME, PLUMAGE): 

 

∆ (ρparrot , ρfeather) = true 

 

Negative discrimination is attained when the iconic form of a 

representation does not contain the feature FEATHER, e.g.: 

 

∆ (ρzebra , ρfeather) = false 

Horse    Zebra    Donkey    Panda    Parrot    Stripe    Dapple

 Equine 

  Mammal 

Animal 

 Entity 

 Procyonid    Bird          Marking
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Formally: 

 

∆ (ρa , ρb) = (∃ρx ∈ E(ρa) | ∃πx ∈ ρx , πb ∈ ρb  

 • C(πx , πb)) 

 

6.  Applications 
 

One application of this form of meaning representation that has 

been investigated is anaphoric resolution. Consider the two 

sentences: 

  

Before inserting the cassette into the vcr, make sure it is 

plugged-in/blank. 

 

Using the representations of the words cassette, vcr, plugged-in, 

and blank, the anaphor it can be resolved by the ∆ function in 

each case: 

 

∆ (ρvcr , ρplugged_in) = true 

∆ (ρcassette , ρblank) = true 

 

which are respectively satisfied by: 

 

C((recording , TV), (connect , TV)). 

 

C((HOLDS, CONTAINER , MAGNETIC_TAPE), 

     (EQUIV, CONTAINING, CONTAINER)) 

 

The other two combinations are not coherent: 

 

∆ (ρvcr , ρblank) = false 

∆ (ρcassette , ρplugged_in) = false 

 

Note also that the adjective blank has three senses in WordNet, 

but only one sense satisfies the referential coherence function, 

suggesting applications in word sense tagging. 

 

7.  Conclusion 
 

Using a model system we have demonstrated that it is possible 

to construct representations of word meaning from WordNet 

synsets which promote the properties of identification and 

discrimination. It has also been demonstrated that these 

representations have applications in language engineering, 

namely anaphoric resolution and word sense tagging. However, 

a larger scale evaluation is required to confirm the robustness of 

the representations and the defined functions, and to determine 

any requirement for further functionality. 

  

The work presented here concentrates on noun representations. 

Other syntactic classes will require slightly different 

representations, for the incorporation of transitivity (or 

otherwise) and selectional preference of verbs for example.  

 

An extension to this work will use WordNet sense keys as 

propositional arguments. This will allow inheritance of 

representations indexed on sense key, that is the import of 

additional related features, enabling the representations to be 

extended in a constrained manner. 
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Similarity Based Document Keyword Extraction Using an 

Abridged WordNet Noun Taxonomy. 

 

Chris Powell 

Oxford Brookes University. 

Abstract 

 

We present a novel method of abridging the WordNet noun and verb 

taxonomies through selection of classes corresponding to Specialization 

Classes (SCs) by examining change in information content along hyponym 

chains. The abridged taxonomies are evaluated through their ability to 

disjointly partition polysemous senses of all WordNet noun and verb 

lemmas; the proposed abridgement method is shown to have high precision 

(95% for nouns, 83% for verbs) at 100% recall, superior to baseline and 

random abridgements. 

Key Classes are identified by selecting those SCs that occur more 

frequently than in a reference document collection. Experiments collecting 

noun Key Classes from SemCor documents, each tagged with all possible 

noun senses, and with a single sense selected by the First Sense heuristic, 

are compared with those obtained using the SemCor -annotated senses. Over 

80% accuracy is found only for single senses, demonstrating the increased 

frequency of the ‘correct’ SCs is not sufficient to rank them higher than 

erroneously selected SCs, and hence the procedure cannot select the correct 

sense of keywords automatically.  

 Example documents from the SemCor collection show that the Key 

Classes group lexically dissimilar but semantically similar terms, thereby 

defining the sense of the Key Class lexically, unlike the traditional Term 

Frequency approach where each Key Term is represented by a single lexical 

item that may be sense-ambiguous in isolation.  

1 Introduction 

 

1.1 Motivation 

 

We have been investigating the application of natural language processing 

techniques as an assistive technology for blind and visually impaired (BVI) 

people, particularly with respect to web page navigation and content 

determination. BVI people generally use refreshable Braille displays or 

synthesised speech to render the text of a web page. These approaches make 

the content accessible to the user, but the serial presentation limits their 

ability to determine rapidly the relevancy of the web page to their line of 

enquiry, and requires that a reasonable amount of the page be rendered in 
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speech/Braille in order to present sufficient information for topic inference 

to occur. This contrasts with the technique employed by the sighted user 

who rapidly and randomly visually scans the page, quickly forming a 

judgement as to the content and hence relevancy of the document. 

 BrookesTalk, a web browser for BVI people, has been developed at 

Oxford Brookes University (Zajicek et al., 1997; Zajicek et al., 1998); its 

main innovation being the presentation to the user of keywords 

automatically extracted from the currently loaded page. The intuition behind 

this is that the user’s own cognitive abilities will identify the context in 

which the keywords are most strongly related - this context will then, in a 

general sense, inform them of the topics covered by the page. This is 

particularly useful when selecting potentially relevant pages, from those 

returned by a search-engine. For example, given the query ‘RED DWARF’, a 

number of pages are returned and keywords generated for each of them. 

Keywords such as STAR, PULSAR and TELESCOPE suggest an astronomical 

theme, whereas KRYTEN, LISTER and SCUTTER are indicative of the 

eponymous BBC TV series. 

 Currently, BrookesTalk uses Luhn’s (Luhn, 1958) Term Frequency 

(TF) method to generate the keywords: words from the web page are 

stopword-filtered, stemmed, and the stems ranked on decreasing frequency. 

The top 10 stems, after being mapped back to their original form, are then 

presented as the keywords. TF is attractive as it is easily implemented, 

requires no resources other than a stemmer and a stopword list, and 

importantly for user satisfaction, operates in real-time.  

 

1.2 Defining the Senses of Keywords 

The efficacy in suggesting page topics hinges on the user’s ability to 

identify the context in which particular meanings of the extracted terms 

make sense. Humans are of course very good at this kind of task. 

Nevertheless, we are concerned that by relying solely on high frequency 

tokens drawn from a text, additional contextual information provided by low 

frequency near-synonyms of those high frequency tokens is being discarded. 

For example, suppose the word DISC is extracted as a keyword. What kind 

of disc is it? If one of the other keywords is COMPUTER we can deduce 

FLOPPY DISC or HARD DISC, whereas coocurrence with MUSIC would 

suggest a PHONOGRAPH RECORDING. Now consider the situation where a 

keyword is presented together with its near synonyms that have also been 

extracted from the document: DISC might be presented with FLOPPY and 

HARD in the first instance, and with LP in the second, making the sense in 

each case clear. Presenting sense-related words in this way thus suggests the 

sense of the near synonyms before the other extracted keywords (i.e. 

COMPUTER and MUSIC) are taken into consideration.  
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In order to implement such a system, a definition of near-synonym is 

required. Obviously, synonyms of extracted keywords form a subset. As 

seen above, FLOPPY DISC and HARD DISC are not synonyms, but they are 

similar in that they are both direct hyponyms of MAGNETIC DISK. Therefore, 

we equate near-synonymy with similarity, and propose to extract words of 

similar meaning under each keyword. 

 

1.3 Overview 

We hypothesis then that by collecting groups of keywords on the basis of 

similarity, rather than purely on frequency of occurrence, will more strongly 

suggest senses for those keywords, and the consequent reduction in 

ambiguity will simplify the task of identifying a context into which they fit. 

The remainder of this article describes the process of selecting keywords on 

similarity.  

Section 2 presents a novel method of abridging the WordNet noun 

and verb hypernym taxonomies, using change in information content to 

identify Specialization Classes – essentially, points at which cuts in the 

taxonomy are to be made – thereby reducing the size of the taxonomies to 

6.8% (noun) and 13.4% (verb) of their original size. All procedures are 

formally defined using the Ζ notation. 

Section 3 demonstrates that the abridged noun and verb taxonomies 

are capable of accurately discriminating between senses of polysemous 

lemmas – a recall/precision evaluation revealing a precision of 95% (noun) 

and 83% (verb) at a recall of 100%, showing that few sense distinctions are 

lost by the abridgement process.  

Section 4 proposes that Key Classes may be used to replace the Key 

Lemmas selected by Term Frequency methods. Recognising classes 

subsumed by a Specialization Class as similar, it compares the Key Classes 

selected when no sense disambiguation occurs, and when rudimentary sense 

disambiguation is attempted, against those selected from fully sense 

disambiguated document nouns drawn from SemCor (Landes, 1998).  

Results indicate that better results are obtained when sense disambiguation 

is attempted (over 80% accuracy for the 10 highest ranked Key Classes). 

Examples are given demonstrating the augmentation of lexically dissimilar 

but semantically similar document terms extracted under each 

Specialization Class. The increase in frequency due to this augmentation 

however is not sufficient to rank the desired senses of polysemous lemmas 

more highly than erroneous senses. Again, all procedures are formally 

defined using the Ζ notation. Conclusions are presented in Section 5. 

 

2 Similarity 
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Various methods of assessing word similarity have been proposed: Using a 

taxonomy such as WordNet (Miller 1995), two nodes are similar if they 

share a hypernymically related node. The degree of similarity may be 

determined by counting edges (Rada et al., 1989; Leacock et al., 1998). 

Semantic Similarity (Resnik, 1995) measures similarity as information 

content of the common subsumer, obtained from taxonomy node 

probabilities assigned through corpus frequency analysis. This approach as 

been augmented by factoring-in path length (Jiang, 1997), itself similar to 

the Similarity Theorem based Lin Measure (Lin, 1997). Relations other than 

hypernym/hyponym have been used, employing defined sequences of 

directed relational types (Hirst et al., 1998). Tree-Cut Models (TCM) 

employing Minimum Description Length (Quinlan et al., 1989) have been 

used to partition noun taxonomies on similarity of case-frame slot fillers (Li 

et al., 1995a; Li et al., 1996). As an alternative to these approaches, Lesk 

proposes dictionary definition overlap (Lesk, 1989), where increasing 

definition-word overlap indicates greater similarity. 

 The similarity metrics above, with the exception of the Tree-Cut 

Model, all produce a measure of how similar two senses are (or will state 

that they are not similar). So, given CAR and LORRY, these metrics will 

report that they are very similar, and share the hypernym MOTOR VEHICLE. 

CAR and SKATEBOARD are less similar, but similar nonetheless, and share 

the hypernym ARTEFACT. However, by the same token, CAR and PENCIL 

are also similar, again sharing the hypernym ARTEFACT. To avoid this 

unacceptable result, a similarity threshold would be required; those cases 

where the similarity value was found to be above the threshold accepted as 

similar, and those below rejected. This presents yet another problem in that 

a suitable threshold must be selected. The Tree-Cut Model on the other hand 

partitions the hypernym/hyponym taxonomy, thereby collecting similar 

senses under each cut. Using this scheme it is possible to give a yes/no 

answer to the question ‘are these senses similar?’. However, the proposed 

TCM is designed to identify senses that are similar with respect to their 

roles in case frames, requiring consideration of their coocurrence 

probabilities with some predicate. Nevertheless, having a preselected set of 

cuts, and hence groups of similar senses, is attractive considering the real-

time application we have in mind. 

 

2.1 A method for Predefining Groups of Similar Senses 

 

A method of defining sets of similar senses presents itself if one considers 

Resnik’s procedure for calculating the information content (IC) of nodes in 

the WordNet noun hypernym taxonomy (Resnik, 1995; Resnik 1998). 

Recall that in the construction of the probabilistic model of WordNet, the 

frequency of any class c is calculated recursively as the number of 
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occurrences of that class plus the sum of the frequencies of its hyponyms, 

shown in equation 1 below. 

 

 

 (1) 

where words(c) is the set of words in any synset subsumed by c, 

and where classes(w) is the set {c | w ∈ words(c)} (Resnik, 

1998) 

 

Two factors are involved in the calculation of the IC value of a WordNet 

class: Firstly, the raw frequency of occurrence of terms, as derived from 

corpus analysis, is assigned to appropriate classes. This results in the more 

frequently occurring classes having a higher frequency score than less 

occurring classes, as illustrated by node α in Fig. 1a. In some way, this 

echoes Luhn’s observation that term frequency and term significance are 

related (Luhn, 1958). Secondly, the frequency scores are cumulatively 

propagated along the hypernym relation, resulting in the summed class 

frequency being additionally influenced by its hyponyms, as shown by node 

β in Fig. 1b, which is reminiscent of a spreading-activation network.  

 

 (a) Corpus Term Frequency  (b) Connected Hypernyms 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. The derived frequency of a class depends upon both term frequency 

(a), and on number of hyponyms (b). Individual term frequencies are shown 

within nodes, sum indicates cumulative class frequency. 

 

In the two examples above, it can be said that the labelled nodes form 

abstract classes; node α is similar to a term frequency based keyword within 

its hypernym chain, and node β is highly activated by its subordinate nodes. 

Observe in each case, there is a large change in value (frequency and 
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summed frequency respectively) between the labelled node and its 

immediate hyponym(s). This effect is shown clearly in Table 1, the 

cumulative frequency data for the hypernym chain of DOG (canine). Word 

frequency data is derived from the 100 million word British National 

Corpus (BNC) and applied to the noun taxonomy of WordNet 1.6. 

 

Class ΣΣΣΣFreq 

ENTITY 963909 

ORGANISM 385594 

ANIMAL 38913 

CHORDATE 21502 

VERTEBRATE 21496 

MAMMAL 13657 

PLACENTAL 13391 

CARNIVORE 2803 

CANINE 1203 

DOG 995 
 

Table 1  Cumulative frequencies of hypernyms of DOG (canine) 

 

Note that in Table 1 the summed frequencies do not change smoothly; there 

are particularly large changes when moving from ANIMAL to ORGANISM 

(∆=346681), and from ORGANISM to ENTITY (∆=578315). These are caused 

by the summation of frequencies of all subordinates of ORGANISM 

(including ANIMAL), and of all subordinates of ENTITY (including 

ORGANISM) respectively, of which there are many. From this we deduce that 

ORGANISM and ENTITY strongly abstract the hypernyms of dog. However, 

in an ideal situation we would prefer just the right level of abstraction, not 

strong abstraction - clearly ORGANISM does not discriminate between DOG 

and CAT, or even PLANT and ANIMAL. Worse still, ENTITY cannot 

discriminate between such as DOG and BICYCLE.  

Following Resnik (Resnik 1998), the information content value I for 

each class c was calculated using equation 3, after first deriving the class 

probabilities p(c) from the cumulative frequencies via equation 2. 

 

 p(c) =        

 

where N =  Σc’freq(c’) for c’ ranging over all classes (2) 

 

Ic = -log p(c) (3) 

 

Table 2 shows that, as expected, the classes near the top of the taxonomy 

express relatively little information (column IC). Calculating the change 

freq(c) 

    N 
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(increase) in information (column ∆∆∆∆IC) reveals the greatest change takes 

place in the move from ORGANISM to ANIMAL. 

 

 

Table 2  Class-based probability and information values for the hypernym chain of dog 

 

If ENTITY and ORGANISM are strong abstractions of DOG, then it can be said 

that the classes ANIMAL..DOG are specialisations of the strong abstractions, 

Further, as the move from ORGANISM to ANIMAL presents the greatest 

change in IC, then the greatest specialisation happens at ANIMAL. We have 

chosen to designate the node that incurs the greatest positive change in IC a 

Specialization Class (SC). Thus ANIMAL is the SC of those classes within 

the DOG hypernym chain. Intuitively, ANIMAL does seem to present a 

plausible abstraction of DOG, and it certainly discriminates between DOG 

and BICYCLE. By applying cuts to the WordNet noun hypernym taxonomy 

at the SCs we can construct an abridged WordNet noun hypernym 

taxonomy; the nodes of the taxonomy will be the SCs, and each SC will 

‘contain’ all subordinate similar senses.  

 

An SC can be formally defined as follows: 

 

Given: (4) 

 

 [CLASS] the set of WordNet noun classes. 

 

 c: CLASS c is of type CLASS 

 

I: c ß REAL Function I returns the information content of 

class c.   

The hypernym function Η can be defined as: (5) 

 

 H: CLASS j CLASS 

 

Η(c) = ch | c IS_A ch 

Class ΣΣΣΣFreq Prob IC ∆∆∆∆IC

ENTITY 963909 0.03962 1.40212

ORGANISM 385594 0.01585 1.80003 0.39790

ANIMAL 38913 0.00160 2.79606 0.99603

CHORDATE 21502 0.00088 3.05367 0.25761

VERTEBRATE 21496 0.00088 3.05380 0.00013

MAMMAL 13657 0.00056 3.25081 0.19701

PLACENTAL 13391 0.00055 3.25933 0.00852

CARNIVORE 2803 0.00012 3.93848 0.67915

CANINE 1203 0.00005 4.30596 0.36748

DOG 995 0.00004 4.38817 0.08221
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Note that: 

 (6) 

 H
n
(c) represents the reflexive transitive closure of H over c, and  

 

 H
0
 represents the identity, that is, H

0
(c) = c 

 

The Specialization Class selection function SC can now be defined: (7) 

 SC: CLASS ß CLASS 

 

SC(c) = H
n
(c) where  

∃ n : N | n ≥ 0 • MAX(I(H
n
(c)) – I(H

n+1
(c))) 

 

2.2 Identifying the Specialization Classes 

 

Using the BNC as the reference source, the information content of each 

WordNet noun class was calculated as per equations 1 to 3 above. The 

specialization class selection function SC, defined in equation 7, was then 

applied to identify the subset of WordNet noun classes that constitute the 

Specialization Classes, as shown in equation 8. Initial examination of the 

results showed that for many nouns, the immediate hypernym of a root class 

was selected as the SC - an unsatisfactory result precipitated by the fact that 

these classes are the focus of many subordinate classes. To counteract this, 

the roots and their immediate hypernyms were disallowed as candidates for 

selection. SUBSTANCE, a third-level class, was also found to have a very 

high change in information content, leading to its preferential selection, and 

so was similarly disallowed. This resulted in 145 noun base classes being 

disallowed. 
 

[CLASS] The set of WordNet noun classes 
 

SCLASS: PCLASS The set of noun Specialization Classes 
 

SCLASS = {∀ c: CLASS • SC(c)} (8) 
 

The verb taxonomy was similarly processed, with the exception that as no 

bias was found towards the top of the taxonomy, possibly due to the 

shallow, bushy nature of the verb taxonomies, there was no need to disallow 

any verb classes from the selection process. However, as the selection 

mechanism can never select the root of a taxonomy, 618 verb base classes 

were nevertheless ignored. We will return to this issue in Section 2.3. 

 
2.2 Abridging Hypernym Chains 
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It is interesting to note that a class c selected as the SC of a noun sense s is 

not necessarily selected as the SC of all hyponyms of s Take for example 

the classes DOG and HAMSTER. As has been seen above, ANIMAL is the SC 

of DOG, and is also a hypernym of HAMSTER. However, the SC of HAMSTER 

is RODENT. This observation permits an abridged representation of 

HAMSTER to be constructed by selecting only the identified SCs, as shown 

in Fig. 2. 

 
 HAMSTER: RODENT → PLACENTAL → MAMMAL → VERTEBRATE → 

 CHORDATE → ANIMAL → LIFE_FORM → ENTITY 

 

HAMSTER: RODENT → ANIMAL 

 
Fig. 2  Abridged hypernym representation of HAMSTER using SCs 

 

Complex taxonomic structures, such as that for BEER, see Fig. 3, are easily 

accommodated by traversing each hypernym path from leaf to root 

separately. Table 3 gives the change in information content values for the 

three paths associated with BEER, and shows that BEVERAGE, FLUID and 

DRUG are directly selected as SCs of BEER. 

 

 
Table 3  Change in information content for hypernyms of BEER 

 

Processing the entire noun taxonomy in this way selects 4373 of the 

available 66025 WordNet noun classes. Similarly, 931 of the 12127 verb 

classes were selected. 

 

2.3 A Fully Abridged Taxonomy 

 

Recall that the base classes disallowed by the selection process do not 

appear in the set of extracted SCs. Nevertheless, they may be encountered in 

texts, and are required in order to reconstruct (in abridged form) the original 

Path A Path B Path C 

Class Info ∆∆∆∆Info Class Info ∆∆∆∆Info Class Info ∆∆∆∆Info 

ENTITY 1.40212   ENTITY 1.40212   ENTITY 1.40212  

OBJECT 1.59641 0.19429  OBJECT 1.59641 0.19429  OBJECT 1.59641 0.19429 

SUBSTANCE 2.30612 0.70971  SUBSTANCE 2.30612 0.70971  ARTEFACT 1.83769 0.24128 

FOOD 2.76016 0.45404  FLUID 3.45593 1.14981  DRUG 3.22856 1.39088 

   LIQUID 3.47550 0.01957  D ABUSE 3.59402 0.36545 

BEVERAGE 3.64836 0.88820  BEVERAGE 3.64836 0.17286    

ALCOHOL 3.78927 0.14092  ALCOHOL 3.78927 0.14092  ALCOHOL 3.78927 0.19526 

BREW 4.57581 0.78654  BREW 4.57581 0.78654  BREW 4.57581 0.78654 

BEER 4.87778 0.30197  BEER 4.87778 0.30197  BEER 4.87778 0.30197 
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noun and verb taxonomies. For these reasons the base classes were added to 

the set of SCs, resulting in a total of 4518 noun and 1625 verb classes in the 

abridged WordNet noun and verb taxonomies. This corresponds to an 

abridged noun taxonomy 6.8% of the size of the original, and an abridged 

verb taxonomy 13.4% the size of the original. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  WordNet Hypernym representation of BEER 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4a  Abridged representation of Beer Fig 4b Full abridged representation of Beer 
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The abridged representation of BEER, constructed only of SCs, is 

shown without base classes in Fig. 4a, and with base classes in Fig. 4b. Note 

that BREW and DRUG are selected as SCs by processing other senses not 

shown here. 

 

 2.4 Discussion 

 

Tables 4 and 5 show the distribution of noun and verb classes within their 

respective specialization classes. Size indicates the number of classes 

subsumed by an SC, and Freq the number of occurrences of an SC 

containing Size classes.  

Table 4 shows that 54 noun SCs do not subsume any other class, and 

consequently only synonymous lemmas can be grouped by these SCs.  This 

is also true of the 271 instances of single-class verb SCs. The most frequent 

number of classes subsumed by a noun or verb SC is 2, corresponding to the 

SC class and one hyponym of that class. Although SCs containing few 

senses are frequent, the tables show that some SCs subsume a high number 

of senses – the highest containing 1920 nouns and 830 verbs. Examination 

of the data revealed that the PLANT (flora) SC held the most noun senses, 

closely followed by ANIMAL (animate being), FAMILY (taxonomic) and 

COMPOUND (chemical). For verbs, CHANGE (transform) was the most 

populous SC, followed by CHANGE (undergo change), MOVE (locomote) 

and MOVE (displace). Considering the large numbers of animals, plants, and 

taxonomic classifications, together with ways to or be changed or moved, 

contained within a dictionary such as WordNet, it is entirely predictable that 

highly subsuming SCs will exist. However, as the senses within an SC are 

not distinguished from each other in any way other than by identity, no 

subdivisions within an SC exist. This results in no distinction being made 

between PARROT and DOG for example - both map on to the SC ANIMAL. 

This may be problematic if SCs are to be used as the basis for selectional 

association calculations; where it would only be possible to state 

FLY(ANIMAL), and not FLY(BIRD) for example. 

 A solution to the above problem, should one be necessary, would be 

to add all populous SCs to the base classes during SC extraction; as these 

are disallowed by the selection process, the class scoring the next highest 

change in information would be selected in its stead. So in the case of DOG 

(Table 2), ANIMAL would be disallowed, and CARNIVORE would be 

selected, and as a consequence the SC for ANIMAL would no longer 

contain any carnivores directly. The process could be repeated until all SCs 

contained less than a predefined number of senses. On completion, base 

classes are combined with the selected classes to form the abridged 

taxonomy, and so ANIMAL, and all other senses shunted into the set of 

base classes, would again become available as an SC, albeit with fewer 

subsumed senses. 
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Size Freq Size Freq Size Freq Size Freq Size Freq Size Freq 

1 54 31 9 61 3 96 3 146 1 255 1 

2 1022 32 17 62 6 97 3 148 2 261 1 

3 663 33 15 63 2 99 1 150 1 276 1 

4 460 34 11 64 2 100 1 152 1 286 1 

5 322 35 11 66 3 101 1 153 1 288 1 
6 231 36 5 67 2 103 1 155 1 299 1 

7 183 37 11 68 4 105 1 160 2 300 1 

8 168 38 5 69 4 106 2 162 1 303 1 

9 144 39 8 70 2 107 1 169 1 306 1 

10 104 40 5 71 1 110 2 170 1 308 1 
11 105 41 10 72 4 111 2 178 1 313 1 

12 82 42 8 73 1 112 1 179 2 322 1 
13 79 43 6 74 1 115 1 183 2 324 1 

14 65 44 5 75 3 116 1 190 1 333 1 

15 56 45 7 76 3 118 1 191 1 334 1 
16 47 46 5 78 4 120 1 193 1 364 1 

17 43 47 10 79 2 122 2 198 1 367 1 
18 30 48 6 80 2 127 1 199 1 370 1 

19 38 49 3 81 1 129 1 202 3 385 1 
20 30 50 10 82 2 130 2 204 3 401 1 

21 34 51 4 83 2 133 1 206 1 423 1 

22 23 52 3 84 2 134 1 207 2 524 1 
23 20 53 4 85 3 135 2 208 1 558 1 

24 16 54 6 87 1 136 2 215 1 607 1 
25 18 55 10 88 1 138 1 218 1 774 1 

26 14 56 1 89 1 140 2 227 1 860 1 
27 18 57 6 91 2 141 1 229 1 1070 1 

28 23 58 4 92 1 143 2 239 1 1824 1 

29 18 59 2 93 1 144 1 242 1 1920 1 
30 19 60 3 94 3 129 1 245 1   

 
Table 4  Number of noun classes subsumed by noun SCs 

 
Size Freq Size Freq Size Freq Size Freq 

1 271 17 15 33 3 71 1 
2 425 18 10 35 4 74 1 

3 234 19 12 36 2 75 1 
4 130 20 4 38 1 80 2 

5 107 21 4 40 1 87 1 
6 93 22 12 41 2 91 1 

7 51 23 7 43 1 143 1 

8 48 24 1 45 1 150 1 
9 30 25 2 49 1 152 1 

10 19 26 7 50 1 154 1 
11 22 27 2 53 1 187 1 

12 21 28 4 55 1 236 1 

13 12 29 5 58 1 295 2 

14 14 30 3 61 1 376 1 

15 7 31 1 64 1 830 1 
16 9 32 3 65 1   

 
Table 5  Number of verb classes subsumed by verb SCs 
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3 Evaluation of SC Sense Distinctions 
 

To determine the degree to which sense distinctions have been preserved in 

the abridged noun and verb hypernym taxonomies, a precision/recall 

experiment was devised to evaluate the ability of SCs to disjointly partition 

the senses of polysemic lemmas: by recognising that the function SC simply 

maps a given class on to itself or one of its hypernyms it can be seen that, 

ideally, the n senses of a polysemic lemma should map on to n SCs. The 

senses of that lemma may thus be considered query terms, and the mapped 

SCs the target set. Recall will always be 100% as the SCs will always be 

hypernyms of the query terms (or the query terms themselves), whereas 

Precision may be reduced if two or more query terms map on to the same 

SC. Precision is therefore calculated as follows: 

 

Let Λ be a lemma, σ(Λ) a function returning the set of senses of Λ, 

and χ(Λ) a function returning the set of SCs for all senses of Λ. 

  

Precision =  (9) 

  

 

3.1 Evaluation datasets 

 

To evaluate the ability of SCs to discriminate between senses of a lemma, 

all 94474 noun (10319 verb) lemmas from the WordNet NOUN.IDX 

(VERB.IDX) tables were processed. Along with the set of 4518 noun (1625 

verb) SCs extracted by the above method, for comparative purposes two 

additional sets of SCs were generated: (a) a baseline containing only the 145 

noun (618 verb) base classes, and (b) a randomly selected set of 3907 noun 

(1605 verb) SCs (including the base classes). 

Precision was calculated for each lemma obtained from the noun 

(verb) index according to equation 9 and recorded in an array indexed on 

#σ(Λ). For completeness, monosemous lemma occurrences were recorded 

and, as only one sense is available to its SC, assigned a precision of 100%. 

 

3.2 Results 

 

The precision values for the three evaluations, for both nouns and verbs, are 

presented in Table 6. Column #σσσσ(ΛΛΛΛ) indicates the number of senses 

obtained for a lemma, Count the number of lemmas contained in each of 

the above groups, and Bases, Rnd+Bases, and SC+Bases the precision of 

the three abridgement sets. 

In calculating the average precision, monosemous lemmas (#σ(Λ) = 

1) were ignored, as were those values of #σ(Λ) for which no data was seen 

(Count = 0), resulting in 21 noun and 39 verb precision values. Of the 4518 

 #σ (Λ) 

#χ (Λ) 
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noun (1625 verb) SCs, 432 (28) corresponded to monosemous lemmas, the 

remaining 4086 (1597) to polysemous lemmas. 

The relatively low number of noun bases presents a coarse-grained 

abridgement, which is reflected in its low precision (0.5381) in the 

polysemous lemma discrimination task. The random selection, covering 

more classes lower in the taxonomy, provides a better precision (0.7574), 

but the best precision is obtained using the extracted SCs (0.9464). The 

situation is similar for the verb discrimination task, the extracted SCs 

producing the highest precision (0.8328). On three occasions the random 

verb precision equalled the SC verb precision (#σ(Λ) = 14, 17, 48) and on 

one occasion bested it (#σ(Λ) = 30). No SC noun precision was equalled or 

beaten by a random noun precision. 

It is interesting to note that although the precision is not 100%, it 

does not necessarily follow that the SC selection procedure is somehow 

flawed. Take for example the lemma MUSIC, for which WordNet 1.6 lists 6 

senses. Of these, senses MUSIC#2 and MUSIC#5 are described as ‘any 

agreeable (pleasing and harmonious) sounds’ and ‘the sounds produced by 

singers and musical instruments’ respectively. Both of these senses map on 

to the SC PERCEPTION#3. Further, these two senses of MUSIC share the 

immediate hypernym SOUND#2 (auditory sensation). It is therefore not 

surprising, and should be expected, that a certain number of one-to-many 

mappings between SCs and senses will be encountered. Considering the fact 

that one-to-many mappings occur when the senses of a lemma share a 

hypernym, something that becomes more likely towards the root of a 

taxonomy, it is perhaps more surprising that so few occur. 

 

4 Selecting Keywords on Similarity 
 

A typical TF keyword extractor selects the most frequently occurring terms 

as the keywords, either by comparison with the frequencies of other terms in 

that document, or with the frequencies of those document terms when 

compared with their frequencies in a reference corpus. We have selected the 

latter, again using the BNC as the reference corpus. 

 

4.1 Noun Key Lemmas 

Before examining the keyword expansion properties of SCs, it will be useful 

to see the Key Lemma output of a keyword generator based on noun 

lemmas. This requires a noun lemma reference corpus and a set of 

documents for keyword extraction. 

 The noun reference corpus was prepared by extracting all nouns 

from the BNC, lemmatizing them using the WordNet morphological 

normalizer, and counting the frequencies of each lemma form, resulting in 

(lemma, frequency) pairs. 
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The evaluation documents selected are the Brown 1 section of the SemCor 

corpus, which was chosen as the WordNet sense tags it incorporates will 

 Noun Precision Verb Precision 

Size 145 3907 4518 618 1605 1625 

#σσσσ(ΛΛΛΛ) Count Bases Rnd + 

Bases 

SC + 

Bases 

Count Bases Rnd + 

Bases 

SC + 

Bases 
1 81910 1.000 1.0000 1.0000 5752 1.0000 1.0000 1.0000 

2 8345 0.7901 0.8991 0.9434 2199 0.9038 0.9293 0.9611 

3 2225 0.7112 0.8661 0.9426 979 0.8488 0.8931 0.9302 
4 873 0.6804 0.8411 0.9444 502 0.8237 0.8675 0.9268 

5 451 0.6718 0.8483 0.9512 318 0.7679 0.8277 0.8931 
6 259 0.6274 0.8346 0.9556 188 0.7660 0.8333 0.9069 

7 140 0.5898 0.8102 0.9541 102 0.7507 0.8305 0.8978 
8 82 0.5762 0.7835 0.9482 75 0.7333 0.7767 0.8867 

9 68 0.5376 0.7598 0.9493 39 0.7009 0.7664 0.8803 

10 42 0.5476 0.7429 0.9286 39 0.7359 0.7897 0.8769 
11 23 0.5415 0.7312 0.9605 32 0.7358 0.8097 0.8835 

12 18 0.5602 0.7500 0.9861 15 0.7444 0.8056 0.8833 
13 9 0.5470 0.7436 0.9487 16 0.6827 0.7692 0.8606 

14 8 0.4643 0.6696 0.9464 5 0.7571 0.8429 0.8429 

15 7 0.4952 0.7333 0.9333 8 0.7667 0.7917 0.9167 
16 3 0.4583 0.7083 0.9167 8 0.6641 0.7422 0.8359 

17 6 0.4412 0.6275 0.9216 4 0.6324 0.7647 0.7647 
18 1 0.5556 0.8333 1.0000 4 0.6528 0.7222 0.8333 

19 1 0.4737 0.8421 0.8947 2 0.5789 0.7632 0.8158 
20 0    2 0.5000 0.6250 0.7000 

21 0    3 0.8095 0.8413 0.9048 

22 0    3 0.5758 0.6212 0.8182 
23 0    1 0.4783 0.5652 0.6087 

24 1 0.2500 0.4583 0.9167 3 0.6528 0.7083 0.7222 
25 0    2 0.6800 0.7800 0.9000 

26 0    3 0.5769 0.7308 0.7821 

27 0    1 0.5185 0.6296 0.6667 

28 0    1 0.7500 0.7857 0.8571 

29 1 0.4138 0.6897 0.9655 1 0.6552 0.6897 0.8966 
30 1 0.3667 0.7333 0.9667 1 0.7333 0.8333 0.8000 

32 0    1 0.5313 0.6875 0.7500 
33 0    1 0.5455 0.7273 0.8182 

36 0    1 0.6944 0.7778 0.8889 

37 0    1 0.6757 0.7838 0.8378 

38 0    1 0.6316 0.7105 0.7632 

41 0    2 0.6341 0.7195 0.8293 
42 0    1 0.5476 0.6667 0.8095 

45 0    1 0.5556 0.6667 0.9333 

48 0    1 0.5625 0.6667 0.6667 

63 0    1 0.4921 0.6349 0.7302 

Total 94474    10319    

 21 polysemous lemma groups 39 polysemous lemma groups 

Average 0.5381 0.7574 0.9464  0.6671 0.7533 0.8328 

 

Table 6  Precision of sense distinctions of three abridgements for both nouns and verbs 
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allow keyword senses to be evaluated alongside keyword surface form. A 

document is processed by calculating the frequency of each lemma 

identified as a noun by its POS-tag, again resulting in (lemma, frequency) 

pairs. The frequencies of the lemmas in both sets are then normalised to sum 

to one, restricting the normalisation of the reference set to those with 

lemmas occurring in the document set, as shown in equations 10 to 13 

below. Note that when processing SemCor documents, those terms mapped 

onto PERSON, LOCATION, and GROUP were excluded, and the first sense of 

those terms identified as ‘difficult’ by the SemCor taggers (and therefore 

having two or more sense tags) was taken. 

 

Given: 

 

[LEMMA] the set of lemmas 

 

docSum: N sum of document frequencies 

 

refSum: N sum of corresponding reference 

frequencies 

 

doc: LEMMA ß REAL document lemma to frequency 

 

ref: LEMMA ß REAL reference corpus lemma to 

frequency 

 

Then: 

docSum = S ran(doc) (10) 

 

refSum = S ran(dom(doc)r ref) (11) 

 

doc ± {∀ l: LEMMA | l e dom(doc) • l å doc(l) ÷ docSum}  (12) 

 

ref ± {∀ l: LEMMA | l e dom(doc) • l å ref(l) ÷ refSum} (13) 

 

Key Lemma selection is made by calculating the difference in normalised 

frequencies between the document and reference sets, as shown in equation 

14. Ranking on decreasing difference then places at the top of the list those 

lemmas that occur more frequently than predicted by the reference corpus. 

 

diff: LEMMA ß REAL Lemma to difference in normalized 

frequency relation 
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RANK(diff ± {∀ l: LEMMA | l ∈ dom doc • l å doc(l) -  ref(l) })     (14) 

 

The top ten lemmas from three SemCor documents, BR-A01, BR-D03, and BR-

N05 selected by this method are presented in Table 7, frequencies shown 

bracketed. 

 

Rank BR-A01 BR-D03 BR-N05 

1 jury(20) england(20) wilson(18) 

2 election(12) catholic(16) girl(9) 

3 resolution(9) church(18) fire(7) 

4 bonds(8) priest(7) half-breed(4) 

5 fund(8) clergyman(6) wrist(4) 

6 funds(8) unity(6) cheek(4) 

7 legislator(6) non-catholic(5) grass(4) 

8 georgia(6) protestant(5) scar(3) 

9 petition(6) article(6) dish(3) 

10 county(7) archbishop(5) horse(4) 
Table 7  Key Lemmas from three SemCor documents 

The first two documents provide reasonably indicative keywords as they are 

drawn from categories that cover single domains (Press Reportage and 

Religion respectively). The third document is drawn from the General 

Fiction category, which of course is story based, and consequently the 

extracted keywords have nothing to be indicative of. 

 

4.2 Specialization Class Keyword Groups 

 

Here we follow the same basic procedure as for Key Lemma selection, but 

replace the lemma with the specialization class of the lemma in all 

procedures, thereby generating Key Classes. The consequence of this is that 

similarly sensed lemmas (that is, those sharing the same specialization class) 

will be grouped together regardless of their lexical form. See Tables 8 to 10 

below for examples of this. The procedure is formally defined by equations 

10 to 14 above (including the ‘givens’), but with LEMMA replaced by 

SPECIALIZATION CLASS. Additionally, the reference corpus, which now 

must comprise (SC, frequency) tuples, is constructed by assigning all 

appropriate WordNet senses to each noun and verb lemma, as the BNC is 

not sense-tagged. This introduces noise, but again we rely on that noise 

being randomly distributed throughout the corpus to minimize its effect. 

A further problem with the move from lemma to class is that 

appropriate senses must be assigned to each document lemma, a non-trivial 

task. We therefore have the choice of either pre-processing a document 

using some sense-tagging procedure to obtain one sense per lemma, or 
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attempt no sense-tagging at all and assign all appropriate senses to each 

lemma. Note however that, as each lemma is now augmented by similarly 

sensed but low frequency terms drawn from the document, the frequency of 

each SC is the sum of its component terms. For example, the lemma 

election, with a frequency of 12, is included in the SC VOTE along with 

primary(3), reelection(1), general_election(1), primary_election(1) as shown 

in Table 8, giving a total frequency of 18. If all senses of a lemma are taken, 

then other erroneous SCs will be present and will also gain frequency counts 

from their low frequency associates. This poses the question of whether the 

increase in frequency of actual associations of intended senses can outweigh 

the increase in frequency of chance associations between erroneous senses. 

If this proves to be the case, the intended senses of SCs will rank more 

highly and consequently there will be no need to sense-disambiguate a 

document before extracting key senses. 

 

4.3 Comparison of Key Class Selections 

To evaluate the possibility of automatic selection of correctly sensed Key 

Classes, a comparison was made between noun Key Classes selected from 

the Brown 1 SemCor document set nouns (excluding those mentioned in 4.1 

above) tagged with all noun senses, and with senses assigned using the First 

Sense heuristic in which the first listed WordNet sense (i.e. the most 

frequently encountered) of any polysemic lemma is assigned. This heuristic 

produces reasonable accuracy – (Li et al., 1995b) report 57% accuracy, 

whereas (Gonzalo et al., 2001) report that 70% of the noun senses in 

SemCor correspond to the first WordNet sense, but suggest that the higher 

result may be due to the annotator selecting of the first matching sense 

rather than the best matching sense, thereby preferring those senses at the 

top of the sense list.  

The SCs selected by equation 7 for the All Sense and First Sense 

taggings are compared with a baseline comprising the SCs selected (again 

using equation 7) when using the senses supplied as part of the SemCor 

annotation. The comparison was performed on the ranked difference 

between the All Sense (or First Sense) SCs and the baseline, using the 

SPECIALISATION CLASS version of equation 14. Precision/Recall is again 

used to determine the degree of correspondence between the All/First sense 

sets and the baseline, and is performed over a variable number of top-ranked  

SCs to simulate the selection of the n top SCs as Key Classes. The first n 

items of the ranked test sets are compared with the first n items of the 

baseline set, where 1 ≤ n ≤ 30. As Recall = Precision, the results are 

reported as ‘F-Score’ values. On average, 590 SCs were returned from each 

of the 102 documents in the SemCor Brown 1 collection when inspecting all 

senses of the document lemmas, whereas on average 190 were extracted 
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when considering only the first WordNet sense. The results for the first 30 

items are presented in figure 4. 
 

Fig 4  F-Score of top ranked n SCs from first and all WordNet senses with respect to top 

ranked SemCor annotated SCs 

 

4.4 Discussion 

 

The results show that 89% of the noun SCs ranked first in the First Sense set 

are found in the base data, and that a recall/precision of over 80% may be 

obtained by selecting up to the top 13 ranks. Even in the All Sense set, the 

first ranked SC occurs over 75% of the time in the base data, but rapidly 

drops - the top eleven ranks scoring below 50%. Evidently, with the set of 

SCs used, the First Sense heuristic set performs better overall than the All 

Sense set, and the theory that correct SC senses would gravitate to the top of 

the ranked list does not hold. It therefore appears that some sense 

disambiguation is necessary in order to take advantage of the similarity 

grouping provided by SCs. 

Tables 8 to 10 present the top 10 SC ranks, using the First Sense heuristic, 

of the documents BR-A01, BR-D03, and BR-N05 respectively. Rows marked 

with an asterisk indicate erroneous SCs not represented in the original 

document, caused by the heuristic selecting the wrong sense. Emboldened 

lemmas indicate Key Lemmas that also occur in the baseline data, and 

figures in brackets indicate lemma frequency. 
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Rank SC Sense Lemma 

1 money fund(8), money(2), revolving_fund(1) 

2 vote  

 

election(12), primary(3), reelection(1), 

general_election(1), primary_election(1) 

3 funds;finances; 

monetary_resource; 

cash_in_hand; 

pecuniary_resource 

funds(8) 

4 body jury(15), grand_jury(3),  

5 calendar_day;civil_day  

 

monday(5), friday(4), sunday(2), tuesday(2), 

saturday(1), wednesday(1) 

*6 chemical_bond;bond  bond(8) 

7 law;jurisprudence law(5), laws(2), enabling_legislation(1) 

8 contest;competition campaign(5), race(3) 

9 document;written_document

;papers 

resolution(9), ballot(1) 

10 lawgiver;lawmaker legislator(6), congressman(1) 

 
Table 8  Top 10 SCs of document BR-A01 

 

Rank SC Sense Lemma 

1 religionist;religious_person catholic(16), non-catholic(5), 

roman_catholic(2), nun(1), 

christian(1), tractarian(1) 

2 religion;faith church(18), catholic_church(2), 

church_of_rome(1), 

religious_order(1) 

3 england england(20) 

*4 old_age;years;age year(8); years(8) 

5 year;twelvemonth;yr year(8); years(8) 

6 religion;faith;religious_belief catholicism(4), faith(4), 

high_Anglicanism(1), 

roman_catholicism(1) 

7 leader priest(7), clergyman(6), 

minister(2), cleric(1), parson(1), 

shepherd(1), vicar(1) 

8 protestant protestant(5), anglican(1), 

nonconformist(1) 

9 denomination church_of_England(4), 

anglican_church(2) 

10 integrity;unity;wholeness unity(6) 

 
Table 9  Top 10 SCs of document BR-D03 

 



Publications: Journal of Literary and Linguistic Computing: Special Issue 

on Keywords. 2005. In Press. 

 257 

 

Rank SC Sense Lemma 

1 situation;state_of_affairs   thing(7); things(5) 

*2 property;belongings;holding; 

material_possession   

thing(5); things(5) 

3 female;female_person girl(9); woman(4) 

3 whip quirt(7) 

4 fire   fire(7) 

5 joint;articulation wrist(4), knee(2) 

6 real_property;real_estate;realty acre(2); acres(2); land(2) 

7 leather_strip reins(2); rein(2); thong(1) 

8 organ eye(4); eyes(4) 

9 topographic_point;place;spot   place(7) 

10 belief eye(4); eyes(4) 

 
Table 10  Top 10 SCs of document BR-N05 

 

Comparing the top ten lemmas (Key Lemmas) in Table 7 with the top ten 

SCs lemmas (Key Class Lemmas)  in Tables 8 and 9 shows that for 

documents BR-A01 and BR-D03, the highest ranked 7 (8 resp.) Key Lemmas 

are to be found in the Key Class Lemmas - shown emboldened in the tables  

- and are the most frequent of each Key Class Lemma set. The tables also 

show that the Key Lemmas have been augmented with low frequency but 

related lemmas. For example, the Key Lemma election is included in the 

Key Class VOTE – where VOTE is a hypernym (@) of election, where 

primary_election and reelection are hyponyms (~), general_election is a 

sibling, and primary and primary_election are synonyms, as shown in Fig. 

5. This is true for other lemmas, for example fund is augmented with 

revolving_fund, resolution with ballot, church with catholic_church, 

church_of_rome and religious_order.  

 

 

 

 

 

 

 
Fig 5  Relationships of lemmas associated with the Key Lemma election under the SC 

VOTE. 

 

Only three of the Key Lemmas of document BR-N05 are present in the Key 

Class Lemmas of Table 10, although they do occur in the top five ranks. 

Again, some degree of augmentation is present in that girl is augmented 

with woman, and wrist with knee. 

 sib 

reelection 
~ 

@
VOTE 

general_election election 

primary            primary_election 
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 Some lemmas appear in more than one Key Class Lemma group, for 

example, funds, years, things, and eyes. Multiple entries such as these occur 

where a document term maps on to two or more lemmas in WordNet, 

occurring in this case because the term is both a lemma in its own right and 

the plural form of another lemma, e.g. the term funds has both the lemmas 

funds and fund. 

 

12 5 Conclusion 

 

We have presented a novel method of abridging the WordNet noun and verb 

taxonomies, which utilises change in class information content to identify 

those classes at which major specializations occur. Although few in number 

when compared to the total number of classes in the taxonomy, these 

specialization classes have been shown to discriminate between polysemous 

lemmas when their senses are not closely related by hypernymy. It has also 

been proposed that scaleable abridgements may be produced by repeated 

application of the abridgement algorithm. 

 As the abridgement algorithm effectively produces cuts in a 

taxonomy at specialization classes, the classes under each cut may be 

viewed as similar, and therefore allows words of similar meaning to be 

grouped together. By applying standard keyword selection techniques to 

specialization classes rather than lexically similar terms, each key 

specialization class contains a number of lexically dissimilar terms which, 

when read together, point to the sense of the specialization class. 

Additionally, these terms do not necessarily occur frequently in their source 

documents. This is different from lexical keywords, which are 

disambiguated by their mutual context, and always occur frequently in their 

source documents. 

 For a polysemous lemma, the addition of low frequency terms 

similar to the usually selected high frequency terms for the desired sense 

does not increase the overall frequency of its specialization class sufficiently 

to increase its ranking it above the alternative and erroneous specialization 

classes of that lemma, and hence specialization classes cannot be used to 

automatically select correctly sensed Key Classes from non sense-tagged 

documents. However, it has been shown that keywords sense-tagged to an 

accuracy of over 80% may be obtained by pre-assigning senses to nouns 

using the First Sense heuristic. 

 The use of abridged taxonomies allows keywords to be expanded 

into groups of similarly sensed words drawn from a document. However, as 

the keyword selection procedure is essentially frequency based, as used in 

lexical keyword selection procedures, the efficacy of the of the procedure to 

extract useful keywords is dependent on the document type, better results 

being obtained from single-subject documents. In the case of story-based or 
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multi-topic documents, identifying discourse segments through linear text 

segmentation (Choi, 2000) may prove fruitful. 

 Specialization Classes have two obvious applications that will be 

investigated in the future. Firstly, they may prove useful as a mechanism for 

query expansion; query terms, mapped to a specialization class, can be 

expanded into a group of similarly sensed but lexically different terms, 

thereby increasing the scope of each query term. Secondly, the accuracy to 

which specialization classes partition the senses of polysemous lemmas, 

along with the high degree of abridgement they afford, suggests that 

specialization classes may be used as surrogates for noun and verb senses, 

effectively reducing the search space of any sense-discrimination procedure. 

Our work in progress is using specialization classes in this fashion, using 

them to describe selectional association profiles, which in turn are involved 

in incremental parsing and decision making during processing of 

predominantly right-branching sentences with a Combinatory Categorical 

Grammar.  
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