
EXPERIMENTS ON AUTOMATIC DRUG ACTIVITY CHARACTERIZATION
USING SUPPORT VECTOR CLASSIFICATION

Francesc J. Ferri and Wladimiro Dı́az
Departament d’Informàtica
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ABSTRACT
The characterization of pharmacological properties from
their chemical structure has become a challenging and
promising technique in computer aided drug design. The
idea consists of finding appropriate representations of can-
didate compounds in terms of their chemical formulae and
try to apply a particular machine learning method able
to appropriately characterize certain desired propertiesor
kinds of pharmacological activity. In this particular work
antibacterial activity has been considered. Several classic
pattern classification methods have already been applied to
this problem with promising results. In this work, the sup-
port vector machine model is considered and compared to
multilayer perceptrons in this particular context. The natu-
ral and unpredictable imbalance and the fact that only rel-
atively small samples can be used for learning make this a
challenging and interesting problem.
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1 Introduction

The design of new medical drugs with desired chemical
properties is a challenging and very important problem in
the pharmaceutical industry. The traditional approach for
formulating new compounds requires the designer to test a
very large number of molecular compounds, to select them
in a blind way, and to look for the desired pharmacological
property. Therefore, it is very useful to have tools to dis-
criminate the pharmacological activity of a given molecu-
lar compound so that the laboratory experiments can be di-
rected to those molecular groups in which there is a high
probability of finding new compounds with the desired
properties.

All methods developed for this purpose are based on
the fact that the activity of a molecule derives from its struc-
ture and therefore it is possible to find a relationship be-
tween this structure and the properties that the molecule
exhibits [14]. Thus, the way the molecular structure is rep-
resented has special relevance.
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In Chemical Graph Theory, molecular structures are
represented as doubly labeled graphs which can be conve-
niently characterized by a number of specific topological
indices [8]. In this work, a reduced set of 62 topological
indices [9] are considered.

These or similar representations have already been
applied to different discrimination problems in drug de-
sign (analgesic, antidiabetic, antibacterial, etc.). In the par-
ticular case of antibacterial activity, very good classifica-
tion results have been reported using multilayer percep-
trons (MLP) [4, 11].

Also important in the above mentioned application is
the cost/benefit problem and the corresponding discrimina-
tion thresholds that have to be used to maximize the out-
comes of the learned classifiers from the point of view of
the pharmacological problem. The use of Receiver Oper-
ating Characteristic (ROC) curves [5] has been shown to
be a valuable tool in this particular context to evaluate the
classifier in a wide range of practical situations.

This paper introduces Support Vector Machines
(SVM) in this particular problem and studies the differ-
ences and particularities of the corresponding solutions as
compared with the state-of-the-art solution based on mul-
tilayer perceptrons [11]. A detailed analysis has been per-
formed in order to assess the suitability and adaptability of
these methods for the particular task using ROC analysis.

2 The molecular structure-activity relation-
ship discovery

The so-called quantitative structure-activity relationship
(QSAR) models are currently used in the computer aided
design of new medical drugs with desired chemical prop-
erties. As an alternative to the methods based on the “ex-
act” description of the electronic properties of a molecule
calculated by mechanical-quantum methods, the molecular
topology describes the molecule as a set of indices. These
topological indices are numerical descriptors that encode
information about the number of atoms and their struc-
tural environment. This representation is derived from the
hydrogen-suppressed molecular formula seen as a graph
and it requires a relatively low calculation effort [1, 2, 8].

The molecular topology considers a molecule as a



planar graph where atoms are represented by vertices and
chemical bonds are represented by edges. The chosen set of
molecular descriptors should adequately capture the phe-
nomena underlying the properties of the compound. In this
and other related works, a set of 62 indices has been se-
lected [9, 15, 12]. Fourteen of these indices are related to
the molecular attributes of the compound; for example, the
total number of atoms of a certain element (carbon, nitro-
gen, oxygen, sulphur, fluorine, chlorine, . . . ), the total num-
ber of bonds of a certain type (simple, double or triple), the
number of atoms with a specific vertex degree, distance be-
tween the bonds, etc. . .

The remaining forty-eight indices include different
topological information, such as the number of double
bonds at distance 1 or 2, and the minimum distance be-
tween pairs of atoms, which are counted as the number of
bonds between atoms. These indices are classified into six
groups which are associated to the most frequent elements
that constitute the molecules with pharmacological activ-
ity: nitrogen, oxygen, sulphur, fluorine, chlorine, bromine,
and a general group in which the distances between pairs of
atoms are considered without identifying the type of atom.

This molecular representation has shown its ability
for discriminating and predicting different kinds of phar-
macological properties. Nevertheless, it is known that cer-
tain indices are more important that others for detecting
particular cases. For example, it has been shown that only
eight out of the above topological indices are enough to
predict antibacterial activity with about 80% accuracy (and
about 90% inactivity accuracy or 10 % false alarm rate)
using linear discrimination models [12].

Obviously, the QSAR studies rely on the key fact that
the activity of a molecule directly derives from its structure
or, more precisely, from certain aspects of it. The better
the chosen set of indices captures these particular aspects,
the better the (blind) machine learning methods will char-
acterize the activity of the molecule. As the molecular de-
scriptors or indices have to be general in order to be applied
in a wide range of drug design contexts, the ability of the
particular learning methods used to capture non linear rela-
tions and high order dependencies among them becomes a
key fact in the whole process.

3 Minimizing the risk in automated drug de-
sign

It is important to note that we are interested not only in
achieving a high accuracy in classification but also a con-
venient compromise between true positive and false alarm
rates. The high economical costs due to the pharmaco-
logical tests on each candidate molecule in drugs research
makes an important issue to keep the number of false posi-
tives as low as possible, even if this implies to reject some
true positives.

Given a particular classifier whose output consists of
a continuous value in a specified interval (as in the cases

considered in this work), the Receiver Operating Charac-
teristic (ROC) curve is defined as the plot of the true pos-
itive rate (TP) against false positive rate (FP) considering
the threshold used in the classifier as a parameter. The so-
called ROC space is given by all possible results of such a
classifier in the form (FP,TP). The performance of any clas-
sifier (with the corresponding threshold included) can be
represented by a point in the ROC space. ROC curves move
from the “all-inactive” point (0,0) which corresponds to the
highest value of the threshold to the “all-active” point (1,1)
given by the lowest value for the threshold. The straight
line between these two trivial points in the ROC space cor-
responds to the family of random classifiers with differ-
ent a priori probabilities for each class. The more a ROC
curve separates from this line, the better the corresponding
classification scheme is. As ROC curves move away from
this line, they approach the best possible particular result
that corresponds to the point (0,1) in the ROC space which
means no false alarms and highest possible accuracy in the
active class.

The ROC curve is a perfect tool to find the best trade-
off between true positives and false positives and to com-
pare classifiers in a range of different situations. A number
techniques to obtain different measures from ROC curves
have been also developed [7]

4 Machine learning techniques for antibac-
terial activity discrimination

The particular discrimination problem was to determine
whether a molecule has antibacterial activity or not. To
this end, four different classification approaches have been
considered or are referred to in this work: Linear Discrim-
ination Analysis [12], Multilayer Perceptrons [4], Support
Vector Machines [3] and Gaussian Naive Bayes [6] as a
reference.

4.1 Linear discriminant analysis

Linear discriminant analysis (LDA) has been widely used
for this and similar problems in the specific literature [12].
The method consists of finding the optimal separation hy-
perplane. It is well known that the LDA solution can be
very far from the optimal one in the case of highly nonlin-
ear relations among data. This kind of limitation is shared
by all linear classification methods.

The results presented in this work using LDA have
been directly taken from a previous work in the specialized
literature [12] which used a different (and slightly more
representative) dataset and can be considered as the best
results to date for this particular problem. Both the data
and the results are explicitly shown in this reference.



4.2 Naive Bayes Classifier

The Naive Bayes (NB) classifier consists of applying the
optimal Bayes classifier under the assumption that all fea-
tures are statistically independent. In this way, the tough
task of estimating the posterior probabilities for each class
becomes feasible as it consists of a unidimensional prob-
lem.

The Naive Bayes implementation used was taken
from the data mining and machine learning package
Weka [16]. This classifier is not well suited for this prob-
lem in which very high dependencies are present among
the corresponding features. The only reason to consider
this here is as a baseline reference.

4.3 Multilayer Perceptron

Multilayer Perceptrons (MLP) have been extensively used
in a wide range of applications that require a nonlinear ap-
proach. This classifier consists of a variable number of lay-
ers composed by neurons each of which is in fact a linear
classifier. Neurons are nonlinearly connected by using a
nonlinear sigmoid-like activation function. MLPs can be
adaptively trained by suboptimal gradient descent methods.

The training of the MLPs was carried out here by
using the neural software package “SNNS: Stuttgart Neu-
ral Network Simulator” [17]. The network topology (lay-
ers and connections among them), training algorithm and
parameter settings were chosen from a previous work [4]
which was not particularly aimed at looking for antibacte-
rial activity.

More specifically, the results presented have been ob-
tained by using the standard Backpropagation algorithm
with a learning rate equal to 0.05. The first (input) layer
consists of 62 input units. Only one hidden layer with a
variable number of neurons has been considered. In the
third (output) layer only one neuron is needed that gives a
value in the range[−1, 1] that indicates whether the feature
vector at the input is inactive or active, respectively.

The hyperbolic tangent function was used as activa-
tion function for all neurons in order to keep outputs in the
interval [−1, 1] as in the original LDA experiments [12].
The number of neurons in the hidden layer has been set to
0 (linear), 2, 6 and 8. In the forthcoming results only some
of these are shown due to space limitations.

4.4 Support vector machines

Support vector machines (SVM) are well-founded and
widely employed classification and regression methods.
From a technical point of view, SVM are linear classifiers
that operate in an appropriately transformed space that al-
lows a wide range of nonlinear discrimination possibilities
as in the case of MLP. The mentioned transformation is
made by using the so-called kernel trick [13].

The training of SVM is carried out by the struc-
tural risk minimization principle that in this particular case

leads to a margin maximization problem that is solved by
quadratic programming. The margin can be visualized as
the “space” between samples of a particular class and the
separation hypersurface. It can be shown that, trained in
this way, the SVM constitutes the optimal classifier from
the point of view of generalization abilities with the train-
ing information available (and once a transformation/kernel
has been set).

In order to cope with noise and natural overlapping
between classes, the concept of soft-margin can be intro-
duced. In this way, a parameter,C, controls what propor-
tion of samples of a particular class can be wrongly placed
with regard to the separation hypersurface and its margin.
In other words, the soft margin parameter controls the over-
training/generalization trade-off when learning a particular
classifier from data.

From all possible families of kernels, the radial ba-
sis function (RBF) or proximity kernel parameterized by
an influence parameter,γ, has been considered for the ex-
periments. The experiments have been carried out by using
the SVMlight [10] software package. The particular kernel
function is

K(a, b) = eγ·||a−b||2

5 Data preparation, normalization and ex-
perimental design

For the experiments presented in this work, a dataset of 434
samples with potential pharmacological activity has been
considered. Out of these, 218 molecules are known to ex-
hibit antibacterial activity while the other 216 compounds
do not have this activity at all. These balanced proportions
are by no means representative of the a priori probability of
antibacterial activity in real pharmacological design trials.

In order to obtain results as significant as possible,
10-fold stratified cross-validation has been used to compute
all accuracies. When shown, 95% confidence intervals are
computed considering a standard distribution.

All 62 topological indices were used to obtain fea-
ture vectors in which values were linearly normalized to
the interval[−1, 1] in an independent way. As in previous
works [12, 5], each feature vector was labeled with 1 (in-
dicating that the molecule has antibacterial properties) and
-1 (the molecule is inactive).

5.1 Validation and parameter search

Extensive experimentation has been carried out both with
multilayer perceptrons and with support vector machines.
In the first case, the use of a validation set taken from each
training set in the cross validation procedure has been used
to select some of the parameters of the MLP and in partic-
ular, to select the final network and prevent overtraining.

In the case of support vector machines, only two pa-
rameters have to be selected: the soft margin (C) and the
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Figure 1. Performance results of the grid-search carried
out in the parameter space. The contour lines shown corre-
spond to the accuracy values 80, 84, 87, 90, 93, and 95.4.
The white region corresponds to higher values.

influence parameter (γ). This two parameters are quite
well-behaved and allow for a systematic search in the cor-
responding 2D parameter space. For the experiments in
this work, a kind of grid-search has been implemented by
using part of the training data. In particular, several thou-
sands of SVMs have been trained by uniformly sampling
the (logarithmic) parameter space considering the ranges
[0, 60000] for C and [0.001, 1] for γ. For each SVM, the
overall accuracy by taking zero threshold is computed. The
corresponding surface for one of the experiments is shown
in Figure 1 conveniently interpolated and smoothed.

6 Experiments, results and discussion

The above mentioned classification methods have been ap-
plied to the training sets taken from the available data set
and the corresponding (continuous) outputs have been ob-
tained for the test data. For each partition into train and
test, a ROC curve is obtained.

Figure 2 shows the corresponding averaged ROC
curves for the four classification schemes considered. In
the particular case of LDA, the curve corresponds to a
unique partition into train and test data as explained in [12].

The ROC curve corresponding to LDA shows that,
apart from the classifier(8, 82) mentioned in [12] with dis-
crimination threshold set to zero, there are other possible
convenient classifiers as the one with point(5, 71) in ROC
space which uses a higher discrimination threshold, namely
0.61.

The results obtained with the Gaussian Naive Bayes
are clearly and significantly worse than the others show-
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Figure 2. Averaged ROC curves for a) Gaussian Naive
Bayes, b) Linear Discriminant Analysis, c) Multilayer Per-
ceptron with 8 hidden neurons, and d) Support Vector Ma-
chine withC = 194 andγ = 0.095. Circles indicate some
of the particular classifiers obtained that are mentioned in
the text.

ing that this classification scheme is not well suited for this
problem.

On the other hand, the Multilayer Perceptron with 8
units in the hidden layer, significantly outperforms the LDA
results along the whole range of the curve. A particular
(averaged) result that can be mentioned is(10, 95) that in-
volves discrimination thresholds very close to 1. For the
particular application in drug design, the most convenient
MLP classifiers are(4, 85) and(4, 93) with discrimination
thresholds around zero. It is worth mentioning that MLPs
with different number of hidden units gave in our experi-
ments results that were not significantly different than the
ones with 8 hidden units.

Finally, the SVM with the appropriately selected pa-
rameters gave much more stable results which were sig-
nificantly better than the previous ones. It is remarkable
that the variability of the results among the 10 partitions
considered was much smaller than for the other classifiers.
As can be seen, the ROC curve obtained was significantly
smoother. Two of the overall best SVM classifiers that
can be mentioned are(5, 95) and (1, 89) with thresholds
-0.2 and 0.3, respectively. But as before, if one considers
the particular application for real drug design, the classifier
(0.5, 80) or even(0, 71) can be considered as the ones with
more applicability. The two discrimination thresholds for
these classifiers are 0.8 and 1.0, respectively.

The threshold averaged ROC curves have been com-
puted as explained in [7]. The corresponding intervals for
a 95% confidence level have also been computed and are
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Figure 3. Averaged ROC curve corresponding to the mul-
tilayer perceptron approach along with 95% confidence in-
tervals.

shown in Figure 3 for the case of Multilayer Perceptron
and in Figure 4 for the case of Support Vector Machine.
In both cases, only the most interesting part of the whole
ROC space is shown. It can be observed the differences in
the variability of both curves.

As an overall measure of accuracy, the Area Under
the Curve (AUC) has been computed for all methods con-
sidered. The AUC is a common method used in ROC anal-
ysis to give global measure of classifier goodness. When
normalized, this is an scalar value in the range[0, 1]. The
corresponding AUC values for the four classifiers consid-
ered here are shown in Table 1.

Table 1. Area under the curve (AUC) for all classifiers con-
sidered.

Classifiers
NB LDA MLP SVM

AUC 0.857 0.941 0.958 0.986

7 Concluding remarks and considerations
for further work

In this work a classical ROC analysis has been performed
on a particular drug activity discrimination problem. Pre-
liminary results show that this kind of analysis is very in-
teresting and can significantly improve the overall costs in
the whole drug design methodology. Multilayer Perceptron
has been shown to significantly improve previously used
approaches in a wide range of situations. Moreover, Sup-
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Figure 4. Averaged ROC curve corresponding to the SVM
approach along with 95% confidence intervals.

port Vector Machines as used in this work improve upon
MLP’s results. This improvement is not only in absolute
numbers (which is not very dramatic) but also in the ro-
bustness and stability and generalization ability of the clas-
sifiers obtained.

In order to obtain more confident results significant
also from a pharmacological point of view, the whole ex-
perimentation in this work needs to be repeated with a
larger and more representative data set. Also, ROC anal-
ysis including a reject option as in [5] is under consider-
ation. In this case, by considering true positive rate, false
alarm rate and reject rate it would be possible to achieve a
full characterization of the discrimination problem in drug
design applications.
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March, F. Pérez-Giménez, and F. Tomás-Vert. Ar-
tificial neural network applied to prediction of fluo-
rquinolone antibacterial activity by topological meth-
ods.J. Med. Chem., 43:1143–1148, 2000.

[10] T. Joachims. Making large-scale svm learning practi-
cal. In B. Schkopf, C. Burges, and A. Smola, editors,
Advances in Kernel Methods - Support Vector Learn-
ing. MIT-Press, 1999.

[11] M. Murcia-Soler, F. Pérez-Giménez, F.J. Garcı́a-
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