
Contents

Preface vii

1 Discrete-Time Signals in the Time Domain 1
1.1 Introduction 1

1.2 Getting Started 1

1.3 Background Review 2

1.4 MATLAB Commands Used 5

1.5 Generation of Sequences 5

1.6 Simple Operations on Sequences 10

1.7 Workspace Information 13

1.8 Other Types of Signals (Optional) 13

1.9 Background Reading 14

2 Discrete-Time Systems in the Time Domain 15
2.1 Introduction 15

2.2 Background Review 15

2.3 MATLAB Commands Used 17

2.4 Simulation of Discrete-Time Systems 19

2.5 Linear Time-Invariant Discrete-Time Systems 24

2.6 Background Reading 30

3 Discrete-Time Signals in the Frequency
Domain 33

i

ii

3.1 Introduction 33

3.2 Background Review 33

3.3 MATLAB Commands Used 37

3.4 Discrete-Time Fourier Transform 39

3.5 Discrete Fourier Transform 45

3.6 z-Transform 50

3.7 Background Reading 52

4 LTI Discrete-Time Systems in the Frequency
Domain 55
4.1 Introduction 55

4.2 Background Review 55

4.3 MATLAB Commands Used 61

4.4 Transfer Function and Frequency Response 62

4.5 Types of Transfer Functions 64

4.6 Stability Test 70

4.7 Background Reading 71

5 Digital Processing of Continuous-Time
Signals 73
5.1 Introduction 73

5.2 Background Review 73

5.3 MATLAB Commands Used 80

5.4 The Sampling Process in the Time Domain 81

5.5 Effect of Sampling in the Frequency Domain 83

5.6 Analog Lowpass Filters 84

5.7 A/D and D/A Conversions 86

iii

5.8 Background Reading 89

6 Digital Filter Structures 91
6.1 Introduction 91

6.2 Background Review 91

6.3 MATLAB Commands Used 101

6.4 Realization of FIR Transfer Functions 102

6.5 Realization of IIR Transfer Functions 103

6.6 Background Reading 107

7 Digital Filter Design 109
7.1 Introduction 109

7.2 Background Review 109

7.3 MATLAB Commands Used 116

7.4 IIR Filter Design 117

7.5 FIR Filter Design 120

7.6 Background Reading 127

8 Digital Filter Implementation 129
8.1 Introduction 129

8.2 Background Review 129

8.3 MATLAB Commands Used 134

8.4 Simulation of IIR Digital Filters 135

8.5 Simulation of FIR Digital Filters 141

8.6 Design of Tunable Digital Filters 142

8.7 Function Approximation 144

8.8 Background Reading 145

iv

9 Analysis of Finite
Word-Length Effects 147

9.1 Introduction 147

9.2 Background Review 147

9.3 MATLAB Commands Used 155

9.4 Generation and Quantization of Binary Numbers 156

9.5 Coefficient Quantization Effects 158

9.6 A/D Conversion Noise Analysis 161

9.7 Analysis of Arithmetic Roundoff Errors 163

9.8 Low-Sensitivity Digital Filters 166

9.9 Limit Cycles 167

9.10 Background Reading 168

10 Multirate Digital Signal Processing 171

10.1 Introduction 171

10.2 Background Review 171

10.3 MATLAB Commands Used 178

10.4 Basic Sampling Rate Alteration Devices 179

10.5 Decimator and Interpolator Design
and Implementation 182

10.6 Design of Filter Banks 185

10.7 Design of Nyquist Filters 186

10.8 Background Reading 187

11 Advanced Projects 189

11.1 Introduction 189

11.2 Discrete Transforms 189

v

11.3 FIR Filter Design and Implementation 194

11.4 Filter Bank Applications 198

11.5 Modulation and Demodulation 200

11.6 Digital Data Transmission 202

A Introduction to MATLAB 205
A.1 Number and Data Representation 205

A.2 Arithmetic Operations 208

A.3 Relational Operators 210

A.4 Logical Operators 211

A.5 Control Flow 211

A.6 Special Characters and Variables 213

A.7 Output Data Format 214

A.8 Graphics 214

A.9 M-Files: Scripts and Functions 214

A.10 MAT-Files 216

A.11 Printing 216

A.12 Diagnostics and Help Facility 217

A.13 Remarks 218

B A Summary of MATLAB Commands Used 219

References 223

vi

Preface

Digital signal processing (DSP) is concerned with the representation of signals as a sequence
of numbers and the algorithmic operations carried out on the signals to extract specific
information contained in them. In barely 40 years the field of digital signal processing has
matured considerably due to the phenomenal growth in both research and applications, and
almost every university is now offering at least one or more courses at the upper division
and/or first-year graduate level on this subject. With the increasing availability of powerful
personal computers and workstations at affordable prices, it has become easier to provide
the student with a practical environment to verify the concepts and the algorithms learned
in a lecture course.

This book is for a computer-based DSP laboratory course that supplements a lecture course
on the subject. It includes 11 laboratory exercises with each exercise containing a number
of projects to be carried out on a computer. The total number of projects may be more than
what can be completed in a quarter- or a semester-long course assuming a three-hour per
week laboratory. It is suggested that the instructor select pertinent projects that are more
relevant to the lecture course he/she is teaching. If the computer laboratory is open for
longer hours, it is recommended that the student be encouraged to come to the laboratory
for longer periods of time to enable him/her to complete all projects.

The programming language used in this book is MATLAB,1 widely used for high-perfor-
mance numerical computation and visualization. The book assumes that the reader has no
background in MATLAB and teaches him/her through tested programs in the first half of the
book the basics of this powerful language in solving important problems in signal processing.
In the second half of the book the student is asked to write the necessary MATLAB programs
to carry out the projects. I believe students learn the intricacies of problem solving with
MATLAB faster by using tested, complete programs and later writing simple programs to
solve specific problems. A short review of the key concepts and features of MATLAB is
provided in Appendix A.

Altogether there are 75 MATLAB programs in the text that have been tested under version
7.0 of MATLAB and version 6.3 of the Signal Processing Toolbox. The programs listed in
this book are not necessarily the fastest with regard to their execution speeds, nor are they
the shortest. They have been written for maximum clarity without detailed explanations.
This book includes a CD containing all MATLAB programs for the PC running Windows

1MATLAB is a registered trademark of The Mathworks, Inc., 3 Apple Hill Dr., Natick, MA 01760, phone:
508-647-7000, http://www.mathworks.com.

vii

viii

XP, the /pagebreak Macintosh computers running Mac OS X and UNIX workstations. All
programs are also available from the Internet site ftp://iplserv.ece.ucsb.edu in the directory
/pub/mitra/Labs.

Each laboratory exercise contains a number of projects for the students to implement on
their computers. Each project is followed by a series of questions the students must answer
before embarking on the following project. These questions are designed to teach the student
the fundamentals of MATLAB and also the key concepts of DSP. For the latter part, each
exercise includes a section summarizing the materials necessary for a quick review of DSP
materials necessary to carry out the projects included in the exercise. For further details
and explanations, each exercise includes at the end a list of DSP texts with specific chapter
and/or section numbers. Each exercise also includes a section summarizing the MATLAB
commands used to enable the student to find out more about one or more of these commands,
if necessary, through the help command. A brief explanation of all MATLAB functions
used in this book is given in Appendix B.

A novel feature of this book contains is the inclusion of partially written report documents
for each of the first 10 laboratory exercises in the CD provided. These reports are written
in Microsoft Word. The students fill in the space provided for answers to the questions as
they proceed through the projects. This feature permits the students to complete more work
in a specified amount of time than would have been possible without it. The answers of
the students should appear in a different font to make it easier for the laboratory instructor
to evaluate the student’s work. The completed report also can serve as a guide for writing
reports in other laboratory courses.

This book has evolved from teaching a laboratory component to an upper-division course
on digital signal processing at the University of California, Santa Barbara, for the last 10
years. I thank my former students Drs. Stefan Thurnhofer and Ing-Song Lin for their
assistance in developing the preliminary version of the laboratory course materials. I also
thank the students who took the upper division course and provided valuable comments that
have improved the contents and style of the laboratory portion of the course. The complete
manuscript of this book has been reviewed by Professor Hrvoje Babic of the University
of Zagreb, Zagreb, Croatia; Professor Tamal Bose of the Utah State University, Logan,
Utah; Professor Ulrich Heute of the University of Kiel, Kiel, Germany; Professor Ottar
Johnsen of the Ecole d’Ingénieurs de Friboug, Friboug, Switzerland; Professor Abul N.
Khondker of the Clarkson University, Potsdam, New York; Professor V. John Mathews of
the University of Utah, Salt Lake City, Utah and Professor Yao Wang of the Polytechnic
University, Brooklyn, New York. I thank them for their valuable comments. I thank my
former students, Drs. Rajeev Gandhi, Michael Moore and Debargha Mukherjee, for their
assistance in proofreading the manuscript and checking all the programs included in the first
version of this book. I also thank my students John Berger and Yang Zhang for updating
all programs in the present version. I acknowledge with gratitude the support of the Office
of Instructional Development at the University of California, Santa Barbara, for providing
me with two instructional improvement grants to develop the laboratory course. Finally, I
thank my son Goutam for the cover design of my book.

Every attempt has been made to ensure the accuracy of all materials in this book, including
the MATLAB programs. I would, however, appreciate readers bringing to my attention any

ix

errors that may have appeared in the printed version for reasons beyond my control and
that of the publisher. These errors and any other comments can be communicated to me by
e-mail addressed to: mitra@ece.ucsb.edu.

Santa Barbara Sanjit K. Mitra

x

Discrete-Time Signals
in the Time Domain 1
1.1 Introduction

Digital signal processing is concerned with the processing of a discrete-time signal, called
the input signal, to develop another discrete-time signal, called the output signal, with
more desirable properties. In certain applications, it may be necessary to extract some key
properties of the original signal using specific digital signal processing algorithms. It is
also possible to investigate the properties of a discrete-time system by observing the output
signals for specific input signals. It is thus important to learn first how to generate in the time
domain some basic discrete-time signals in MATLAB and perform elementary operations
on them, which are the main objectives of this first exercise. A secondary objective is to
learn the application of some basic MATLAB commands and how to apply them in simple
digital signal processing problems.

1.2 Getting Started

The CD provided with this book contains all of the MATLAB programs and the partially
written reports for both the PC and the Macintosh computers. In particular, it includes
both PC and Macintosh versions of the MATLAB M-files of the first 10 exercises in folders
grouped by chapters and report documents written in Microsoft Word in folders also grouped
by chapters. After the completion of a project of a laboratory exercise, you record in the
report of that exercise the answers to questions referring to this project at their designated
locations.

Installation Instructions for a PC

To copy the program and the report folders onto the hard disk of a PC running Windows
XP follow the steps given below:

1. Insert the CD.

2. Open the My Computer window by double-clicking on its icon displayed on the
Desktop.

3. Open the window of the CD by double-clicking on its icon.

4. Open the window of the desired hard drive by double-clicking on its icon. Depend-
ing on your setup, it may be necessary to open another window by double-clicking

1

2 Chapter 1 • Discrete-Time Signals in the Time Domain

on My Computer icon before you can select the destination hard drive.

5. In the CD drive window, select the folder marked PC and drag it to the directory
displayed in the hard drive window where you would like to copy the files.

Installation Instructions for a Macintosh computer

To copy the program and the report folders on the hard disk of a Macintosh computer
running Mac OS X follow the steps given below:

1. Insert the CD.

2. Open the hard drive window by double-clicking on its icon displayed on the Desk-
top.

3. Open the window of the CD by double-clicking on its icon.

4. In the CD window, select the folder marked MAC and drag it to the directory
displayed in the hard drive window where you would like to copy the files.

Downloading from the World Wide Web

The web site for downloading the files to a computer is http://iplserv.ece.ucsb.edu. The
directories containing the files for the PC, Macintosh computer, and UNIX workstation are
as follows:

pub/mitra/Labs/pc
pub/mitra/Labs/mac
pub/mitra/Labs/unix (M-files only)

To download the files from this site to your computer, follow the steps given below:

1. Open the available Internet web browser.

2. Type http://iplserv.ece.ucsb.edu in the URL window.

3. Double-click on the desired directory (the directory for the PC and Macintosh
versions are shown above).

4. Double-click on the desired file for downloading. You will get a dialog box asking
where you would like to save the file.

1.3 Background Review

R1.1 A discrete-time signal is represented as a sequence of numbers, called samples . A
sample value of a typical discrete-time signal or sequence {x[n]} is denoted as x[n] with
the argument n being an integer in the range −∞ and ∞. For convenience, the sequence
{x[n]} is often denoted without the curly brackets.

1.3 Background Review 3

R1.2 The discrete-time signal may be a finite length or an infinite length sequence. A
finite length (also called finite duration or finite extent) sequence is defined only for a finite
time interval:

N1 ≤ n ≤ N2, (1.1)

where −∞ < N1 and N2 < ∞ with N2 ≥ N1. The length or duration N of the finite
length sequence is

N = N2 − N1 + 1. (1.2)

R1.3 A sequence x̃[n] satisfying

x̃[n] = x̃[n + kN] for all n, (1.3)

is called a periodic sequence with a period N where N is a positive integer and k is any
integer.

R1.4 The energy of a sequence x[n] is defined by

E =
∞∑

n=−∞
|x[n]|2. (1.4)

The energy of a sequence over a finite interval −K ≤ n ≤ K is defined by

EK =
K∑

n=−K

|x[n]|2. (1.5)

R1.5 The average power of an aperiodic sequence x[n] is defined by

Pav = lim
K→∞

1
2K + 1

EK = lim
K→∞

1
2K + 1

K∑
n=−K

|x[n]|2. (1.6)

The average power of a periodic sequence x̃[n] with a period N is given by

Pav =
1
N

N−1∑
n=0

|x̃[n]|2. (1.7)

R1.6 The unit sample sequence, often called the discrete-time impulse or the unit impulse,
denoted by δ[n], is defined by

δ[n] =
{

1, for n = 0,
0, for n �= 0.

(1.8)

The unit step sequence , denoted by µ[n], is defined by

µ[n] =
{

1, for n ≥ 0,
0, for n < 0.

(1.9)

4 Chapter 1 • Discrete-Time Signals in the Time Domain

R1.7 The exponential sequence is given by

x[n] = Aαn, (1.10)

where A and α are real or complex numbers. By expressing

α = e(σo+jωo), and A = |A|ejφ,

we can rewrite Eq. (1.10) as

x[n] = |A|eσon+j(ωon+φ) = |A|eσon cos(ωon + φ) + j|A|eσon sin(ωon + φ). (1.11)

R1.8 The real sinusoidal sequence with a constant amplitude is of the form

x[n] = A cos(ωon + φ), (1.12)

where A, ωo, and φ are real numbers. The parameters A, ωo, and φ in Eqs. (1.11) and
(1.12) are called, respectively, the amplitude , the angular frequency , and the initial phase
of the sinusoidal sequence x[n]. fo = ωo/2π is the frequency.

R1.9 The complex exponential sequence of Eq. (1.11) with σo = 0 and the sinusoidal
sequence of Eq. (1.12) are periodic sequences if ωoN is an integer multiple of 2π, that is,

ωoN = 2πr, (1.13)

where N is a positive integer and r is any integer. The smallest possible N satisfying this
condition is the period of the sequence.

R1.10 The product of two sequences x[n] and h[n] of length N yields a sequence y[n],
also of length N , as given by

y[n] = x[n] · h[n]. (1.14)

The addition of two sequences x[n] and h[n] of length N yields a sequence y[n], also of
length N , as given by

y[n] = x[n] + h[n]. (1.15)

The multiplication of a sequence x[n] of length N by a scalar A results in a sequence y[n]
of length N as given by

y[n] = A · x[n]. (1.16)

The time-reversal of a sequence x[n] of infinite length results in a sequence y[n] of infinite
length as defined by

y[n] = x[−n]. (1.17)

The delay of a sequence x[n] of infinite length by a positive integer M results in a sequence
y[n] of infinite length given by

y[n] = x[n − M]. (1.18)

If M is a negative integer, the operation indicated in Eq. (1.18) results in an advance of the
sequence x[n].

A sequence x[n] of length N can be appended by another sequence g[n] of length M
resulting in a longer sequence y[n] of length N + M given by

{y[n]} = {{x[n]} , {g[n]}} . (1.19)

1.4 MATLAB Commands Used 5

1.4 MATLAB Commands Used

The MATLAB commands you will encounter in this exercise are as follows:

Operators and Special Characters

: . + - * / ;
%

Elementary Matrices and Matrix Manipulation

i ones pi rand randn zeros

Elementary Functions

cos exp imag real

Data Analysis

sum

Two-Dimensional Graphics

axis grid legend plot stairs
stem title xlabel ylabel

General Purpose Graphics Functions

clf subplot

Signal Processing Toolbox

sawtooth square

For additional information on these commands, see the MATLAB Reference Guide [Mat05]
or type help commandname in the Command window. A brief explanation of the MATLAB
functions used here can be found in Appendix B.

1.5 Generation of Sequences

The purpose of this section is to familiarize you with the basic commands in MATLAB for
signal generation and for plotting the generated signal. MATLAB has been designed to
operate on data stored as vectors or matrices. For our purposes, sequences will be stored
as vectors. Therefore, all signals are limited to being causal and of finite length . The steps
to follow to execute the programs listed in this book depend on the platform being used to
run the MATLAB.

6 Chapter 1 • Discrete-Time Signals in the Time Domain

MATLAB on the Windows PC

The program can be executed by typing the name of the program without .m in the Command
window and hitting the carriage return. Alternately, choose Open from the File menu
in the Command window and choose the desired M-file. This opens the M-file in the
Editor/Debugger window in which an M-file can be executed using the Run command
under the Tools menu.

MATLAB on the Macintosh

The program can be executed by typing the name of the program without .m in the Command
window and hitting the carriage return. Alternately, it can be copied into the Editor Window
by using the Open M-File command on your screen and then choosing the Save and
Execute command on your screen.

Project 1.1 Unit Sample and Unit Step Sequences

Two basic discrete-time sequences are the unit sample sequence and the unit step sequence
of Eqs. (1.8) and (1.9), respectively. A unit sample sequence u[n] of length N can be
generated using the MATLAB command

u = [1 zeros(1,N -1)];

A unit sample sequence ud[n] of length N and delayed by M samples, where M < N, can be
generated using the MATLAB command

ud = [zeros(1,M) 1 zeros(1,N - M - 1)];

Likewise, a unit step sequence s[n] of length N can be generated using the MATLAB
command

s = [ones(1,N)];

A delayed unit step sequence can be generated in a manner similar to that used in the
generation of a delayed unit sample sequence.

Program P1 1 can be used to generate and plot a unit sample sequence.

% Program P1_1
% Generation of a Unit Sample Sequence
clf;
% Generate a vector from -10 to 20
n = -10:20;
% Generate the unit sample sequence
u = [zeros(1,10) 1 zeros(1,20)];
% Plot the unit sample sequence
stem(n,u);
xlabel(’Time index n’);ylabel(’Amplitude’);
title(’Unit Sample Sequence’);
axis([-10 20 0 1.2]);

1.5 Generation of Sequences 7

Questions:

Q1.1 Run Program P1 1 to generate the unit sample sequence u[n] and display it.

Q1.2 What are the purposes of the commands clf, axis, title, xlabel, and ylabel?

Q1.3 Modify Program P1 1 to generate a delayed unit sample sequence ud[n] with a
delay of 11 samples. Run the modified program and display the sequence generated.

Q1.4 Modify Program P1 1 to generate a unit step sequence s[n]. Run the modified
program and display the sequence generated.

Q1.5 Modify Program P1 1 to generate a delayed unit step sequence sd[n] with an
advance of 7 samples. Run the modified program and display the sequence generated.

Project 1.2 Exponential Signals

Another basic discrete-time sequence is the exponential sequence. Such a sequence can be
generated using the MATLAB operators .^ and exp.

Program P1 2 given below can be employed to generate a complex-valued exponential
sequence.

% Program P1_2
% Generation of a complex exponential sequence
clf;
c = -(1/12)+(pi/6)*i;
K = 2;
n = 0:40;
x = K*exp(c*n);
subplot(2,1,1);
stem(n,real(x));
xlabel(’Time index n’);ylabel(’Amplitude’);
title(’Real part’);
subplot(2,1,2);
stem(n,imag(x));
xlabel(’Time index n’);ylabel(’Amplitude’);
title(’Imaginary part’);

Program P1 3 given below can be employed to generate a real-valued exponential sequence.

% Program P1_3
% Generation of a real exponential sequence
clf;
n = 0:35; a = 1.2; K = 0.2;
x = K*a.^+n;
stem(n,x);
xlabel(’Time index n’);ylabel(’Amplitude’);

8 Chapter 1 • Discrete-Time Signals in the Time Domain

Questions:

Q1.6 Run Program P1 2 and generate the complex-valued exponential sequence.

Q1.7 Which parameter controls the rate of growth or decay of this sequence? Which
parameter controls the amplitude of this sequence?

Q1.8 What will happen if the parameter c is changed to (1/12)+(pi/6)*i?

Q1.9 What are the purposes of the operators real and imag?

Q1.10 What is the purpose of the command subplot?

Q1.11 Run Program P1 3 and generate the real-valued exponential sequence.

Q1.12 Which parameter controls the rate of growth or decay of this sequence? Which
parameter controls the amplitude of this sequence?

Q1.13 What is the difference between the arithmetic operators ^ and .^?

Q1.14 What will happen if the parameter a is less than 1? Run Program P1 3 again with
the parameter a changed to 0.9 and the parameter K changed to 20.

Q1.15 What is the length of this sequence and how can it be changed?

Q1.16 You can use the MATLAB command sum(s.*s) to compute the energy of a real
sequence s[n] stored as a vector s. Evaluate the energy of the real-valued exponential
sequences x[n] generated in Questions Q1.11 and Q1.14.

Project 1.3 Sinusoidal Sequences

Another very useful class of discrete-time signals is the real sinusoidal sequence of the
form of Eq. (1.12). Such sinusoidal sequences can be generated in MATLAB using the
trigonometric operators cos and sin.

Program P1 4 is a simple example that generates a sinusoidal signal.

% Program P1_4
% Generation of a sinusoidal sequence
n = 0:40;
f = 0.1;
phase = 0;
A = 1.5;
arg = 2*pi*f*n - phase;
x = A*cos(arg);
clf; % Clear old graph
stem(n,x); % Plot the generated sequence
axis([0 40 -2 2]);
grid;

1.5 Generation of Sequences 9

title(’Sinusoidal Sequence’);
xlabel(’Time index n’);
ylabel(’Amplitude’);
axis;

Questions:

Q1.17 Run Program P1 4 to generate the sinusoidal sequence and display it.

Q1.18 What is the frequency of this sequence and how can it be changed? Which param-
eter controls the phase of this sequence? Which parameter controls the amplitude of this
sequence? What is the period of this sequence?

Q1.19 What is the length of this sequence and how can it be changed?

Q1.20 Compute the average power of the generated sinusoidal sequence.

Q1.21 What are the purposes of the axis and grid commands?

Q1.22 Modify Program P1 4 to generate a sinusoidal sequence of frequency 0.9 and
display it. Compare this new sequence with the one generated in Question Q1.17. Now,
modify Program P1 4 to generate a sinusoidal sequence of frequency 1.1 and display it.
Compare this new sequence with the one generated in Question Q1.17. Comment on your
results.

Q1.23 Modify the above program to generate a sinusoidal sequence of length 50, fre-
quency 0.08, amplitude 2.5, and phase shift 90 degrees and display it. What is the period
of this sequence?

Q1.24 Replace the stem command in Program P1 4 with the plot command and run
the program again. What is the difference between the new plot and the one generated in
Question Q1.17?

Q1.25 Replace the stem command in Program P1 4 with the stairs command and run
the program again. What is the difference between the new plot and those generated in
Questions Q1.17 and Q1.24?

Project 1.4 Random Signals

A random signal of length N with samples uniformly distributed in the interval (0,1) can
be generated by using the MATLAB command

x = rand(1,N);

Likewise, a random signal x[n] of length N with samples normally distributed with zero
mean and unity variance can be generated by using the following MATLAB command

x = randn(1,N);

10 Chapter 1 • Discrete-Time Signals in the Time Domain

Questions:

Q1.26 Write a MATLAB program to generate and display a random signal of length 100
whose elements are uniformly distributed in the interval [−2, 2].

Q1.27 Write a MATLAB program to generate and display a Gaussian random signal of
length 75 whose elements are normally distributed with zero mean and a variance of 3.

Q1.28 Write a MATLAB program to generate and display five sample sequences of a
random sinusoidal signal of length 31

{X[n]} = {A · cos(ωon + φ)}, (1.20)

where the amplitude A and the phase φ are statistically independent random variables with
uniform probability distribution in the range 0 ≤ A ≤ 4 for the amplitude and in the range
0 ≤ φ ≤ 2π for the phase.

1.6 Simple Operations on Sequences

As indicated earlier, the purpose of digital signal processing is to generate a signal with
more desirable properties from one or more given discrete-time signals. The processing
algorithm consists of performing a combination of basic operations such as addition, scalar
multiplication, time-reversal, delaying, and product operation (see R1.10). We consider
here three very simple examples to illustrate the application of such operations .

Project 1.5 Signal Smoothing

A common example of a digital signal processing application is the removal of the noise
component from a signal corrupted by additive noise. Let s[n] be the signal corrupted by
a random noise d[n] resulting in the noisy signal x[n] = s[n] + d[n]. The objective is
to operate on x[n] to generate a signal y[n] which is a reasonable approximation to s[n].
To this end, a simple approach is to generate an output sample by averaging a number of
input samples around the sample at instant n. For example, a three-point moving average
algorithm is given by

y[n] = 1
3 (x[n − 1] + x[n] + x[n + 1]). (1.21)

Program P1 5 implements the above algorithm.

% Program P1_5
% Signal Smoothing by Averaging
clf;
R = 51;
d = 0.8*(rand(R,1) - 0.5); % Generate random noise
m = 0:R-1;

1.6 Simple Operations on Sequences 11

s = 2*m.*(0.9.^m); % Generate uncorrupted signal
x = s + d’; % Generate noise corrupted signal
subplot(2,1,1);
plot(m,d’,’r-’,m,s,’g--’,m,x,’b-.’);
xlabel(’Time index n’);ylabel(’Amplitude’);
legend(’d[n] ’,’s[n] ’,’x[n] ’);
x1 = [0 0 x];x2 = [0 x 0];x3 = [x 0 0];
y = (x1 + x2 + x3)/3;
subplot(2,1,2);
plot(m,y(2:R+1),’r-’,m,s,’g--’);
legend(’y[n] ’,’s[n] ’);
xlabel(’Time index n’);ylabel(’Amplitude’);

Questions:

Q1.29 Run Program P1 5 and generate all pertinent signals.

Q1.30 What is the form of the uncorrupted signal s[n]? What is the form of the additive
noise d[n]?

Q1.31 Can you use the statement x = s + d to generate the noise-corrupted signal? If
not, why not?

Q1.32 What are the relations between the signals x1, x2, and x3, and the signal x?

Q1.33 What is the purpose of the legend command?

Project 1.6 Generation of Complex Signals

More complex signals can be generated by performing the basic opertations on simple
signals. For example, an amplitude modulated signal can be generated by modulating a
high-frequency sinusoidal signal xH [n] = cos(ωHn) with a low-frequency modulating
signal xL[n] cos(ωLn). The resulting signal y[n] is of the form

y[n] = A(1 + m · xL[n])xH [n] = A(1 + m · cos(ωLn)) cos(ωHn),

where m, called the modulation index , is a number chosen to ensure that (1 + m · xL[n])
is positive for all n. Program P1 6 can be used to generate an amplitude modulated signal.

% Program P1_6
% Generation of amplitude modulated sequence
clf;
n = 0:100;
m = 0.4;fH = 0.1; fL = 0.01;
xH = sin(2*pi*fH*n);
xL = sin(2*pi*fL*n);

12 Chapter 1 • Discrete-Time Signals in the Time Domain

y = (1+m*xL).*xH;
stem(n,y);grid;
xlabel(’Time index n’);ylabel(’Amplitude’);

Questions:

Q1.34 Run Program P1 6 and generate the amplitude modulated signal y[n] for various
values of the frequencies of the carrier signal xH[n] and the modulating signal xL[n], and
various values of the modulation index m.

Q1.35 What is the difference between the arithmetic operators * and .* ?

As the frequency of a sinusoidal signal is the derivative of its phase with respect to time, to
generate a swept-frequency sinusoidal signal whose frequency increases linearly with time,
the argument of the sinusoidal signal must be a quadratic function of time. Assume that the
argument is of the form an2 + bn (i.e. the angular frequency is 2an + b). Solve for the
values of a and b from the given conditions (minimum angular frequency and maximum
angular frequency). Program P1 7 is an example program to generate this kind of signal.

% Program P1_7
% Generation of a swept frequency sinusoidal sequence
n = 0:100;
a = pi/2/100;
b = 0;
arg = a*n.*n + b*n;
x = cos(arg);
clf;
stem(n, x);
axis([0,100,-1.5,1.5]);
title(’Swept-Frequency Sinusoidal Signal’);
xlabel(’Time index n’);
ylabel(’Amplitude’);
grid; axis;

Questions:

Q1.36 Run Program P1 7 and generate the swept-frequency sinusoidal sequence x[n].

Q1.37 What are the minimum and maximum frequencies of this signal?

Q1.38 How can you modify the above program to generate a swept sinusoidal signal with
a minimum frequency of 0.1 and a maximum frequency of 0.3?

1.7 Workspace Information 13

1.7 Workspace Information

The commands who and whos can be used to get information about the variables stored in
the workspace and their sizes created in running various MATLAB programs at any time.

Questions:

Q1.39 Type who in the Command window. What information is displayed in the Com-
mand window as a result of this command?

Q1.40 Type whos in the Command window. What information is displayed in the Com-
mand window as a result of this command?

1.8 Other Types of Signals (Optional)

Project 1.7 Square wave and Sawtooth Signals

MATLAB functions square and sawtooth can be used to generate sequences of the types
shown in Figures 1.1 and 1.2, respectively.

0 5 10 15 20 25 30

-2

0

2

Time index n

A
m

pl
itu

de

0 5 10 15 20 25 30

-2

0

2

Time index n

A
m

pl
itu

de

(a) (b)

Figure 1.1 Square wave sequences.

Question:

Q1.41 Write MATLAB programs to generate the square wave and the sawtooth wave
sequences of the types shown in Figures A.1 and 1.2. Using these programs, generate and
plot the sequences.

14 Chapter 1 • Discrete-Time Signals in the Time Domain

0 10 20 30 40 50
-2

-1

0

1

2

Time index n

A
m

pl
itu

de

0 10 20 30 40 50
-2

-1

0

1

2

Time index n

A
m

pl
itu

de

(a) (b)

Figure 1.2 Sawtooth wave sequences.

1.9 Background Reading

[1] E. Cunningham. Digital Filtering: An Introduction. Houghton-Mifflin, Boston MA,
1992. Secs. 1.2–1.3.

[2] D. J. DeFatta, J. G. Lucas, and W. S. Hodgkiss. Digital Signal Processing: A System
Design Approach. Wiley, New York NY, 1988. Secs. 2.1.2–2.1.4.

[3] L. B. Jackson. Digital Filters and Signal Processing. Kluwer, Boston MA, third
edition, 1996. Secs. 2.2–2.3.

[4] R. Kuc. Introduction to Digital Signal Processing. McGraw-Hill, New York NY,
1988. Secs. 2-2, 2-4.

[5] L. C. Ludeman. Fundamentals of Digital Signal Processing. Harper & Row, New
York NY, 1986. Sec. 1.2.

[6] S. K. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-Hill,
New York NY, third edition, 2005. Secs. 2.1–2.2.

[7] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-Time Signal Processing.
Prentice-Hall, Upper Saddle River NJ, second edition, 1998. Sec. 2.1.

[8] B. Porat. A Course in Digital Signal Processing. Wiley, New York NY, 1996. Secs.
2.7–2.8.

[9] J. G. Proakis and D. G. Manolakis. Digital Signal Processing: Principles, Algorithms,
and Applications. Prentice-Hall, Upper Saddle River NJ, third edition, 1996. Secs.
2.2–2.4.

[10] R. A. Roberts and C. T. Mullis. Digital Signal Processing, Addison-Wesley. Reading
MA, 1987. Sec. 2.2.

Discrete-Time Systems
in the Time Domain 2
2.1 Introduction

A discrete-time system processes an input signal in the time-domain to generate an out-
put signal with more desirable properties by applying an algorithm composed of simple
operations on the input signal and its delayed versions. The aim of this second exercise
is to illustrate the simulation of some simple discrete-time systems on the computer using
MATLAB and investigate their time domain properties.

2.2 Background Review

R2.1 For a linear discrete-time system , if y1[n] and y2[n] are the responses to the input
sequences x1[n] and x2[n], respectively, then for an input

x[n] = α x1[n] + β x2[n], (2.1)

the response is given by
y[n] = α y1[n] + β y2[n]. (2.2)

The superposition property of Eq. (2.2) must hold for any arbitrary constants α and β and
for all possible inputs x1[n] and x2[n]. If Eq. (2.2) does not hold for at least one set of
nonzero values of α and β, or one set of nonzero input sequences x1[n] and x2[n], then the
system is nonlinear .

R2.2 For a time-invariant discrete-time system , if y1[n] is the response to an input x1[n],
then the response to an input

x[n] = x1[n − no]

is simply
y[n] = y1[n − no].

where no is any positive or negative integer. The above relation between the input and
output must hold for any arbitrary input sequence and its corresponding output. If it does
not hold for at least one input sequence and its corresponding output sequence, the system
is time-varying .

R2.3 A linear time-invariant (LTI) discrete-time system satisfies both the linearity and
the time-invariance properties.

15

16 Chapter 2 • Discrete-Time Systems in the Time Domain

R2.4 If y1[n] and y2[n] are the responses of a causal discrete-time system to the inputs
u1[n] and u2[n], respectively, then

u1[n] = u2[n] for n < N

implies also that
y1[n] = y2[n] for n < N.

R2.5 A discrete-time system is said to be bounded-input, bounded-output (BIBO) stable
if, for any bounded input sequence x[n], the corresponding output y[n] is also a bounded
sequence , that is, if

|x[n]| < Bx for all values of n,

then the corresponding output y[n] is also bounded, that is,

|y[n]| < By for all values of n,

where Bx and By are finite constants.

R2.6 The response of a discrete-time system to a unit sample sequence {δ[n]} is called
the unit sample response or, simply, the impulse response , and denoted as {h[n]}. Corre-
spondingly, the response of a discrete-time system to a unit step sequence {µ[n]}, denoted
as {s[n]}, is its unit step response or, simply the step response.

R2.7 The response y[n] of a linear, time-invariant discrete-time system characterized by
an impulse response h[n] to an input signal x[n] is given by

y[n] =
∞∑

k=−∞
h[k] x[n − k], (2.3)

which can be alternately written as

y[n] =
∞∑

k=−∞
h[n − k] x[k], (2.4)

by a simple change of variables. The sum in Eqs. (2.3) and (2.4) is called the convolution
sum of the sequences x[n] and h[n], and is represented compactly as:

y[n] = h[n] ©∗ x[n], (2.5)

where the notation ©∗ denotes the convolution sum.

R2.8 The overall impulse response h[n] of the LTI discrete-time system obtained by a
cascade connection of two LTI discrete-time systems with impulse responses h1[n] and
h2[n], respectively, and as shown in Figure 2.1, is given by

h[n] = h1[n] ©∗ h2[n]. (2.6)

If the two LTI systems in the cascade connection of Figure 2.1 are such that

h1[n] ©∗ h2[n] = δ[n], (2.7)

then the LTI system h2[n] is said to be the inverse of the LTI system h1[n] and vice-versa .

2.3 MATLAB Commands Used 17

h1[n] h1[n]h2[n]h2[n] * h2[n]h1[n]

Figure 2.1 The cascade connection.

R2.9 An LTI discrete-time system is BIBO stable if and only if its impulse response
sequence {h[n]} is absolutely summable , that is,

∞∑
n=−∞

|h[n]| < ∞. (2.8)

R2.10 An LTI discrete-time system is causal if and only if its impulse response sequence
{h[n]} satisfies the condition

h[k] = 0 for k < 0. (2.9)

R2.11 The class of LTI discrete-time systems with which we shall be mostly concerned
in this book is characterized by a linear constant-coefficient difference equation of the form

N∑
k=0

dk y[n − k]
M∑

k=0

pk x[n − k], (2.10)

where x[n] and y[n] are, respectively, the input and the output of the system, and {dk}
and {pk} are constants. The order of the discrete-time system is max(N, M), which is the
order of the difference equation characterizing the system. If we assume the system to be
causal, then we can rewrite Eq. (2.10) to express y[n] explicitly as a function of x[n]:

y[n] = −
N∑

k=1

dk

d0
y[n − k] +

M∑
k=0

pk

d0
x[n − k], (2.11)

provided d0 �= 0. The output y[n] can be computed using Eq. (2.11) for all n ≥ no knowing
x[n] and the initial conditions y[no − 1], y[no − 2], . . . , y[no − N].

R2.12 A discrete-time system is called a finite impulse response (FIR) system if its impulse
response h[n] is of finite length. Otherwise, it is an infinite impulse response (IIR) system.
The causal system of Eq. (2.11) represents an FIR system if dk = 0 for k > 0. Otherwise,
it is an IIR system.

2.3 MATLAB Commands Used

The MATLAB commands you will encounter in this exercise are as follows:

18 Chapter 2 • Discrete-Time Systems in the Time Domain

General Purpose Commands

disp

Operators and Special Characters

: . + - * / ;
% <

Language Constructs and Debugging

break end for if input

Elementary Matrices and Matrix Manipulation

ones pi zeros

Elementary Functions

abs cos

Polynomial and Interpolation Functions

conv

Two-Dimensional Graphics

axis plot stem title xlabel
ylabel

General Purpose Graphics Functions

clf subplot

Character String Functions

num2str

2.4 Simulation of Discrete-Time Systems 19

Signal Processing Toolbox

filter impz

For additional information on these commands, see the MathWorks Online Documenta-
tion [Mat05] or type help commandname in the Command window. A brief explanation
of the MATLAB functions used here can be found in Appendix B.

2.4 Simulation of Discrete-Time Systems

In Project 1.5 we illustrated the application of a simple discrete-time system described
by Eq. (1.21) in the smoothing of data corrupted by a random noise . We now consider
the simulation of some additional discrete-time systems and study their properties. For
the simulation of causal LTI discrete-time systems described by Eq. (2.10), the command
filter can be used. There are several versions of this command. If we denote

num = [p0 p1 . . . pM],

den = [d0 d1 . . . dN],

then y = filter(num,den,x) generates an output vector y of the same length as the
specified input vector x with zero initial conditions, that is, y[-1] y[-2] = ... =
y[-N] = 0. The output can also be computed using y = filter(num,den,x,ic)where
ic = [y[-1], y[-2], ..., y[-N]] is the vector of initial conditions. Access to final
conditions is obtained using [y,fc] filter(num,den,x, ic).

Project 2.1 The Moving Average System

Examination of Eq. (1.21) reveals that the three-point smoothing filter considered here is an
LTI FIR system. Moreover, as y[n] depends on a future input sample x[n + 1], the system
is noncausal. A causal version of the three-point smoothing filter is obtained by simply
delaying the output by one sample period, resulting in the FIR filter described by

y[n] = 1
3 (x[n] + x[n − 1] + x[n − 2]). (2.12)

Generalizing the above equation we obtain

y[n] =
1
M

M−1∑
k=0

x[n − k], (2.13)

which defines a causal M -point smoothing FIR filter. The system of Eq. (2.13) is also known
as a moving average filter . We illustrate its use in filtering high-frequency components
from a signal composed of a sum of several sinusoidal signals.

20 Chapter 2 • Discrete-Time Systems in the Time Domain

% Program P2_1
% Simulation of an M-point Moving Average Filter
% Generate the input signal
n = 0:100;
s1 = cos(2*pi*0.05*n); % A low frequency sinusoid
s2 = cos(2*pi*0.47*n); % A high frequency sinusoid
x = s1+s2;
% Implementation of the moving average filter
M = input(’Desired length of the filter = ’);
num = ones(1,M);
y = filter(num,1,x)/M;
% Display the input and output signals
clf;
subplot(2,2,1);
plot(n,s1);
axis([0, 100, -2, 2]);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Signal # 1’);
subplot(2,2,2);
plot(n,s2);
axis([0, 100, -2, 2]);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Signal # 2’);
subplot(2,2,3);
plot(n,x);
axis([0, 100, -2, 2]);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Input Signal’);
subplot(2,2,4);
plot(n,y);
axis([0, 100, -2, 2]);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Output Signal’);
axis;

Questions:

Q2.1 Run the above program for M = 2 to generate the output signal with x[n] = s1[n]
+ s2[n] as the input. Which component of the input x[n] is suppressed by the discrete-
time system simulated by this program?

Q2.2 If the LTI system is changed from y[n] 0.5(x[n] + x[n - 1]) to y[n] =
0.5(x[n] - x[n - 1]), what would be its effect on the input x[n] = s1[n] + s2[n]?

Q2.3 Run Program P2 1 for other values of filter length M, and various values of the
frequencies of the sinusoidal signals s1[n] and s2[n]. Comment on your results.

2.4 Simulation of Discrete-Time Systems 21

Q2.4 Modify Program P2 1 to use a swept-frequency sinusoidal signal of length 101, a
minimum frequency 0, and a maximum frequency 0.5 as the input signal (see Program
P1 7) and compute the output signal. Can you explain the results of Questions Q2.1 and
Q2.2 from the response of this system to the swept-frequency signal ?

Project 2.2 A Simple Nonlinear Discrete-Time System (Optional)

Let y[n] be a signal generated by applying the following nonlinear operations on a signal
x[n]:

y[n] = x[n]2 − x[n − 1] x[n + 1]. (2.14)

In this project you will generate the output y[n] of the above system for different types of
the input x[n] using Program P2 2.

The following MATLAB program can be used to generate an input signal x[n] composed
of a sum of two sinusoidal sequences and simulate the LTI system of Eq. (2.12) to generate
y[n].

% Program P2_2
% Generate a sinusoidal input signal
clf;
n = 0:200;
x = cos(2*pi*0.05*n);
% Compute the output signal
x1 = [x 0 0]; % x1[n] = x[n+1]
x2 = [0 x 0]; % x2[n] = x[n]
x3 = [0 0 x]; % x3[n] = x[n-1]
y = x2.*x2 - x1.*x3;
y = y(2:202);
% Plot the input and output signals
subplot(2,1,1)
plot(n,x)
xlabel(’Time index n’);ylabel(’Amplitude’);
title(’Input Signal’)
subplot(2,1,2)
plot(n,y)
xlabel(’Time index n’);ylabel(’Amplitude’);
title(’Output signal’);

Questions:

Q2.5 Use sinusoidal signals with different frequencies as the input signals and compute
the output signal for each input. How do the output signals depend on the frequencies of
the input signal? Can you verify your observation mathematically?

22 Chapter 2 • Discrete-Time Systems in the Time Domain

Q2.6 Use sinusoidal signals of the form x[n] sin(ωon)+K as the input signal and compute
the output signal. How does the output signal y[n] depend on the DC value K?

Project 2.3 Linear and Nonlinear Systems

We now investigate the linearity property (see R2.1) of a causal system of the type described
by Eq. (2.10) . Consider the system given by

y[n]−0.4 y[n−1]+0.75 y[n−2] = 2.2403 x[n]+2.4908 x[n−1]+2.2403 x[n−2]. (2.15)

MATLAB Program P2 3 is used to simulate the system of Eq. (2.15), to generate three
different input sequences x1[n], x2[n], and x[n] = a ·x1[n]+ b ·x2[n], and to compute and
plot the corresponding output sequences y1[n], y2[n], and y[n].

% Program P2_3
% Generate the input sequences
clf;
n = 0:40;
a = 2;b = -3;
x1 = cos(2*pi*0.1*n);
x2 = cos(2*pi*0.4*n);
x = a*x1 + b*x2;
num = [2.2403 2.4908 2.2403];
den = [1 -0.4 0.75];
ic = [0 0]; % Set zero initial conditions
y1 = filter(num,den,x1,ic); % Compute the output y1[n]
y2 = filter(num,den,x2,ic); % Compute the output y2[n]
y = filter(num,den,x,ic); % Compute the output y[n]
yt = a*y1 + b*y2;
d = y - yt; % Compute the difference output d[n]
% Plot the outputs and the difference signal
subplot(3,1,1)
stem(n,y);
ylabel(’Amplitude’);
title(’Output Due to Weighted Input: a \cdot+ x_{1}+[n]
+ b \cdot+ x_{2}+[n]’);
subplot(3,1,2)
stem(n,yt);
ylabel(’Amplitude’);
title(’Weighted Output: a \cdot+ y_{1}+[n] + b \cdot+
y_{2}+[n]’);
subplot(3,1,3)
stem(n,d);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Difference Signal’);

2.4 Simulation of Discrete-Time Systems 23

Questions:

Q2.7 Run Program P2 3 and compare y[n] obtained with weighted input with yt[n]
obtained by combining the two outputs y1[n] and y2[n] with the same weights. Are these
two sequences equal? Is this system linear?

Q2.8 Repeat Question Q2.7 for three different sets of values of the weighting constants,
a and b, and three different sets of input frequencies.

Q2.9 Repeat Question Q2.7 with nonzero initial conditions.

Q2.10 Repeat Question Q2.8 with nonzero initial conditions.

Q2.11 Consider another system described by:

y[n] = x[n] x[n − 1].

Modify Program P2 3 to compute the output sequences y1[n], y2[n], and y[n] of the
above system. Compare y[n] with yt[n]. Are these two sequences equal? Is this system
linear?

Project 2.4 Time-Invariant and Time-Varying Systems

We next investigate the time-invariance property (see R2.2) of a causal system of the type
described by Eq. (2.11). Consider again the system given by Eq. (2.15).

MATLAB Program P2 4 is used to simulate the system of Eq. (2.15), to generate two
different input sequences x[n] and x[n - D], and to compute and plot the corresponding
output sequences y1[n], y2[n], and the difference y1[n] - y2[n + D].

% Program P2_4
% Generate the input sequences
clf;
n = 0:40; D = 10;a = 3.0;b = -2;
x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);
xd = [zeros(1,D) x];
num = [2.2403 2.4908 2.2403];
den = [1 -0.4 0.75];
ic = [0 0];% Set initial conditions
% Compute the output y[n]
y = filter(num,den,x,ic);
% Compute the output yd[n]
yd = filter(num,den,xd,ic);
% Compute the difference output d[n]
d = y - yd(1+D:41+D);
% Plot the outputs
subplot(3,1,1)

24 Chapter 2 • Discrete-Time Systems in the Time Domain

stem(n,y);
ylabel(’Amplitude’);
title(’Output y[n]’);grid;
subplot(3,1,2)
stem(n,yd(1:41));
ylabel(’Amplitude’);
title([’Output Due to Delayed Input x[n ’, num2str(D),’]’]);grid;
subplot(3,1,3)
stem(n,d);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Difference Signal’);grid;

Questions:

Q2.12 Run Program P2 4 and compare the output sequences y[n] and yd[n - 10].
What is the relation between these two sequences? Is this system time-invariant?

Q2.13 Repeat Question Q2.12 for three different values of the delay variable D.

Q2.14 Repeat Question Q2.12 for three different sets of values of the input frequencies.

Q2.15 Repeat Question Q2.12 for nonzero initial conditions . Is this system time-
invariant?

Q2.16 Repeat Question Q2.14 for nonzero initial conditions. Is this system time-invariant?

Q2.17 Consider another system described by:

y[n] = n x[n] + x[n − 1]. (2.16)

Modify Program P2 4 to simulate the above system and determine whether this system is
time-invariant or not.

Q2.18 (optional) Modify Program P2 3 to test the linearity of the system of Eq. (2.16).

2.5 Linear Time-Invariant Discrete-Time Systems

Project 2.5 Computation of Impulse Responses of LTI Systems

The MATLAB command y = impz(num,den,N) can be used to compute the first N sam-
ples of the impulse response of the causal LTI discrete-time system of Eq. (2.11).

MATLAB Program P2 5 given below computes and plots the impulse response of the system
described by Eq. (2.15).

2.5 Linear Time-Invariant Discrete-Time Systems 25

% Program P2_5
% Compute the impulse response y
clf;
N = 40;
num = [2.2403 2.4908 2.2403];
den = [1 -0.4 0.75];
y = impz(num,den,N);
% Plot the impulse response
stem(y);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Impulse Response’); grid;

Questions:

Q2.19 Run Program P2 5 and generate the impulse response of the discrete-time system
of Eq. (2.15).

Q2.20 Modify Program P2 5 to generate the first 45 samples of the impulse response of
the following causal LTI system:

y[n] + 0.71 y[n − 1] − 0.46 y[n − 2] − 0.62 y[n − 3]
= 0.9 x[n] − 0.45 x[n − 1] + 0.35 x[n − 2] + 0.002 x[n − 3]. (2.17)

Q2.21 Write a MATLAB program to generate the impulse response of a causal LTI system
of Eq. (2.17) using the filter command; compute and plot the first 40 samples. Compare
your result with that obtained in Question Q2.20.

Q2.22 Write a MATLAB program to generate and plot the step response of a causal LTI
system of Eq. (2.11). Using this program compute and plot the first 40 samples of the step
response of the LTI system of Eq. (2.15).

Project 2.6 Cascade of LTI Systems

In practice a causal LTI discrete-time system of higher order is implemented as a cascade of
lower order causal LTI discrete-time systems. For example, the fourth-order discrete-time
system given below

y[n] + 1.6 y[n − 1] + 2.28 y[n − 2] + 1.325 y[n − 3] + 0.68 y[n − 4]
= 0.06 x[n] − 0.19 x[n − 1] + 0.27 x[n − 2] − 0.26 x[n − 3] + 0.12 x[n − 4] (2.18)

can be realized as a cascade of two second-order discrete-time systems:

Stage No. 1

y1[n] + 0.9 y1[n − 1] + 0.8 y1[n − 2] = 0.3 x[n] − 0.2 x[n − 1] + 0.4 x[n − 2] (2.19)

26 Chapter 2 • Discrete-Time Systems in the Time Domain

Stage No. 2

y2[n] + 0.7 y2[n− 1]+0.85 y2[n− 2] = 0.2 y1[n]− 0.5 y1[n− 1]+0.3 y1[n− 2] (2.20)

MATLAB Program P2 6 simulates the fourth-order system of Eq. (2.18), and the cascade
system of Eqs. (2.19) and (2.20). It first generates a sequence x[n], and then uses it as the
input of the fourth-order system, generating the output y[n]. It then applies the same input
x[n] to Stage No. 1 and finds its output sequence y1[n]. Next, it uses y1[n] as the input
of Stage No. 2 and finds its output y2[n]. Finally, the difference between the two overall
outputs y[n] and y2[n] are formed. All output and the difference signals are then plotted.

% Program P2_6
% Cascade Realization
clf;
x = [1 zeros(1,40)];% Generate the input
n = 0:40;
% Coefficients of 4th-order system
den = [1 1.6 2.28 1.325 0.68];
num = [0.06 -0.19 0.27 -0.26 0.12];
% Compute the output of 4th-order system
y = filter(num,den,x);
% Coefficients of the two 2nd-order systems
num1 = [0.3 -0.2 0.4];den1 = [1 0.9 0.8];
num2 = [0.2 -0.5 0.3];den2 = [1 0.7 0.85];
% Output y1[n] of the first stage in the cascade
y1 = filter(num1,den1,x);
% Output y2[n] of the second stage in the cascade
y2 = filter(num2,den2,y1);
% Difference between y[n] and y2[n]
d = y - y2;
% Plot output and difference signals
subplot(3,1,1);
stem(n,y);
ylabel(’Amplitude’);
title(’Output of 4th-order Realization’);grid;
subplot(3,1,2);
stem(n,y2)
ylabel(’Amplitude’);
title(’Output of Cascade Realization’);grid;
subplot(3,1,3);
stem(n,d)
xlabel(’Time index n’);ylabel(’Amplitude’);
title(’Difference Signal’);grid;

2.5 Linear Time-Invariant Discrete-Time Systems 27

Questions:

Q2.23 Run Program P2 6 to compute the output sequences y[n] and y2[n] and the
difference signal d[n]. Is y[n] the same as y2[n]?

Q2.24 Repeat Question Q2.23 with the input changed to a sinusoidal sequence.

Q2.25 Repeat Question Q2.23 with arbitrary nonzero initial condition vectors ic, ic1,
and ic2.

Q2.26 Modify Program P2 6 to repeat the same procedure with the two second-order
systems in reverse order and with zero initial conditions . Is there any difference between
the two outputs?

Q2.27 Repeat Question Q2.26 with arbitrary nonzero initial condition vectors ic, ic1,
and ic2.

Project 2.7 Convolution

The convolution operation of Eq. (2.5) is implemented in MATLAB by the command conv,
provided the two sequences to be convolved are of finite length. For example, the output
sequence of an FIR system can be computed by convolving its impulse response with a given
finite-length input sequence. The following MATLAB program illustrates this approach.

% Program P2_7
clf;
h = [3 2 1 -2 1 0 -4 0 3]; % impulse response
x = [1 -2 3 -4 3 2 1]; % input sequence
y = conv(h,x);
n = 0:14;
subplot(2,1,1);
stem(n,y);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Output Obtained by Convolution’);grid;
x1 = [x zeros(1,8)];
y1 = filter(h,1,x1);
subplot(2,1,2);
stem(n,y1);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Output Generated by Filtering’);grid;

Questions:

Q2.28 Run Program P2 7 to generate y[n] obtained by the convolution of the sequences
h[n] and x[n], and to generate y1[n] obtained by filtering the input x[n] by the FIR

28 Chapter 2 • Discrete-Time Systems in the Time Domain

filter h[n]. Is there any difference between y[n] and y1[n]? What is the reason for using
x1[n] obtained by zero-padding x[n] as the input for generating y1[n]?

Q2.29 Modify Program P2 7 to develop the convolution of a length-15 sequence h[n]
with a length-10 sequence x[n], and repeat Question Q2.28. Use your own sample values
for h[n] and x[n].

Project 2.8 Stability of LTI Systems

As indicated by Eq. (2.8), an LTI discrete-time system is BIBO stable if its impulse response
is absolutely summable. It therefore follows that a necessary condition for an IIR LTI system
to be stable is that its impulse response decays to zero as the sample index gets larger.
Program P2 8 is a simple MATLAB program used to compute the sum of the absolute
values of the impulse response samples of a causal IIR LTI system. It computes N samples
of the impulse response sequence, evaluates

S(K) =
K∑

n=0

|h[n]| (2.21)

for increasing values of K, and checks the value of |h[K]| at each iteration step. If the
value of |h[K]| is smaller than 10−6, then it is assumed that the sum S(K) of Eq. (2.21)
has converged and is very close to S(∞).

% Program P2_8
% Stability test based on the sum of the absolute
% values of the impulse response samples
clf;
num = [1 -0.8]; den = [1 1.5 0.9];
N = 200;
h impz(num,den,N+1);
parsum = 0;
for k = 1:N+1;

parsum = parsum + abs(h(k));
if abs(h(k)) < 10^(-6), break, end

end
% Plot the impulse response
n = 0:N; stem(n,h) xlabel(’Time index n’); ylabel(’Amplitude’);
% Print the value of abs(h(k))
disp(’Value =’);disp(abs(h(k)));

Questions:

Q2.30 What are the purposes of the commands for and end?

Q2.31 What is the purpose of the command break?

2.5 Linear Time-Invariant Discrete-Time Systems 29

Q2.32 What is the discrete-time system whose impulse response is being determined by
Program P2 8? Run Program P2 8 to generate the impulse response. Is this system stable?
If |h[K]| is not smaller than 10−6 but the plot shows a decaying impulse response, run
Program P2 8 again with a larger value of N.

Q2.33 Consider the following discrete-time system characterized by the difference equa-
tion:

y[n] = x[n] − 4 x[n − 1] + 3 x[n − 2] + 1.7 y[n − 1] − y[n − 2].

Modify Program P2 8 to compute and plot the impulse response of the above system. Is
this system stable?

Project 2.9 Illustration of the Filtering Concept

Consider the following two discrete-time systems characterized by the difference equations:

System No. 1

y[n] = 0.5 x[n] + 0.27 x[n − 1] + 0.77 x[n − 2],

System No. 2

y[n] = 0.45 x[n] + 0.5 x[n − 1] + 0.45 x[n − 2] + 0.53 y[n − 1] − 0.46 y[n − 2].

MATLAB Program P2 9 is used to compute the outputs of the above two systems for an
input

x[n] = cos
(

20πn

256

)
+ cos

(
200πn

256

)
, with 0 ≤ n < 299.

% Program P2_9
% Generate the input sequence
clf;
n = 0:299;
x1 = cos(2*pi*10*n/256);
x2 = cos(2*pi*100*n/256);
x = x1+x2;
% Compute the output sequences
num1 = [0.5 0.27 0.77];
y1 = filter(num1,1,x); % Output of System No. 1
den2 = [1 -0.53 0.46];
num2 = [0.45 0.5 0.45];
y2 = filter(num2,den2,x); % Output of System No. 2
% Plot the output sequences
subplot(2,1,1);
plot(n,y1);axis([0 300 -2 2]);
ylabel(’Amplitude’);

30 Chapter 2 • Discrete-Time Systems in the Time Domain

title(’Output of System No. 1’);grid;
subplot(2,1,2);
plot(n,y2);axis([0 300 -2 2]);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Output of System No. 2’);grid;

Questions:

Q2.34 Run Program P2 9. In this question both filters are lowpass filters but with different
attenuation in the stopband, especially at the frequencies of the input signal. Which filter has
better characteristics for suppression of the high-frequency component of the input signal
x[n]?

Q2.35 Modify Program P2 9 by changing the input sequence to a swept sinusoidal se-
quence (length 301, minimum frequency 0, and maximum frequency 0.5). Which filter
has better characteristics for suppression of the high-frequency component?

2.6 Background Reading

[1] A. Antoniou. Digital Filters: Analysis, Design, and Applications. McGraw-Hill, New
York NY, second edition, 1993. Secs. 1.3–1.8.

[2] E. Cunningham. Digital Filtering: An Introduction. Houghton-Mifflin, New York
NY, 1992. Ch. 8.

[3] D.J. DeFatta, J.G. Lucas, and W.S. Hodgkiss. Digital Signal Processing: A System
Design Approach. Wiley, New York NY, 1988. Sec. 2.2.

[4] L.B. Jackson. Digital Filters and Signal Processing. Kluwer, Boston MA, third
edition, 1996. Ch. 11.

[5] R. Kuc. Introduction to Digital Signal Processing. McGraw-Hill, New York NY,
1988. Secs. 2-3, 2-5–2-8.

[6] L.C. Ludeman. Fundamentals of Digital Signal Processing. Harper & Row, New
York NY, 1986. Sec. 1.3.

[7] S.K. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-Hill,
New York NY, third edition, 2005. Sec. 2.4–2.8.

[8] A.V. Oppenheim, R.W. Schafer, and J. R. Buck. Discrete-Time Signal Processing.
Prentice-Hall, Upper Saddle River NJ, second edition, 1998. Secs. 2.2–2.5.

[9] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, Upper Saddle River
NJ, 1996. Chs. 2, 3.

[10] B. Porat. A Course in Digital Signal Processing. Wiley, New York, NY, 1996. Sec.
2.7.

2.6 Background Reading 31

[11] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms,
and Applications. Prentice-Hall, Upper Saddle River NJ, third edition, 1996. Secs.
2.2–2.4.

[12] R.A. Roberts and C.T. Mullis. Digital Signal Processing. Addison-Wesley, Reading
MA, 1987. Secs. 2.3–2.4.

32 Chapter 2 • Discrete-Time Systems in the Time Domain

Discrete-Time Signals
in the Frequency Domain3
3.1 Introduction

In the previous two exercises you dealt with the time-domain representation of discrete-time
signals and systems, and investigated their properties. Further insight into the properties
of such signals and systems is obtained by their representation in the frequency-domain.
To this end three commonly used representations are the discrete-time Fourier transform
(DTFT), the discrete Fourier transform (DFT), and the z-transform. In this exercise you
will study all three representations of a discrete-time sequence.

3.2 Background Review

R3.1 The discrete-time Fourier transform (DTFT) X(ejω) of a sequence x[n] is defined
by

X(ejω) =
∞∑

n=−∞
x[n]e−jωn. (3.1)

In general X(ejω) is a complex function of the real variable ω and can be written as

X(ejω) = Xre(ejω) + jXim(ejω), (3.2)

where Xre(ejω) and Xim(ejω) are, respectively, the real and imaginary parts of X(ejω),
and are real functions of ω. X(ejω) can alternately be expressed in the form

X(ejω) = |X(ejω)|ejθ(ω), (3.3)

where
θ(ω) = arg{X(ejω)}. (3.4)

The quantity |X(ejω)| is called the magnitude function and the quantity θ(ω) is called the
phase function , with both functions again being real functions of ω. In many applications,
the Fourier transform is called the Fourier spectrum and, likewise, |X(ejω)| and θ(ω) are
referred to as the magnitude spectrum and phase spectrum, respectively.

R3.2 The DTFT X(ejω) is a periodic continuous function in ω with a period 2π.

R3.3 For a real sequence x[n], the real part Xre(ejω) of its DTFT and the magnitude
function |X(ejω)| are even functions of ω, whereas the imaginary part Xim(ejω) and the
phase function θ(ω) are odd functions of ω.

33

34 Chapter 3 • Discrete-Time Signals in the Frequency Domain

R3.4 The inverse discrete-time Fourier transform x[n] of X(ejω) is given by

x[n] =
1
2π

∫ π

−π

X(ejω)ejωndω. (3.5)

R3.5 The Fourier transformX(ejω)of a sequencex[n] exists ifx[n] is absolutely summable,
that is,

∞∑
n=−∞

|x[n]| < ∞, (3.6)

R3.6 The DTFT satisfies a number of useful properties that are often uitilized in a number
of applications. A detailed listing of these properties and their analytical proofs can be
found in any text on digital signal processing. These properties can also be verified using
MATLAB. We list below a few selected properties that will be encountered later in this
exercise.

Time-Shifting Property – If G(ejω) denotes the DTFT of a sequence g[n], then the DTFT
of the time-shifted sequence g[n − no] is given by e−jωnoG(ejω).

Frequency-Shifting Property – If G(ejω) denotes the DTFT of a sequence g[n], then the
DTFT of the sequence ejωong[n] is given by G(ej(ω−ωo)).

Convolution Property – If G(ejω) and H(ejω) denote the DTFTs of the sequences g[n] and
h[n], respectively, then the DTFT of the sequence g[n] 	 h[n] is given by G(ejω)H(ejω).

Modulation Property – If G(ejω) and H(ejω) denote the DTFTs of the sequences g[n] and
h[n], respectively, then the DTFT of the sequence g[n]h[n] is given by

1
2π

∫ π

−π

G(ejθ)H(ej(ω−θ))dθ.

Time-Reversal Property – If G(ejω) denotes the DTFT of a sequence g[n], then the DTFT
of the time-reversed sequence g[−n] is given by G(e−jω).

R3.7 The N -point discrete Fourier transform (DFT) of a finite-length sequence x[n],
defined for 0 ≤ n ≤ N − 1, is given by

X[k] =
N−1∑
n=0

x[n]W kn
N , k = 0, 1, . . . , N − 1, (3.7)

where
WN = e−j2π/N . (3.8)

R3.8 The N -point DFT X[k] of a length-N sequence x[n], n = 0, 1, . . . , N−1, is simply
the frequency samples of its DTFT X(ejω) evaluated at N uniformly spaced frequency
points, ω = ωk = 2πk/N, k = 0, 1, . . . , N − 1, that is,

X[k] = X(ejω)|ω=2πk/N , k = 0, 1, . . . , N − 1. (3.9)

3.2 Background Review 35

R3.9 The N -point circular convolution of two length-N sequences g[n] and h[n], 0 ≤
n ≤ N − 1, is defined by

yC [n] =
N−1∑
m=0

g[m]h[〈n − m〉N], (3.10)

where 〈n〉N = n modulo N . The N -point circular convolution operation is usually denoted
as

yC [n] = g[n] ©N h[n]. (3.11)

R3.10 The linear convolution of a length-N sequence g[n], 0 ≤ n ≤ N − 1, with a
length-M sequence h[n], 0 ≤ n ≤ M − 1, can be obtained by a (N + M − 1)-point
circular convolution of two length-(N + M − 1) sequences, ge[n] and he[n],

yL[n] = g[n] ©∗ h[n] = ge[n] ©N he[n], (3.12)

where ge[n] and he[n] are obtained by appending g[n] and h[n] with zero-valued samples:

ge[n] =
{

g[n], 0 ≤ n ≤ N − 1,
0, N ≤ n ≤ N + M − 1,

(3.13)

he[n] =
{

h[n], 0 ≤ n ≤ M − 1,
0, M ≤ n ≤ N + M − 1.

(3.14)

R3.11 The DFT satisfies a number of useful properties that are often utilized in a number
of applications. A detailed listing of these properties and their analytical proofs can be
found in any text on digital signal processing. These properties can also be verified using
MATLAB. We list below a few selected properties that will be encountered later in this
exercise.

Circular Time-Shifting Property – If G[k] denotes the N -point DFT of a length-N sequence
g[n], then the N -point DFT of the circularly time-shifted sequence g[〈n − no〉N] is given
by W kno

N G[k] where WN = e−j2π/N .

Circular Frequency-Shifting Property – If G[k] denotes the N -point DFT of a length-N
sequence g[n], then the N -point DFT of the sequence W−kon

N g[n] is given by G[〈k−ko〉N].

Circular Convolution Property – If G[k] and H[k] denote the N -point DFTs of the length-N
sequences g[n] and h[n], respectively, then the N -point DFT of the circularly convolved
sequence g[n] ©N h[n] is given by G[k]H[k].

Parseval’s Relation – If G[k] denotes the N -point DFT of a length-N sequence g[n], then

N−1∑
n=0

|g[n]|2 =
1
N

N−1∑
k=0

|G[k]|2. (3.15)

R3.12 The periodic even part gpe[n] and the periodic odd part gpo[n] of a length-N real
sequence g[n] are given by

gpe[n] = 1
2 (g[n] + g[〈−n〉N]) , (3.16)

36 Chapter 3 • Discrete-Time Signals in the Frequency Domain

gpo[n] = 1
2 (g[n] − g[〈−n〉N]) . (3.17)

If G[k] denotes the N -point DFT of g[n], then the N -point DFTs of gpe[n] and gpo[n] are
given by Re{G[k]} and Imj {G[k]}, respectively.

R3.13 Let g[n] and h[n] be two length-N real sequences, with G[k] and H[k] denoting
their respective N -point DFTs. These two N -point DFTs can be computed efficiently
using a single N -point DFT X[k] of a complex length-N sequence x[n] defined by x[n] =
g[n] + jh[n] using

G[k] = 1
2 (X[k] + X∗[〈−k〉N]) , (3.18)

H[k] = 1
2j (X[k] − X∗[〈−k〉N]) . (3.19)

R3.14 Let v[n] be a real sequence of length 2N with V [k] denoting its 2N -point DFT.
Define two real sequences g[n] and h[n] of length N each as

g[n] = v[2n] and h[n] = v[2n + 1], 0 ≤ n < N, (3.20)

with G[k] and H[k] denoting their N -point DFTs. Then the 2N -point DFT V [k] of v[n]
can be computed from the two N -point DFTs, G[k] and H[k], using

V [k] = G[〈k〉N] + W k
2NH[〈k〉N], 0 ≤ k ≤ 2N − 1. (3.21)

R3.15 The z-transform G(z) of a sequence g[n] is defined as

G(z) = Z{g[n]}
∞∑

n=−∞
g[n]z−n, (3.22)

where z is a complex variable. The set 	 of values of z for which the z-transform G(z)
converges is called its region of convergence (ROC). In general, the region of convergence
	 of a z-transform of a sequence g[n] is an annular region of the z-plane:

Rg− < |z| < Rg+, (3.23)

where 0 ≤ Rg− < Rg+ ≤ ∞.

R3.16 In the case of LTI discrete-time systems , all pertinent z-transforms are rational
functions of z−1, that is, they are ratios of two polynomials in z−1:

G(z) =
P (z)
D(z)

=
p0 + p1z

−1 + . . . + pM−1z
−(M−1) + pMz−M

d0 + d1z−1 + . . . + dN−1z−(N−1) + dNz−N
, (3.24)

which can be alternately written in factored form as

G(z) =
p0

d0

∏M
r=1(1 − ξrz

−1)∏N
s=1(1 − λsz−1)

=
p0

d0
zN−M

∏M
r=1(z − ξr)∏N
s=1(z − λs)

. (3.25)

The zeros of G(z) are given by z = ξr while the poles are given by z = λs. There are
additional (N − M) zeros at z = 0 (the origin in the z-plane) if N > M or additional
(M − N) poles at z = 0 if N < M .

3.3 MATLAB Commands Used 37

R3.17 For a sequence with a rational z-transform, the ROC of the z-transform cannot
contain any poles and is bounded by the poles.

R3.18 The inverse z-transform g[n] of a z-transform G(z) is given by

g[n] =
1

2πj

∮
C

G(z) zn−1 dz, (3.26)

where C is a counterclockwise contour encircling the point z0 in the ROC of G(z).

R3.19 A rational z-transform G(z) = P (z)/D(z), where the degree of the polynomial
P (z) is M and the degree of the polynomial D(z) is N , and with distinct poles at z =
λs, s = 1, 2, . . . , N , can be expressed in a partial-fraction expansion form given by

G(z) =
M−N∑
�=0

η�z
−� +

N∑
s=0

ρs

1 − λsz−1
, (3.27)

assuming M ≥ N . The constants ρs in the above expression, called the residues , are given
by

ρs = (1 − λsz
−1)G(z)|z=λs . (3.28)

If G(z) has multiple poles , the partial-fraction expansion is of slightly different form. For
example, if the pole at z = ν is of multiplicity L and the remaining N −L poles are simple
and at z = λs, s1, 2, . . . , N − L, then the general partial fraction expansion of G(z) takes
the form

G(z) =
M−N∑
�=0

η�z
−� +

N−L∑
s=0

ρs

1 − λsz−1
+

L∑
r=1

γr

(1 − ν z−1)r
, (3.29)

where the constants γr (no longer called the residues for r �= 1) are computed using the
formula

γr =
1

(L − r)!(−ν)L−r

dL−r

d(z−1)L−r

[
(1 − νz−1)LG(z)

]
z=ν

, r = 1, . . . , L, (3.30)

and the residues ρs are calculated using Eq. (3.28).

3.3 MATLAB Commands Used

The MATLAB commands you will encounter in this exercise are as follows:

General Purpose Commands

disp

38 Chapter 3 • Discrete-Time Signals in the Frequency Domain

Operators and Special Characters

: . + - * / ;
% < > .* ^ .^ ~=

Language Constructs and Debugging

break end error for function
if input pause

Elementary Matrices and Matrix Manipulation

fliplr i pi zeros :

Elementary Functions

abs angle conj exp imag real
rem

Polynomial and Interpolation Functions

conv

Two-Dimensional Graphics

axis grid plot stem title
xlabel ylabel

General Purpose Graphics Functions

clf subplot

Character String Functions

num2str

Data Analysis and Fourier Transform Functions

fft ifft max min

3.4 Discrete-Time Fourier Transform 39

Signal Processing Toolbox

freqz impz residuez tf2zp zp2sos
zp2tf zplane

For additional information on these commands, see the MathWorks Online Documenta-
tion [Mat05] or type help commandname in the Command window. A brief explanation
of the MATLAB functions used here can be found in Appendix B.

3.4 Discrete-Time Fourier Transform

The discrete-time Fourier transform (DTFT) X(ejω) of a sequence x[n] is a continuous
function of ω. Since the data in MATLAB is in vector form, X(ejω) can only be evaluated
at a prescribed set of discrete frequencies. Moreover, only a class of the DTFT that is
expressed as a rational function in e−jω in the form

X(ejω) =
p0 + p1e

−jω + . . . + pMe−jωM

d0 + d1e−jω + . . . + dNe−jωN
, (3.31)

can be evaluated. In the following two projects you will learn how to evaluate and plot the
DTFT and study certain properties of the DTFT using MATLAB.

Project 3.1 DTFT Computation

The DTFT X(ejω) of a sequence x[n] of the form of Eq. (3.31) can be computed easily
at a prescribed set of L discrete frequency points ω = ω� using the MATLAB function
freqz. Since X(ejω) is a continuous function of ω, it is necessary to make L as large as
possible so that the plot generated using the command plot provides a resonable replica
of the actual plot of the DTFT. In MATLAB, freqz computes the L-point DFT of the
sequences {p0 p1 . . . pM} and {d0 d1 . . . dM}, and then forms their ratio to arrive at
X(ejω�), � = 1, 2, . . . , L. For faster computation, L should be chosen as a power of 2, such
as 256 or 512.

Program P3 1 can be used to evaluate and plot the DTFT of the form of Eq. (3.31).

% Program P3_1
% Evaluation of the DTFT
clf;
% Compute the frequency samples of the DTFT
w = -4*pi:8*pi/511:4*pi;
num = [2 1];den = [1 -0.6];
h = freqz(num, den, w);
% Plot the DTFT
subplot(2,1,1)

40 Chapter 3 • Discrete-Time Signals in the Frequency Domain

plot(w/pi,real(h));grid
title(’Real part of H(e^{j\omega})’)
xlabel(’\omega /\pi’);
ylabel(’Amplitude’);
subplot(2,1,2)
plot(w/pi,imag(h));grid
title(’Imaginary part of H(e^{j\omega})’)
xlabel(’\omega /\pi’);
ylabel(’Amplitude’);
pause
subplot(2,1,1)
plot(w/pi,abs(h));grid
title(’Magnitude Spectrum |H(e^{j\omega})|’)
xlabel(’\omega /\pi’);
ylabel(’Amplitude’);
subplot(2,1,2)
plot(w/pi,angle(h));grid
title(’Phase Spectrum arg[H(e^{j\omega})]’)
xlabel(’\omega /\pi’);
ylabel(’Phase, radians’);

Questions:

Q3.1 What is the expression of the DTFT being evaluated in Program P3 1? What is the
function of the MATLAB command pause?

Q3.2 Run Program P3 1 and compute the real and imaginary parts of the DTFT, and the
magnitude and phase spectra . Is the DTFT a periodic function of ω? If it is, what is the
period? Explain the type of symmetries exhibited by the four plots.

Q3.3 Modify Program P3 1 to evaluate in the range 0 ≤ ω ≤ π the following DTFT:

U(ejω) =
0.7 − 0.5e−jω + 0.3e−j2ω + e−j3ω

1 + 0.3e−jω − 0.5e−j2ω + 0.7e−j3ω
,

and repeat Question Q3.2. Comment on your results. Can you explain the jump in the phase
spectrum ? The jump can be removed using the MATLAB command unwrap. Evaluate
the phase spectrum with the jump removed.

Q3.4 Modify Program P3 1 to evaluate the DTFT of the following finite-length sequence:

g[n] = [1 3 5 7 9 11 13 15 17],

and repeat Question Q3.2. Comment on your results. Can you explain the jumps in the
phase spectrum?

Q3.5 How would you modify Program P3 1 to plot the phase in degrees?

3.4 Discrete-Time Fourier Transform 41

Project 3.2 DTFT Properties

Most of the properties of the DTFT can be verified using MATLAB. In this project you
shall verify the properties listed in R3.6. Since all data in MATLAB have to be finite-length
vectors, the sequences being used to verify the properties are thus restricted to be of finite
length.

Program P3 2 can be used to verify the time-shifting property of the DTFT.

% Program P3_2
% Time-Shifting Properties of DTFT

clf;
w = -pi:2*pi/255:pi; wo = 0.4*pi; D = 10;
num = [1 2 3 4 5 6 7 8 9];
h1 = freqz(num, 1, w);
h2 = freqz([zeros(1,D) num], 1, w);
subplot(2,2,1)
plot(w/pi,abs(h1));grid
title(’Magnitude Spectrum of Original Sequence’)
subplot(2,2,2)
plot(w/pi,abs(h2));grid
title(’Magnitude Spectrum of Time-Shifted Sequence’)
subplot(2,2,3)
plot(w/pi,angle(h1));grid
title(’Phase Spectrum of Original Sequence’)
subplot(2,2,4)
plot(w/pi,angle(h2));grid
title(’Phase Spectrum of Time-Shifted Sequence’)

Questions:

Q3.6 Modify Program P3 2 by adding appropriate comment statements and program
statements for labeling the two axes of each plot being generated by the program. Which
parameter controls the amount of time-shift?

Q3.7 Run the modified program and comment on your results.

Q3.8 Repeat Question Q3.7 for a different value of the time-shift.

Q3.9 Repeat Question Q3.7 for two different sequences of varying lengths and two dif-
ferent time-shifts.

Program P3 3 can be used to verify the frequency-shifting property of the DTFT.

% Program P3_3
% Frequency-Shifting Properties of DTFT

42 Chapter 3 • Discrete-Time Signals in the Frequency Domain

clf;
w = -pi:2*pi/255:pi; wo = 0.4*pi;
num1 = [1 3 5 7 9 11 13 15 17];
L = length(num1);
h1 = freqz(num1, 1, w);
n = 0:L-1;
num2 = exp(wo*i*n).*num1;
h2 = freqz(num2, 1, w);
subplot(2,2,1)
plot(w/pi,abs(h1));grid
title(’Magnitude Spectrum of Original Sequence’)
subplot(2,2,2)
plot(w/pi,abs(h2));grid
title(’Magnitude Spectrum of Frequency-Shifted Sequence’)
subplot(2,2,3)
plot(w/pi,angle(h1));grid
title(’Phase Spectrum of Original Sequence’)
subplot(2,2,4)
plot(w/pi,angle(h2));grid
title(’Phase Spectrum of Frequency-Shifted Sequence’)

Questions:

Q3.10 Modify Program P3 3 by adding appropriate comment statements and program
statements for labeling the two axes of each plot being generated by the program. Which
parameter controls the amount of frequency-shift?

Q3.11 Run the modified program and comment on your results.

Q3.12 Repeat Question Q3.11 for a different value of the frequency-shift.

Q3.13 Repeat Question Q3.11 for two different sequences of varying lengths and two
different frequency-shifts.

Program P3 4 can be used to verify the convolution property of the DTFT.

% Program P3_4
% Convolution Property of DTFT
clf;
w = -pi:2*pi/255:pi;
x1 = [1 3 5 7 9 11 13 15 17];
x2 = [1 -2 3 -2 1];
y = conv(x1,x2);
h1 = freqz(x1, 1, w);
h2 = freqz(x2, 1, w);
hp = h1.*h2;

3.4 Discrete-Time Fourier Transform 43

h3 = freqz(y,1,w);
subplot(2,2,1)
plot(w/pi,abs(hp));grid
title(’Product of Magnitude Spectra’)
subplot(2,2,2)
plot(w/pi,abs(h3));grid
title(’Magnitude Spectrum of Convolved Sequence’)
subplot(2,2,3)
plot(w/pi,angle(hp));grid
title(’Sum of Phase Spectra’)
subplot(2,2,4)
plot(w/pi,angle(h3));grid
title(’Phase Spectrum of Convolved Sequence’)

Questions:

Q3.14 Modify Program P3 4 by adding appropriate comment statements and program
statements for labeling the two axes of each plot being generated by the program.

Q3.15 Run the modified program and comment on your results.

Q3.16 Repeat Question Q3.15 for two different sets of sequences of varying lengths.

Program P3 5 can be used to verify the modulation property of the DTFT.

% Program P3_5
% Modulation Property of DTFT

clf;
w = -pi:2*pi/255:pi;
x1 = [1 3 5 7 9 11 13 15 17];
x2 = [1 -1 1 -1 1 -1 1 -1 1];
y = x1.*x2;
h1 = freqz(x1, 1, w);
h2 = freqz(x2, 1, w);
h3 = freqz(y,1,w);
subplot(3,1,1)
plot(w/pi,abs(h1));grid
title(’Magnitude Spectrum of First Sequence’)
subplot(3,1,2)
plot(w/pi,abs(h2));grid
title(’Magnitude Spectrum of Second Sequence’)
subplot(3,1,3)
plot(w/pi,abs(h3));grid
title(’Magnitude Spectrum of Product Sequence’)

44 Chapter 3 • Discrete-Time Signals in the Frequency Domain

Questions:

Q3.17 Modify Program P3 5 by adding appropriate comment statements and program
statements for labeling the two axes of each plot being generated by the program.

Q3.18 Run the modified program and comment on your results.

Q3.19 Repeat Question Q3.18 for two different sets of sequences of varying lengths.

Program P3 6 can be used to verify the time-reversal property of the DTFT.

% Program P3_6
% Time-Reversal Property of DTFT

clf;
w = -pi:2*pi/255:pi;
num = [1 2 3 4];
L = length(num)-1;
h1 = freqz(num, 1, w);
h2 = freqz(fliplr(num), 1, w);
h3 = exp(w*L*i).*h2;
subplot(2,2,1)
plot(w/pi,abs(h1));grid
title(’Magnitude Spectrum of Original Sequence’)
subplot(2,2,2)
plot(w/pi,abs(h3));grid
title(’Magnitude Spectrum of Time-Reversed Sequence’)
subplot(2,2,3)
plot(w/pi,angle(h1));grid
title(’Phase Spectrum of Original Sequence’)
subplot(2,2,4)
plot(w/pi,angle(h3));grid
title(’Phase Spectrum of Time-Reversed Sequence’)

Questions:

Q3.20 Modify Program P3 6 by adding appropriate comment statements and program
statements for labeling the two axes of each plot being generated by the program. Explain
how the program implements the time-reversal operation.

Q3.21 Run the modified program and comment on your results.

Q3.22 Repeat Question Q3.21 for two different sequences of varying lengths.

3.5 Discrete Fourier Transform 45

3.5 Discrete Fourier Transform

The discrete Fourier transform (DFT) X[k] of a finite-length sequence x[n] can be easily
computed in MATLAB using the function fft. There are two versions of this function.
fft(x) computes the DFT X[k] of the sequence x[n] where the length of X[k] is the same
as that of x[n]. fft(x,L) computes the L-point DFT of a sequence x[n] of length N where
L ≥ N . If L > N , x[n] is zero-padded with L−N trailing zero-valued samples before the
DFT is computed. The inverse discrete Fourier transform (IDFT) x[n] of a DFT sequence
X[k] can likewise be computed using the function ifft, which also has two versions.

Project 3.3 DFT and IDFT Computations

Questions:

Q3.23 Write a MATLAB program to compute and plot the L-point DFT X[k] of a se-
quence x[n] of length N with L ≥ N and then to compute and plot the L-point IDFT of
X[k]. Run the program for sequences of different lengths N and for different values of the
DFT length L. Comment on your results.

Q3.24 Write a MATLAB program to compute the N -point DFT of two length-N real
sequences using a single N -point DFT and compare the result by computing directly the
two N -point DFTs (see R3.13).

Q3.25 Write a MATLAB program to compute the 2N -point DFT of a length-2N real
sequence using a single N -point DFT and compare the result by computing directly the
2N -point DFT (see R3.14).

Project 3.4 DFT Properties

Two important concepts used in the application of the DFT are the circular-shift of a
sequence and the circular convolution of two sequences of the same length. As these
operations are needed in verifying certain properties of the DFT, we implement them as
MATLAB functions circshift1 and circonv as indicated below:

function y = circshift1(x,M)
% Develops a sequence y obtained by
% circularly shifting a finite-length
% sequence x by M samples
if abs(M) > length(x)

M = rem(M,length(x));
end
if M < 0

M = M + length(x);
end

46 Chapter 3 • Discrete-Time Signals in the Frequency Domain

y = [x(M+1:length(x)) x(1:M)];}

function y = circonv(x1,x2)
L1 = length(x1); L2 = length(x2);
if L1 ~= L2, error(’Sequences of unequal lengths’), end
y = zeros(1,L1);
x2tr = [x2(1) x2(L2:-1:2)];
for k = 1:L1

sh = circshift1(x2tr,1-k);
h = x1.*sh;
y(k) = sum(h);

end

Questions:

Q3.26 What is the purpose of the command rem in the function circshift1?

Q3.27 Explain how the function circshift1 implements the circular time-shifting op-
eration.

Q3.28 What is the purpose of the operator ~= in the function circonv?

Q3.29 Explain how the operation of the function circonv implements the circular con-
volution operation.

Program P3 7 can be used to illustrate the concept of circular shift of a finite-length sequence.
It employs the function circshift1.

% Program P3_7
% Illustration of Circular Shift of a Sequence
clf;
M = 6;
a = [0 1 2 3 4 5 6 7 8 9];
b = circshift1(a,M);
L = length(a)-1;
n = 0:L;
subplot(2,1,1);
stem(n,a);axis([0,L,min(a),max(a)]);
title(’Original Sequence’);
subplot(2,1,2);
stem(n,b);axis([0,L,min(a),max(a)]);
title([’Sequence Obtained by Circularly Shifting by ’,num2str(M),’
Samples’]);

3.5 Discrete Fourier Transform 47

Questions:

Q3.30 Modify Program P3 7 by adding appropriate comment statements and program
statements for labeling each plot being generated by the program. Which parameter de-
termines the amount of time-shifting? What happens if the amount of time-shift is greater
than the sequence length?

Q3.31 Run the modified program and verify the circular time-shifting operation.

Program P3 8 can be used to illustrate the circular time-shifting property of the DFT. It
employs the function circshift1.

% Program P3_8
% Circular Time-Shifting Property of DFT
clf;
x = [0 2 4 6 8 10 12 14 16];
N = length(x)-1; n = 0:N;
y = circshift1(x,5);
XF = fft(x);
YF = fft(y);
subplot(2,2,1)
stem(n,abs(XF)); grid
title(’Magnitude of DFT of Original Sequence’);
subplot(2,2,2)
stem(n,abs(YF)); grid
title(’Magnitude of DFT of Circularly Shifted Sequence’);
subplot(2,2,3)
stem(n,angle(XF)); grid
title(’Phase of DFT of Original Sequence’);
subplot(2,2,4)
stem(n,angle(YF)); grid
title(’Phase of DFT of Circularly Shifted Sequence’);

Questions:

Q3.32 Modify Program P3 8 by adding appropriate comment statements and program
statements for labeling each plot being generated by the program. What is the the amount
of time-shift?

Q3.33 Run the modified program and verify the circular time-shifting property of the
DFT.

Q3.34 Repeat Question Q3.33 for two different amounts of time-shift.

Q3.35 Repeat Question Q3.33 for two different sequences of different lengths.

48 Chapter 3 • Discrete-Time Signals in the Frequency Domain

Program P3 9 can be used to illustrate the circular convolution property of the DFT. It
employs the function circonv.

% Program P3_9
% Circular Convolution Property of DFT
g1 = [1 2 3 4 5 6]; g2 = [1 -2 3 3 -2 1];
ycir = circonv(g1,g2);
disp(’Result of circular convolution = ’);disp(ycir)
G1 = fft(g1); G2 = fft(g2);
yc = real(ifft(G1.*G2));
disp(’Result of IDFT of the DFT products = ’);disp(yc)

Questions:

Q3.36 Run Program P3 9 and verify the circular convolution property of the DFT.

Q3.37 Repeat Question Q3.36 for two other different sets of equal-length sequences.

Program P3 10 can be used to illustrate the relation between circular and linear convolutions
(see R3.10).

% Program P3_10
% Linear Convolution via Circular Convolution
g1 = [1 2 3 4 5];g2 = [2 2 0 1 1];
g1e = [g1 zeros(1,length(g2)-1)];
g2e = [g2 zeros(1,length(g1)-1)];
ylin = circonv(g1e, g2e);
disp(’Linear convolution via circular convolution = ’);disp(ylin);
y = conv(g1, g2);
disp(’Direct linear convolution = ’);disp(y)

Questions:

Q3.38 Run Program P3 10 and verify that linear convolution can be obtained via circular
convolution.

Q3.39 Repeat Question Q3.38 for two other different sets of sequences of unequal lengths.

Q3.40 Write a MATLAB program to develop the linear convolution of two sequences via
the DFT of each. Using this program verify the results of Questions Q3.38 and Q3.39.

Program P3 11 can be used to verify the relation between the DFT of a real sequence, and
the DFTs of its periodic even and the periodic odd parts (see R3.12).

3.5 Discrete Fourier Transform 49

% Program P3_11
% Relations between the DFTs of the Periodic Even
% and Odd Parts of a Real Sequence

x = [1 2 4 2 6 32 6 4 2 zeros(1,247)];
x1 = [x(1) x(256:-1:2)];
xe = 0.5 *(x + x1);
XF = fft(x);
XEF = fft(xe);
clf;
k = 0:255;
subplot(2,2,1);
plot(k/128,real(XF)); grid
ylabel(’Amplitude’);
title(’Re(DFT\{x[n]\})’);
subplot(2,2,2);
plot(k/128,imag(XF)); grid ylabel(’Amplitude’);
title(’Im(DFT\{x[n]\})’);
subplot(2,2,3);
plot(k/128,real(XEF)); grid
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Re(DFT\{x_{e}[n]\})’);
subplot(2,2,4);
plot(k/128,imag(XEF)); grid
xlabel(’Time index n’);ylabel(’Amplitude’);
title(’Im(DFT\{x_{e}[n]\})’);

Questions:

Q3.41 What is the relation between the sequences x1[n] and x[n]?

Q3.42 Run Program P3 11. The imaginary part of XEF should be zero as the DFT of the
periodic even part is simply the real part of XEF of the original sequence. Can you verify
that? How can you explain the simulation result?

Q3.43 Modify the program to verify the relation between the DFT of the periodic odd
part and the imaginary part of XEF.

Parseval’s relation (Eq. (3.15)) can be verified using the following program.

% Program P3_12
% Parseval’s Relation
x = [(1:128) (128:-1:1)];
XF = fft(x);
a = sum(x.*x)
b = round(sum(abs(XF).^2)/256})

50 Chapter 3 • Discrete-Time Signals in the Frequency Domain

Questions:

Q3.44 Run Program P3 12. Do you get the same values for a and b?

Q3.45 Modify the program in such a way that you do not have to use the command
abs(XF). Use the MATLAB command conj(x) to compute the complex conjugate of x.

3.6 z-Transform

As in the case of the discrete-time Fourier transform, we restrict our attention here to a
z-transform G(z) of a sequence g[n] that is a rational function of the complex variable z−1

and expressed in the form of a ratio of polynomials in z−1 as in Eq. (3.24) or in factored
form as in Eq. (3.25). Some of the operations that are of interest in practice are as follows.
(1) Evaluate the z-transform G(z) on the unit circle, that is, evaluate G(ejω); (2) develop
the pole-zero plot of G(z); (3) develop the factored form of G(z); (4) determine the inverse
z-transform g[n] of G(z); and (5) make a partial-fraction expansion of G(z). In the next
two projects you will learn how to perform the above operations using MATLAB.

Project 3.5 Analysis of z-Transforms

The function freqz can be used to evaluate the values of a rational z-transform on the unit
circle . To this end, Program P3 1 can be used without any modifications.

Question:

Q3.46 Using Program P3 1 evaluate the following z-transform on the unit circle:

G(z) =
2 + 5z−1 + 9z−2 + 5z−3 + 3z−4

5 + 45z−1 + 2z−2 + z−3 + z−4
. (3.32)

The pole-zero plot of a rational z-transform G(z) can be readily obtained using the function
zplane. There are two versions of this function. If the z-transform is given in the form
of a rational function as in Eq. (3.32), the command to use is zplane(num, den) where
num and den are row vectors containing the coefficients of the numerator and denominator
polynomials of G(z) in ascending powers of z−1. On the other hand, if the zeros and
poles of G(z) are given, the command to use is zplane(zeros, poles) where zeros
and poles are column vectors. In the pole-zero plot generated by MATLAB, the location
of a pole is indicated by the symbol × and the location of a zero is indicated by the symbol
◦.

The function tf2zp can be used to determine the zeros and poles of a rational z-transform
G(z) . The program statement to use is [z, p, k] = tf2zp(num,den) where num
and den are row vectors containing the coefficients of the numerator and denominator
polynomials of G(z) in ascending powers of z−1 and the output file contains the gain

3.6 z-Transform 51

constant k and the computed zeros and poles given as column vectors z and p, respectively.
The factored form of the z-transform can be obtained from the zero-pole description using
the function sos = zp2sos(z,p,k). The function computes the coefficients of each
second-order factor given as an L × 6 matrix sos where

sos =

⎡
⎢⎢⎢⎣

b01 b11 b21 a01 a11 a21

b02 b12 b22 a02 a12 a22

...
...

...
...

...
...

b0L b1L b2L a0L a1L a2L

⎤
⎥⎥⎥⎦ ,

where the �th row contains the coefficients of the numerator and the denominator of the �th
second-order factor of the z-transform G(z):

G(z) =
L∏

�=1

b0� + b1� z−1 + b2� z−2

a0� + a1� z−1 + a2� z−2
.

Questions:

Q3.47 Write a MATLAB program to compute and display the poles and zeros, to compute
and display the factored form, and to generate the pole-zero plot of a z-transform that is a
ratio of two polynomials in z−1. Using this program, analyze the z-transform G(z) of Eq.
(3.32).

Q3.48 From the pole-zero plot generated in Question Q3.47, determine the number of
regions of convergence (ROC) of G(z). Show explicitly all possible ROCs . Can you tell
from the pole-zero plot whether or not the DTFT exists?

The reverse process of converting a z-transform given in the form of zeros, poles, and the
gain constant to a rational form can be implemented using the function zp2tf. The program
statement to use is [num,den] = zp2tf(z,p,k).

Question:

Q3.49 Write a MATLAB program to compute and display the rational z-transform from
its zeros, poles and gain constant. Using this program, determine the rational form of a z-
transform whose zeros are at ξ1 = 0.3, ξ2 = 2.5, ξ3 = −0.2+j 0.4, and ξ4 = −0.2−j 0.4;
the poles are at λ1 = 0.5, λ2 = −0.75, λ30.6 + j 0.7, and λ4 = 0.6 − j 0.7; and the gain
constant k is 3.9.

Project 3.6 Inverse z-Transform

The inverse g[n] of a rational z-transform G(z) can be computed using MATLAB in basi-
cally two different ways . To this end, it is necessary to know a priori the ROC of G(z).

52 Chapter 3 • Discrete-Time Signals in the Frequency Domain

The function impz provides the samples of the time-domain sequence, which is assumed
to be causal. There are three versions of this function: [g,t] = impz(num,den), [g,t]
impz(num,den, L), and [g,t] = impz(num,den, L, FT), where num and den are
row vectors containing the coefficients of the numerator and denominator polynomials of
G(z) in ascending powers of z−1, L is the desired number of the samples of the inverse
transform, g is the vector containing the samples of the inverse transform starting with the
sample at n = 0, t is the length of g, and FT is the specified sampling frequency in Hz with
default value of unity.

A closed-form expression for the inverse of a rational z-transform can be obtained by first
performing a partial-fraction expansion using the function residuez and then determining
the inverse of each term in the expansion by looking up a table of z-transforms. The function
residuez can also be used to convert a z-transform given in the form of a partial-fraction
expansion to a ratio of polynomials in z−1.

Questions:

Q3.50 Write a MATLAB program to compute the first L samples of the inverse of a
rational z-transform where the value of L is provided by the user through the command
input. Using this program compute and plot the first 50 samples of the inverse of G(z)
of Eq. (3.32). Use the command stem for plotting the sequence generated by the inverse
transform.

Q3.51 Write a MATLAB program to determine the partial-fraction expansion of a rational
z-transform. Using this program determine the partial-fraction expansion of G(z) of Eq.
(3.32) and then its inverse z-transform g[n] in closed form. Assume g[n] to be a causal
sequence.

3.7 Background Reading

[1] A. Antoniou. Digital Filters: Analysis, Design, and Applications. McGraw-Hill, New
York NY, second edition, 1993. Chs. 2, 13.

[2] E. Cunningham. Digital Filtering: An Introduction. Houghton-Mifflin, Boston MA,
1992. Ch. 3.

[3] D.J. DeFatta, J.G. Lucas, and W.S. Hodgkiss. Digital Signal Processing: A System
Design Approach. Wiley, New York, NY, 1988. Secs. 2.1, 3.1–3.3, 6.1–6.4.

[4] L.B. Jackson. Digital Filters and Signal Processing. Kluwer, Boston MA, third
edition, 1996. Ch. 3 and Secs. 6.1, 6.2, 7.1, 7.2.

[5] R. Kuc. Introduction to Digital Signal Processing. McGraw-Hill, New York NY,
1988. Chs. 3–5.

[6] L.C. Ludeman. Fundamentals of Digital Signal Processing. Harper & Row, New
York NY, 1986. Secs. 1.4, 2.1, 2.2, 6.3.

3.7 Background Reading 53

[7] S.K. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-Hill,
New York NY, third edition, 2005. Secs. 3.2–3.3, 5.2–5.7, 6.1–6.5.

[8] A.V. Oppenheim, R.W. Schafer, and J. R. Buck. Discrete-Time Signal Processing.
Prentice-Hall, Upper Saddle River NJ, second edition, 1998. Secs. 2.6–2.9 and Chs.
3, 8.

[9] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, Upper Saddle River
NJ, 1996. Ch. 5 and Secs. 9.1, 9.2.

[10] B. Porat. A Course in Digital Signal Processing. Wiley, New York NY, 1996. Secs.
2.7, 4.1–4.7, 7.1–7.6.

[11] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms,
and Applications. Prentice-Hall, Upper Saddle River NJ, third edition, 1996. Secs.
1.3, 3.1–3.4, 4.2, 4.3, 5.1, 5.2.

[12] R.A. Roberts and C.T. Mullis. Digital Signal Processing. Addison-Wesley, Reading
MA, 1987. Chs. 3, 4.

54 Chapter 3 • Discrete-Time Signals in the Frequency Domain

LTI Discrete-Time Systems
in the Frequency Domain4
4.1 Introduction

A linear, time-invariant (LTI) discrete-time system is completely characterized in the time-
domain by its impulse response sequence, and the output sequence of the LTI system can
be computed for any input sequence by convolving the input sequence with its impulse
response sequence. Certain classes of LTI discrete-time systems are characterized also by a
linear, constant-coefficient difference equation. For such systems, the output sequence can
be computed recursively for any input sequence. By applying the DTFT or the z-transform
to either the convolution sum description or to the difference equation representation, the LTI
discrete-time system can also be characterized in the frequency domain. Such transform
domain representations provide additional insight into the behavior of such systems, in
addition to making it simpler to design and implement them for specific applications.

4.2 Background Review

R4.1 If {h[n]} denotes the impulse response sequence of an LTI discrete-time system, its
frequency response H(ejω) is given by the discrete-time Fourier transform of {h[n]}, that
is,

H(ejω) =
∞∑

n=−∞
h[n] e−jωn. (4.1)

R4.2 In general, H(ejω) is a complex function of ω with a period 2π and can be expressed
in terms of its real and imaginary parts or its magnitude and phase. Thus,

H(ejω) = Hre(ejω) + j Him(ejω) = |H(ejω)| ej θ(ω), (4.2)

where Hre(ejω) and Him(ejω) are, respectively, the real and imaginary parts of H(ejω),
and

θ(ω) = arg{H(ejω)}. (4.3)

The quantity |H(ejω)| is called the magnitude response and the quantity θ(ω) is called the
phase response of the LTI discrete-time system.

R4.3 The gain function G(ω) of the LTI system is defined by

G(ω) = 20 log10 |H(ejω)| dB. (4.4)

55

56 Chapter 4 • LTI Discrete-Time Systems in the Frequency Domain

The negative of the gain function, a(ω) = −G(ω), is called the attenuation or loss function.

R4.4 For a discrete-time system characterized by a real impulse response h[n], the mag-
nitude function is an even function of ω; that is, |H(ejω)| = |H(e−jω)|, and the phase
function is an odd function of ω; that is, θ(ω) = −θ(−ω). Likewise, Hre(ejω) is an even
function of ω and Him(ejω) is an odd function of ω.

R4.5 The phase responses of discrete-time systems when determined by a computer may
exhibit jumps by an amount of 2π caused by the way the arctangent function is computed.
The phase response can be made a continuous function of ω by unwrapping the phase
response across the jumps by adding multiples of ±2π .

R4.6 The group delay function of an LTI discrete-time system is defined by

τ(ω) = −d θc(ω)
d ω

, (4.5)

where θc(ω) denotes the unwrapped phase function. If the phase function is in radians,
then the group delay is in seconds.

R4.7 The steady-state output y[n] of a real coefficient LTI discrete-time system with a
frequency response H(ejω) for an input

x[n] = A cos(ωon + φ), (4.6)

with A real, is given by

y[n] = A |H(ejωo)| cos(ωon + θ(ωo) + φ). (4.7)

R4.8 From the convolution sum description of an LTI discrete-time system as given by
Eq. (2.4), it follows that the frequency response of an LTI discrete-time system is given
by the ratio of the Fourier transform Y (ejω) of the output sequence y[n] to the Fourier
transform X(ejω) of the input sequence x[n], that is,

H(ejω) = Y (ejω)/X(ejω). (4.8)

R4.9 For an LTI system characterized by a linear constant-coefficient difference equation
of the form of Eq. (2.11), the frequency response H(ejω) can be expressed as

H(ejω) =
∑M

k=0 pke−j ωk∑N
k=0 dke−j ωk

. (4.9)

R4.10 The z-transform H(z) of the impulse response sequence {h[n]} of the LTI discrete-
time system is called the transfer function or the system function . From the convolution sum
description of an LTI discrete-time system as given by Eq. (2.4) it follows that the transfer
function H(z) of an LTI discrete-time system is given by the ratio of the z-transform Y (z)
of the output sequence y[n] to the z-transform X(z) of the input sequence x[n]; that is,
H(z) = Y (z)/X(z).

4.2 Background Review 57

R4.11 If the ROC of H(z) includes the unit circle, it is then related to the frequency
response H(ejω) of the LTI discrete-time system through

H(ejω) = H(z)|z=ej ω . (4.10)

R4.12 For a real-coefficient transfer function H(z):

|H(ej ω)|2 = H(ej ω) H∗(ej ω) = H(ej ω) H(e−j ω) = H(z) H(z−1)|z=ej ω . (4.11)

R4.13 For an LTI system characterized by a linear constant-coefficient difference equation
of the form of Eq. (2.11), the transfer function H(z) can be expressed as :

H(z) =
Y (z)
X(z)

=
p0 + p1 z−1 + . . . + pM z−M

d0 + d1 z−1 + . . . + dN z−N
. (4.12)

R4.14 The transfer function of Eq. (4.12) can also be expressed in the form

H(z) =
p0

d0

∏M
k=1(1 − ξk z−1)∏N
k=1(1 − λk z−1)

, (4.13)

where ξ1, ξ2, . . . , ξM are the finite zeros and λ1, λ2, . . . , λN are the finite poles of H(z). If
N > M , there are additional (N −M) zeros at z = 0, and if N < M , there are additional
(M − N) poles at z = 0.

R4.15 All poles of a stable causal transfer function H(z) must be strictly inside the unit
circle.

R4.16 The frequency responses of the four popular types of ideal zero-phase digital filters
with real impulse response coefficients are shown in Figure 4.1. An ideal filter has a
magnitude response equal to unity in the passband and to zero in the stop band, and has a
zero phase everywhere.

R4.17 The impulse response hLP [n] of the ideal lowpass filter of Figure 4.1 is given by

hLP [n] =
sin(ωcn)

π n
, −∞ < n < ∞. (4.14)

R4.18 A first-order lowpass IIR transfer function HLP (z) is given by

HLP (z) =
1 − α

2
· 1 + z−1

1 − α z−1
, (4.15)

where |α| < 1 for stability. The frequency ωc where the gain is 3 dB below its maximum
value at dc (ω = 0), called the 3-dB cutoff frequency , is related to the parameter α through

α =
1 − sin ωc

cos ωc
. (4.16)

58 Chapter 4 • LTI Discrete-Time Systems in the Frequency Domain

1

0–π π–ωc ωc
ω

HLP(ejω)

0–π π

1

ω
–ωc ωc

HHP(e jω)

_

(a) (b)

1

–π π

–

ω
–ωc1 ωc1

–ωc2 ωc2

HBP(e jω)

–π π

1

ωωc1–ωc1–ωc2

HBS(e jω)

ωc2

(c) (d)

Figure 4.1 Frequency responses of ideal filters: (a) lowpass filter, (b) highpass filter, (c) bandpass
filter, and (d) bandstop filter.

R4.19 A first-order highpass IIR transfer function HHP (z) is given by

HHP (z) =
1 + α

2
· 1 − z−1

1 − α z−1
, (4.17)

where |α| < 1 for stability. Its 3-dB cutoff frequency ωc can be found from Eq. (4.16).

R4.20 A second-order bandpass IIR transfer function HBP (z) is given by

HBP (z) =
1 − α

2
· 1 − z−2

1 − β(1 + α)z−1 + α z−2
. (4.18)

Its magnitude response goes to zero at ω = 0 and at ω = π and assumes a maximum value
of unity at ω = ωo, called the center frequency of the bandpass filter, where

ωo = cos−1(β). (4.19)

The 3-dB bandwidth ∆ω3dB , given by the difference of the two 3-dB cutoff frequencies, is
given by

∆ω3dB = ωc2 − ωc1 = cos−1

(
2 α

1 + α2

)
. (4.20)

R4.21 A second-order bandstop IIR transfer function HBS(z) is given by

HBS(z) =
1 + α

2
· 1 − 2 β z−1 + z−2

1 − β(1 + α)z−1 + α z−2
. (4.21)

4.2 Background Review 59

Its magnitude response takes the maximum value of unity at ω = 0 and at ω = π and goes
to zero at ω = ωo, called the notch frequency , where ωo is given by Eq. (4.19). The 3-dB
notch bandwidth ∆ω3dB is given by Eq. (4.20).

R4.22 By cascading the simple digital filters described above, digital filters with sharper
magnitude responses can be implemented. For example, for a cascade of K first-order
lowpass sections characterized by the transfer function of Eq. (4.15), the overall structure
has a transfer function GLP (z) given by

GLP (z) =
(

1 − α

2
· 1 + z−1

1 − α z−1

)K

. (4.22)

The parameters α and K are related to the 3-dB cutoff frequency ωc of the cascade through

α =
1 + (1 − B) cos ωc − sin ωc

√
2 B − B2

1 − B + cos ωc
, (4.23)

where
B = 2(K−1)/K . (4.24)

R4.23 For non real-time processing of real input signals of finite length, zero-phase fil-
tering can be very simply implemented if the causality requirement is relaxed. In one
scheme, the finite-length input data are processed through a causal real-coefficient filter
H(z) whose output is then time-reversed and processed by the same filter once again as
indicated in Figure 4.2.

H(z) H(z)x[n] v[n] w[n]u[n]

 u n v n[] [–],= y n w n[] [–]=

Figure 4.2 Implementation of a zero-phase filtering scheme.

R4.24 It is always possible to design an FIR transfer function with an exact linear phase
response. Such a transfer function corresponds either to a symmetric impulse response
defined by

h[n] = h[N − n], 0 ≤ n ≤ N, (4.25)

or an antisymmetric impulse response defined by

h[n] = −h[N − n], 0 ≤ n ≤ N, (4.26)

where N is the order of the transfer function and the length of h[n] is N + 1. There are
four types of such transfer functions:

Type 1: Symmetric Impulse Response with Odd Length.
Type 2: Symmetric Impulse Response with Even Length.
Type 3: Antisymmetric Impulse Response with Odd Length.
Type 4: Antisymmetric Impulse Response with Even Length.

60 Chapter 4 • LTI Discrete-Time Systems in the Frequency Domain

R4.25 A Type 2 FIR transfer function must have a zero at z = −1, and as a result, it cannot
be used to design a highpass filter. A Type 3 FIR transfer function must have a zero at z = 1
and z = −1 and, therefore, cannot be used to design either a lowpass, a highpass, or a
bandstop filter. A Type 4 FIR transfer function is not appropriate for designing a lowpass
filter due to the presence of a zero at z = 1. The Type 1 FIR filter has no such restrictions
and can be used to design almost any type of filter.

R4.26 A causal stable real coefficient transfer function H(z) is defined as a bounded real
(BR) transfer function if

|H(ej ω)| ≤ 1 for all ω. (4.27)

R4.27 A transfer function A(z) with unity magnitude response for all frequencies, that
is,

|A(ej ω)|2 = 1 for all ω, (4.28)

is called an allpass transfer function. An M -th order causal real-coefficient IIR allpass
transfer function is of the form

A(z) = ±z−M DM (z−1)
DM (z)

, (4.29)

where DM (z) is a polynomial of degree M . The poles and the zeros of a real-coefficient
allpass function exhibit mirror-image symmetry in the z-plane. If the allpass transfer func-
tion is also causal and stable, then all its poles are inside the unit circle and all its zeros are
outside the unit circle in a mirror-image symmetry with the poles.

R4.28 A causal stable transfer function with all zeros inside or on the unit circle is called
a minimum-phase transfer function, whereas a causal stable transfer function with all zeros
outside the unit circle is called a maximum-phase transfer function.

R4.29 A set of M transfer functions {H0(z), H1(z), . . . , HM−1(z)} is defined to be
delay-complementary of each other, if the sum of their transfer functions is equal to some
integer multiple of the unit delay, that is,

M−1∑
k=0

Hk(z) = β z−no , β �= 0, (4.30)

where no is a nonnegative integer. The delay-complementary transfer function H1(z) to
a Type 1 linear-phase FIR transfer function H0(z) of odd length L is simply given by
H1(z) = z−(L−1)/2 − H0(z).

R4.30 M digital filters{Hi(z)}, i = 0, 1, . . . , M−1, are defined to be allpass-complementary
of each other if the sum of their transfer functions is equal to an allpass function A(z), that
is,

M−1∑
i=0

Hi(z) = A(z). (4.31)

4.3 MATLAB Commands Used 61

R4.31 M digital filters{Hi(z)}, i = 0, 1, . . . , M−1, are defined to be power-complementary
of each other if the sum of the squares of their magnitude responses is equal to one, that is,

M−1∑
i=0

|Hi(ej ω)|2 = 1 for all ω. (4.32)

R4.32 Let Am(z) be a real-coefficient allpass function of mth order:

Am(z) =
dm + dm−1 z−1 + dm−2 z−2 + . . . + d1 z−(m−1) + z−m

1 + d1 z−1 + d2 z−2 + . . . + dm−1 z−(m−1) + dm z−m
. (4.33)

Generate an (m − 1)th order real-coefficient allpass function Am−1(z) according to

Am−1(z) = z

[
Am(z) − km

1 − kmAm(z)

]

=
d ′

m−1 + d ′
m−2 z−1 + . . . + d ′

1 z−(m−2) + z−(m−1)

1 + d ′
1 z−1 + . . . + d ′

m−2 z−(m−2) + d ′
m−1 z−(m−1)

, (4.34)

where

d ′
i =

di − dmdm−i

1 − d2
m

, i = 1, 2, . . . , m − 1. (4.35)

Define km = Am(∞). The necessary and sufficient conditions for Am(z) to be stable are
(1) k2

m < 1 and (2) Am−1(z) is a stable allpass function. The process can be continued to
test the stability of Am−1(z) by generating an (m− 2)th order allpass function, and so on,
resulting in a set of allpass functions of decreasing orders

Am(z), Am−1(z), . . . , A2(z), A1(z), A0(z) = 1,

and a set of coefficients
km, km−1, . . . , k2, k1.

The allpass function Am(z) is stable if and only if k2
� < 1 for � = m, m − 1, . . . , 1.

4.3 MATLAB Commands Used

The MATLAB commands you will encounter in this exercise are as follows:

General Purpose Commands

disp

Operators and Special Characters

: . + - * / ;
%

62 Chapter 4 • LTI Discrete-Time Systems in the Frequency Domain

Language Constructs and Debugging

function pause

Elementary Matrices and Matrix Manipulation

fliplr pi

Elementary Functions

abs angle imag log10 real

Two-Dimensional Graphics

axis grid plot stem title
xlabel ylabel

General Purpose Graphics Functions

clf subplot

Signal Processing Toolbox

filter filtfilt freqz grpdelay impz
poly2rc sinc zplane

For additional information on these commands, see the MathWorks Online Documentation
[Mat05] or type help commandname in the Command window. A brief explanation of the
MATLAB functions used here can be found in Appendix B.

4.4 Transfer Function and Frequency Response

The z-transform of the impulse response sequence {h[n]} of an LTI discrete-time system
is its transfer function H(z). If the ROC of H(z) includes the unit circle, as it does in the
case of a stable system, then H(z) evaluated on the unit circle, that is, for z = ejω, is the
frequency response H(ejω) of the system. In this project you will study various properties
of a causal stable LTI discrete-time system. You will be concerned here with the evaluation
of the frequency response from the transfer function, computation of the group delay of the
system, implementation of the difference equation representing the system, determination
of the impulse response from the transfer function, development of the pole-zero plot from

4.4 Transfer Function and Frequency Response 63

the transfer function, and investigation of the stability of the LTI system from the pole-zero
plot.

Project 4.1 Transfer Function Analysis

The frequency response of an LTI discrete-time system characterized by a difference equa-
tion of the form of Eq. (2.11) is given by Eq. (4.9). The frequency response can thus be
easily evaluated at a set of discrete frequency points using the command freqz. In fact,
Program P3 1 can be used for this purpose, as was done earlier in Question Q3.41 in the
previous exercise.

Questions:

Q4.1 Modify Program P3 1 to compute and plot the magnitude and phase spectra of a
moving average filter of Eq. (2.13) for three different values of length M and for 0 ≤ ω ≤
2π. Justify the type of symmetries exhibited by the magnitude and phase spectra. What
type of filter does it represent? Can you now explain the results of Question Q2.1?

The modified Program P3 1 can also be used to compute the frequency response of an LTI
discrete-time system from its transfer function description as in Eq. (4.12).

Questions:

Q4.2 Using the modified Program P3 1 compute and plot the frequency response of a
causal LTI discrete-time system with a transfer function given by

H(z) =
0.15 (1 − z−2)

1 − 0.5 z−1 + 0.7 z−2
, (4.36)

for 0 ≤ ω ≤ π. What type of filter does it represent?

Q4.3 Repeat Question Q4.3 for the following transfer function:

G(z) =
0.15 (1 − z−2)

0.7 − 0.5 z−1 + z−2
. (4.37)

What is the difference between the two filters of Eqs. (4.36) and (4.37), respectively? Which
one will you choose for filtering and why?

Some applications require that the group delay of the LTI discrete-time system be approx-
imately constant in the frequency band of interest to preserve the waveform of the signal
components in the band. The group delay of a transfer function can be readily computed
using the function grpdelay.

64 Chapter 4 • LTI Discrete-Time Systems in the Frequency Domain

Question:

Q4.4 Using MATLAB compute and plot the group delay of the causal LTI discrete-time
system with a transfer function given by

H(z) =
z−1 − 1.2 z−2 + z−3

1 − 1.3 z−1 + 1.04 z−2 − 0.222 z−3
, (4.38)

for 0 ≤ ω ≤ π.

The function impz can be used to compute the beginning part of the impulse response of a
causal LTI discrete-time system. To this end, the program you wrote in answering Question
Q3.50 can be employed again.

Question:

Q4.5 Using the program developed in Question Q3.50, compute and plot the first 100
samples of the impulse responses of the two filters of Eqs. (4.36) and (4.37), respectively.
Comment on your results.

The pole-zero plot of a transfer function also provides insight into the behavior of an LTI
discrete-time system. Such a plot can be readily obtained using the command zplane.

Question:

Q4.6 Using zplane develop the pole-zero plots of the two filters of Eqs. (4.36) and
(4.37), respectively. Comment on your results.

4.5 Types of Transfer Functions

One of the main applications of digital signal processing is in filtering discrete-time signals
to remove undesirable components. The frequency responses of the four types of ideal filters
are shown in Figure 4.1. These filters have doubly infinite impulse responses and are not
realizable. In many applications, fairly simple realizable approximations to these filters are
quite adequate. In this project you will investigate the properties of some approximations
to the ideal filters. In Laboratory Exercise 7 you will design filters to meet prescribed
specifications.

Project 4.2 Filters

The impulse response hLP [n] of the ideal lowpass filter of Figure 4.1 given by Eq. (4.14)
is doubly infinite and cannot be implemented. Hence a simple approximation is achieved

4.5 Types of Transfer Functions 65

by just truncating the impulse response to a finite number of terms. However, the truncated
impulse response represents a noncausal filter. A causal approximation is then obtained by
shifting the truncated filter impulse response to the right by N/2 samples, resulting in

ĥLP [n] =
sin ωc(n − N/2)

π(n − N/2)
, 0 ≤ n ≤ N. (4.39)

The length of the filter is N + 1.

The following program, which uses the function sinc, can be used to compute the above
approximation.

% Program P4_1
% Impulse Response of Truncated Ideal Lowpass Filter
clf;
fc = 0.25;
n = [-6.5:1:6.5];
y = 2*fc*sinc(2*fc*n);k = n+6.5;
stem(k,y);title(’N = 13’);axis([0 13 -0.2 0.6]);
xlabel(’Time index n’);ylabel(’Amplitude’); grid

Questions:

Q4.7 Compute and plot the impulse response of the approximation to the ideal lowpass
filter using Program P4 1. What is the length of the FIR lowpass filter? Which statement in
Program P4 1 determines the filter length? Which parameter controls the cutoff frequency?

Q4.8 Modify Program P4 1 to compute and plot the impulse response of the FIR lowpass
filter of Eq. (4.39) with a length of 20 and an angular cutoff frequency of ωc = 0.45.

Q4.9 Modify Program P4 1 to compute and plot the impulse response of the FIR lowpass
filter of Eq. (4.39) with a length of 15 and an angular cutoff frequency of ωc = 0.65.

Q4.10 Write a MATLAB program to compute and plot the amplitude response of the FIR
lowpass filter of Eq. (4.39). Using this program, plot the amplitude response for several
values of N and comment on your results.

The moving-average filter of Eq. (2.13) also has a lowpass magnitude response as seen
from the results of Question Q4.1. The simplest such filter is of length 2 and has a transfer
function

H0(z) = 1
2 (1 + z−1). (4.40)

It can be shown that this filter has a 3-dB cutoff frequency ωc = π/2. By cascading a number
of these simple FIR lowpass filters, a lowpass filter with a sharper magnitude response can
be obtained. A cascade of K sections of H0(z) has a 3-dB cutoff frequency at

ωc = 2 cos−1(2−1/2K). (4.41)

66 Chapter 4 • LTI Discrete-Time Systems in the Frequency Domain

A slight modification of the difference equation of Eq. (2.13) yields a highpass filter whose
transfer function is given by

H1(z) =
1
M

M−1∑
n=0

(−1)nz−n. (4.42)

The function gain given below computes and plots the gain response in dB of a rational
transfer function.

function [g,w] = gain(num,den)
% Computes the gain function in dB of a
% transfer function at 256 equally spaced points
% on the top half of the unit circle
% Numerator coefficients are in vector num
% Denominator coefficients are in vector den
% Frequency values are returned in vector w
% Gain values are returned in vector g
w = 0:pi/255:pi;
h = freqz(num,den,w);
g = 20*log10(abs(h));

Program P4 2 illustrates the use of the function gain in computing and plotting the gain
response of a moving average lowpass filter.

% Program P4_2
% Gain Response of a Moving-Average Lowpass Filter
clf;
M = 2;
num = ones(1,M)/M;
[g,w] = gain(num,1);
plot(w/pi,g);grid
axis([0 1 -50 0.5])
xlabel(’\omega /\pi’);ylabel(’Gain in dB’);
title([’M = ’, num2str(M)])

Questions:

Q4.11 Run Program P4 2 to compute and plot the gain response of a length-2 moving-
average filter. From the plot verify that the 3-dB cutoff frequency is at π/2.

Q4.12 Modify Program P4 2 to compute and plot the gain response of a cascade of K
length-2 moving-average filters. Using the modified program plot the gain response for a
cascade of 3 sections and verify that the 3-dB cutoff frequency of the cascade is as given
by Eq. (4.41).

4.5 Types of Transfer Functions 67

Q4.13 Modify Program P4 2 to compute and plot the gain response of the highpass filter
of Eq. (4.42). Run the modified program to plot the gain response for M = 5 and determine
its 3-dB cutoff frequency from the plot.

In many applications, the simple first-order and second-order IIR filters described in R4.18
through R4.21 are adequate. If necessary, any of these filters can be cascaded to provide
sharper gain response. Each of these filters has additional attractive properties to be demon-
strated next. It can be shown easily that HLP (z) and HHP (z) of Eqs. (4.15) and (4.17),
respectively, are allpass-complementary and power-complementary. The 3-dB cutoff fre-
quency ωc of both filters can be adjusted easily by changing the value of the multiplier
coefficient α. Likewise, it can be shown easily that HBP (z) and HBS(z) of Eqs. (4.18)
and (4.21), respectively, are allpass complementary and power-complementary. Here also
the center and the notch frequencies ωo of the two filters can be adjusted readily by chang-
ing the value of the multiplier coefficient β, and their 3-dB bandwidths can be changed by
adjusting the value of the multiplier coefficient α.

Questions:

Q4.14 Design a first-order IIR lowpass and a first-order IIR highpass filter with a 3-
dB angular cutoff frequency ωc at 0.45π. Using MATLAB compute and plot their gain
responses, and verify that the designed filters meet the specification. Using MATLAB
show that the two filters are allpass-complementary and power-complementary.

Q4.15 Design an IIR lowpass filter with a 3-dB cutoff frequency ωc at 0.3π by cascading
10 sections of the first-order IIR lowpass filter of Eq. (4.15). Compare its gain response
with that of a first-order IIR lowpass filter designed for the same cutoff frequency.

Q4.16 Design a second-order IIR bandpass filter with a center frequency ωo at 0.61π and
a 3-dB bandwidth of 0.15π. Since Eq. (4.20) is a quadratic equation in α, there will be
two values of the parameter α yielding the same value of the 3-dB bandwidth, resulting in
two different expressions for the transfer function HBP (z). Using the function zplane,
develop the pole-zero plots of the two designs obtained and choose the design that results
in a stable transfer function. Using MATLAB compute and plot the gain response of the
filter you designed, and verify that it indeed meets the given specifications. Now using the
values of the parameters α and β of the stable IIR bandpass transfer function designed,
develop the expression for a second-order IIR bandstop transfer function HBS(z). Using
MATLAB show that HBP (z) and HBS(z) are both allpass-complementary and power-
complementary.

If H(z) is the transfer function of an FIR or IIR digital filter, the filter obtained by replacing
each delay in the realization of H(z) by L delays has a transfer function G(z) = H(zL).
Thus, the new filter has a frequency response that is a periodic function of ω with a period
2π/L. Such filters are generally called comb filters and find applications in rejecting
periodic interferences.

68 Chapter 4 • LTI Discrete-Time Systems in the Frequency Domain

Questions:

Q4.17 Using MATLAB compute and plot the magnitude response of a comb filter obtained
from a prototype FIR lowpass filter of Eq. (4.40) for different values of L. Show that the
new filter has multiple notches at ω = ωk = (2k +1)π/L and has L peaks in its magnitude
response at ω = ωk = 2kπ/L, k = 0, 1, . . . , L − 1.

Q4.18 Using MATLAB compute and plot the magnitude response of a comb filter obtained
from a prototype FIR highpass filter of Eq. (4.42) with M = 2 and for different values of
L. Determine the locations of the notches and the peaks of the magnitude response of this
type of comb filter.

Many applications require the use of digital filters with either linear phase or zero phase.
Zero-phase filtering cannot be implemented using a causal digital filter. However the non-
causal implementation indicated in Figure 4.2 can be employed for zero-phase filtering
using either an FIR or an IIR digital filter. The MATLAB M-file filtfilt implements
this type of zero-phase filtering scheme. It has also been designed to minimize the start-up
transients. Since it uses the same filter for both the forward and reverse directions, the
order of the filter implemented is twice that of the basic filter used and should be taken into
account in any application of this function. However, FIR filters with an exact linear-phase
property can be designed and will be discussed in Laboratory Exercise 7. Four types of
linear-phase FIR filters are defined (see R4.24). Program P4 3 can be used to investigate
the properties of these filters. It first generates the plots of the impulse response sequence
of each of the four types, then generates the pole-zero plots, and finally displays the zero
locations.

% Program P4_3
% Zero Locations of Linear-Phase FIR Filters
clf;
b = [1 -8.5 30.5 -63];
num1 = [b 81 fliplr(b)];
num2 = [b 81 81 fliplr(b)];
num3 = [b 0 -fliplr(b)];
num4 = [b 81 -81 -fliplr(b)];
n1 = 0:length(num1)-1;
n2 = 0:length(num2)-1;
subplot(2,2,1); stem(n1,num1);
xlabel(’Time index n’);ylabel(’Amplitude’); grid;
title(’Type 1 FIR Filter’);
subplot(2,2,2); stem(n2,num2);
xlabel(’Time index n’);ylabel(’Amplitude’); grid;
title(’Type 2 FIR Filter’);
subplot(2,2,3); stem(n1,num3);
xlabel(’Time index n’);ylabel(’Amplitude’); grid;
title(’Type 3 FIR Filter’);
subplot(2,2,4); stem(n2,num4);

4.5 Types of Transfer Functions 69

xlabel(’Time index n’);ylabel(’Amplitude’); grid;
title(’Type 4 FIR Filter’);
pause
subplot(2,2,1); zplane(num1,1);
title(’Type 1 FIR Filter’);
subplot(2,2,2); zplane(num2,1);
title(’Type 2 FIR Filter’);
subplot(2,2,3); zplane(num3,1);
title(’Type 3 FIR Filter’);
subplot(2,2,4); zplane(num4,1);
title(’Type 4 FIR Filter’);
disp(’Zeros of Type 1 FIR Filter are’);
disp(roots(num1));
disp(’Zeros of Type 2 FIR Filter are’);
disp(roots(num2));
disp(’Zeros of Type 3 FIR Filter are’);
disp(roots(num3));
disp(’Zeros of Type 4 FIR Filter are’);
disp(roots(num4));

Questions:

Q4.19 Run Program P4 3 and generate the plots of the impulse response sequence of each
type of linear-phase FIR filter. What are the lengths of each FIR filter? Verify the symmetry
properties of the impulse response sequences. Verify next the zero locations of these filters.
Using MATLAB compute and plot the phase response of each of these filters and verify the
linear-phase property of each. What are the group delays of these filters?

Q4.20 Replace the vector b in Program P4 3 with b = [1.5 -3.25 5.25 -4] and
repeat Question Q4.19.

As we shall demonstrate in Chapter 9, the bounded-real property of a causal transfer function
is key to its low passband sensitivity realization. To test the bounded-real property, you
must test the stability of the transfer function first and then determine the maximum value
of its magnitude response. Note any causal stable transfer function can be converted into a
bounded-real function by simple scaling.

Questions:

Q4.21 Using MATLAB determine whether the following transfer function is bounded-
real:

H1(z) =
1.5(1 + z−1)

1 + 5 z−1 + 6 z−2
. (4.43)

If it is not a bounded-real function, determine another transfer function H2(z) that is
bounded-real and has the same magnitude as H1(z).

70 Chapter 4 • LTI Discrete-Time Systems in the Frequency Domain

Q4.22 Using MATLAB determine whether the following transfer function is bounded-
real:

G1(z) =
1 − z−1

2 + z−1 + z−2
. (4.44)

If it is not a bounded-real function, determine another transfer function G2(z) that is
bounded-real and has the same magnitude as G1(z) .

4.6 Stability Test

The stability of an IIR causal digital filter is an important design requirement. A causal IIR
filter is stable if all poles of its transfer function are inside the unit circle. The MATLAB
function zplane can be used to check the pole locations of an IIR transfer function. How-
ever, if one or more poles are very close to the unit circle or on the unit circle, the pole-zero
plot is not sufficient to test the stability of the corresponding transfer function. A more
accurate stability test is based on the algorithm given in R4.32. Program P4 4 implements
this using the function poly2rc.

% Program P4_4
% Stability Test
clf;
den = input(’Denominator coefficients = ’);
ki = poly2rc(den);
disp(’Stability test parameters are’);
disp(ki);

Questions:

Q4.23 Using MATLAB generate the pole-zero plots of the following two causal transfer
functions.

H1(z) =
1

1 − 1.848 z−1 + 0.85 z−2
,

H2(z) =
1

1 − 1.851 z−1 + 0.85 z−2
.

Can you infer their stability by examining the generated pole-zero plots?

Q4.24 Test the stability of the two transfer functions in Question Q4.23 using Program
P4 4. Which one of the two transfer functions is stable?

Q4.25 Using Program P4 4 determine whether or not all the roots of the following poly-
nomial are inside the unit circle:

D(z) = 1 + 2.5 z−1 + 2.5 z−2 + 1.25 z−3 + 0.3125 z−4 + 0.03125 z−5.

4.7 Background Reading 71

Q4.26 Using Program P4 4 determine whether or not all the roots of the following poly-
nomial are inside the unit circle:

D(z) = 1 + 0.2 z−1 + 0.3 z−2 + 0.4 z−3 + 0.5 z−4 + 0.6 z−5.

4.7 Background Reading

[1] A. Antoniou. Digital Filters: Analysis, Design, and Applications. McGraw-Hill, New
York NY, second edition, 1993. Ch. 3.

[2] E. Cunningham. Digital Filtering: An Introduction. Houghton-Mifflin, Boston MA,
1992. Ch. 8.

[3] D.J. DeFatta, J.G. Lucas, and W.S. Hodgkiss. Digital Signal Processing: A System
Design Approach. Wiley, New York NY, 1988. Ch. 9.

[4] L.B. Jackson. Digital Filters and Signal Processing. Kluwer, Boston MA, third
edition, 1996. Ch. 11.

[5] R. Kuc. Introduction to Digital Signal Processing. McGraw-Hill, New York NY,
1988. Ch. 10.

[6] L.C. Ludeman. Fundamentals of Digital Signal Processing. Harper & Row, New
York NY, 1986. Secs. 1.3.5, 2.3, 2.4.

[7] S.K. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-Hill,
New York NY, third edition, 2005. Sec. 3.8–3.9, 6.7, 7.1–7.5, 7.9.

[8] A.V. Oppenheim, R.W. Schafer, and J. R. Buck. Discrete-Time Signal Processing.
Prentice-Hall, Upper Saddle River NJ, second edition, 1998. Secs. 5.1–5.4.

[9] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, Upper Saddle River
NJ, 1996. Ch. 2, Sec. 7.6.

[10] B. Porat. A Course in Digital Signal Processing. Wiley, New York NY, 1996. Secs.
2.7, 7.6, 8.1, 8.2, 8.4, 9.1.

[11] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms,
and Applications. Prentice-Hall, Upper Saddle River NJ, third edition, 1996. Secs.
1.4, 7.5–7.7.

[12] R.A. Roberts and C.T. Mullis. Digital Signal Processing. Addison-Wesley, Reading
MA, 1987. Ch. 9.

72 Chapter 4 • LTI Discrete-Time Systems in the Frequency Domain

Digital Processing of
Continuous-Time Signals5
5.1 Introduction

Digital signal processing algorithms are often used to process continuous-time signals. To
this end, it is necessary to convert a continuous-time signal into an equivalent discrete-time
signal, apply the necessary digital signal processing algorithm to it, and then convert back
the processed discrete-time signal into an equivalent continuous-time signal. In the ideal
case, the conversion of a continuous-time signal into a discrete-time form is implemented
by periodic sampling and, to prevent aliasing, an analog anti-aliasing filter is often placed
before sampling to bandlimit the continuous-time signal. The conversion of a discrete-time
signal into a continuous-time signal requires an analog reconstruction filter . In this exercise
you will investigate the effect of sampling in the time domain and the frequency domain,
respectively, and the design of the analog filters. In addition, you will learn the basics of
analog-to-digital and digital-to-analog conversions.

5.2 Background Review

R5.1 Let ga(t) be a continuous-time signal that is sampled uniformly at t = nT generating
the sequence g[n] where

g[n] = ga(nT), −∞ < n < ∞, (5.1)

with T being the sampling period . The reciprocal of T is called the sampling frequency
FT , that is, FT = 1/T . Now, the frequency-domain representation of ga(t) is given by its
continuous-time Fourier transform Ga(jΩ),

Ga(jΩ) =
∫ ∞

−∞
ga(t) e−jΩt dt, (5.2)

whereas the frequency-domain representation of g[n] is given by its discrete-time Fourier
transform G(ejω),

G(ejω) =
∞∑

n=−∞
g[n] e−jωn. (5.3)

The relation between Ga(jΩ) and G(ejω) is given by

G(ejω) =
1
T

∞∑
k=−∞

Ga(jΩ − jkΩT)|Ω=ω/T

73

74 Chapter 5 • Digital Processing of Continuous-Time Signals

=
1
T

∞∑
k=−∞

Ga(j
ω

T
− jkΩT) =

1
T

∞∑
k=−∞

Ga(j
ω

T
− j

2πk

T
), (5.4)

which can be expressed alternately as

G(ejΩT) =
1
T

∞∑
k=−∞

Ga(jΩ − jkΩT). (5.5)

R5.2 Sampling Theorem – Let ga(t) be a bandlimited signal with Ga(jΩ) = 0 for |Ω| >
Ωm. Then ga(t) is uniquely determined by its samples ga(nT), n = 0, 1, 2, 3, . . . , if

ΩT > 2Ωm, (5.6)

where

ΩT =
2π

T
. (5.7)

Given {g[n]} = {ga(nT)}, we can recover ga(t) exactly by generating an impulse train
gp(t) of the form

gp(t) = ga(t) p(t) =
∞∑

n=−∞
ga(nT)δ(t − nT), (5.8)

and then passing gp(t) through an ideal lowpass filter Hr(jΩ) with a gain T and a cutoff
frequency Ωc greater than Ωm and less than ΩT − Ωm, that is,

Ωm < Ωc < (ΩT − Ωm). (5.9)

The highest frequency Ωm contained in ga(t) is usually called the Nyquist frequency as it
determines the minimum sampling frequency ΩT > 2Ωm that must be used to fully recover
ga(t) from its sampled version. The frequency 2Ωm is called the Nyquist rate.

If the sampling rate is higher than the Nyquist rate, it is called oversampling . On the other
hand, if the sampling rate is lower than the Nyquist rate, it is called undersampling. Finally,
if the sampling rate is exactly equal to the Nyquist rate, it is called critical sampling.

R5.3 Now, the impulse response hr(t) of an ideal analog lowpass filter is simply obtained
by taking the inverse Fourier transform of its frequency response Hr(jΩ):

Hr(jΩ) =
{

T, |Ω| ≤ Ωc,
0, |Ω| > Ωc,

(5.10)

and is given by

hr(t) =
1
2π

∫ ∞

−∞
Hr(jΩ) ejΩt dt

=
T

2π

∫ Ωc

−Ωc

ejΩtdΩ =
sin(Ωct)
ΩT t/2

, −∞ ≤ t ≤ ∞. (5.11)

5.2 Background Review 75

Now the impulse train gp(t) is given by

gp(t) =
∞∑

n=−∞
g[n] δ(t − nT). (5.12)

Therefore, the output ĝa(t) of the ideal lowpass filter is given by the convolution of gp(t)
with the impulse response hr(t) of the analog reconstruction filter :

ĝa(t) =
∞∑

n=−∞
g[n] hr(t − nT). (5.13)

Substituting hr(t) from Eq. (5.11) in Eq. (5.13) and assuming for simplicity Ωc = ΩT /2 =
π/T , we arrive at

ĝa(t) =
∞∑

n=−∞
g[n]

sin[π(t − nT)/T]
π(t − nT)/T

. (5.14)

R5.4 The filter specifications are usually stated in terms of the magnitude response. For
example, the magnitude |Ha(jΩ)|of an analog lowpass filter is usually specified as indicated
in Figure 5.1. In the passband, defined by 0 ≤ Ω ≤ Ωp, we require

1 − δp ≤ |Ha(jΩ)| ≤ 1 + δp, for |Ω| ≤ Ωp, (5.15)

0
0

1 + δp

1 Ð δp

Ha(jΩ)

Transition
band

δs

Ωs
Ω

Ωp

Passband Stopband

Figure 5.1 Typical magnitude response specifications for an analog lowpass filter.

or, in other words, the magnitude approximates unity within an error of±δp. In the stopband,
defined by Ωs ≤ |Ω| ≤ ∞, we require

|Ha(jΩ)| ≤ δs, for Ωs ≤ |Ω| ≤ ∞, (5.16)

76 Chapter 5 • Digital Processing of Continuous-Time Signals

implying that the magnitude approximate zero within an error of δs. The frequencies Ωp and
Ωs are called, respectively, the passband edge frequency and the stopband edge frequency
. The maximum limits of the tolerances in the passband and stopband, δp and δs, are called
ripples .

0
0

1

1
1 + ε2

Ha(jΩ)

Transition
band

Ωs
Ω

Ωp

Passband Stopband

1
A

Figure 5.2 Normalized magnitude response specifications for an analog lowpass filter.

R5.5 In most applications, the analog filter specifications are given as indicated in Figure
5.2. Here, in the passband defined by 0 ≤ Ω ≤ Ωp, the maximum and the minimum values
of the magnitude are, respectively, unity and 1/

√
1 + ε2. The peak passband ripple is

Rp = 20 log10

√
1 + ε2 dB. (5.17)

The maximum ripple in the stopband, defined by Ωs ≤ Ω ≤ ∞, is denoted by 1/A. The
minimum stopband attenuation is therefore given by

Rs = 20 log10 A dB. (5.18)

R5.6 Butterworth Approximation. The magnitude-squared response of an analog lowpass
Butterworth filter Ha(s) of N th order is given by

|Ha(jΩ))|2 =
1

1 + (Ω
Ωc

)2N
. (5.19)

The Butterworth filter is said to have a maximally-flat magnitude at Ω = 0 as the first
2N − 1 derivatives of |Ha(jΩ)|2 at Ω = 0 are equal to zero. At Ω = Ωc, the gain
G(Ω) = 10 log10 |Ha(jΩ)|2 is 3 dB less than that at Ω = 0 and, hence, Ωc is called the
3-dB cutoff frequency.

The two parameters completely characterizing a Butterworth lowpass filter are therefore
the 3-dB cutoff frequency Ωc and the order N . These are determined from the specified

5.2 Background Review 77

passband edge Ωp, the stopband edge Ωs, the peak passband ripple Rp in dB, and the
minimum stopband attenuation Rs in dB.

The transfer function of the Butterworth lowpass filter is of the form

Ha(s) =
K∑N

�=0 a�s�
=

K∏N
�=1(s − p�)

. (5.20)

R5.7 Type 1 Chebyshev Approximation. The Type 1 Chebyshev lowpass transfer function
Ha(s) has a magnitude response given by

|Ha(jΩ)|2 =
1

1 + ε2 T 2
N (ω − Ωp)

, (5.21)

where TN (Ω) is the Chebyshev polynomial of order N :

TN (Ω) =
{

cos(N cos−1 Ω), |Ω| ≤ 1,

cosh(N cosh−1 Ω), |Ω| > 1.
(5.22)

The above polynomial can also be derived via a recurrence relation given by

Tr(Ω) = 2Ω Tr−1(Ω) − Tr−2(Ω), r ≥ 2, (5.23)

with T0(Ω) = 1 and T1(Ω) = Ω.

The order N of the Type 1 Chebyshev lowpass filter is determined from the specified
passband edge Ωp , the stopband edge Ωs, the peak passband ripple Rp in dB, and the
minimum stopband attenuation Rs in dB. The transfer function Ha(s) is again of the form
of Eq. (5.20).

R5.8 Type 2 Chebyshev Approximation. The square-magnitude response expression here
is given by

|Ha(jΩ))|2 =
1

1 + ε2
[

Tn(Ωs/Ωp)
Tn(Ωs/Ω)

]2 . (5.24)

The transfer function of a Type 2 Chebyshev lowpass filter is no longer an all-pole function,
as it has both poles and zeros. It is of the form

Ha(s) = K

∑N
�=0 b�s

�∑N
�=0 a�s�

= K

∏N
�=1(s − z�)∏N
�=1(s − p�)

. (5.25)

The zeros z� here are on the jΩ-axis. The order N of the Type 2 Chebyshev lowpass filter is
determined from the specified passband edge Ωp , the stopband edge Ωs, the peak passband
ripple Rp in dB, and the minimum stopband attenuation Rs in dB.

R5.9 Elliptic Approximation. The square-magnitude response of an elliptic lowpass filter
is given by

|Ha(jΩ))|2 =
1

1 + ε2 R2
N (Ω/Ωp)

, (5.26)

78 Chapter 5 • Digital Processing of Continuous-Time Signals

where RN (Ω) is a rational function of order N satisfying the property RN (1/Ω) =
1/RN (Ω) with the roots of its numerator lying within the interval 0 < Ω < 1 and the
roots of its denominator lying in the interval 1 < Ω < ∞. The order N of the elliptic
lowpass filter is determined from the specified passband edge Ωp, the stopband edge Ωs,
the peak passband ripple Rp in dB, and the minimum stopband attenuation Rs in dB.

Butterworth
Chebyshev 1
Chebyshev 2
Elliptic

0 0.5 1 1.5 2 2.5 3
-50

-40

-30

-20

-10

0

Normalized frequency

G
ai

n,
 d

B

Butterworth
Chebyshev 1
Chebyshev 2
Elliptic

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

Normalized frequency

G
ai

n,
 d

B

(a) (b)

Butterworth
Chebyshev 1
Chebyshev 2
Elliptic

0 0.5 1 1.5 2 2.5 3
-8

-6

-4

-2

0

Normalized frequency

Ph
as

e,
 r

ad
ia

ns

(c)

Figure 5.3 A comparison of the frequency responses of the four types of analog lowpass filter: (a)
gain responses, (b) passband details, and (c) phase responses.

R5.10 A Comparison of Filter Types. The performances of the above types of approxi-
mations are compared next by examining the frequency responses of the normalized But-
terworth, Chebyshev, and elliptic analog lowpass filters of the same order. The passband
ripples of the Type 1 Chebyshev and the equiripple filters are assumed to be the same, while
the minimum stopband attenuations of the Type 2 Chebyshev and the equiripple filters are
assumed to be the same. The filter specifications used for comparison are as follows: filter
order of 6, passband edge at Ω = 1, maximum passband deviation of 1 dB, and minimum
stopband attenuation of 40 dB. The frequency responses computed using MATLAB are
plotted in Figure 5.3.

As can be seen from Figure 5.3, the Butterworth filter has the widest transition band with a
monotonically decreasing gain response. Both types of Chebyshev filters have a transition
band of equal width that is smaller than that of the Butterworth filter but greater than that
of the elliptic filter. The Type 1 Chebyshev filter provides a slightly faster roll-off in the

5.2 Background Review 79

transition band than the Type 2 Chebyshev filter. The magnitude response of the Type 2
Chebyshev filter in the passband is nearly identical to that of the Butterworth filter. The
elliptic filter has the narrowest transition band with an equiripple passband and an equiripple
stopband response.

The Butterworth and the Chebyshev filters have a nearly linear phase response over about
three-fourths of the passband, whereas the elliptic filter has a nearly linear phase response
over about half of the passband.

R5.11 Binary Number Representation. In a binary representation, a number is represented
using the symbols 0 and 1, called bits. The binary point separates the integer part from the
fractional part. An additional sign bit is placed to the left of the integer part to indicate the
sign of the number. For a positive number the sign bit is a 0 and for a negative number it is
a 1. Three commonly used forms of binary number representations are the sign-magnitude,
ones’-complement and two’s-complement forms.

A binary number consisting of I integer bits, F fractional bits, and a sign bit is of the form
s aI−1aI−2 . . . a1a0 ∆a−1a−2 . . . a−F where ∆ denotes the binary point, and each bit ak

and the sign bit s are either a 0 or a 1. The bit aI−1 is called the most significant bit,
abbreviated as MSB, and the bit a−F is called the least significant bit, abbreviated as LSB .
In a fixed-point binary representation, the position of the binary point is always at the same
place for all numbers . In digital signal processing applications, fixed-point numbers are
always represented as fractions.

The decimal equivalent of the binary fraction s∆a−1a−2 . . . a−F in sign-magnitude form
is a positive number with a magnitude given by

∑F
k=1 a−k2−k if s = 0 and is a negative

number with a magnitude given by
∑F

k=1 a−k2−k if s = 1.

In the ones’-complement form, the decimal equivalent of a positive or a negative fraction
s∆a−1a−2 . . . a−F is given by −s(1 − 2−F) +

∑F
k=1 a−k2−k. In this form, a positive

fraction is represented in the sign-magnitude form while its negative is represented by
complementing each bit of the binary representation (i.e., by replacing each 0 with a 1 and
vice-versa) of the positive fraction in the sign-magnitude form.

In the two’s-complement form, the decimal equivalent of a positive or a negative fraction
s∆a−1a−2 . . . a−F is given by −s +

∑F
k=1 a−k2−k. In this form, the positive fraction is

represented in the sign-magnitude form while its negative is represented by complementing
each bit of the binary representation of the positive fraction in the sign-magnitude form and
adding a 1 to the LSB, the F th bit.

R5.12 A practical D/A converter first develops an analog periodic pulse-train from the
digtal input signal and then converts it into a staircase-like analog waveform yz(t) by a zero-
order hold circuit. The continuous-time Fourier transform of the zero-order hold circuit is
given by

Hz(jΩ) = e−j ΩT
2

[
sin(ΩT/2)

Ω/2

]
, (5.27)

where T is the sampling period of the digital signal. The zero-order hold circuit thus
has a magnitude response with a lowpass characteristic with zeros at integer multiples of
Ω = 1/T and introduces amplitude distortion, called droop, in the magnitude response of the

80 Chapter 5 • Digital Processing of Continuous-Time Signals

discrete-time system between the A/D and D/A converters. The droop can be compensated
by designing the analog reconstruction filter to have a frequency response given by

Ĥr(jΩ) =
Hr(jΩ)
Hz(jΩ)

, (5.28)

where Hr(jΩ) is the frequency response of the ideal analog reconstruction lowpass filter.
Alternately, the droop can be compensated by including prior to D/A conversion a digital
compensation filter with a magnitude response that is the inverse of that of the zero-order
hold circuit.

5.3 MATLAB Commands Used

The MATLAB commands you will encounter in this exercise are as follows:

General Purpose Commands

length size

Operators and Special Characters

: . + - * / ;

% == ˜ & |

Elementary Matrices and Matrix Manipulation

’ ones linspace pi

Elementary Functions

abs cos exp

Two-Dimensional Graphics

axis plot stem title xlabel
ylabel

General Purpose Graphics Functions

clf grid plot stem subplot

5.4 The Sampling Process in the Time Domain 81

Signal Processing Toolbox

butter buttord cheb1ord cheb2ord
cheby1 cheby2 ellip ellipord
freqs freqz sinc

For additional information on these commands, see the MathWorks Online Documentation
[Mat05] or type help commandname in the Command window. A brief explanation of the
MATLAB functions used here can be found in Appendix B.

5.4 The Sampling Process in the Time Domain

The purpose of this section is to study the relation in the time domain between a continuous-
time signal xa(t) and the discrete-time signal x[n] generated by a periodic sampling of xa(t).

Project 5.1 Sampling of a Sinusoidal Signal

In this project you will investigate the sampling of a continuous-time sinusoidal signal
xa(t) at various sampling rates. Since MATLAB cannot strictly generate a continuous-
time signal, you will generate a sequence {xa(nTH)} from xa(t) by sampling it at a very
high rate, 1/TH , such that the samples are very close to each other. A plot of xa(nTH)
using the plot command will then look like a continuous-time signal.

% Program P5_1
% Illustration of the Sampling Process
% in the Time Domain
clf;
t = 0:0.0005:1;
f = 13;
xa = cos(2*pi*f*t);
subplot(2,1,1)
plot(t,xa);grid
xlabel(’Time, msec’);ylabel(’Amplitude’);
title(’Continuous-time signal x_{a}(t)’);
axis([0 1 -1.2 1.2])
subplot(2,1,2);
T = 0.1;
n = 0:T:1;
xs = cos(2*pi*f*n);
k = 0:length(n)-1;
stem(k,xs); grid
xlabel(’Time index n’);ylabel(’Amplitude’);

82 Chapter 5 • Digital Processing of Continuous-Time Signals

title(’Discrete-time signal x[n]’);
axis([0 (length(n)-1) -1.2 1.2])

Questions:

Q5.1 Run Program P5 1 to generate both the continuous-time signal and its sampled
version, and display them.

Q5.2 What is the frequency in Hz of the sinusoidal signal? What is the sampling period
in seconds?

Q5.3 Explain the effects of the two axis commands.

Q5.4 Run Program P5 1 for four other values of the sampling period with two lower and
two higher than that listed in Program P5 1. Comment on your results.

Q5.5 Repeat Program P5 1 by changing the frequency of the sinusoidal signal to 3 Hz
and 7 Hz, respectively. Is there any difference between the corresponding equivalent
discrete-time signals and the one generated in Question Q5.1? If not, why not?

Project 5.2 Aliasing Effect in the Time Domain

In this project you will generate a continuous-time equivalent ya(t) of the discrete-time
signal x[n] generated in Program P5 1 to investigate the relation between the frequency of
the sinusoidal signal xa(t) and the sampling period. To generate the reconstructed signal
ya(t) from x[n], we pass x[n] through an ideal lowpass filter that in turn can be implemented
according to Eq. (5.11) (see R5.3). If Eq. (5.11) is computed at closely spaced values of t,
a plot of ya(t) will resemble a continuous-time signal. In order to implement this equation
on MATLAB, the summation in Eq. (5.11) needs to be replaced with a finite sum, and
hence we can generate only an approximation to the desired reconstructed continuous-time
signal ya(t).

% Program P5_2
% Illustration of Aliasing Effect in the Time Domain
% Program adapted from [Kra94] with permission from
% The Mathworks, Inc., Natick, MA.
clf;
T = 0.1;f = 13;
n = (0:T:1)’;
xs = cos(2*pi*f*n);
t = linspace(-0.5,1.5,500)’;
ya = sinc((1/T)*t(:,ones(size(n))) - (1/T)*n(:,ones(size(t)))’)*xs;
plot(n,xs,’o’,t,ya);grid;
xlabel(’Time, msec’);ylabel(’Amplitude’);
title(’Reconstructed continuous-time signal y_{a}(t)’);
axis([0 1 -1.2 1.2]);

5.5 Effect of Sampling in the Frequency Domain 83

Questions:

Q5.6 Run Program P5 2 to generate both the discrete-time signal x[n] and its continuous-
time equivalent ya(t), and display them.

Q5.7 What is the range of t and the value of the time increment in Program P5 2 ? What
is the range of t in the plot? Change the range of t so as to display the full range ya(t)
being computed in the above program and run Program P5 2 again. Comment on the plot
generated after this change.

Q5.8 Restore the original display range and repeat Program P5 2 by changing the fre-
quency of the sinusoidal signal to 3 Hz and 7 Hz, respectively. Is there any difference
between the corresponding equivalent discrete-time signals and the one generated in Ques-
tion Q5.6? If not, why not?

5.5 Effect of Sampling in the Frequency Domain

Project 5.3 Aliasing Effect in the Frequency Domain

The relation between the continuous-time Fourier transform (CTFT) of an arbitrary band-
limited continuous-time signal and the discrete-time Fourier transform (DTFT) of the
discrete-time signal is investigated next in this project. In order to convert a continuous-time
signal xa(t) into an equivalent discrete-time signal x[n], the former must be band-limited
in the frequency domain (see R5.2). To illustrate the effect of sampling in the frequency
domain we choose an exponentially decaying continuous-time signal with a CTFT that is
approximately bandlimited.

% Program P5_3
% Illustration of the Aliasing Effect
% in the Frequency Domain
clf;
t = 0:0.005:10;
xa = 2*t.*exp(-t);
subplot(2,2,1)
plot(t,xa);grid
xlabel(’Time, msec’);ylabel(’Amplitude’);
title(’Continuous-time signal x_{a}(t)’);
subplot(2,2,2)
wa = 0:10/511:10;
ha = freqs(2,[1 2 1],wa);
plot(wa/(2*pi),abs(ha));grid;
xlabel(’Frequency, kHz’);ylabel(’Amplitude’);
title(’|X_{a}(j\Omega)|’);
axis([0 5/pi 0 2]);
subplot(2,2,3)

84 Chapter 5 • Digital Processing of Continuous-Time Signals

T = 1;
n = 0:T:10;
xs = 2*n.*exp(-n);
k = 0:length(n)-1;
stem(k,xs);grid;
xlabel(’Time index n’);ylabel(’Amplitude’);
title(’Discrete-time signal x[n]’);
subplot(2,2,4)
wd = 0:pi/255:pi;
hd = freqz(xs,1,wd);
plot(wd/(T*pi), T*abs(hd));grid;
xlabel(’Frequency, kHz’);ylabel(’Amplitude’);
title(’|X(e^{j\omega})|’);
axis([0 1/T 0 2])

Questions:

Q5.9 What is the continuous-time function xa(t) in Program P5 3? How is the CTFT of
xa(t) being computed?

Q5.10 Run Program P5 3 to generate and display both the discrete-time signal and its
continuous-time equivalent, and their respective Fourier transforms. Is there any visible
effect of aliasing?

Q5.11 Repeat Program P5 3 by increasing the sampling period to 1.5. Is there any visible
effect of aliasing?

Q5.12 Modify Program P5 3 for the case of xa(t) = e−πt2 and repeat Questions Q5.10
and Q5.11.

5.6 Analog Lowpass Filters

Analog lowpass filters are employed as anti-aliasing filters and as anti-imaging filters in
the digital processing of continuous-time signals. In this section you will learn the design
of the four types of analog lowpass filters summarized in R5.6 through R5.9.

Project 5.4 Design of Analog Lowpass Filters

The first step in the design of any of these filters is the determination of the filter order
N and the appropriate cutoff frequency Ωc . These parameters can be determined using
the MATLAB commands buttord for the Butterworth filter, cheb1ord for the Type 1
Chebyshev filter, cheb2ord for the Type 2 Chebyshev filter, and ellipord for the elliptic
filter. Ωc is the 3-dB cutoff frequency for the Butterworth filter, the passband edge for
the Type 1 Chebyshev filter, the stopband edge for the Type 2 Chebyshev filter, and the

5.6 Analog Lowpass Filters 85

passband edge for the elliptic filter. For the design of filters MATLAB commands are
butter for the Butterworth filter, cheby1 for the Type 1 Chebyshev filter, cheby2 for the
Type 2 Chebyshev filter, and ellip for the elliptic filter.

Program P5 4 can be used for the design of the Butterworth lowpass filter.

% Program P5_4
% Design of Analog Lowpass Filter
clf;
Fp = 3500;Fs = 4500;
Wp = 2*pi*Fp; Ws = 2*pi*Fs;
[N, Wn] = buttord(Wp, Ws, 0.5, 30,’s’);
[b,a] = butter(N, Wn, ’s’);
wa = 0:(3*Ws)/511:3*Ws;
h = freqs(b,a,wa);
plot(wa/(2*pi), 20*log10(abs(h)));grid
xlabel(’Frequency, Hz’);ylabel(’Gain, dB’);
title(’Gain response’);
axis([0 3*Fs -60 5]);

Questions:

Q5.13 What are the passband ripple Rp in dB and the minimum stopband attenuation Rs
in dB in Program P5 4? What are the passband and the stopband edge frequencies in Hz?

Q5.14 Run Program P5 4 and display the gain response. Does the filter as designed meet
the given specifications? What are the filter order N and the 3-dB cutoff frequency in Hz
of the filter as designed?

Q5.15 Using cheb1ord and cheby1 modify Program P5 4 to design a Type 1 Cheby-
shev lowpass filter meeting the same specifications as in Program P5 4 . Run the modified
program and display the gain response. Does the filter as designed meet the given specifi-
cations? What are the filter order N and the passband edge frequency in Hz of the filter as
designed?

Q5.16 Using cheb2ord and cheby2 modify Program P5 4 to design a Type 2 Cheby-
shev lowpass filter meeting the same specifications as in Program P5 4. Run the modified
program and display the gain response. Does the filter as designed meet the given specifi-
cations? What are the filter order N and the stopband edge frequency in Hz of the filter as
designed?

Q5.17 Using ellipord and ellip modify Program P5 4 to design an elliptic lowpass
filter meeting the same specifications as in Program P5 4. Run the modified program and
display the gain response. Does the filter as designed meet the given specifications? What
are the filter order N and the passband edge frequency in Hz of the filter as designed?

86 Chapter 5 • Digital Processing of Continuous-Time Signals

5.7 A/D and D/A Conversions

In this section you will learn the basics of analog-to-digital and digital-to-analog conver-
sions, and binary representations of decimal numbers.

Project 5.5 Binary Equivalent of a Decimal Number

Program P5 5 can be used to the generate the binary equivalent in sign-magnitude form of
a decimal fraction.

% Program P5_5
% Determines the binary equivalent of a
% decimal number in sign-magnitude form
d = input(’Type in the decimal fraction = ’);
b = input(’Type in the desired wordlength = ’);
d1 = abs(d);
beq = [zeros(1,b)];
for k = 1:b

int = fix(2*d1);
beq(k) = int;
d1 = 2*d1 - int;

end
if sign(d) == -1;

bin = [1 beq];
else

bin = [0 beq];
end
disp(’The binary equivalent is’);
disp(bin)

Questions:

Q5.18 What is the function of the operator == in Programs P5 5?

Q5.19 Using Program P5 5 develop the binary equivalents in sign-magnitude form of the
following decimal fractions: (a) 0.80165, (b) − 0.80165, (c) 0.64333, and (d) − 0.9125 for
the following values of the wordlengths: 6 and 8. Verify the results by hand calculation.

Project 5.6 Decimal Equivalent of a Binary Number

Program P5 6 performs the reverse process and generates the decimal equivalent of a binary
fraction in sign-magnitude form.

5.7 A/D and D/A Conversions 87

% Program P5_6
% Determines the decimal equivalent of a
% binary number in sign-magnitude form
bin = input(’Type in the binary fraction = ’);
b = length(bin) - 1; d = 0;
for k = 1:b

d = d + bin(k+1)*2^(-k);
end
if sign(bin(1)) == 0;

dec = d;
else

dec = - d;
end
disp(’The decimal equivalent is’);
disp(dec);

Question:

Q5.20 Using Program P5 6 determine the decimal equivalents of the binary fractions
developed in Question Q5.19. How close are your answers to the original decimal fractions?

Project 5.7 Binary Number Representation Schemes

Program P5 7 can be used to determine the ones’-complement of a binary number in sign-
magnitude form , whereas Program P5 8 can be used to determine the two’s-complement
representation of a negative binary fraction in ones’-complement form.

% Program P5_7
% Determines the ones’-complement equivalent of a
% binary number in sign-magnitude form
bin = input(’Type in the binary number = ’);
if sign(bin(1)) == 0;

onescomp = bin;
else

bin(1) = 0; onescomp = ~bin;
end
disp(’Ones-complement equivalent is’);
disp(onescomp);

% Program P5_8
% Determines the two’s-complement equivalent of a
% negative binary fraction in ones’-complement form
b = input(’Type in the binary fraction = ’);
F = length(b);

88 Chapter 5 • Digital Processing of Continuous-Time Signals

twoscomp = ones(1,F);
c = 1;
for k = F:-1:2

if b(k) & c == 1;
twoscomp(k) = 0; c = 1;

else
twoscomp(k) = b(k) | c; c = 0;

end
end
disp(’Twos-complement equivalent is = ’);
disp(twoscomp)

Questions:

Q5.21 What is the purpose of the operator ~ in Program P5 7?

Q5.22 Using Program P5 7 determine and verify the ones’-complement representations
of the binary numbers developed in Question Q5.19.

Q5.23 What are the purposes of the operators | and & in Program P5 8?

Q5.24 Using Program P5 8 determine and verify the two’s-complement representations
of the binary numbers developed in Question Q5.19.

Project 5.8 D/A Converter Droop Compensation

In this project you will investigate the droop compensation by means of a digital filter
inserted before the D/A converter . Two very simple low-order droop compensation digital
filters are characterized by the transfer functions [Jac96]:

HFIR(z) = 1
16 (−1 + 18 z−1 − z−2), (5.29)

HIIR(z) =
9

8 + z−1
. (5.30)

Question:

Q5.25 Write a MATLAB program to determine and plot the magnitude responses of the
uncompensated and the droop-compensated D/A converters in the same figure. Use both
the FIR and the IIR droop compensation filters of Eqs. (5.29) and (5.30). Run this program
and comment on your results.

5.8 Background Reading 89

5.8 Background Reading

[1] A. Antoniou. Digital Filters: Analysis, Design, and Applications. McGraw-Hill, New
York NY, second edition, 1993. Chs. 5, 6.

[2] E. Cunningham. Digital Filtering: An Introduction. Houghton-Mifflin, Boston MA,
1992. Secs. 2.4, 3.2, 3.3.

[3] D.J. DeFatta, J.G. Lucas, and W.S. Hodgkiss. Digital Signal Processing: A System
Design Approach. Wiley, New York NY, 1988. Secs. 2.5, 4.2.

[4] L.B. Jackson. Digital Filters and Signal Processing. Kluwer, Boston MA, third
edition, 1996. Secs. 6.3, 8.1.

[5] R. Kuc. Introduction to Digital Signal Processing. McGraw-Hill, New York NY,
1988, Secs. 3.10, 3.11.

[6] L.C. Ludeman. Fundamentals of Digital Signal Processing. Harper & Row, New
York NY, 1986. Secs. 1.5, 1.6, and Ch. 3.

[7] S.K. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-Hill,
New York NY, third edition, 2005. Ch. 4 and Sec. 11.8.

[8] A.V. Oppenheim, R.W. Schafer, and J. R. Buck. Discrete-Time Signal Processing.
Prentice-Hall, Upper Saddle River NJ, second edition, 1998. Secs. 4.1–4.4, 4.8,
Appendix B.

[9] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, Upper Saddle River
NJ, 1996. Ch. 1.

[10] B. Porat. A Course in Digital Signal Processing. Wiley, New York NY, 1996. Secs.
3.1–3.5, 3.8. 10.1–10.4.

[11] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms,
and Applications. Prentice-Hall, Upper Saddle River NJ, third edition, 1996. Secs.
1.4.1, 1.4.2, 8.3.5, 9.1.

[12] R.A. Roberts and C.T. Mullis. Digital Signal Processing. Addison-Wesley, Reading
MA, 1987. Secs. 4.6, 4.7.

90 Chapter 5 • Digital Processing of Continuous-Time Signals

Digital Filter Structures 6
6.1 Introduction

A structural representation using interconnected basic building blocks is the first step in the
hardware or software implementation of an LTI digital filter. The structural representation
provides the relations between some pertinent internal variables with the input and the
output that in turn provide the keys to the implementation. This exercise considers the
development of structural representations of causal IIR and FIR transfer functions in the
form of block diagrams.

6.2 Background Review

R6.1 The computational algorithm of an LTI digital filter can be conveniently represented
in a block-diagram form using the basic building blocks representing the unit delay, the
multiplier, the adder, and the pick-off node as depicted in Figure 6.1.

x[n] x[n]

x[n]

x[n] x[n]+ y[n]

y[n]

+

(a) (b)

x[n]
α

α x[n] x[n] x[n – 1]z–1

(c) (d)

Figure 6.1 Basic building blocks: (a) pick-off node, (b) adder, (c) multiplier, and (d) unit delay.

R6.2 Two digital filter structures are called equivalent if they have the same transfer
function. A fairly simple way to generate an equivalent structure from a given realization is
via the transpose operation which is as follows: (i) Reverse all paths, (ii) replace pick-off
nodes by adders and vice-versa, and (iii) interchange the input and the output nodes.

R6.3 Structures in which the multiplier coefficients are precisely the coefficients of the
transfer function are called direct form structures.

91

92 Chapter 6 • Digital Filter Structures

R6.4 A causal FIR filter of length M is characterized by a transfer function H(z):

H(z) =
M−1∑
k=0

h[k] z−k, (6.1)

which is a polynomial in z−1 of degree M −1. In the time domain the input-output relation
of the above FIR filter is given by

y[n] =
M−1∑
k=0

h[k] x[n − k], (6.2)

where y[n] and x[n] are the output and input sequences, respectively.

R6.5 A direct form realization of an FIR filter can be readily developed from Eq. (6.2)
as indicated in Figure 6.2(a) for M = 5. Its transpose, as sketched in Figure 6.2(b), is the
second direct form structure. An FIR filter of length M is characterized by M coefficients
and, in general, requires M multipliers and (M − 1) two-input adders for implementation.

z 1_
z 1_

z 1_
z 1_

+ +++

h[0] h[1] h[2] h[3] h[4]

x[n]

y[n]

(a)

x[n]

y[n]

h[4]

z–1 z–1 z–1 z–1

h[3] h[2] h[1] h[0]

(b)

Figure 6.2 Direct form FIR structures.

R6.6 A higher-order FIR transfer function can also be realized as a cascade of FIR sections
with each section characterized by either a first-order or a second-order transfer function.
To this end, the FIR transfer function H(z) of Eq. (6.1) is expressed in a factored form as

H(z) = h[0]
∏
k

(1 + β1kz−1 + β2kz−2), (6.3)

where for a first-order factor β2k = 0. A realization of Eq. (6.3) is shown in Figure 6.3
for a cascade of three second-order sections. Each second-order stage in Figure 6.3, of
course, can be realized also in the transposed direct form. The cascade form realization
also requires, in general, (M − 1) two-input adders and M multipliers for an FIR transfer
function of length M .

6.2 Background Review 93

h[0]

z 1_

z 1_

+

+

z 1_

z 1_

+

+

z 1_

z 1_

+

+

11β

23β

13β12β

22β21β

Figure 6.3 Cascade form FIR structure for a length-7 FIR filter.

R6.7 A length-M linear-phase FIR filter is characterized by either a symmetric impulse
response h[n] = h[M − 1 − n] or an antisymmetric impulse response h[n] = −h[M −
1 − n]. The symmetry (or the antisymmetry) property of a linear-phase FIR filter can be
exploited to reduce the total number of multipliers to half of those needed in the direct form
implementations of the transfer function. For example, Figure 6.4(a) shows the realization
of a length-7 Type 1 FIR transfer function with a symmetric impulse response and Figure
6.4(b) shows the realization of a length-8 Type 2 FIR transfer function with a symmetric
impulse response.

z 1_

+

h[0] h[1] h[2] h[3]

z 1_
z 1_

z 1_

z 1_
z 1_

+

+ ++

+

(a)

z 1_

h[0] h[1] h[2] h[3]

z 1_

z 1_

z 1_

z 1_

z 1_

+

z 1_

+ + +

++ +
(b)

Figure 6.4 Linear-phase FIR structures: (a) Type 1 and (b) Type 2.

94 Chapter 6 • Digital Filter Structures

R6.8 A causal IIR filter of order N is characterized by a transfer function H(z):

H(z) =
∑N

k=0 pk z−k

1 +
∑N

k=1 dk z−k
, (6.4)

which is a ratio of polynomials in z−1 of degree N . In the time domain the input-output
relation of the above IIR filter is given by

y[n] =
N∑

k=0

pk x[n − k] −
N∑

k=1

dk y[n − k], (6.5)

where y[n] and x[n] are the output and input sequences respectively.

R6.9 By defining an intermediate signal variable w[n]:

w[n] =
N∑

k=0

pk x[n − k], (6.6)

the difference equation of Eq. (6.5) can be alternately written as

y[n] = w[n] −
N∑

k=1

dk y[n − k]. (6.7)

+

z 1_

+

+

z 1_

z 1_

y[n]

d_
1

d_
2

d_
3

+

+

+

z 1_

z 1_

z 1_

x[n]
p

0

p
1

p
2

p
3

+

+

+

+

+

+

y[n]

d_
1

d_
2

d_
3

x[n]
p

0

p
1

p
2

p
3

z 1_

z 1_

z 1_

z 1_

z 1_

z 1_

(a) (b)

Figure 6.5 (a) Direct Form I structure and (b) transposed Direct Form I structure.

A realization of the IIR filter based on Eqs. (6.6) and (6.7) is called a Direct Form I structure
and is shown in Figure 6.5(a) for N = 3. Its transposed form is shown in Figure 6.5(b). The
total number of delays required in Direct Form I realization is 2N which can be reduced to
N by simple block-diagram manipulations resulting in Direct Form II structures indicated
in Figure 6.6 for N = 3.

An N th-order IIR digital filter transfer function is characterized by 2N + 1 unique coeffi-
cients and, in general, requires 2N +1 multipliers and 2N two-input adders for implemen-
tation.

6.2 Background Review 95

d_
1

d_
2

d_
3

+

+ +

p
0

p
1

p
2

p
3

z 1_

z 1_

z 1_

+

++x[n] y[n]

d_
1

d_
2

d_
3

+

+

+

p
0

p
1

p
2

p
3

z 1_

+

z 1_

z 1_

x[n] y[n]

(a) (b)

Figure 6.6 (a) Direct Form II structure and (b) transposed Direct Form II structure.

R6.10 By expressing the numerator and the denominator polynomials of the transfer
function H(z) as a product of polynomials of lower degree, a digital filter is often realized
as a cascade of low-order filter sections. Usually, the polynomials are factored into a product
of first-order and second-order polynomials. In this case, H(z) is expressed as

H(z) = p0

∏
k

(
1 + β1kz−1 + β2kz−2

1 + α1kz−1 + α2kz−2

)
. (6.8)

In the above, for a first-order factor α2k = β2k = 0. A possible realization of a third-order
transfer function

H(z) = p0

(
1 + β11z

−1

1 + α11z−1

)(
1 + β12z

−1 + β22z
−2

1 + α12z−1 + α22z−2

)
, (6.9)

is shown in Figure 6.7.

p
0

z–1 z–1

z–1−α11 β11

−α22
β22

−α12 β12

Figure 6.7 Cascade realization of a third-order IIR transfer function.

96 Chapter 6 • Digital Filter Structures

R6.11 An IIR transfer function can be realized in a parallel form by making use of the
partial-fraction expansion of the transfer function. A partial-fraction expansion of the
transfer function in z−1 leads to the Parallel Form I. Thus, assuming simple poles, H(z) is
expressed in the form

H(z) = γ0 +
∑

k

(
γ0k + γ1kz−1

1 + α1kz−1 + α2kz−2

)
. (6.10)

In the above, for a real pole α2k = γ1k = 0.

A direct partial-fraction expansion of the transfer function H(z) expressed as a ratio of
polynomials in z, leads to the second basic form of the parallel structure, called the Parallel
Form II [Mit77a]. Assuming simple poles, here H(z) is expressed in the form

H(z) = δ0 +
∑

k

(
δ1kz−1 + δ2kz−2

1 + α1kz−1 + α2kz−2

)
. (6.11)

Here, for a real pole α2k = δ2k = 0.

The two basic parallel realizations of a third-order IIR transfer function are sketched in
Figure 6.8.

+ +

z 1_

z 1_

z 1_
+

+

+

α_
11

α_
12

α_
22

γ
0

γ01

γ02

γ12

x[n] y[n]

z 1_

z 1_

z 1_

+

α_
11

α_
12

α_
22

+

+

+

+

0δ

11δ

22δ

12δ

x[n]

y[n]

(a) (b)

Figure 6.8 Parallel realizations of a third-order IIR transfer function: (a) Parallel Form I and (b)
Parallel Form II.

R6.12 An M th-order real coefficient allpass transfer function

AM (z) =
dM + dM−1z

−1 + . . . + d1z
−(M−1) + z−M

1 + d1z−1 + . . . + dM−1z−(M−1) + dMz−M
, (6.12)

is characterized by M unique coefficients and can be realized using only M multipliers.
In one method, AM (z) is realized in the form of a cascade of second-order and first-order

6.2 Background Review 97

allpass sections. In the second method, AM (z) is realized as a first-order lattice two-pair
constrained by an allpass transfer function AM−1(z) of order M − 1. By repeating the
process, a realization of AM (z) is obtained in the form of a cascaded lattice structure.

R6.13 Two one-multiplier realizations of a first-order allpass transfer function

A1(z) =
d1 + z−1

1 + d1z−1
, (6.13)

called Type 1 allpass structures, are shown in Figure 6.9 [Mit74a]. Transpose of these
structures yields two other Type 1 allpass structures.

z 1_

z 1_+ +
1_ 2Y

2X

d1

x[n] y[n] z 1_
+ +

1_

d1

+

x[n]

y[n]

(a) (b)

Figure 6.9 (a) Type 1A allpass structure and (b) Type 1B allpass structure.

R6.14 Two-multiplier realizations of the second-order allpass transfer function of the
form

A2(z) =
d1d2 + d1z

−1 + z−2

1 + d1z−1 + d1d2z−2
, (6.14)

called Type 2 allpass structures, are shown in Figure 6.10 [Mit74a]. Additional Type 2
allpass structures can be derived by transposing these structures.

R6.15 Two-multiplier realizations of the second-order allpass transfer function of the
form

A2(z) =
d2 + d1z

−1 + z−2

1 + d1z−1 + d2z−2
, (6.15)

called Type 3 allpass structures, are shown in Figure 6.11 [Mit74a]. Additional Type 3
allpass structures can be derived by transposing these structures.

R6.16 The transfer functions of the allpass structures of Figures 6.9–6.11 remain allpass
for any values of the multiplier coefficients, and are called structurally-lossless bounded-
real (LBR) as long as they are stable.

R6.17 The cascaded lattice realization of an M th-order allpass transfer function is based
on the development of a series of (m−1)th-order allpass transfer functions Am−1(z) from
an mth -order allpass transfer function Am(z), m = M, M − 1, . . . , 1 [Vai87]:

Am(z) =
dm + dm−1z

−1 + dm−2z
−2 + . . . + d1z

−(m−1) + z−m

1 + d1z−1 + d2z−2 + . . . + dm−1z−(m−1) + dmz−m
, (6.16)

98 Chapter 6 • Digital Filter Structures

z 1_

+
d1

z 1_

+

++

2d

_ 1

x[n] y[n]

z 1_

d1

z 1_

+

+

+
2d

z 1_

z 1_

1_

1_

x[n] y[n]

(a) (b)

z 1_

+

+

+

2d

z 1_
z 1_

1_

1_

+

+ +

d1
_

x[n] y[n]

z 1_

+

+

+

2d

z 1_
z 1_

1_

+

+

+

d1

x[n] y[n]

(c) (d)

Figure 6.10 (a) Type 2A allpass structure, (b) Type 2D allpass structure, (c) Type 2B allpass structure,
and (d) Type 2C allpass structure.

using the recursion

Am−1(z) = z

[
Am(z) − km

1 − kmAm(z)

]
, m = M, M − 1, . . . , 1, (6.17)

where km = Am(∞) = dm. It can be shown that AM (z) is stable if and only if

k2
m < 1, for m = M, M − 1, . . . , 1. (6.18)

If the allpass transfer function Am−1(z) is expressed in the form

Am−1(z) =
d′m−1 + d′m−2z

−1 + . . . + d′1z
−(m−2) + z−(m−1)

1 + d′1z−1 + . . . + d′m−2z
−(m−2) + d′m−1z

−(m−1)
, (6.19)

then the coefficients of Am−1(z) are simply related to the coefficients of Am(z) through
the expression:

d′i =
di − dmdm−i

1 − d2
m

, i = m − 1, m − 2, . . . , 2, 1. (6.20)

A realization of Am(z) based on the recursion of Eq. (6.17) is shown in Figure 6.12(a). The
cascaded lattice realization of AM (z) based on this recursion is thus as shown in Figure
6.12(b).

6.2 Background Review 99

z 1_

+
d1

z 1_

+

++

2d

_ 1

x[n] y[n]

z 1_

d1

+
2d_ 1

z 1_

z 1_
z 1_

+

+

_ 1

x[n] y[n]

(a) (b)

z 1_

+

d1

+

+
+

2d

z 1_

z 1_
+

+

1_

x[n] y[n]

z 1_

+

d1

+

+

+

2d
z 1_

z 1_
z 1_

_1

_

_1

x[n] y[n]

(c) (d)

Figure 6.11 (a) Type 3A allpass structure, (b) Type 3D allpass structure, (c) Type 3C allpass structure,
and (d) Type 3H allpass structure.

R6.18 The cascaded lattice structure of Figure 6.12 forms the basis of the Gray–Markel
method for the realization of an arbitrary M th order transfer function H(z) [Gra73]. In this
method, H(z) = PM (z)/DM (z) is realized in two steps. In the first step, an intermediate
allpass transfer function AM (z) = z−MDM (z−1)/DM (z) is realized in the form of a
cascaded lattice structure. The state variables of this structure are then summed in the
second step with appropriate weights to yield the desired numerator PM (z).

To illustrate this method of realizing the numerator, consider for simplicity the implemen-
tation of a third-order IIR transfer function

H(z) =
P3(z)
D3(z)

=
p0 + p1z

−1 + p2z
−2 + p3z

−3

1 + d1z−1 + d2z−2 + d3z−3
. (6.21)

To this end, first the allpass function A3(z)Y1(z)/X1(z) = z−3D3(z−1)/D3(z) is realized
as shown in Figure 6.13(a) where

d ′
1 =

d1 − d3d2

1 − d2
3

,

d ′
2 =

d2 − d3d1

1 − d2
3

, (6.22)

d ′′
1 =

d ′
1 − d ′

2d
′
1

1 − (d ′
2)2

=
d ′
1

1 + d ′
2

.

100 Chapter 6 • Digital Filter Structures

z–1

km

km
_

A (z)m 1_A (z)m

x[n]

y[n]

(a)

z–1

kM
_

kM

kM _1
_

kM _1 k1

_k1

z–1 z–1

MA (z)

x[n]

y[n]

(b)

Figure 6.12 (a) Realization of Am(z) and (b) cascaded realization of AM (z).

Next the signal variables Y1, S1, S2, and S3, are summed with weights {αi} as shown in
Figure 6.13(b) to arrive at the desired numerator P3(z). The weights {αi} are given by

α1 = p3,

α2 = p2 − α1d1,

α3 = p1 − α1d2 − α2d
′
1, (6.23)

α3 = p0 − α1d3 − α2d
′
2 − α3d

′′
1 .

R6.19 Let G(z) be an N th order causal bounded-real IIR transfer function having a
symmetric numerator and let H(z) be the N th order power-complementary causal bounded-
real transfer function of G(z) with an antisymmetric numerator. Then G(z) and H(z) can
always be decomposed in the form

G(z) = 1
2 {A0(z) + A1(z)} ,

H(z) = 1
2 {A0(z) − A1(z)} . (6.24)

where A0(z) and A1(z) are causal stable allpass transfer functions with the sum of their de-
grees being N [Vai86]. The realization of G(z) and H(z) based on the above decomposition
is thus as shown in Figure 6.14.

In the case of odd-order digital Butterworth, Chebyshev, and elliptic lowpass or highpass
digital transfer functions (discussed in Chapter 7), there is a simple approach to identify the
poles of the allpass transfer functions A0(z) and A1(z) from the poles λk, 0 ≤ k ≤ N − 1,
of the parent lowpass transfer function G(z) or H(z). Let θk denote the angle of the pole
λk. If we assume that the poles are numbered such that θk < θk+1, then the poles of
A0(z) are given by θ2k and the poles of A1(z) are given by θ2k+1 [Gaz85]. Figure 6.15
illustrates this pole interlacing property of the two allpass transfer functions. Zeros of the
allpass transfer functions are situated at the mirror-image locations with respect to their
pole locations.

6.3 MATLAB Commands Used 101

z–1z–1 z–1

A3(z)

S3 S2 S1

d3

d3
_ d1

_ "

d1"

d2
_ '

d2'

(a)

d3

S3
Y1

Yo

X1

α1 α2 α3 α4

S2
S1z 1

_
z 1

_
z 1

_

_ d3

d2' d1"

d2'
_ d1"

_

(b)

Figure 6.13 (a) Cascaded lattice realization of a third-order allpass transfer function and (b) Gray–
Markel realization of H(z) of Eq. (6.21).

+

+
1
2
_

A (z)1 _1

G(z)

H(z)

A (z)0

Figure 6.14 Parallel allpass realization of an IIR transfer function.

6.3 MATLAB Commands Used

The MATLAB comands you will encounter in this exercise are as follows:

General Purpose Commands

disp length

Operators and Special Characters

: . + - * /
; %

102 Chapter 6 • Digital Filter Structures

0 0θ
θ6

1–1

Im z

Re z

Figure 6.15 Illustration of pole interlacing property. The poles marked + belong to A0(z) and the
poles marked × belong to A1(z)

Elementary Matrices and Matrix Manipulation

ones pi :

Signal Processing Toolbox

latc2tf poly2rc residue residuez
tf2latc zp2sos

For additional information on these commands, see the MathWorks Online Documentation
[Mat05] or type help commandname in the Command window. A brief explanation of the
MATLAB functions used here can be found in Appendix B.

6.4 Realization of FIR Transfer Functions

Project 6.1 Cascade Realization

The factored form of a causal FIR transfer function H(z) of order M − 1, as given in Eq.
(6.3) can be determined from its polynomial form representation given by Eq. (6.1) which
can then be utilized to realize H(z) in a cascade form. To this end, a modified form of

6.5 Realization of IIR Transfer Functions 103

Program P6 1 that uses the function zp2sos can be employed.

% Program P6_1
% Conversion of a rational transfer function
% to its factored form
num = input(’Numerator coefficient vector = ’);
den = input(’Denominator coefficient vector = ’);
[A, B] = eqtflength(num, den);
[z,p,k] = tf2zp(A, B);
sos = zp2sos(z,p,k)

Questions:

Q6.1 Using Program P6 1 develop a cascade realization of the following FIR transfer
function:

H1(z) = 2 + 10 z−1 + 23 z−2 + 34 z−3 + 31 z−4 + 16 z−5 + 4 z−6. (6.25)

Sketch the block diagram of the cascade realization. Is H1(z) a linear-phase transfer
function?

Q6.2 Using Program P6 1 develop a cascade realization of the following FIR transfer
function:

H2(z) = 6 + 31 z−1 + 74 z−2 + 102 z−3 + 74 z−4 + 31 z−5 + 6 z−6. (6.26)

Sketch the block diagram of the cascade realization. Is H2(z) a linear-phase transfer
function? Develop a cascade realization of H2(z) with only 4 multipliers. Show the block-
diagram of the new cascade structure.

6.5 Realization of IIR Transfer Functions

Project 6.2 Cascade and Parallel Realizations

The factored form of a causal IIR transfer function H(z) of order N as given in Eq. (6.8)
can be determined from its rational form representation given by Eq. (6.4), which then can
be used to realize H(z) in a cascade form. To this end, Program P6 1 can be employed.

Questions:

Q6.3 Using Program P6 1 develop a cascade realization of the following causal IIR trans-
fer function:

H1(z) =
3 + 8 z−1 + 12 z−2 + 7 z−3 + 2 z−4 − 2 z−5

16 + 24 z−1 + 24 z−2 + 14 z−3 + 5 z−4 + z−5
. (6.27)

Sketch the block diagram of the cascade realization.

104 Chapter 6 • Digital Filter Structures

Q6.4 Using Program P6 1 develop a cascade realization of the following causal IIR trans-
fer function:

H2(z) =
2 + 10 z−1 + 23 z−2 + 34 z−3 + 31 z−4 + 16 z−5 + 4 z−6

36 + 78 z−1 + 87 z−2 + 59 z−3 + 26 z−4 + 7 z−5 + z−6
. (6.28)

Sketch the block diagram of the cascade realization.

There are two parallel-form realizations of a causal IIR transfer function. Parallel Form I is
based on its partial-fraction expansion in z−1 as in Eq. (6.10), which can be obtained using
MATLAB function residuez. Parallel Form II is based on the partial-fraction expansion
in z as in Eq. (6.11), which is obtained using the function residue. Program P6 2 develops
both types of parallel realizations.

% Program P6_2
% Parallel Form Realizations of an IIR Transfer Function
num = input(’Numerator coefficient vector = ’);
den = input(’Denominator coefficient vector = ’);
[r1,p1,k1] = residuez(num,den);
[r2,p2,k2] = residue(num,den);
disp(’Parallel Form I’)
disp(’Residues are’);disp(r1);
disp(’Poles are at’);disp(p1);
disp(’Constant value’);disp(k1);
disp(’Parallel Form II’)
disp(’Residues are’);disp(r2);
disp(’Poles are at’);disp(p2);
disp(’Constant value’);disp(k2);

Questions:

Q6.5 Using Program P6 2 develop the two different parallel-form realizations of the
causal IIR transfer function of Eq. (6.27). Sketch the block diagrams of both realizations.

Q6.6 Using Program P6 2 develop the two different parallel-form realizations of the
causal IIR transfer function of Eq. (6.28). Sketch the block diagrams of both realizations.

Project 6.3 Realization of an Allpass Transfer Function

The cascaded lattice realization of an M th order causal IIR allpass transfer function AM (z)
is based on the recursive algorithm outlined in R6.17. The lattice parameters {ki} can be
determined in MATLAB using the function poly2rc. To this end, Program P4 4 can also
be employed.

6.5 Realization of IIR Transfer Functions 105

Questions:

Q6.7 Using Program P4 4 develop the cascaded lattice realization of the following allpass
transfer function:

A5(z) =
1 + 5 z−1 + 14 z−2 + 24 z−3 + 24 z−4 + 16 z−5

16 + 24 z−1 + 24 z−2 + 14 z−3 + 5 z−4 + z−5
. (6.29)

Is A5(z) a stable transfer function?

Q6.8 Using Program P4 4 develop the cascaded lattice realization of the following allpass
transfer function:

A6(z) =
1 + 7 z−1 + 26 z−2 + 59 z−3 + 87 z−4 + 78 z−5 + 36 z−6

36 + 78 z−1 + 87 z−2 + 59 z−3 + 26 z−4 + 7 z−5 + z−6
. (6.30)

Is A6(z) a stable transfer function?

A higher-order allpass transfer function can also be realized as a cascade of second-order
and first-order allpass sections described in R6.13–R6.15 using a modified form of Program
P6 1. It should be noted that the pairing of numerator and denominator factors obtained via
zp2sos does not result in allpass sections. However, it is easy to determine the denominator
factors by forming the mirror-image factors of the numerator decomposition.

Questions:

Q6.9 Develop a canonic cascade realization of the allpass transfer function of Eq. (6.29)
using Types 1 and 2 allpass sections. Show the block diagram of the realization. What is
the total number of multipliers in the final structure?

Q6.10 Develop a canonic cascade realization of the allpass transfer function of Eq. (6.30)
using three allpass sections. Show the block diagram of the realization. What is the total
number of multipliers in the final structure?

Project 6.4 Gray-Markel Realization of an IR Transfer function

The Gray–Markel cascaded lattice realization of an N th order causal IIR transfer function
H(z) is based on the cascaded lattice realization of an intermediate allpass transfer function
AN (z) with the same denominator as that of H(z) followed by a weighted combination of
the internal state-variables and the allpass output variable as outlined in R6.17 and R6.18.
Program P6 3 implements this algorithm.

% Program P6_3
% Gray-Markel Cascaded Lattice Structure
% k is the lattice parameter vector
% alpha is the vector of feedforward multipliers

106 Chapter 6 • Digital Filter Structures

format long
% Read in the transfer function coefficients
num = input(’Numerator coefficient vector = ’);
den = input(’Denominator coefficient vector = ’);
N = length(den)-1; % Order of denominator polynomial
k = ones(1,N);
a1 = den/den(1);
alpha = num(N+1:-1:1)/den(1);
for ii = N:-1:1,

alpha(N+2-ii:N+1) = alpha(N+2-ii:N+1)-alpha(N-ii+1)*a1(2:ii+1);
k(ii) = a1(ii+1);
a1(1:ii+1) = (a1(1:ii+1)-k(ii)*a1(ii+1:-1:1))/(1-k(ii)*k(ii));
end

disp(’Lattice parameters are’);disp(k)
disp(’Feedforward multipliers are’);disp(alpha)

Questions:

Q6.11 Using Program P6 3 develop the Gray–Markel realization of the causal IIR transfer
function of Eq. (6.27). Sketch the block diagram of the realization. Is the transfer function
stable?

Q6.12 Using Program P6 3 develop the Gray–Markel realization of the causal IIR transfer
function of Eq. (6.28). Sketch the block diagram of the realization. Is the transfer function
stable?

The function tf2latc in the Signal Processing Toolbox can also be used to develop the
Gray–Markel realization of a causal IIR transfer function. The basic form of this func-
tion is [k, alpha] = tf2latc(num, den) where num and den are the vectors of the
coefficients of the numerator polynomial and the denominator polynomial of the transfer
function in ascending powers of z−1, respectively. All coefficients must be normalized by
the leading coefficient of den. The output data are the vector k of the lattice parameters
and the vector alpha of the feedforward multiplier coefficients. It should be noted that the
ordering of the feedforward coefficients is exactly opposite to that generated by Program
P6 3. It is also possible to determine the transfer function from the lattice parameter vector
k and the feedforward coefficients vector alpha using the function latc2tf.1 In this case
the statement to use is [num, den] = latc2tf(k, alpha).

Questions:

Q6.13 Write a MATLAB program using the function tf2latc to develop the Gray–
Markel realization of a causal IIR transfer function. Using this program realize the transfer

1The function latc2tf in the Signal Processing Toolbox should be modified to make it work properly.
The suggested corrections can be downloaded via anonymous ftp from ftp://ftp.mathworks.com/pub/tech-
support/signal/latc2tf.m.

6.6 Background Reading 107

function of Eq. (6.27). Does your result check with that obtained in Question 6.11? Using
the function latc2tf determine the transfer function from the vectors k and alpha. Is the
transfer function obtained the same as in Eq. (6.27)?

Q6.14 Using the program developed in Question Q6.13 realize the transfer function of Eq.
(6.28). Does your result check with that obtained in Question Q6.12? Using the function
latc2tf determine the transfer function from the vectors k and alpha. Is the transfer
function obtained the same as in Eq. (6.28)?

Project 6.5 Parallel Allpass Realization of an IIR Transfer Function

Questions:

Q6.15 Develop the sum-of-allpass decomposition of a third-order causal bounded-real
lowpass Type 1 Chebyshev transfer function G(z) given by

G(z) =
0.0736 + 0.2208 z−1 + 0.2208 z−2 + 0.0736 z−3

1 − 0.9761 z−1 + 0.8568 z−2 − 0.2919 z−3
. (6.31)

What is the expression for its power-complementary transfer function H(z)? What are the
orders of the two allpass transfer functions? Develop the parallel allpass realization of G(z)
and H(z) with at most three multipliers by realizing the two allpass transfer functions as a
cascade of first-order and/or second-order sections.

Q6.16 Develop the sum-of-allpass decomposition of a fifth-order causal bounded-real
lowpass elliptic transfer function G(z) where

G(z) =
0.0417 + 0.07675 z−1 + 0.1203 z−2 + 0.1203 z−3 + 0.0767 z−4 + 0.0417 z−5

1 − 1.8499 z−1 + 2.5153 z−2 − 1.9106 z−3 + 0.9565 z−4 − 0.234 z−5
.

(6.32)
What is the expression for its power-complementary transfer function H(z)? What are the
orders of the two allpass transfer functions? Develop the parallel allpass realization of G(z)
and H(z) with at most five multipliers by realizing the two allpass transfer functions as a
cascade of first-order and/or second-order sections.

6.6 Background Reading

[1] A. Antoniou. Digital Filters: Analysis, Design, and Applications. McGraw-Hill, New
York NY, second edition, 1993. Ch. 4.

[2] E. Cunningham. Digital Filtering: An Introduction. Houghton-Mifflin, Boston MA,
1992. Sec. 3.12.

[3] D.J. DeFatta, J.G. Lucas, and W.S. Hodgkiss. Digital Signal Processing: A System
Design Approach. Wiley, New York NY, 1988. Sec. 3.5.

108 Chapter 6 • Digital Filter Structures

[4] L.B. Jackson. Digital Filters and Signal Processing. Kluwer, Boston MA, third
edition, 1996. Ch. 5.

[5] R. Kuc. Introduction to Digital Signal Processing. McGraw-Hill, New York NY,
1988. Ch. 6.

[6] L.C. Ludeman. Fundamentals of Digital Signal Processing. Harper & Row, New
York NY, 1986. Ch. 5.

[7] S.K. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-Hill,
New York NY, third edition, 2005. Ch. 8.

[8] A.V. Oppenheim, R.W. Schafer, and J. R. Buck. Discrete-Time Signal Processing.
Prentice-Hall, Upper Saddle River NJ, second edition, 1998. Secs. 6.2–6.5.

[9] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, Upper Saddle River
NJ, 1996. Secs. 4.2.2, 7.1–7.3.

[10] B. Porat. A Course in Digital Signal Processing. Wiley, New York NY, 1996. Sec.
11.1.

[11] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms,
and Applications. Prentice-Hall, Upper Saddle River NJ, third edition, 1996. Secs.
7.1–7.3.

[12] R.A. Roberts and C.T. Mullis. Digital Signal Processing. Addison-Wesley, Reading
MA, 1987. Sec. 3.7.

Digital Filter Design 7
7.1 Introduction

The process of deriving the transfer function G(z) whose frequency response G(ejω) ap-
proximates the given frequency response specifications is called digital filter design. After
G(z) has been obtained, it is then realized in the form of a suitable filter structure. In the
previous laboratory exercise, the realizations of FIR and IIR transfer functions have been
considered. In this laboratory exercise you will learn how to design an IIR or FIR digital
filter to meet a specified magnitude or gain response.

7.2 Background Review

R7.1 The filter specifications are usually specified in terms of its magnitude response. For
example, the magnitude |G(ejω)| of a lowpass filter G(z) is usually specified as indicated
in Figure 7.1. In the passband defined by 0 ≤ ω ≤ ωp, we require

1 − δp ≤ |G(ejω)| ≤ 1 + δp, for |ω| ≤ ωp, (7.1)

or in other words, the magnitude approximates unity within an error of±δp. In the stopband,
defined by ωs ≤ |ω| ≤ π, we require

|G(ejω)| ≤ δs, for ωs ≤ |ω| ≤ π, (7.2)

implying that the magnitude approximate zero within an error of δs. The frequencies ωp and
ωs are, respectively, called the passband edge frequency and the stopband edge frequency.

The maximum limits of the tolerances in the passband and stopband, δp and δs, are called
ripples.

R7.2 In most applications, the digital filter specifications are given as indicated in Figure
7.2. Here, in the passband defined by 0 ≤ ω ≤ ωp, the maximum and the minimum values
of the magnitude are, respectively, unity and 1/

√
1 + ε2. The peak passband ripple in dB

is
Rp = 20 log10

√
1 + ε2 dB. (7.3)

The maximum ripple in the stopband, defined by ωs ≤ ω ≤ π, is denoted by 1/A and the
minimum stopband attenuation in dB is given by

Rs = 20 log10 A dB. (7.4)

109

110 Chapter 7 • Digital Filter Design

0
0

1 + δp

1 δp

G(e jω)

Transition
band

δs

ωs
ω

πωp

Passband Stopband

_

Figure 7.1 Typical magnitude response specifications for a digital lowpass filter.

R7.3 If the passband edge frequency Fp and the stopband edge frequency Fs are specified
in Hz along with the sampling rate FT of the digital filter, then the normalized angular edge
frequencies in radians are given by

ωp =
Ωp

FT
=

2πFp

FT
= 2πFpT, (7.5)

ωs =
Ωs

FT
=

2πFs

FT
= 2πFsT. (7.6)

R7.4 The first step in the filter design process is the estimation of the order of the transfer
function. For the design of an IIR digital lowpass filter G(z) based on the conversion
of an analog lowpass filter Ha(s), an analytical formula exists for the estimation of the
filter order. For the design of FIR lowpass or highpass digital filters, there are several
design formulae for estimating the minimum filter length N directly from the digital filter
specifications: normalized passband edge angular frequency ωp, normalized stopband edge
angular frequency ωs, peak passband ripple δp, and peak stopband ripple δs. A rather simple
approximate formula developed by Kaiser [Kai74] is given by

N ∼= −20 log10(
√

δpδs) − 13
14.6(∆ω)/2π

, (7.7)

where ∆ω = |ωp − ωs| is the width of the transition band. The above formula also can
be used for designing multitransition-band FIR filters, in which case ∆ω is the width of
the smallest of all transition bands. For multiband filters with unequal transition bands,
the filter designed using the above estimated formula may exhibit unacceptable magnitude
responses in the transition bands that are wider, in which case, these bands should be made
smaller until an acceptable magnitude response is obtained.

7.2 Background Review 111

0
0

1

1
1 + ε2

G(e jω)

Transition
band

ωs
ω

πωp

Passband Stopband

1
A

Figure 7.2 Normalized magnitude response specifications for a digital lowpass filter.

R7.5 A slightly more accurate value for the length is due to Herrmann, Rabiner, and Chan
[Her73], and is given by

N ∼= D∞(δp, δs) − F (δp, δs) [(ωs − ωp)/2π]2

[(ωs − ωp)/2π]
, (7.8)

where

D∞(δp, δs) =
[
a1(log10 δp)2 + a2(log10 δp) + a3

]
log10 δs

− [a4(log10 δp)2 + a5(log10 δp) + a6

]
, (7.9)

and
F (δp, δs) = b1 + b2 [log10 δp − log10 δs] , (7.10)

with

a1 = 0.005309, a2 = 0.07114, a3 = −0.4761,

a4 = 0.00266, a5 = 0.5941, a6 = 0.4278, (7.11)

b1 = 11.01217, b2 = 0.51244.

The formula given in Eq. (7.8) is valid for δp > δs. If δp < δs then the filter length formula
to be used is obtained by interchanging δp and δs in Eq. (7.8). For small values of δp and
δs, both Eqs. (7.7) and (7.8) provide reasonably close and accurate results. On the other
hand, when the values of δp and δs are large, Eq. (7.8) yields a more accurate value for the
length.

R7.6 In many filter design problems, the order estimated using either Eq. (7.7) or Eq.
(7.8) may result in filters not meeting the given specifications. In such cases, the value of
N should be increased gradually until the specifications are met.

112 Chapter 7 • Digital Filter Design

R7.7 The most widely used approach to IIR filter design is based on the bilinear transfor-
mation from s-plane to z-plane given by

s =
2
T

(
1 − z−1

1 + z−1

)
. (7.12)

Using the above transformation an analog transfer function Ha(s) is converted into a digital
transfer function G(z) according to:

G(z) = Ha(s)|
s= 2

T

(
1−z−1

1+z−1

). (7.13)

R7.8 For the bilinear transformation, the relation between the imaginary axis (s = jΩ)
in the s-plane and the unit circle (z = ejω) in the z-plane is given by

Ω = tan(ω/2), (7.14)

which maps the entire imaginary axis in the s-plane to the unit circle in the z-plane introduc-
ing a distortion in the frequency axis called warping. To develop a digital filter meeting a
specified magnitude response, the analog equivalents (Ωp and Ωs) of the critical band-edge
frequencies (ωp and ωs) of the digital filter are first obtained using the relation of Eq. (7.14),
the analog prototype Ha(s) is then designed using the prewarped critical frequencies, and
Ha(s) is transformed using the bilinear transformation to obtain the desired digital filter
transfer function G(z).

R7.9 The most straight-forward method of FIR filter design is based on windowing the
ideal infinite-length impulse response hD[n] obtained by an inverse discrete-time Fourier
transform of the ideal frequency response HD(ejω) by an appropriate finite-length window
function w[n]. The impulse response coefficients of the final design are then given by
h[n] = hD[n] · w[n].

R7.10 The ideal lowpass filter of Figure 4.1(a) has a zero-phase frequency response

HLP (ejω) =
{

1, |ω| ≤ ωc,
0, ωc < |ω| ≤ π

(7.15)

The corresponding impulse response coefficients hLP [n] are given by

hLP [n] =
sin ωcn

πn
, −∞ ≤ n ≤ ∞. (7.16)

which is seen to be doubly infinite, not absolutely summable, and therefore unrealizable.
By setting all impulse response coefficients outside the range −M ≤ n ≤ M equal to zero,
we arrive at a finite-length noncausal approximation of length N = 2M + 1 that, when
shifted to the right, yields the coefficients of a causal FIR lowpass filter:

ĥLP [n] =

{
sin ωc(n−M)

π(n−M) , 0 ≤ n ≤ N − 1,

0, otherwise
(7.17)

7.2 Background Review 113

It should be noted that the above expression also holds for N even in which case M is a
fraction, i.e. an integer plus a half.

The impulse response coefficients hHP [n] of the ideal highpass filter of Figure 4.1(b) are
given by

hHP [n] =

{
1 − ωc

π , for n = 0,

− sin(ωcn)
πn , for |n| > 0.

(7.18)

The impulse response coefficients hBP [n] of an ideal bandpass filter of Figure 4.1(c) with
cutoffs at ωc1 and ωc2 are given by

hBP [n] =
sin ωc2n

πn
− sin ωc1n

πn
, −∞ ≤ n ≤ ∞. (7.19)

and those of an ideal bandstop filter of Figure 4.1(d) with cutoffs at ωc1 and ωc2 are given
by

hBS [n] =

⎧⎨
⎩

1 − (ωc2−ωc1)
π , for n = 0,

sin(ωc1n)
πn − sin(ωc2n)

πn , for |n| > 0.
(7.20)

R7.11 All of the above design methods are for single passband or single stopband filters
with two magnitude levels. However, it is quite straightforward to generalize the method
to the design of multilevel FIR filters and obtain the expression for the impulse response
coefficients. The zero-phase frequency response of an ideal L-band digital filter HML(z)
is given by

HML(ejω) = Ak, for ωk−1 ≤ ω ≤ ωk, k = 1, 2, . . . , L, (7.21)

where ω0 = 0 and ωL = π. Figure 7.3 shows the frequency response of a typical multilevel
filter. Its impulse response hML[n] is given by

hML[n] =
L∑

�=1

(A� − A�+1) · sin(ωcn)
πn

, (7.22)

with AL+1 = 0.

R7.12 The ideal Hilbert transformer, also called a 90-degree phase shifter, is characterized
by a frequency response given by

HHT (ejω) =
{

j, −π < ω < 0,
−j, 0 < ω < π.

(7.23)

The corresponding impulse response hHT [n] is

hHT [n] =

{
0, n = 0,
2 sin2(πn/2)

πn , n �= 0.
(7.24)

114 Chapter 7 • Digital Filter Design

0
ω

πω1 ω2 ω3 ω4

HML(e jω)

A5

A 4

A3

A2

A1

Figure 7.3 Typical zero-phase multilevel frequency response.

R7.13 The ideal discrete-time differentiator is characterized by a frequency response
given by

HDIF (ejω) = jω, |ω| < π. (7.25)

The corresponding impulse response hDIF [n] is

hDIF [n] =
{

0, n = 0,
cos πn

n , |n| > 0.
(7.26)

Like the ideal lowpass filter, all of the above ideal filters (Eqs.(7.18)–(7.20), (7.22), (7.24),
and (7.26)) are unrealizable. They can be made realizable by truncating the impulse response
sequences to finite lengths and shifting the truncated coefficients to the right appropriately.

R7.14 The causal FIR filters obtained by simply truncating the impulse response coef-
ficients of the ideal filters given in the previous section exhibit an oscillatory behavior in
their respective magnitude responses that is more commonly referred to as the Gibbs phe-
nomenon. The Gibbs phenomenon can be reduced either by using a window that tapers
smoothly to zero at each end or by providing a smooth transition from the passband to
the stopband. Use of a tapered window causes the height of the side lobes to diminish
with a corresponding increase in the main lobe width, resulting in a wider transition at the
discontinuity. In all window-based lowpass filter designs, the cutoff frequency ωc is half of
the sum of the passband and stopband edge frequencies.

R7.15 Some commonly used tapered windows of length 2M + 1 with fixed ripples are:

Hanning: w[n] =
1
2

[
1 + cos

(
2πn

2M + 1

)]
, −M ≤ n ≤ M, (7.27)

Hamming: w[n] = 0.54 + 0.46 cos
(

2πn

2M + 1

)
, −M ≤ n ≤ M, (7.28)

Blackman: w[n] = 0.42 + 0.5 cos
(

2πn

2M + 1

)
+ 0.08 cos

(
4πn

2M + 1

)
,

−M ≤ n ≤ M. (7.29)

7.2 Background Review 115

R7.16 The Dolph-Chebyshev window of length 2M + 1 is an adjustable window defined
by

w[n] =
1

2M + 1

[
1
γ

+ 2
M∑

k=1

Tk

(
β cos

kπ

2M + 1

)
cos

2nkπ

2M + 1

]
,

−M ≤ n ≤ M, (7.30)

where

γ =
Amplitude of side lobe
Main lobe amplitude

, (7.31)

β = cosh
(

1
2M

cosh−1 1
γ

)
, (7.32)

and Tk(x) is the kth order Chebyshev polynomial defined by

Tk(x) =
{

cos(k cos−1 x), for |x| ≤ 1,

cosh(k cosh−1 x), for |x| > 1.
(7.33)

R7.17 The most widely used adjustable window is the Kaiser window given by:

w[n] =
I0(β

√
1 − (n/M)2)
I0(β)

, −M ≤ n ≤ M, (7.34)

where β is an adjustable parameter and I0(u) is the modified zeroth-order Bessel function,
which can be expressed in a power series form:

I0(u) = 1 +
∞∑

r=1

[
(u/2)r

r!

]2
. (7.35)

It can be seen that I0(u) is positive for all real values of u. In practice, it is sufficient to keep
only the first 20 terms in the summation of Eq. (7.35) to arrive at a reasonably accurate value
of I0(u). The parameter β controls the minimum stopband attenuation αs = −20 log10δs of
the windowed filter response. Formulae for estimating β and the filter length N = 2M +1,
for specified αs and transition bandwidth ∆f = Fp − Fs, are given by

β =

⎧⎨
⎩

0.1102(αs − 8.7), for αs > 50,
0.5842(αs − 21)0.4 + 0.07886(αs − 21), for 21 ≤ αs ≤ 50,
0, for αs < 21.

(7.36)

and

N =

{ αs−7.95
14.36 ∆f + 1, for αs > 21,

0.9222
∆f + 1, for αs ≤ 21.

(7.37)

The Kaiser window provides no independent control over the passband ripple δp. However,
in practice, δp is approximately equal to δs.

116 Chapter 7 • Digital Filter Design

R7.18 The linear-phase FIR filter obtained by minimizing the peak absolute value of the
weighted error ε given by

ε = max
0≤ω≤π

|E(ω)|, (7.38)

is usually called the optimal FIR filter where the weighted error function E(ω) defined by

E(ω) = P (ω)
[|H(ejω)| − D(ω)

]
, (7.39)

exhibits an equiripple behavior in the frequency range of interest. The most widely used,
highly efficient algorithm for designing the optimum linear-phase FIR filter is the Parks-
McClellan algorithm [Par72].

7.3 MATLAB Commands Used

The MATLAB comands you will encounter in this exercise are as follows:

General Purpose Commands

disp length

Operators and Special Characters

: . + - * / ;
% .* ./ > ==

Language Constructs and Debugging

else function if

Elementary Matrices and Matrix Manipulation

fliplr nargin pi :

Elementary Functions

abs ceil cos log10 sin sqrt

Data Analysis

min

7.4 IIR Filter Design 117

Two-Dimensional Graphics

axis grid plot title xlabel
ylabel

Signal Processing Toolbox

blackman butter buttord chebwin cheb1ord
cheb2ord cheby1 cheby2 ellip ellipord
fir1 fir2 firpm firpmord freqz
hanning hamming kaiser

For additional information on these commands, see the MathWorks Online Documentation
[Mat05] or type help commandname in the Command window. A brief explanation of the
MATLAB functions used here can be found in Appendix B.

7.4 IIR Filter Design

The most common method of IIR filter design is based on the bilinear transformation of
a prototype analog transfer function. The analog transfer function is usually one of the
following types: Butterworth, Type 1 Chebyshev, Type 2 Chebyshev, and elliptic transfer
functions. The difference between these filter types can be explained by considering the
analog lowpass filter. The Butterworth lowpass transfer function has a maximally-flat
magnitude response at dc, that is, Ω = 0, and a monotonically decreasing magnitude
response with increasing frequency. The Type 1 Chebyshev lowpass transfer function has an
equiripple magnitude response in the passband and a monotonically decreasing magnitude
response with increasing frequency outside the passband. The Type 2 Chebyshev lowpass
transfer function has a monotonically decreasing magnitude response in the passband with
increasing frequency and an equiripple magnitude response in the stopband. Finally, the
elliptic lowpass transfer function has equiripple magnitude responses both in the passband
and in the stopband.

Project 7.1 Estimation of Order of IIR Filter

The first step in the filter design process is to choose the type of filter approximation to be
employed and then to estimate the order of the transfer function from the filter specifications.
The MATLAB command for estimating the order of a Butterworth filter is

[N, Wn] = buttord(Wp, Ws, Rp, Rs),

where the input parameters are the normalized passband edge frequency Wp, the normalized
stopband edge frequency Ws, the passband ripple Rp in dB, and the minimum stopband
attenuation Rs in dB. Both Wp and Ws must be a number between 0 and 1 with the sampling

118 Chapter 7 • Digital Filter Design

frequency assumed to be 2Hz. The output data are the lowest order Nmeeting the specifica-
tions and the normalized cutoff frequency Wn. If Rp = 3 dB, then Wn = Wp. buttord
can also be used to estimate the order of a highpass, a bandpass, and a bandstop Butterworth
filter. For a highpass filter design, Wp > Ws. For bandpass and bandstop filter designs, Wp
and Ws are two-element vectors specifying both edge frequencies, with the lower edge fre-
quency being the first element of the vector. In the latter cases, Wn is also a two-element
vector.

For estimating the order of a Type 1 Chebyshev filter, the MATLAB command is

[N, Wn] = cheb1ord(Wp, Ws, Rp, Rs)

and for designing a Type 2 Chebyshev filter, the MATLAB command for estimating the
order is

[N, Wn] = cheb2ord(Wp, Ws, Rp, Rs).

Finally, in the case of an elliptic filter design, the command is

[N, Wn] = ellipord(Wp, Ws, Rp, Rs).

As before, Wp and Ws are the passband and stopband edge frequencies with values between 0
and 1. Likewise, Rp and Rs are the passband ripple and the minimum stopband attenuation
in dB. N contains the estimated lowest order and Wn is the cutoff frequency. It should be
noted that for bandpass and bandstop filter designs, the actual order of the transfer function
obtained using the appropriate filter design command is 2N.

Questions:

Q7.1 Using MATLAB determine the lowest order of a digital IIR lowpass filter of all four
types. The specifications are as follows: sampling rate of 40 kHz, passband edge frequency
of 4 kHz, stopband edge frequency of 8 kHz, passband ripple of 0.5 dB, and a minimum
stopband attenuation of 40 dB. Comment on your results.

Q7.2 Using MATLAB determine the lowest order of a digital IIR highpass filter of all
four types. The specifications are as follows: sampling rate of 3,500 Hz, passband edge
frequency of 1,050 Hz, stopband edge frequency of 600 Hz, passband ripple of 1 dB, and
a minimum stopband attenuation of 50 dB. Comment on your results.

Q7.3 Using MATLAB determine the lowest order of a digital IIR bandpass filter of all four
types. The specifications are as follows: sampling rate of 7 kHz, passband edge frequencies
at 1.4 kHz and 2.1 kHz, stopband edge frequencies at 1.05 kHz and 2.45 kHz, passband
ripple of 0.4 dB, and a minimum stopband attenuation of 50 dB. Comment on your results.

Q7.4 Using MATLAB determine the lowest order of a digital IIR bandstop filter of all
four types. The specifications are as follows: sampling rate of 12 kHz, passband edge
frequencies at 2.1 kHz and 4.5 kHz, stopband edge frequencies at 2.7 kHz and 3.9 kHz,
passband ripple of 0.6 dB, and a minimum stopband attenuation of 45 dB. Comment on
your results.

7.4 IIR Filter Design 119

Project 7.2 IIR Filter Design

After the filter type has been selected and its order estimated, the next step is to determine
the transfer function of the filter. To this end MATLAB provides functions for all four types
of filters. For designing Butterworth digital lowpass or bandpass filters, the command is

[num,den] = butter(N,Wn)

where the input parametersN and Wn are determined through the use of the function buttord,
and the output is the vectors num and den containing, respectively, the coefficients of the
numerator and denominator polynomials of the transfer function in ascending powers of
z−1. If Wn is a scalar, butter returns a lowpass transfer function of order N, and if Wn is
a two-element vector, it returns a bandpass transfer function of order 2N. For designing a
Butterworth digital highpass filter of order N, the command is

[num,den] = butter(N,Wn,’high’)

whereas, the command

[num,den] = butter(N,Wn,’stop’)

returns the transfer function of a Butterworth bandstop filter of order 2N provided Wn is a
two-element vector. For designing a Type 1 Chebyshev digital filter, the commands are

[num,den] = cheby1(N,Rp,Wn)
[num,den] = cheby1(N,Rp,Wn,’filtertype’)

For designing a Type 2 Chebyshev digital filter, the commands are

[num,den] = cheby2(N,Rs,Wn)
[num,den] = cheby2(N,Rs,Wn,’filtertype’)

Finally, for designing an elliptic digital filter, the commands are

[num,den] = ellip(N,Rp,Rs,Wn)
[num,den] = ellip(N,Rp,Rs,Wn,’filtertype’)

A lowpass transfer function of order N is returned in each case if Wn is a scalar, and a
bandpass transfer function of order 2N is returned if Wn is a two-element vector. In each of
the above commands, filtertype is high for designing a highpass filter with Wn being a
scalar, and filtertype is stop for designing a bandstop filter with Wn being a two-element
vector.

Program P7 1 illustrates the design of a Butterworth bandstop filter.

% Program P7_1
% Design of a Butterworth Bandstop Digital Filter
Ws = [0.4 0.6]; Wp = [0.3 0.7]; Rp = 0.4; Rs = 50;
% Estimate the Filter Order
[N1, Wn1] = buttord(Wp, Ws, Rp, Rs);
% Design the Filter
[num,den] = butter(N1,Wn1,’stop’);

120 Chapter 7 • Digital Filter Design

% Display the transfer function
disp(’Numerator coefficients are ’);disp(num);
disp(’Denominator coefficients are ’);disp(den);
% Compute the gain response
[g,w] = gain(num,den);
% Plot the gain response
plot(w/pi,g);grid
axis([0 1 -60 5]);
xlabel(’\omega /\pi’); ylabel(’Gain, dB’);
title(’Gain Response of a Butterworth Bandstop Filter’);

Questions:

Q7.5 Design the Butterworth bandstop filter by running Program P7 1. Write down the
exact expression for the transfer function generated. What are the filter specifications?
Does your design meet the specifications? Using MATLAB, compute and plot the filter’s
unwrapped phase response and the group delay response.

Q7.6 Modify Program P7 1 to design a Type 1 Chebyshev lowpass filter meeting the
specifications given in Question Q7.1. Write down the exact expression for the transfer
function generated. Does your design meet the specifications? Using MATLAB, compute
and plot the filter’s unwrapped phase response and the group delay response.

Q7.7 Modify Program P7 1 to design a Type 2 Chebyshev highpass filter meeting the
specifications given in Question Q7.2. Write down the exact expression for the transfer
function generated. Does your design meet the specifications? Using MATLAB, compute
and plot the filter’s unwrapped phase response and the group delay response.

Q7.8 Modify Program P7 1 to design an elliptic bandpass filter meeting the specifications
given in Question Q7.3. Write down the exact expression for the transfer function generated.
Does your design meet the specifications? Using MATLAB, compute and plot the filter’s
unwrapped phase response and the group delay response.

7.5 FIR Filter Design

Conceptually the simplest approach to FIR filter design is to simply truncate to a finite
number of terms the doubly infinite-length impulse response coefficients obtained by com-
puting the inverse discrete-time Fourier transform of the desired ideal frequency response.
However, a simple truncation results in an oscillatory behavior in the respective magnitude
response of the FIR filter, which is more commonly referred to as the Gibbs phenomenon.

The Gibbs phenomenon can be reduced by windowing the doubly infinite-length impulse
response coefficients by an appropriate finite-length window function. The functions fir1
and fir2 can be employed to design windowed FIR digital filters in MATLAB. Both
functions yield a linear-phase design.

7.5 FIR Filter Design 121

The function fir1 can be used to design conventional lowpass, highpass, bandpass, and
bandstop linear-phase FIR filters. The command

b = fir1(N,Wn)

returns in vector b the impulse response coefficients, arranged in ascending powers of z−1,
of a lowpass or a bandpass filter of order N for an assumed sampling frequency of 2 Hz.
For lowpass design, the normalized cutoff frequency is specified by a scalar Wn, a number
between 0 and 1. For bandpass design, Wn is a two-element vector [Wn1, Wn2] containing
the specified passband edges where 0 < Wn1 < Wn2 < 1. The command

b = fir1(N,Wn,’high’)

with N an even integer, is used for designing a highpass filter. The command

b = fir1(N,Wn,’stop’)

with Wn a two-element vector, is employed for designing a bandstop FIR filter. If none is
specified, the Hamming window is employed as a default. The command

b = fir1(N, Wn, taper)

makes use of the specified window coefficients of length N+1 in the vector taper. However,
the window coefficients must be generated a priori using an appropriate MATLAB function
such as blackman, hamming, hanning, chebwin, or kaiser. The commands to use are
of the following forms:

taper = blackman(N) taper = hamming(N) taper = hanning(N)
taper = chebwin(N) taper = kaiser(N, beta)

The function fir2 can be used to design linear-phase FIR filters with arbitrarily shaped
magnitude responses. In its basic form, the command is

b = fir2(N, fpts, mval)

which returns in the vector b of length N+1 the impulse response coefficients, arranged in
ascending powers of z−1. fpts is the vector of specified frequency points, arranged in
an increasing order, in the range 0 to 1 with the first frequency point being 0 and the last
frequency point being 1. As before, the sampling frequency is assumed to be 2 Hz. mval is
a vector of specified magnitude values at the specified frequency points and therefore must
also be of the same length as fpts. The Hamming window is used as a default. To make
use of other windows, the command to use is

b = fir2(N, fpts, mval,taper)

where the vector taper contains the specified window coefficients.

A more widely used linear-phase FIR filter design is based on the Parks–McClellan algo-
rithm, which results in an optimal FIR filter with an equiripple weighted error E(ω) defined
in Eq. (7.39). It makes use of the Remez optimization algorithm and is available in MAT-
LAB as the function firpm. This function can be used to design any type of single-band
or multiband filter, the differentiator, and the Hilbert transformer. In its basic form, the

122 Chapter 7 • Digital Filter Design

command

b = firpm(N,fpts,mval)

returns a vector b of length N+1 containing the impulse response coefficients of the desired
FIR filter in ascending powers of z−1. fpts is the vector of specified frequency points,
arranged in increasing order, in the range 0 to 1 with the first frequency point being 0
and the last frequency point being 1. As before, the sampling frequency is assumed to be
2 Hz. The desired magnitudes of the FIR filter frequency response at the specified band
edges are given by the vector mval, with the elements given in equal-valued pairs. The
desired magnitudes between two specified consecutive frequency points f(k) and f(k+1)
are determined according to the following rules. For k odd, the magnitude is a line segment
joining the points {mval(k), fpts(k)} and {mval(k+1), fpts(k+1)}, whereas, for k
even, it is unspecified with the frequency range [fpts(k), fpts(k+1)] being a transition
or “don’t care” region. The vectors fpts and mval must be of the same length with the
length being even. Figure 7.4 illustrates the relationship between the vectors fpts and
mval given by

fpts = [0 0.2 0.4 0.7 0.8 1.0]
mval = [0.5 0.5 1.0 1.0 0.3 0.3]

D
on

't
ca

re
 r

eg
io

n

D
on

't
ca

re
 r

eg
io

n
1.0

0.5

0 0.2 0.4 0.6 0.8 1.0

D
es

ir
ed

 m
ag

ni
tu

de
 r

es
po

ns
e

(m
)

Specified frequency points (f)

Figure 7.4 Illustration of relationship between vectors fpts and mval.

The desired magnitude responses in the passband(s) and the stopband(s) can be weighted
by an additional vector wgts included as the argument of the function firpm. The function
can be used to design equiripple Types 1, 2, 3, and 4 linear-phase FIR filters. Types 1 and
2 are the default designs for order N even and odd, respectively. Types 3 (N even) and 4 (N
odd) are used for specialized filter designs, the Hilbert transformer and the differentiator.
To design these two types of FIR filters the flags hilbert and differentiator are used
for ftype in the last two versions of firpm. The command

b = firpm(N,fpts,mval,wgts)

is used to design an FIR filter weighted in each band by the elements of the weight vector
wgts whose length is thus half that of fpts. The elements of the vector wgts can be

7.5 FIR Filter Design 123

determined from the specified passband and stopband ripples by dividing the maximum
ripple value by the ripple values. To design a Hilbert transformer or a differentiator, use the
forms

firpm(N,fpts,mval,ftype)
firpm(N,fpts,mval,wgts,ftype)

where ftype is the string hilbert or differentiator. In the case of a Hilbert trans-
former design, the smallest element in fpts should not be a 0.

The order N of the FIR filter to meet the given specifications can be estimated using either
Kaiser’s formula of Eq. (7.7) or Herrmann’s formula of Eq. (7.8). The MATLAB function
kaiord given below implements Kaiser’s formula:

function N = kaiord(Fp, Fs, dp, ds, FT)
% Computation of the length of a linear-phase
% FIR multiband filter using Kaiser’s formula
% dp is the passband ripple
% ds is the stopband ripple
% Fp is the passband edge in Hz
% Fs is the stopband edge in Hz
% FT is the sampling frequency in Hz.
% If none specified default value is 2
% N is the estimated FIR filter order
if nargin == 4,

FT = 2;
end
if length(Fp) > 1,

TBW = min(abs(Fp(1) - Fs(1)), abs(Fp(2) - Fs(2)));
else

TBW = abs(Fp - Fs);
end
num = -20*log10(sqrt(dp*ds)) - 13;
den = 14.6*TBW/FT;
N = ceil(num/den);

The function kaiserord in the Signal Processing Toolbox can also be used for estimating
the filter order using Kaiser’s formula. It can be used in one of the following forms:

[N, Wn, beta, ftype] = kaiserord(fedge, aval, dev)
[N, Wn, beta, ftype] = kaiserord(fedge, aval, dev, FT)
c = kaiserord(fedge, aval, dev, FT, ’cell’)

where FT is the sampling frequency in Hz whose default value is 2 Hz if not specified;
fedge is a vector of bandedge frequencies in Hz, in increasing order between 0 and FT/2;
and aval is a vector specifying the desired values of the magnitude response at the specified

124 Chapter 7 • Digital Filter Design

bandedges given by fedge. The length of fedge is 2 less than twice the length of aval and
therefore must be even. dev is a vector of maximum deviations or ripples in dB allowable
for each band. If the deviations specified are unequal, the smallest one is used for all bands.
The output data are in the desired format for use in fir1, with normalized bandedges Wn
and the parameter beta used for computing the window coefficients as given in Eq. (7.36).
The string ftype specifies the filter type for fir1. It is high for highpass filter design, and
stop for bandstop filter design. The last form of kaiserord specifies a cell array whose
elements are parameters to fir1.

The MATLAB function firpmord implements the formula of Eq. (7.8). It can be used in
one of the following forms:

[N,fts,mval,wgts] = firpmord(fedge,aval,dev)
[N,fts,mval,wgts] = firpmord(fedge,aval,dev,FT)

where FT is the sampling frequency in Hz whose default value is 2 Hz if not specified,
fedge is a vector of bandedge frequencies in Hz, in increasing order between 0 and FT/2;
and aval is a vector specifying the desired values of the magnitude response at the specified
bandedges given by fedge. The length of fedge is 2 less than twice the length of aval and
therefore must be even. dev is a vector of maximum deviations or ripples in dB allowable
for each band. A third form of firpmord is given by

c = firpmord(fedge,aval,dev,FT, ’cell’)

and specifies a cell array whose elements are the parameters to firpm.

In some cases, the order N determined using either method may not result in an FIR filter
meeting the original specifications. If it does not, the order should either be increased or
decreased by 1 gradually until the specifications are met. Moreover, the order estimates
may be highly inaccurate for very narrowband or very wideband FIR filters.

Project 7.3 Gibb’s Phenomenon

The occurrence of Gibb’s phenomenon can be illustrated by considering the design of an FIR
filter obtained by truncating the impulse response of the ideal filters given by Eqs. (7.16),
(7.18)–(7.20), (7.22), (7.24) and (7.26), and then computing their frequency responses. The
truncated impulse response coefficients of a lowpass filter can be generated in MATLAB
using the function sinc, which can also be used with simple modifications to generate the
truncated impulse response coefficients of a highpass, bandpass, or bandstop filter.

Questions:

Q7.9 Using the function sincwrite a MATLAB program to generate the impulse response
coefficients of four zero-phase lowpass filters with cutoffs at ωc = 0.4π and of lengths 81,
61, 41, and 21, respectively, and then compute and plot their magnitude responses. Use
the colon “:” operator to extract the impulse response coefficients of the shorter length

7.5 FIR Filter Design 125

filters from that of the length-81 filter. Examine the oscillatory behavior of the frequency
responses of each filter on both sides of the cutoff frequency. What is the relation between
the number of ripples and the length of the filter? What is the relation between the heights
of the largest ripples and the length of the filter? How would you modify the above program
to generate the impulse response coefficients of a zero-phase lowpass filter of even lengths?

Q7.10 Using the function sinc write a MATLAB program to generate the impulse re-
sponse coefficients of a zero-phase length-45 highpass filter with a cutoff at ωc = 0.4π
and then compute and plot its magnitude response. Examine the oscillatory behavior of the
frequency responses of each filter on both sides of the cutoff frequency. How would you
modify the above program to generate the impulse response coefficients of a zero-phase
highpass filter of even length?

Q7.11 Write a MATLAB program to generate the impulse response coefficients of four
zero-phase differentiators of lengths 81, 61, 41, and 21, respectively, and then compute
and plot their magnitude responses. The following code fragments show how to generate a
differentiator of length 2M+1.

n = 1:M;
b = cos(pi*n)./n;
num = [-fliplr(b) 0 b];

Examine the oscillatory behavior of the frequency response of the differentiator for each
case. What is the relation between the number of ripples and the length of the differentiator?
What is the relation between the heights of the largest ripples and the length of the filter?

Q7.12 Write a MATLAB program to generate the impulse response coefficients of four
discrete-time Hilbert transformers of lengths 81, 61, 41, and 21, respectively, and then
compute and plot their magnitude responses. The following code fragments show how to
generate a Hilbert transformer of length 2M+1.

n = 1:M;
c = sin(pi*n/2);
b = 2*(c.*c)./(pi*n);
num = [-fliplr(b) 0 b];

Examine the oscillatory behavior of the frequency responses of the Hilbert transformer for
each case. What is the relation between the number of ripples and the length of the Hilbert
transformer? What is the relation between the heights of the largest ripples and the length
of the filter?

Project 7.4 Estimation of Order of FIR Filter

Questions:

Q7.13 Using the function kaiord, estimate the order of a linear-phase lowpass FIR
filter with the following specifications: passband edge = 2 kHz, stopband edge = 2.5 kHz,

126 Chapter 7 • Digital Filter Design

passband ripple δp = 0.005, stopband ripple δs = 0.005, and sampling rate of 10 kHz. What
are the purposes of the commands ceil and nargin in the function kaiord?

Q7.14 Repeat Question Q7.13 for the following cases: (a) sampling rate of 20 kHz, (b)
δp = 0.002 and δs = 0.002, and (c) stopband edge = 2.3 kHz. Compare the filter length
obtained in each case with that obtained in Question Q7.13. Comment on the effect of the
sampling rate, ripples, and the transition bandwidth on the filter order.

Q7.15 Repeat Question Q7.13 using the function kaiserord. Compare the value of the
filter order obtained with that obtained in Question Q7.13.

Q7.16 Repeat Question Q7.13 using the function firpmord. Compare the value of the
filter order obtained with those obtained in Questions Q7.13 and Q7.15.

Q7.17 Using the function kaiord, estimate the order of a linear-phase bandpass FIR filter
with the following specifications: passband edges = 1.8 and 3.6 kHz, stopband edges 1.2
and 4.2 kHz, passband ripple δp = 0.1, stopband ripple δs = 0.02, and sampling rate of 12
kHz.

Q7.18 Repeat Question Q7.17 using the function kaiserord. Compare the value of the
filter order obtained with that obtained in Question Q7.17.

Q7.19 Repeat Question Q7.17 using the function firpmord.Compare the value of the
filter order obtained with that obtained in Questions Q7.17 and Q7.18.

Project 7.5 FIR Filter Design

Questions:

Q7.20 Using the function fir1, design a linear-phase FIR lowpass filter meeting the
specifications given in Question Q7.13 and plot its gain and phase responses. Use the
order estimated using Kaiser’s formula in Question Q7.13. Show the filter coefficients in
a tabular form. Does your design meet the specifications? If it does not, adjust the filter
order until the design meets the specifications. What is the order of the filter meeting the
specifications?

Q7.21 Repeat Question Q7.20 using each of the following windows: Hanning, Blackman,
and Dolph–Chebyshev windows.

Q7.22 Repeat Question Q7.20 using the function firpm.

Q7.23 Design an FIR lowpass filter using a Kaiser window. The filter specifications are:
ωp = 0.3ł, ωs 0.4ł, and As = 50 dB. Note that the function kaiser requires the values of
the parameter β and the order N which must first be calculated using Eqs. (7.36) and (7.37),
respectively. Does your design meet the specifications?

Q7.24 Repeat Question Q7.23 using the functions kaiserord and fir1.

7.6 Background Reading 127

Q7.25 Using fir2 design an FIR filter of order 95 with three different constant magnitude
levels: 0.4 in the frequency range 0 to 0.25, 1.0 in the frequency range 0.3 to 0.45, and 0.8
in the frequency range 0.5 to 1.0. Plot the magnitude response of the filter designed. Does
your design meet the specifications?

Q7.26 Using firpm, design the FIR bandpass filter with specifications given in Question
Q7.17 and of order obtained using kaiserord. The vector wgts needed in the function
firpm is given by

wgts = max(δp, δs)[1/δp, 1/δs]

Does your design meet the specifications? If it does not, adjust the filter order until the
design meets the specifications. What is the order of the filter meeting the specifications?

Q7.27 Using firpm, design an FIR bandpass filter with the following specifications:
passband edges = 1.8 and 3.0 kHz, stopband edges = 1.5 and 4.2 kHz, passband ripple
δp = 0.1, stopband ripple δs = 0.02, and sampling rate of 12 kHz. Estimate the filter
order using kaiserord. Is your design an optimal FIR filter? Does your design meet
the specifications? If it does not, does increasing the filter order help in meeting the
specifications? Are the specifications met by a filter with a lower order than that obtained
using kaiserord? In the case of unequal transition bands, the filter designed using firpm
may exhibit unsatisfactory behavior in the larger transition bandwidth in its gain response.
One way to improve the behavior is to reduce the transition band by moving the stopband
edge until the design meets the specifications with smooth roll-off in the transition bands.
Try this approach and determine the new specifications, with passband edges remaining
fixed, that provide smooth roll-off in the transition bands.

7.6 Background Reading

[1] A. Antoniou. Digital Filters: Analysis, Design, and Applications. McGraw-Hill, New
York NY, second edition, 1993. Chs. 7, 9.

[2] E. Cunningham. Digital Filtering: An Introduction. Houghton-Mifflin, Boston MA,
1992. Secs. 4.2, 4.3, 4.5, 4.6, 5.2–5.5.

[3] D.J. DeFatta, J.G. Lucas, and W.S. Hodgkiss. Digital Signal Processing: A System
Design Approach. Wiley, New York NY, 1988. Chs. 4, 5.

[4] L.B. Jackson. Digital Filters and Signal Processing. Kluwer, Boston, MA, third
edition, 1996. Chs. 8, 9.

[5] R. Kuc. Introduction to Digital Signal Processing. McGraw-Hill, New York NY,
1988. Chs. 8, 9.

[6] L.C. Ludeman. Fundamentals of Digital Signal Processing. Harper & Row, New
York NY. 1986. Ch. 4.

[7] S.K. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-Hill,
New York NY, third edition, 2005. Chs. 9 and 10.

128 Chapter 7 • Digital Filter Design

[8] A.V. Oppenheim, R.W. Schafer, and J. R. Buck. Discrete-Time Signal Processing.
Prentice-Hall, Upper Saddle River NJ, second edition, 1998. Ch. 7.

[9] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, Upper Saddle River
NJ, 1996. Ch. 2 and Chs. 10, 11.

[10] B. Porat. A Course in Digital Signal Processing. Wiley, New York NY, 1996. Secs.
9.2–9.6, 10.9.

[11] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms,
and Applications. Prentice-Hall, Upper Saddle River NJ, third edition, 1996, Ch. 8.

[12] R.A. Roberts and C.T. Mullis. Digital Signal Processing. Addison-Wesley, Reading
MA, 1987. Ch. 6.

Digital Filter
Implementation 8
8.1 Introduction

After the digital transfer function G(z), obtained by approximating the given frequency
response specifications, has been realized in a suitable filter form, the structure is next
implemented in either hardware or software form. In this laboratory exercise you will
investigate the software implementation of an IIR or FIR digital filter structure using MAT-
LAB.

8.2 Background Review

R8.1 A simple technique to verify the structure is based on the convolution sum rela-
tion between the transfer function coefficients and the filter’s impulse response samples
[Mit77b]. Let H(z) be an N th order causal IIR transfer function given by

H(z) =
p0 + p1 z−1 + p2 z−2 + . . . + pN z−N

1 + d1 z−1 + d2 z−2 + . . . + dN z−N
. (8.1)

If {h[n]} denotes its unit sample response, then

H(z) =
∞∑

n=0

h[n] z−n. (8.2)

>From Eqs. (8.1) and (8.2) it follows that

pn = h[n] ©∗ dn, n = 0, 1, 2, (8.3)

The first 2N + 1 equations from Eq. (8.3) can be expressed in matrix form as

p = H1

[
1
d

]
, (8.4)

0 = [h H2]
[

1
d

]
, (8.5)

where

p =

⎡
⎢⎢⎢⎣

p0

p1

...
pN

⎤
⎥⎥⎥⎦ , d =

⎡
⎢⎢⎢⎣

d1

d2

...
dN

⎤
⎥⎥⎥⎦ , 0 =

⎡
⎢⎣

0
...
0

⎤
⎥⎦ , (8.6)

129

130 Chapter 8 • Digital Filter Implementation

H1 =

⎡
⎢⎢⎢⎣

h[0] 0 . . . 0
h[1] h[0] . . . 0

...
...

. . .
...

h[N] h[N − 1] . . . h[0]

⎤
⎥⎥⎥⎦ , (8.7)

h =

⎡
⎢⎣

h[N + 1]
...

h[2N]

⎤
⎥⎦ , H2 =

⎡
⎢⎣

h[N] . . . h[1]
...

. . .
...

h[2N − 1] . . . h[N]

⎤
⎥⎦ , (8.8)

Solving Eq. (8.5) the vector d composed of the denominator coefficients

d = −H−1
2 h, (8.9)

is first obtained. Substituting Eq. (8.9) in Eq. (8.4) the vector p containing the numerator
coefficients

p = H1

[
1

−H−1
2 h

]
. (8.10)

is next determined.

R8.2 The basis for the design of tunable digital filters is the spectral transformation of
the complex variable z by which a given digital filter realization with a specified cutoff
frequency can be tuned to arrive at another realization with a different cutoff frequency by
replacing z with F (z). Thus, if Gold(z) is the transfer function of the original realization,
the transfer function of the new structure is Gnew(z) where

Gnew(z) = Gold(z)
∣∣
z−1=F−1(z), (8.11)

where F−1(z) is an appropriately chosen stable allpass function with coefficients that are
the tuning parameters [Con70]. One straightforward way to implement this transformation
would be to replace each delay block in the realization of Gold(z) with an allpass structure
realizing F−1(z). However, such an approach leads, in general, to a structure realizing
Gnew(z) with delay-free loops that cannot be implemented.

A very simple practical modification of the above approach applied to a parallel allpass
realization does not result in a structure with delay-free loops [Mit90]. A bounded real
transfer function G(z) with a symmetric numerator and having a power complementary
transfer function H(z) with an antisymmetric numerator can be realized in the form

G(z) = 1
2 {A0(z) + A1(z)} , (8.12)

where A0(z) and A1(z) are stable allpass filters. The above conditions on G(z) are satisfied
by all odd-order lowpass Butterworth, Chebyshev, and elliptic transfer functions.

The allpass filters A0(z) and A1(z) are realized as a cascade of first-order and second-order
sections of the form depicted in Figures 6.9–6.11. These structures use only one multiplier
and one delay for the realization of a first-order allpass function, and two multipliers and
two delays for the realization of a second-order allpass function.

8.2 Background Review 131

For the tuning of the cutoff frequency of a lowpass IIR filter realized by a parallel allpass
structure, the lowpass-to-lowpass transformation given by [Con70]

z−1 → F (z−1) =
z−1 − α

1 − α z−1
, (8.13)

is employed where the parameter α is related to the old and new cutoff frequencies, ωc and
ω̂c, respectively, through

α =
sin [(ωc − ω̂c)/2]
sin [(ωc + ω̂c)/2]

. (8.14)

Substitution of the transformation of Eq. (8.13) in a Type 1 first-order allpass transfer
function1

a1(z) =
d1 + z−1

1 + d1 z−1
, (8.15)

results in a transformed first-order allpass transfer function given by

â1(z) = a1(z) |
z−1= z−1−α

1−αz−1

∼=
[
d1 + α(d2

1 − 1)
]
+ z−1

1 + [d1 + α(d2
1 − 1)] z−1

, (8.16)

assuming α to be small. â1(z) is a Type 1 first-order allpass transfer function with a
coefficient that is now a linear function of α. In the case of a Type 3 second-order allpass
transfer function2

a2(z) =
d2 + d1z

−1 + z−2

1 + d1z−1 + d2z−2
, (8.17)

the transformation of Eq. (8.13) yields

â2(z) = a2(z) |
z−1= z−1−α

1−αz−1
=

d2 + d1(z−1−α
1−αz−1) + (z−1−α

1−αz−1)2

1 + d1(z−1−α
1−αz−1) + d2(z−1−α

1−αz−1)2

∼= [d2 + α d1(d2 − 1)] + [d1 − 2 α(1 + d2) + α d2
1] z

−1 + z−2

1 + [d1 − 2 α(1 + d2) + α d2
1] z−1 + [d2 + α d1(d2 − 1)] z−2

, (8.18)

which is seen to be a Type 3 second-order allpass transfer function with coefficients that
are linear functions of α.

By applying a lowpass-to-bandpass transformation [Con70]

z−1 → F (z−1) = −z−1 z−1 + β

1 + β z−1
, (8.19)

to a tunable lowpass IIR filter, we can design a tunable bandpass filter whose center fre-
quency ωo is tuned by adjusting the parameter β = cos ωo and whose bandwidth is tuned
by changing α. Unlike the lowpass-to-lowpass transformation of Eq. (8.13), the transfor-
mation can be directly implemented on the structure realizing the tunable lowpass filter by
replacing each delay with an allpass structure cascaded with a delay.

1See R6.13.
2see R6.15.

132 Chapter 8 • Digital Filter Implementation

R8.3 A very simple approach to the design of a tunable FIR filter is based on the windowed
Fourier series approach [Jar88]. For an ideal FIR lowpass filter Hd(z) with a zero-phase
response

Hd(ejω) =
{

1, for 0 ≤ ω ≤ ωc,
0, for ωc ≤ ω ≤ π,

(8.20)

the impulse response coefficients are given by

hd[n] =
sin(ωcn)

πn
, 0 ≤ |n| < ∞. (8.21)

The above expression is then truncated to arrive at the coefficients of a realizable approxi-
mation given by

hLP [n] =

⎧⎨
⎩

c[n] ωc, for n = 0,
c[n] sin(ωcn), for 1 ≤ |n| ≤ N,
0, otherwise,

(8.22)

where ωc is the 6-dB cutoff frequency and

c[n] =
{

1/π, for n = 0,
1/πn, for 1 ≤ |n| ≤ N.

(8.23)

It follows from the above that once an FIR lowpass filter has been designed for a given cutoff
frequency, it can be tuned simply by changing ωc and recomputing the filter coefficients
according to the above expression. It can be shown that Eq. (8.22) can also be used to design
a tunable FIR lowpass filter by equating the coefficients of a prototype filter developed using
any of the FIR filter design methods with those of Eq. (8.22) and solving for c[n]. Thus,
if hLP [n] denotes the coefficients of the prototype lowpass filter designed for a cutoff
frequency ωc, from Eq. (8.22) the constants c[n] are given by

c[0] =
hLP [0]

ωc
,

c[n] =
hLP [n]

sin(ωcn)
, 1 ≤ |n| ≤ N. (8.24)

Then, the coefficients ĥLP [n] of the transformed FIR filter with a cutoff frequency ω̂c are
given by

ĥLP [0] = c[0] ω̂c =
(

ω̂c

ωc

)
hLP [0],

ĥLP [n] = c[n] sin(ω̂cn) =
(

sin(ω̂cn)
sin(ωcn)

)
hLP [n], 1 ≤ |n| ≤ N. (8.25)

This tuning procedure works well for filters with equal passband and stopband ripples. The
prototype filter should be designed such that its coefficients have values not too close to
zero.

8.2 Background Review 133

R8.4 The N -point discrete Fourier transform (DFT) X[k], 0 ≤ k ≤ N −1, of a length-N
sequence x[n], 0 ≤ n ≤ N−1, is given by the N samples of its z-transform X(z) evaluated
on the unit circle at N equally spaced points z = ej2πk/N , 0 ≤ k ≤ N − 1:

X[k] = X(z)|z=ej2πk/N =
N−1∑
n=0

x[n]e−j2πkn/N , 0 ≤ k ≤ N − 1. (8.26)

A direct computation of the N -point DFT using Eq. (8.26) therefore requires, for a complex-
valued length-N sequence, N2 complex multiplications and N(N − 1) ≈ N2 complex
additions.

If N is even, X(z) can be expressed in a two-band polyphase form as (see R10.9):

X(z) = X0(z2) + z−1X1(z2), (8.27)

where X0(z) is the z-transform of the length-(N/2) subsequence formed from the even-
indexed samples and X1(z) is the z-transform of the length-(N/2) subsequence formed
from the odd-indexed samples of x[n], that is,

X0(z) =

N
2 −1∑
n=0

x0[n]z−n =

N
2 −1∑
n=0

x[2n]z−n, (8.28)

X1(z) =

N
2 −1∑
n=0

x1[n]z−n =

N
2 −1∑
n=0

x[2n + 1]z−n, (8.29)

Hence, the N -point DFT X[k] can be computed using

X[k] = X0[〈k〉N/2] + W k
NX1[〈k〉N/2], 0 ≤ k ≤ N − 1, (8.30)

where X0[k] and X1[k] are the N
2 -point DFTs of the N

2 -length sequences, x0[n] and x1[n],
respectively. An implementation of the N -point DFT using Eq. (8.30) now requires N+ N2

2

complex multiplications and approximately N + N2

2 complex additions. This process can
be continued if N is a power of 2 until the N -point DFT computation reduces to a weighted
combination of length-2 DFTs. This is the basic idea behind the decimation-in-time fast
Fourier transform (FFT) algorithm. It can be shown that in the general case, the total
number of complex multiplications and complex additions is N(log2N). Further reduction
in computational complexity is possible by exploiting the symmetry property of WN .

R8.5 The sine of a number x can be approximated using the power series expansion
[Abr72]

sin(x) ∼= x − 0.166667x3 + 0.008333x5 − 0.0001984x7 + 0.0000027x9, (8.31)

where the argument x is in radians, and its range is restricted to the first quadrant, that is,
from 0 to π/2. If x is outside this range, its sine can be computed by making use of the
identities: sin(−x) = − sin(x), and sin(π

2 + x) = sin(π
2 − x).

134 Chapter 8 • Digital Filter Implementation

R8.6 The arctangent of a number x, where −1 ≤ x ≤ 1, can be computed by [Abr72]

tan−1(x) ∼= 0.999866x − 0.3302995x3 + 0.180141x5

− 0.085133x7 + 0.0208351x9. (8.32)

The identity tan−1(x) = − tan−1(1/x) can be employed to compute the arctangent of x
if x ≤ 1.

R8.7 The square root of a positive number x in the range 0.5 ≤ x ≤ 1 can be evaluated
using the truncated polynomial approximation [Mar92]

√
x ∼= 0.2075806 + 1.454895x − 1.34491x2

+1.106812 x3 − 0.536499x4 + 0.1121216x5. (8.33)

If x is outside the range from 0.5 to 1, it can be multiplied by a binary constant K2 to bring
the product x′ = K2x into the desirable range, compute

√
x′ using Eq. (8.25), and then

determine
√

x =
√

x′/K.

8.3 MATLAB Commands Used

The MATLAB commands you will encounter in this exercise are as follows:

General Purpose Commands

disp length

Operators and Special Characters

: . + - * / ;
% < ~=

Language Constructs and Debugging

end for function if

Elementary Matrices and Matrix Manipulation

fliplr nargin pi : zeros

Elementary Functions

abs cos log10 real sin sqrt

8.4 Simulation of IIR Digital Filters 135

Data Analysis

conv max

Two-Dimensional Graphics

axis clf grid legend plot
xlabel ylabel stem title

Signal Processing Toolbox

butter buttord ellip ellipord filter
firpm freqz tf2zp zp2sos

For additional information on these commands, see the MathWorks Online Documentation
[Mat05] or type help commandname in the Command window. A brief explanation of the
MATLAB functions used here can be found in Appendix B.

8.4 Simulation of IIR Digital Filters

A causal IIR transfer function of order N is characterized by a transfer function H(z):

H(z) =
∑N

k=0 pk z−k

1 +
∑N

k=1 dk z−k
. (8.34)

A number of methods are available for the realization of H(z) resulting in a variety of
different structures. Here only some of these structures will be used to demonstrate the
simulation of IIR filters on MATLAB. The function filter in the Signal Processing Tool-
box of MATLAB simulates a causal IIR filter implemented in the transposed Direct Form
II structure as indicated in Figure 6.6(b) for a third-order filter.3 The basic forms of this
function are as follows:

y = filter(num,den,x)
[y,sf] = filter(num,den,x,si)

The numerator and the denominator coefficients are contained in the vectors num and den,
respectively. These vectors do not have to be the same size. The input vector is x while the
output vector generated by the filtering algorithm is y. If the first coefficient of den is not
equal to 1, the program automatically normalizes all filter coefficients in num and den to
make it equal to 1.

3See R6.9.

136 Chapter 8 • Digital Filter Implementation

In the second form of the function filter, the initial conditions of the delay (state) variables
can be specified through the argument si. Moreover, the function filter can return the final
values of the delay (state) variables through the output vector sf. The size of the initial
(final) condition vector si (sf) is one less than the maximum of the sizes of the filter
coefficient vectors num and den. The final values of the state variables given as vector sf
are useful if the input vector to be processed is very long and needs to be segmented into
small blocks of data for processing in stages. In such a situation, after the ith block of input
data has been processed, the final state vector sf is fed as the initial state vector si for the
processing of the (i + 1)th block of input data, and so on.

To implement a causal IIR filter implemented in the Direct Form II structure, the function
direct2 given below can be employed.

function [y,sf] = direct2(p,d,x,si);
% Y = DIRECT2(P,D,X) filters input data vector X with
% the filter described by vectors P and D to create the
% filtered data Y. The filter is a "Direct Form II"
% implementation of the difference equation:
% y(n) = p(1)*x(n) + p(2)*x(n-1) + ... + p(np+1)*x(n-np)
% - d(2)*y(n-1) - ... - d(nd+1)*y(n-nd)
% [Y,SF] = DIRECT2(P,D,X,SI) gives access to initial and
% final conditions, SI and SF, of the delays.
dlen = length(d); plen = length(p);
N = max(dlen,plen); M = length(x);
sf = zeros(1,N-1); y = zeros(1,M);
if nargin ~= 3,

sf = si;
end
if dlen < plen,

d = [d zeros(1,plen - dlen)];
else
p = [p zeros(1, dlen - plen)];

end
p = p/d(1); d = d/d(1);
for n = 1:M;

wnew = [1 -d(2:N)]*[x(n) sf]’;
K = [wnew sf];
y(n) = K*p’;
sf = [wnew sf(1:N-2)];

end

For developing the cascade realization of an IIR transfer function, Program P6 1 can be used.
Likewise, to develop the parallel realization Program P6 2 can be utilized. In the simulation
of a cascade or a parallel-form structure, the individual first- and second-order sections can
be realized either in Direct Form II (using function direct2) or in the transposed Direct
Form II (using the function filter).

8.4 Simulation of IIR Digital Filters 137

Project 8.1 Structure Simulation and Verification

The structure being simulated can be verified in MATLAB by computing its transfer function
with the aid of the function strucver given below.

function [p,d] = strucver(ir,N);
H = zeros(2*N+1,N+1);
H(:,1) = ir’;
for n = 2:N+1;

H(:,n) = [zeros(1,n-1) ir(1:2*(N+1)-n)]’;
end
H1 = zeros(N+1,N+1);
for k = 1:N+1;

H1(k,:) = H(k,:);
end
H3 = zeros(N,N+1);
for k = 1:N;

H3(k,:) = H(k+N+1,:);
end
H2 = H3(:,2:N+1);
hf = H3(:,1);
% Compute the denominator coefficients
d = -(inv(H2))*hf;
% Compute the numerator coefficients
p = H1*[1;d];
d = [1; d];

Program P8 1 illustrates the design of a causal IIR filter and its simulation in Direct Form
II. It employs the functions strucver and direct2 described earlier.

% Program P8_1
Wp = [0.4 0.5]; Ws = [0.1 0.8]; Rp = 1; Rs = 30;
[N1, Wn1] = buttord(Wp, Ws, Rp, Rs);
[num,den] = butter(N1,Wn1);
disp(’Numerator coefficients are ’);disp(num);
disp(’Denominator coefficients are ’);disp(den);
impres = direct2(num,den,[1 zeros(1,4*N1)]);
[p,d] = strucver(impres,2*N1);
disp(’Actual numerator coeffs are ’); disp(p’);
disp(’Actual denominator coeffs are ’); disp(d’);

Questions:

Q8.1 What type of filter is being designed by Program P8 1? What are its specifications?
What is the order of the filter? How many impulse response samples are being computed

138 Chapter 8 • Digital Filter Implementation

to verify the simulation? Is the simulation correct?

Q8.2 Modify Program P8 1 to simulate the filter in transposed Direct Form II and run the
modified prgram. Is the simulation correct?

Q8.3 Develop a cascade realization of the transfer function generated in Question Q8.1
and write a program to simulate it with each individual section implemented in Direct Form
II. Verify the simulation.

Q8.4 Repeat Question Q8.3 with the sections in the cascade in reverse order.

Q8.5 Develop a Parallel Form I realization of the transfer function generated in Question
Q8.1 and write a program to simulate it with each individual section implemented in direct
form II. Verify the simulation.

Q8.6 Develop a Parallel Form II realization of the transfer function generated in Ques-
tion Q8.1 and write a program to simulate it with each individual section implemented in
transposed Direct Form II. Verify the simulation.

It is quite straightforward to write a MATLAB program to simulate any digital filter structure.
We consider next the simulation of the Gray-Markel cascaded lattice realization of an IIR
transfer function. Figure 8.1 shows the cascaded lattice realization of the causal third-order
transfer function

H(z) =
0.44 z−1 + 0.36 z−2 + 0.02 z−3

1 + 0.4 z−1 + 0.18 z−2 − 0.2 z−3
(8.35)

d3

α1 α2 α3 α4

z 1
_

z 1
_

z 1
_

_ d3

d2' d1"

d2'
_ d1"

_

x [n]1

y [n]1
q [n]1

q [n]2q [n]3

y [n]o

3w [n] w [n]2

Figure 8.1 Gray–Markel cascaded lattice realization of the IIR transfer function of Eq. (8.35).

The multiplier coefficients of Figure 8.1 are given by:

d3 = −0.2, d2 = 0.270833, d1 = 0.35736,

α1 = 0.02, α2 = 0.352, α3 = 0.276533, α4 = −0.19016.

From Figure 8.1 the equations describing this structure are obtained by inspection as:

w3[n] = x1[n] − d3q3[n − 1],
w2[n] = w3[n] − d′2q2[n − 1],

8.4 Simulation of IIR Digital Filters 139

q1[n] = w2[n] − d′′1q1[n − 1],
q2[n] = d′′1q1[n] + q1[n − 1],
q3[n] = d′2w2[n] + q2[n − 1],
y1[n] = d3w3[n] + q3[n − 1],
yo[n] = α1y1[n] + α2q3[n] + α3q2[n] + α4q1[n].

Program P8 2 for the simulation of this structure is given below. The input vector x1
consists of the first seven coefficients of a unit sample sequence. The output vector yo
contains the first seven impulse response coefficients, which are then used to determine
the numerator and the denominator coefficients of the actual transfer function implemented
using the method described in R8.1.

% Program P8_2
% Simulation of IIR Cascaded Lattice Structure
%
x1 = [1 zeros(1,6)]; % Generate unit impulse sequence
q3old = 0; q2old = 0; q1old = 0; % Initial conditions
% Enter filter coefficients
D1 = 0.357377; D2 = 0.27083; D3 =-0.2;
alpha1 = 0.02; alpha2 = 0.352;
alpha3 = 0.276533; alpha4 = - 0.19016;
% Compute the first 7 impulse response samples
for n = 1:7

w3 = x1(n) - D3*q3old;
w2 = w3 - D2*q2old;
q1new = w2 - D1*q1old;
q2new = D1*q1new + q1old;
q3new = D2*w2 + q2old;
y1 = D3*w3 + q3old;
yo(n) = alpha1*y1 + alpha2*q3new +

alpha3*q2new + alpha4*q1new;
q3old = q3new; q2old = q2new; q1old = q1new;

end
[num,den] = strucver(yo,3);
disp(’Numerator coefficients are’);disp(num’);
disp(’Denominator coefficients are’);disp(den’)

Questions:

Q8.7 Run Program P8 2 and generate the transfer function of the cascaded lattice structure
being simulated. Is the transfer function generated the same as in Eq. (8.35)?

Q8.8 Using MATLAB, generate the transfer function of an elliptic lowpass filter with the
following specifications: passband edge at 0.4π, stopband edge at 0.6π, passband ripple
of 0.5 dB, and minimum stopband attenuation of 28 dB. Using Program P6 3 develop its

140 Chapter 8 • Digital Filter Implementation

Gray-Markel cascaded lattice realization. Simulate and verify the realization using Program
P8 2.

Project 8.2 Illustration of Filtering

Program P8 3 illustrates the design of a causal IIR filter, its simulation in transposed Direct
Form II, and its application in filtering a signal.

% Program P8_3
% Illustration of Filtering by an IIR Filter
%
clf;
% Generate the input sequence
k = 0:50;
w2 = 0.7*pi;w1 = 0.2*pi;
x1 = 1.5*cos(w1*k); x2 = 2*cos(w2*k);
x = x1+x2;
% Determine the filter transfer function
[N, Wn] = ellipord(0.25, 0.55, 0.5, 50);
[num, den] = ellip(N,0.5, 50,Wn);
% Generate the output sequence
y = filter(num,den,x);
% Plot the input and the output sequences
subplot(2,1,1);
stem(k,x); axis([0 50 -4 4]);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Input Sequence’);
subplot(2,1,2);
stem(k,y); axis([0 50 -4 4]);
xlabel(’Time index n’); ylabel(’Amplitude’);
title(’Output Sequence’);

Questions:

Q8.9 What type of filter is being designed by Program P8 3? What are its specifications?
What is the order of the filter? What are the frequencies of the sinusoidal sequences forming
the input?

Q8.10 Run Program P8 3 and generate the two plots. Which component of the input
appears at the filter output? Why is the beginning part of the output sequence not a perfect
sinusoid? Modify Program P8 3 to filter the sequence x2[n] only. Is the output generated
as expected? Justify your answers.

The cascade form of an IIR transfer function can be generated from its zero-pole description
using the function zp2sos. The code fragment given below illustrates the generation of

8.5 Simulation of FIR Digital Filters 141

the transfer functions of each section of the elliptic lowpass transfer function example
of Program P8 3 and its implementation in cascade form along with the overall transfer
function as one section with all realizations in Direct Form II.

[N, Wn] = ellipord(0.25, 0.55, 0.5, 50);
[num,den] = ellip(N,0.5, 50,Wn);
[z,p,const] = tf2zp(num,den);
sos = zp2sos(z,p,const);
row1 = real(sos(1,:));row2 = real(sos(2,:));
num1 = row1(1:3);den1 = row1(4:6);
num2 = row2(1:3);den2 = row2(4:6);
y = direct2(num,den,x);
y1 = direct2(num1,den1,x);y2 = direct2(num2,den2,y1);

Questions:

Q8.11 Using the above code fragment modify Program P8 3 to filter the sequence being
generated by a cascade structure and compare the output generated with the output generated
when filtered by a single higher-order section. Is there any difference between the two
outputs? Show precisely the two filters being simulated by writing down the expression for
the transfer function of each simulation.

Q8.12 Using the function strucver modify the program developed in Question Q8.11
to verify the structure being simulated. Run the modified program. Are your simulations
correct?

A long input sequence can be filtered using the overlap-add method in which the input
sequence is segmented into a set of contiguous short input blocks, each block is then
filtered separately, and the overlaps in the output blocks are added appropriately to generate
the long output sequence. This method of filtering can be implemented easily on MATLAB
using the second form of the function filter. Here the final values of the state variable
vector sf at any stage of filtering are fed back in the following stage of filtering as the initial
condition vector si.

Question:

Q8.13 Modify Program P8 3 by filtering the input sequence into a set of contiguous blocks
of length 5 each. Run the modified program and compare your result with that generated
by filtering the input as one segment.

8.5 Simulation of FIR Digital Filters

The functions direct2 and filter can also be used to implement an FIR digital filter as
illustrated in this project.

142 Chapter 8 • Digital Filter Implementation

Project 8.3 Structure Simulation and Verification

Program P8 4 illustrates the design of a causal FIR filter and its simulation in transposed
Direct Form II.

% Program P8_4
num = firpm(9, [0 0.3 0.5 1],[1 1 0 0]);
disp(’Filter coefficients are ’);disp(num);
impres = filter(num,1 ,[1 zeros(1,9)]);
disp(’Actual filter coeffs are ’); disp(impres);

Questions:

Q8.14 What type of filter is being designed by Program P8 4? What are its specifications?
What is the order of the filter? How many impulse response samples are being computed
to verify the simulation? Is the simulation correct?

Q8.15 Modify Program P8 4 to simulate the filter in Direct Form II and run the modified
program. Is the simulation correct?

Q8.16 Develop a cascade realization of the transfer function generated in Question Q8.14
by Program P8 4 and write a program to simulate it with each individual section imple-
mented in Direct Form II. Verify the simulation.

Q8.17 Repeat Question Q8.16 with the sections in the cascade in reverse order.

Project 8.4 Illustration of Filtering

Question:

Q8.18 Modify Program P8 3 to simulate the direct-form realization of the FIR filter of
Program P8 4 using the function direct2 and demonstrate its filtering properties.

8.6 Design of Tunable Digital Filters

In the next two projects you will investigate the design of tunable IIR and FIR digital filters.

Project 8.5 Design of Tunable IIR Filter

Program P8 5 illustrates the design of a tunable causal IIR lowpass filter based on the
parallel allpass realization (see R6.19).

8.6 Design of Tunable Digital Filters 143

% Program P8_5
% Illustration of Tunable IIR Filter Design
clf;
[z,p,k] = ellip(5,0.5,40,0.4);
a = conv([1 -p(1)],[1 -p(2)]);b = [1 -p(5)];
c = conv([1 -p(3)],[1 -p(4)]);
w = 0:pi/255:pi;
alpha = [0 0.1 -0.25];
for i = 1:3

an1 = a(2) + (a(2)*a(2) - 2*(1 + a(3)))*alpha(i);
an2 = a(3) + (a(3) -1)*a(2)*alpha(i);
g = b(2) - (1 - b(2)*b(2))*alpha(i);
cn1 = c(2) + (c(2)*c(2) - 2*(1 + c(3)))*alpha(i);
cn2 = c(3) + (c(3) -1)*c(2)*alpha(i);
a = [1 an1 an2];b = [1 g]; c = [1 cn1 cn2];
h1 = freqz(fliplr(a),a,w); h2 = freqz(fliplr(b),b,w);
h3 = freqz(fliplr(c),c,w);
ma(i,:) = 20*log10(abs(0.5*(h1.*h2 + h3)));

end
plot(w/pi,ma(1,:),’r-’,w/pi,ma(2,:),’b--’,w/pi,ma(3,:),’g-.’);
grid;
axis([0 1 -80 5]);
xlabel(’\omega/\pi’);ylabel(’Gain, dB’);
legend(’\alpha = 0 ’,’\alpha = 0.1’,’\alpha = -0.25’);

Questions:

Q8.19 What type of filter is being designed as the nominal filter by Program P8 5? What
are its specifications? What is the order of the filter?

Q8.20 Write a MATLAB program to design this nominal filter and display its pole lo-
cations using the command zplane. Determine the transfer functions of the two allpass
sections.

Q8.21 Run Program P8 5 and display all gain responses. What are the cutoff frequencies
of the filters being designed?

Q8.22 Modify Program P8 5 to determine and plot the gain response of the power-
complementary filter of each of the filters being designed in Program P8 5.

Project 8.6 Design of Tunable FIR Filter

Program P8 6 illustrates the design of a tunable causal FIR lowpass filter based on the
method outlined in Section R8.3.

144 Chapter 8 • Digital Filter Implementation

% Program 8_6
% Illustration of Tunable FIR Filter Design
clf;
w = 0:pi/255:pi;
f = [0 0.36 0.46 1];m = [1 1 0 0];
b1 firpm(50, f, m);
h1 = freqz(b1,1,w);
m1 = 20*log10(abs(h1));
n -25:-1;
c = b1(1:25)./sin(0.41*pi*n);
wc = [0.31*pi 0.51*pi];
for i = 1:2

d = c.*sin(wc(i)*n);
q = (b1(26)*wc(i))/(0.4*pi);
b2 = [d q fliplr(d)];
mag(i,:) = 20*log10(abs(freqz(b2,1,w)));

end
plot(w/pi,mag(1,:),’b--’,w/pi,m1,’r-’,w/pi,mag(2,:),’g-.’);
grid;
axis([0 1 -80 5]);
xlabel(’\omega/\pi’);ylabel(’Gain, dB’);
legend(’\omega_{c} = 0.31 \pi’,’\omega_{c} = 0.41\pi’,’\omega_{c}

= 0.51\pi’)

Questions:

Q8.23 What type of filter is being designed as the nominal filter by Program P8 6? What
are its specifications? What is the order of the filter?

Q8.24 Run Program P8 6 and display all gain responses. What are the cutoff frequencies
of the filters being designed?

Q8.25 Modify Program P8 6 to determine and plot the gain response of the delay-comple-
mentary filter of each of the filters being designed in Program P8 6.

8.7 Function Approximation

Project 8.7 Computation of Trigonometric and Other Functions

Questions:

Q8.26 Write a MATLAB program to compute and plot sin(x) as a function of x using the
approximation of Eq. (8.31) where x is in radians and in the range 0 ≤ x ≤ π/2. Plot also
the error due to the approximation. Run this program and generate the two plots. Comment
on your results.

8.8 Background Reading 145

Q8.28 Write a MATLAB program to compute and plot tan−1(x) as a function of x using
the approximation of Eq. (8.32) where x is in the range 0 ≤ x ≤ 1. Plot also the error
due to the approximation. Run this program and generate the two plots. Comment on your
results.

Q8.29 Write a MATLAB program to plot the error due to the computation of
√

x using
the approximation of Eq. (8.33) as a function of x where x is in the range 0.5 ≤ x ≤ 1.
Run this program and generate the two plots. Comment on your results.

8.8 Background Reading

[1] S.K. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-Hill,
New York NY, third edition, 2005. Secs. 8.10–8.11, 11.1–11.4, 11.11.

146 Chapter 8 • Digital Filter Implementation

Analysis of Finite
Word-Length Effects 9
9.1 Introduction

When implemented in either software form on a general-purpose computer or in special-
purpose hardware form, the parameters of the LTI discrete-time system along with the
signal variables can take only discrete values within a specified range since the registers of
the digital machine where they are stored are of finite length. If the quantization amounts
are small compared to the values of the signal variables and filter constants, a simpler
approximate theory based on a statistical model can be applied and it is possible to derive
the effects of discretization and develop results that can be verified experimentally. One of
the sources of quantization errors is caused by the quantization of the multiplier coefficients
characterizing the filter structure realizing the given transfer function. In the case of digital
processing of continuous-time signals, a second error source is caused by theA/D conversion
process. The quantization of arithmetic operations leads to a third source of errors. Another
type of error occurs in digital filters due to the nonlinearity caused by the quantization of
arithmetic operations. This last source of errors may result in oscillations at the filter’s
output, called limit cycles, usually in the absence of input or sometimes in the presence of
constant input signals or sinusoidal input signals. An analysis of the various quantization
effects on the performance of a digital filter in practice depends on whether the numbers are
in fixed-point or floating-point format, the type of representation for the negative numbers
being used, the quantization method being employed to quantize the data, and the digital
filter structure being used for implementation. In this exercise you will study the effects
of the above sources of quantization errors in digital filter structures implemented using
fixed-point arthmetic and investigate structures that are less sensitive to these effects.

9.2 Background Review

R9.1 To accommodate the representation of both positive and negative b-bit fractions, an
additional bit, called the sign bit, is placed at the leading position of the register to indicate
the sign of the number. Independent of the scheme being used to represent the negative
number, the sign bit is 0 for a positive number and 1 for a negative number.

R9.2 Two types of quantization are employed to represent a fixed-point number in a
register of finite word-length: truncation and rounding. Truncation of a fixed-point number
from (β + 1) bits to (b + 1) bits is implemented by simply discarding the least significant
(β − b) bits. In the case of rounding, the number is quantized to the nearest quantization

147

148 Chapter 9 • Analysis of FiniteWord-Length Effects

level, and a number exactly halfway between two quantization levels is assumed to be
rounded up to the nearest higher level. Therefore, if the bit a−(b+1) is 0, rounding is
equivalent to truncation and if this bit is 1, 1 is added to the least- significant-bit position
of the truncated number.

R9.3 The transfer function Ĥ(z)of the digital filter implemented with quantized multiplier
coefficients either in hardware or software form is different from the desired transfer function
H(z). The main effect of the coefficient quantization is therefore on the poles and zeros,
which move to different locations than the original desired locations. As a result, the
actual frequency response Ĥ(ejω) is different from the desired frequency response H(ejω).
Moreover, the poles may move outside the unit circle, causing the implemented digital filter
to become unstable even though the original transfer function with unquantized coefficients
is stable.

R9.4 As the input-output characteristic of an A/D converter is nonlinear and the analog
input signal, in most practical cases, is not known a priori, for analysis purposes it is assumed
that the quantization error e[n] is a random signal and a statistical model of the quantizer
operation as indicated in Figure 9.1 is employed.

x[n]

e[n]

x[n]^

Figure 9.1 A statistical model of the A/D converter.

In addition, the following assumptions are made for a simplified analysis:

1. The error sequence {e[n]} is a sample sequence of a wide-sense stationary (WSS)
white noise process with each sample e[n] being uniformly distributed over the
range of the quantization error as indicated in Figure 9.2 where δ is the quantization
step.

2. The error sequence is uncorrelated with its corresponding input sequence {x[n]}.

– δ / 2 δ / 20

1/

p(e)

e

δ

– δ 0

1/

p(e)

e

δ

p(e)

e
δ– δ 0

1/ 2δ

(a) (b) (c)

Figure 9.2 Quantization error probability density functions: (a) rounding, (b) two’s-complement
truncation, and (c) ones’-complement truncation.

9.2 Background Review 149

3. The input sequence is a sample sequence of a stationary random process.

For a fixed-point fraction of length (b+1) bits (with one bit assigned for the sign), δ = 2−b.

In the case of ones’-complement or sign-magnitude truncation, the quantization error is
correlated to the input signal, as here the sign of each error sample e[n] is exactly opposite
to the sign of the corresponding input sample x[n]. As a result, in digital signal processing
either rounding or two’s-complement truncation is employed for quantizing a number. The
mean and the variance of the error sample in the case of rounding are given by

me =
(δ/2) − (δ/2)

2
= 0, (9.1)

σ2
e =

[(δ/2) − (−δ/2)]2

12
=

δ2

12
. (9.2)

The corresponding parameters for the two’s-complement truncation are as follows:

me =
0 − δ

2
= −δ

2
, (9.3)

σ2
e =

(0 − δ)2

12
=

δ2

12
. (9.4)

The effect of the additive quantization-noise e[n] on the input signal x[n] of anA/D converter
is given by the signal-to-quantization- noise ratio (SNRA/D), defined by

SNRA/D = 10 log10

(
σ2

x

σ2
e

)
dB, (9.5)

where σ2
x is the input signal variance representing the signal power and σ2

e is the noise
variance representing the quantization-noise power. For rounding, the quantization error is
uniformly distributed in the range (−δ/2, δ/2) and for two’s-complement truncation, the
quantization error is uniformly distributed in the range (−δ, 0) as indicated in Figures 9.2(a)
and (b), respectively. In the case of a bipolar (b+1)-bit A/D converter δ2−(b+1)RFS , where
RFS is the full-scale range of the converter and, hence,

SNRA/D = 10 log10

(
48 σ2

x

2−2b(RFS)2

)
= 6.02 b+16.81− 20 log10

(
RFS

σx

)
dB. (9.6)

x[n]
x̂[n]

e[n]

= y[n] + v[n]

y[n]^
H(z)

Figure 9.3 Model for the analysis of the effect of processing a quantized input by an LTI discrete-time
system.

150 Chapter 9 • Analysis of FiniteWord-Length Effects

R9.5 To determine the noise at the digital filter output generated by the input A/D conver-
sion noise, the model for analysis is as indicated in Figure 9.3 where the LTI digital filter
H(z) is assumed to be implemented with infinite precision. The actual output of the digital
filter is thus given by y[n] + v[n], where y[n] is the output generated by the unquantized
input x[n], and v[n] is the output generated by the error sequence e[n]. The output noise
component v[n] is thus given by

v[n] =
∞∑

m=−∞
e[m] h[n − m], (9.7)

where h[n] is the impulse response of the digital filter. The mean mv and the variance σ2
v

of the output noise v[n] are then given by

mv = me H(ej0), (9.8)

σ2
v =

σ2
e

2π

∫ π

−π

|H(ejω)|2 dω. (9.9)

The output noise power spectrum is given by

Pvv(ω) = σ2
e |H(ejω)|2, (9.10)

and the normalized output noise variance is given by

σ2
v,n =

σ2
v

σ2
e

=
1
2π

∫ π

−π

|H(ejω)|2 dω (9.11)

=
1

2πj

∮
C

H(z) H(z−1) z−1dz, (9.12)

where C is a counterclockwise contour in the ROC of H(z) H(z−1). An equivalent ex-
pression for Eq. (9.11) is given by

σ2
v,n =

∞∑
n=−∞

|h[n]|2. (9.13)

R9.6 A simple algebraic method for computing the normalized output noise variance of
a causal stable real rational function H(z) with simple poles is based on a partial-fraction
form expansion of H(z) [Mit74b]:

H(z) =
L∑

k=1

Hk(z), (9.14)

where Hk(z) is either a constant A or of the form Bk

z−zk
. Substituting Eq. (9.14) into Eq.

(9.12), the expression for the normalized output noise variance can be rewritten as

σ2
v,n =

1
2πj

{
R∑

k=1

∮
C

Hk(z) Hk(z−1) z−1 dz + 2
R−1∑
k=1

R∑
�=k+1

∮
C

Hk(z) H�(z−1) z−1 dz

}
.

(9.15)

9.2 Background Review 151

Denote a typical contour integral in Eq. (9.15) as

Ii =
1

2πj

∮
C

Hk(z) H�(z−1) z−1 dz. (9.16)

The expressions for different Ii are listed in Table 9.1.

Table 9.1 Expressions for typical contour integrals.

Hk(z)
H�(z−1)

A B�

z−1−a�

A I1 = A2 0
Bk

z−ak
0 I2 = BkB�

1−aka�

R9.7 For a causal and stable digital filter, the impulse response usually decays rapidly to
zero values, and hence Eq. (9.13) can be approximated as a finite sum

σ2
v,n =

L∑
n=0

|h[n]|2. (9.17)

A convenient and practical approach to determine an appropriate value of L is based on
an iterative computation of the above partial sum for L = 1, 2, . . ., and then stopping the
computation when the |h[L]|2 becomes smaller than a specified value κ, which is typically
chosen as 10−7.

R9.8 In the fixed-point implementation of a digital filter, only the result of a multiplication
operation is quantized. The statistical model for the analysis of product roundoff errors is
indicated in Figure 9.4. Here the output v[n] of the ideal multiplier is quantized to a value
v̂[n], where v̂[n] = v[n] + eα[n].

u[n]
v[n]

v[n]^

αe [n]

α

Figure 9.4 Statistical model for the product roundoff error analysis.

For analysis purposes the following assumptions are made:

1. The error sequence {eα[n]} is a sample sequence of a stationary white noise
process with each sample eα[n] being uniformly distributed over the range of the
quantization error.

152 Chapter 9 • Analysis of FiniteWord-Length Effects

2. The quantization error sequence eα[n] is uncorrelated with the sequence {v[n]},
the input sequence {x[n]} to the digital filter, and all other quantization-noise
sources.

The assumption of {eα[n]} being uncorrelated with {v[n]} holds only for rounding and
two’s-complement truncation. The mean and variance of the error sample for rounding are
given by Eqs. (9.1) and (9.2), respectively, while those for the two’s-complement truncation
are given by Eqs. (9.3) and (9.4), respectively.

•
• •

• • •

m1

mk
l

x[n] ˆ y [n]

ur[n]

e
l
[n]

v
l
[n]

Figure 9.5 The statistical model of a digital filter structure for product roundoff error analysis.

R9.9 The statistical model of a digital filter for the product roundoff error analysis is as
indicated in Figure 9.5, which explicitly shows the quantized outputs of the k� multipliers
at its input. This figure also shows the internal rth branch node associated with the signal
variable ur[n], which needs to be scaled to prevent overflows at these nodes. The error
sources are assumed to be statistically independent of each other and, as a result, the total
roundoff noise at the output of the digital filter is the sum of the noise generated by each
noise source.

The z-transform G�(z) of the impulse response g�[n] from the input of the �th adder to
the digital filter output is called the noise transfer function, and the z-transform Fr(z) of
the impulse response fr[n] from the digital filter input to the rth branch node is called the
scaling transfer function.

The output noise variance caused by the noise source e�[n] is given by

σ2
o

[
k�

(
1

2πj

∮
C

G�(z) G�(z−1) z−1 dz

)]
= σ2

o

[
k�

(
1
2π

∫ π

−π

|G�(ejω)|2 dω

)]
,

(9.18)
where σ2

o denotes the variance of the individual noise source at the output of each multiplier.

9.2 Background Review 153

The total output noise power due to all product roundoffs is given by

σ2
γ = σ2

o

L∑
�=1

k�

(
1

2πj

∮
C

G�(z) G�(z−1) z−1 dz

)
, (9.19)

where L is the total number of such adders in the filter structure. In structures where
the quantization operation is carried out after all of the multiply-add operations have been
completed, k� = 1.

R9.10 In a digital filter implemented using fixed-point arithmetic, overflow may occur at
certain internal nodes, which may lead to large amplitude oscillations at the filter output
causing unsatisfactory operation. The probability of overflow is minimized significantly
by properly scaling the internal signal levels with the aid of scaling multipliers inserted at
appropriate points in the digital filter structure.

With reference to Figure 9.5, the objective of scaling is to ensure that

|ur[n]| ≤ 1, for all r and for all values of n, (9.20)

assuming all fixed-point numbers are represented as binary fractions and the input sequence
of the filter is bounded by unity, that is,

|x[n]| ≤ 1, for all values of n. (9.21)

A general scaling rule is given by [Jac70]

|ur[n]| ≤ ‖Fr‖q · ‖X‖p, (9.22)

for all p, q ≥ 1 satisfying 1
p + 1

q = 1. In Eq. (9.22), ‖X‖p denotes the Lp-norm (p ≥ 1)
of a Fourier transform X(ejω) defined by

‖X‖p
∆=
(

1
2π

∫ π

−π

|X(ejω)|pdω

) 1
p

. (9.23)

Note that for the L∞-bound, p = ∞ and q = 1, and for the L2-bound, p = q = 2. Another
useful scaling rule, L1-bound, is obtained for p1 and q = ∞.

After scaling, the scaling transfer functions become ‖F̄r‖q and the scaling constants are
chosen such that

‖F̄r‖q ≤ 1, r = 1, 2, . . . , R. (9.24)

R9.11 A number of digital filter realization techniques have been proposed that result in
structures that are inherently less sensitive to quantization of the multiplier coefficients. A
key requirement for low sensitivity realization is that the prescribed transfer function H(z)
be a bounded real (BR) function; that is, H(z) is a causal stable real coefficient function
characterized by a magnitude response |H(ejω)| bounded above by unity, that is,

|H(ejω)| ≤ 1. (9.25)

154 Chapter 9 • Analysis of FiniteWord-Length Effects

It is also assumed that at a set of frequencies, ωk, the magnitude of H(z) is exactly equal
to 1, that is,

|H(ejωk)| = 1. (9.26)

The frequencies ωk are in the passband of the filter as the magnitude response is bounded
above by unity. The digital filter structure realizing a BR transfer function exhibits zero sen-
sitivity at the set of frequencies ωk in the passband and low sensitivity at other frequencies
in the passband if the transfer function of the structure realized with quantized multiplier
coefficients (assuming small changes in the coefficient values) remains bounded-real, sat-
isfying the condition of Eq. (9.25). Such a structure is said to be structurally passive.

R9.12 The parallel allpass realization of a bounded-real transfer function discussed in
Section R6.19 satisfies the low passband sensitivity and is thus structurally passive.

A bounded-real Type 1 FIR transfer function H(z) of degree N can be realized in a struc-
turally passive form by expressing its delay-complementary transfer function G(z) in the
form of a cascade of two FIR filter sections Ga(z) and Gb(z), where Gb(z) has all zeros
on the unit circle with multiplicity 2:

G(z) = Ga(z) Gb(z) = Ga(z)
L∏

k=1

(1 − 2 cos ωkz−1 + z−2)2, (9.27)

and then realizing Gb(z) as a cascade of 2L second-order sections with multiplier coeffi-
cients 2 cos ωk. Finally, the transfer function H(z) is realized in the form

H(z) = z−N/2 − Ga(z) Gb(z), (9.28)

as indicated in Figure 9.6.

x[n] y[n]
+

_
G (z)a G (z)b

z N/2_

Figure 9.6 Low passband sensitivity realization of a Type 1 FIR filter H(z).

R9.13 A practical digital filter is a nonlinear system caused by the quantization of the
arithmetic operations. As a result, an IIR filter, which is stable under infinite precision, may
exhibit an unstable behavior under finite precision arithmetic for specific input signals, such
as zero or constant inputs. This type of instability usually results in an oscillatory periodic
output called a limit cycle. There are basically two types of limit cycles: (1) granular and
(2) overflow. The former type of limit cycles is usually of low amplitude, whereas overflow
oscillations have large amplitudes.

9.3 MATLAB Commands Used 155

9.3 MATLAB Commands Used

The MATLAB commands you will encounter in this exercise are as follows:

General Purpose Commands

disp

Operators and Special Characters

: . + - * / ;
% <

Language Constructs and Debugging

break end for if input

Elementary Matrices and Matrix Manipulation

ones pi zeros

Elementary Functions

abs cos

Polynomial and Interpolation Functions

conv

Two-Dimensional Graphics

axis plot stem title xlabel
ylabel

General Purpose Graphics Functions

clf subplot

156 Chapter 9 • Analysis of FiniteWord-Length Effects

Character String Functions

num2str

Signal Processing Toolbox

filter impz

For additional information on these commands, see the MathWorks Online Documentation
[Mat05] or type help commandname in the Command window. A brief explanation of the
MATLAB functions used here can be found in Appendix B.

9.4 Generation and Quantization of Binary
Numbers

As MATLAB uses decimal numbers and arithmetic to study the quantization effects on
digital filters implemented using binary numbers and arithmetic, it is convenient to develop
the decimal equivalent of quantized representations of binary numbers and signals.

Project 9.1 Generation of Decimal Equivalent of Quantized Binary Numbers

The aim of this project is to generate the decimal equivalent of the binary representation in
sign-magnitude form of a decimal number with a specified number of bits for the fractional
part obtained by truncation. To this end, the MATLAB function a2dT given below can be
used.

function beq = a2dT(d,n)
% BEQ = A2DT(D, N) generates the decimal
% equivalent BEQ of the binary representation
% of a vector D of decimal numbers with N bits
% for the magnitude part obtained by truncation
%
m = 1; d1 = abs(d);
while fix(d1) > 0

d1 = abs(d)/(10^m);
m = m+1;

end
beq = 0;
for k = 1:n

beq = fix(d1*2)/(2^k) + beq;
d1 = (d1*2) - fix(d1*2);

end

9.4 Generation and Quantization of Binary Numbers 157

beq = sign(d).*beq*10^(m-1);

Questions:

Q9.1 Explain the operation of the function a2dT. What is the purpose of the command
fix? Write a MATLAB program to convert an arbitrary decimal number into its quantized
equivalent employing the function a2dT and display the equivalent representation. The
input data are the decimal number d to be converted and the number of bits N assigned for
the fractional part, and the output is the decimal equivalent beq of the quantized binary
number.

Q9.2 Using the above program generate the binary equivalents in sign-magnitude form
of the following decimal numbers: (1) 5.3749, (2) − 21.78239, (3) 0.79889. Use six bits
for the fractional part.

Q9.3 Repeat Question Q9.2 with eight bits for the fractional part.

Q9.4 Develop the ones’-complement and two’s-complement representations of the binary
numbers generated in Questions Q9.2 and Q9.3.

The MATLAB function a2dR given below can be used to generate the decimal equivalent
of the binary representation in sign-magnitude form of a decimal number with a specified
number of bits for the fractional part obtained by rounding.

function beq = a2dR(d,n)
% BEQ = A2DR(D, N) generates the decimal
% equivalent beq of the binary representation
% of a decimal number D with N bits for the
% magnitude part obtained by rounding
%
m = 1; d1 = abs(d);
while fix(d1) > 0

d1 = abs(d)/(10^m);
m = m+1;

end
beq = 0;d1 = d1 + 2^(-n-1);
for k = 1:n

beq = fix(d1*2)/(2^k) + beq;
d1 = (d1*2) - fix(d1*2);

end
beq = sign(d).*beq.*10^(m-1);

Question:

Q9.5 What is the difference between the functions a2dR and a2dT? How is the rounding
being performed?

158 Chapter 9 • Analysis of FiniteWord-Length Effects

9.5 Coefficient Quantization Effects

As indicated earlier (see R9.4), the transfer function of the digital filter realized with quan-
tized multiplier coefficients is in general different from the desired transfer function; this
causes the poles and zeros to move from their desired locations, resulting in a frequency
response that is different from the desired one. In this section you will study these effects.

Project 9.2 Effect on Frequency Response and Pole-Zero Locations

You will first investigate the effect of multiplier coefficient quantizations on the direct-form
realization of an IIR transfer function. To this end, Program P9 1 given below can be
employed. The program uses the M-function pzplot, which is same as the M-function
zplane except here the poles are shown with the symbol + and the zeros are shown with
the symbol * in the pole-zero plot.1

% Program P9_1
% Coefficient Quantization Effects on Direct-Form
% Realization of an IIR Transfer Function
clf;
[b,a] = ellip(6,0.05,60,0.4);
[g,w] = gain(b,a);
bq = a2dT(b,6);aq = a2dT(a,6);
[gq,w] = gain(bq,aq);
plot(w/pi,g,’b’, w/pi,gq,’r--’);
axis([0 1 -80 1]);grid
xlabel(’\omega/\pi’);ylabel(’Gain, dB’);
title(’original - solid line; quantized - dashed line’);
pause
zplane(b,a);
hold on;
pzplot(bq,aq);
title(’Original pole-zero locations: x, o; New pole-zero locations:
+, *’)

Questions:

Q9.6 Which statement determines the IIR transfer function? What are the order of the
transfer function and its type? Which statements determine the decimal equivalents of the
quantized binary representations of the transfer function coefficients? How many bits are
being assigned to the fractional part of the binary representations?

Q9.7 Run the above program and generate the two plots. Comment on your results.

1The modification to the function zplane is with permission from The Mathworks, Inc., Natick, MA.

9.5 Coefficient Quantization Effects 159

Q9.8 Modify Program P9 1 to investigate the coefficient effects on an eighth-order elliptic
highpass transfer function with a passband ripple of 0.1 dB, a minimum stopband attenuation
of 70 dB, and a normalized cutoff frequency at 0.55 rad/sec. Assign five bits to the fractional
part of the binary representations. Run the modified program. Comment on your results.

It is of interest to compare the performance of the direct-form realization of an IIR transfer
function with that of a cascade realization with both realized with quantized coefficients.
Program P9 2 evaluates the effect of multiplier coefficient quantizations on the cascade
form realization.

% Program P9_2
% Coefficient Quantization Effects on Cascade
% Realization of an IIR Transfer Function
clf;
[z,p,k] = ellip(6,0.05,60,0.4);
[b,a] = zp2tf(z,p,k);
[g,w] = gain(b,a);
sos = zp2sos(z,p,k);
sosq = a2dT(sos,6);
R1 = sosq(1,:);R2 = sosq(2,:);R3 = sosq(3,:);
b1 = conv(R1(1:3),R2(1:3));bq = conv(R3(1:3),b1);
a1 = conv(R1(4:6),R2(4:6));aq = conv(R3(4:6),a1);
[gq,w] = gain(bq,aq);
plot(w/pi,g,’b’, w/pi,gq,’r--’);
axis([0 1 -80 1]);grid
xlabel(’\omega /\pi’);ylabel(’Gain, dB’);
title(’original - solid line; quantized - dashed line’);
pause
zplane(b,a);
hold on;
pzplot(bq,aq);
title(’Original pole-zero locations: x, o; New pole-zero locations:
+, *’)

Questions:

Q9.9 What are the order of the transfer function generated by Program P9 2 and its type?
What is the function of the command zp2sos? Which statement determines the decimal
equivalents of the quantized binary representations of the transfer function coefficients?
How many bits are being assigned to the fractional part of the binary representations?

Q9.10 Run the above program and generate the two plots. Compare the plots generated
by Program P9 2 with those generated in Question Q9.6. What can you conclude from this
comparison?

160 Chapter 9 • Analysis of FiniteWord-Length Effects

Q9.11 Modify Program P9 2 to investigate the coefficient effects on an eighth-order el-
liptic highpass transfer function with a passband ripple of 0.1 dB, a minimum stopband
attenuation of 70 dB, and a normalized cutoff frequency at 0.55 rad/sec. Assign five bits to
the fractional part of the binary representations. Run the modified program and comment
on your results.

The above two programs can be modified easily to investigate the multiplier coefficient
effects on an FIR transfer function, as illustrated by Program P9 3 given below for the
direct-form realization.

% Program P9_3
% Coefficient Quantization Effects on Direct Form
% Realization of an FIR Transfer Function
%
clf;
f = [0 0.4 0.45 1];
m = [1 1 0 0];
b = firpm(19, f, m);
[g,w] = gain(b,1);
bq = a2dT(b,5);
[gq,w] = gain(bq, 1);
plot(w/pi,g,’b-’,w/pi,gq,’r--’);
\axis([0 1 -60 10]);grid
xlabel(’\omega /\pi’); ylabel(’Gain, dB’);
legend(’original’, ’quantized’);
pause zplane(b);
hold on
pzplot(bq);
hold off
title(’Original pole-zero locations: x, o; New pole-zero
locations: +, *’)

Questions:

Q9.12 What is the order of the transfer function generated by Program P9 3 and its type?
What are its desired magnitude response specifications?

Q9.13 Run the above program and generate the magnitude response plots. Comment on
your results.

Q9.14 Modify Program P9 3 to investigate the coefficient effects on a 25th-order equirip-
ple highpass transfer function with stopband edges at 0 and 0.6, and passsband edges at
0.65 and 1. Assign four bits to the fractional part of the binary representations. Run the
modified program and comment on your results.

9.6 A/D Conversion Noise Analysis 161

9.6 A/D Conversion Noise Analysis

Project 9.3 Evaluation of A/D Signal-to-Quantization-Noise Ratio

In this project you will investigate first the relation between the A/D converter wordlength
b and the signal-to-quantization-noise ratio SNRA/D using MATLAB. The basis for the
SNR computation is Eq. (9.6).

Question:

Q9.15 Write a MATLAB program to determine the signal-to-quantization-noise ratio in
the digital equivalent of an analog sample x[n] with a zero-mean Gaussian distribution using
a (b + 1)-bit A/D converter (with one bit assigned for the sign) having a full-scale range
RFS = Kσx. Using this program compute for the following values of b: 7, 9, 11, 13, and
15, and for the following values of K: 4, 6, and 8.

Project 9.4 Computation of Output Noise Variance

The aim of this project is to investigate the propagation of input quantization-noise to the
output of a causal, stable LTI digital filter. To this end, the function noisepwr1 given below
and based on the method outlined in R9.6 can be employed.

function nvar = noisepwr1(num,den)
% Computes the output noise variance due
% to input quantization of a digital filter
% based on a partial-fraction approach
%
% num and den are the numerator and denominator
% polynomial coefficients of the IIR transfer function
%
[r,p,K] = residue(num,den);
R = size(r,1);
R2 = size(K,1);

if R2 > 1
disp(’Cannot continue...’);
return;

end
if R2 == 1

nvar = K^2;
else

nvar = 0;
end

% Compute roundoff noise variance
for k = 1:R,

162 Chapter 9 • Analysis of FiniteWord-Length Effects

for m = 1:R,
integral = r(k)*conj(r(m))/(1-p(k)*conj(p(m)));
nvar = nvar + integral;

end
end
disp(’Output Noise Variance = ’);disp(real(nvar))}

Questions:

Q9.16 Write a MATLAB program using the function noisepwr1 to compute the nor-
malized output roundoff noise variance of a fourth-order elliptic lowpass filter with the
following specifications: a passband ripple of 0.5 dB, a minimum stopband attenuation of
50 dB, and a passband edge at 0.45. Run this program and determine the normalized output
roundoff noise variance of this filter.

Q9.17 Repeat Question Q9.16 for a sixth-order Type 2 Chebyshev bandpass filter with
stopband edges at 0.3 and 0.75, and a minimum stopband attenuation of 60 dB.

Often it is convenient to compute an approximate value of the normalized output noise
variance using Eq. (9.13) (see R9.7). The function noisepwr2 given below is based on
this approach.

function nvar = noisepwr2(num,den)
% Computes the approximate output noise variance due
% to input quantization of a digital filter
% by summing the squares of the impulse response samples
%
% num and den are the numerator and denominator
% polynomial coefficients of the IIR transfer function
%
x = 1;
order = max(length(num),length(den))-1;
si = [zeros(1,order)];
nvar = 0; k = 1;
while k > 0.0000001

[y,sf] = filter(num,den,x,si);
si = sf; k = abs(y)*abs(y);
nvar = nvar + k;
x = 0;

end
disp(’Output Noise Variance = ’);disp(nvar)

9.7 Analysis of Arithmetic Roundoff Errors 163

Question:

Q9.18 Write a MATLAB program using the function noisepwr2 to compute the normal-
ized output roundoff noise variance of an LTI causal stable digital filter. Using this program
determine the normalized output noise variance of the filter of Question Q9.16 and compare
the result with that obtained in Question Q9.16.

9.7 Analysis of Arithmetic Roundoff Errors

The output noise variance due to the roundoff of all products can be easily carried out
using MATLAB. However, the output roundoff noise always should be computed only after
the digital filter structure has been scaled as the scaling process may introduce additional
multipliers in the system. In practice, most of the scaling multipliers can be absorbed into
the existing feed-forward multipliers without a significant increase in the total number of
multipliers and, hence, noise sources. For the scaled structure, the expression for the output
roundoff noise of Eq. (9.19) thus changes to

σ2
γ = σ2

o

L∑
�=1

k̄�

(
1

2πj

∮
C

Ḡ�(z) Ḡ�(z−1) z−1 dz

)
, (9.29)

where k̄� is the total number of multipliers feeding the �th adder with k̄� ≥ k� and Ḡ�(z) is
the modified noise transfer function from the input of the �th adder to the filter output.

The dynamic range scaling using theL2-norm rule can be easily performed using MATLAB
by actual simulation of the digital filter structure. If we denote the impulse response from
the input of the digital filter to the output of the r-th branch node as {fr[n]} and assume
that the branch nodes have been ordered in accordance to their precedence relations with
increasing r [Cro75], then we can compute the L2-norm of {f1[n]} first and then scale the
input by a multiplier k1 = 1/‖F1‖2. Next, we compute the L2-norm of {f2[n]} and scale
the multipliers feeding into the second adder by dividing with a constant k2 = 1/‖F2‖2.
This process is continued until the output node has been scaled to yield anL2-norm of unity.

Project 9.5 Cascade Form IIR Digital Filter Structure

In this project you will learn the scaling of an IIR digital filter realized in cascade form
using the L2-norm rule and the computation of the total output noise variance due to all
product roundoffs of the scaled structure.

Question:

Q9.19 The filter to be designed is a lowpass elliptic filter with the following specifications:
a passband edge at 0.25, a stopband edge at 0.5, a passband ripple of 0.5 dB, and a minimum
stopband attenuation of 50 dB. Write a MATLAB program to determine the numerator and

164 Chapter 9 • Analysis of FiniteWord-Length Effects

denominator polynomial coefficients of the individual second-order sections. You will need
to use the following MATLAB functions: ellipord, ellip, and zp2sos.

A scaled cascade realization of the above transfer function with each section in Direct-Form
II is shown in Figure 9.7.

z–1

z–1

z–1

z–1

x1
y1 x2 y2

y3

1/k1 b1(1)/k2 b2(1)/k3

b2(2)/k3

b2(3)/k3

b1(2)/k2

b1(3)/k2

–a1(2)

– a1(3)

–a2(2)

–a2(3)

Figure 9.7 Cascade realization of the transfer function generated by Question Q9.19 in Direct-Form
II.

Question

Q9.20 What are the values of the constants b1(1), b1(2), b1(3), b2(1), b2(2), b2(3),
a1(2), a1(3), a2(2), and a2(3)?

The MATLAB program simulating this structure is given by Program P9 4 below. 2

% Program P9_4
% Scaling and Roundoff Noise Calculation
% of the Cascade-Form Structure of Figure 9.6
%
b1 = input(’Numerator coeffs. of Sec.~1 = ’);
a1 = input(’Denominator coeffs. of Sec.~1 = ’);
b2 = input(’Numerator coeffs. of Sec.~2 = ’);
a2 = input(’Denominator coeffs. of Sec.~2 = ’);
format long
k1 = 1;
k2 = 1;
k3 = 1;
x1 = 1/k1;
si1 = [0 0]; si2 = [0 0];
var = 0; K = 1;

2The first coefficient in the denominator coefficients should be a 1.

9.7 Analysis of Arithmetic Roundoff Errors 165

while K > 0.0000001
y1 = - a1(2)*si1(1) - a1(3)*si1(2) + x1;
x2 = (b1(1)*y1 + b1(2)*si1(1)+ b1(3)*si1(2))/k2;
y2 = - a2(2)*si2(1) - a2(3)*si2(2) + x2;
y3 = (b2(1)*y1 + b2(2)*si2(1)+ b2(3)*si2(2))/k3;
si1(2) = si1(1); si1(1) = y1;
si2(2) = si2(1); si2(1) = y2;

% Approximate L2 norm square computation
K = abs(y1)*abs(y1);
var = var + K;
x1 = 0;

end
disp(’L2 norm square = ’);disp(var);

Question:

Q9.21 Run Program P9 4 and determine the L2-norm of y1[n] with x1[n] set as a unit
sample sequence. Now set k1 in Program P9 4 equal to the L2-norm of y1[n] and run
it again. What is the new value of L2-norm of y1[n]? Next, modify Program P9 4 to
compute the L2-norm of y2[n] and run the modified program. Then set k2 in Program
P9 4 equal to the L2-norm of y2[n] and run it again. What is the new value of the L2-norm
of y2[n]? Finally, modify Program P9 4 to compute the L2-norm of y3[n] and run the
modified program. Then set k3 in Program P9 4 equal to the L2-norm of y3[n] and run it
again. What is the new value of the L2-norm of y3[n]?

The Program P9 4 with slight modifications can also be used to determine the total output
product roundoff noise variance of the structure of Figure 9.7.

Questions:

Q9.22 If all products are assumed to be quantized before addition, in the noise model
of the structure of Figure 9.7 how many noise sources are entering the adder with output
y1[n], how many noise sources are entering the adder with output y2[n], and how many
noise sources are entering the adder with output y3[n]?

Q9.23 To determine the output product roundoff noise variance due to a single noise source
into the adder with output y1[n], replace the statement “ x1 = 1/k1;” in the modified
Program P9 4 (keeping all current values of the scaling constants) with the statement “x1 =
1;” and run it. To determine the output product roundoff noise variance due to a single noise
source into the adder with output y2[n], replace the statement “x1 = 1;” in the modified
Program P9 4 (keeping all current values of the scaling constants) with the statement “x2
= 1;”, the statement “x1 = 0;” with the statement “x2 = 0;”, and run it. What are the
values of the output product roundoff noise variance for the case if all products are quantized
before additions, and if all products are quantized after additions.

166 Chapter 9 • Analysis of FiniteWord-Length Effects

Q9.24 Interchange Sections 1 and 2 in Figure 9.7, and repeat Questions Q9.22 and Q9.23
with the values of the vectors a1, b1, a2, and b2 appropriately changed. Which structure
has the lowest output product roundoff noise variance?

9.8 Low-Sensitivity Digital Filters

Project 9.6 Low Passband Sensitivity IIR Filters

In this project you will investigate using MATLAB, the low passband sensitivity property of
the parallel allpass structure of Figure 6.13, realizing a bounded-real IIR transfer function.

Question:

Q9.25 Using the functions ellipord and ellip design an odd-order lowpass elliptic
transfer function with the following specifications: passband edge at 0.4, stopband edge
at 0.55, passband ripple of 0.5 dB, and minimum stopband attenuation of 50 dB. Develop
the parallel allpass realization using the pole-interlacing property (see R6.19). How many
multipliers are required in this realization? Using MATLAB, develop the gain responses
of the transfer function of the parallel allpass realization of the above lowpass filter with
unquantized and quantized coefficients (with six bits for the fractional part of the binary
equivalent), and plot both responses on the same figure. Does the parallel allpass structure
exhibit low passband sensitivity?

Project 9.7 Low Passband Sensitivity FIR Filters

In this project you will investigate using MATLAB, the low passband sensitivity property
of the delay-complementary structure of Figure 9.6 realizing a bounded-real Type 1 FIR
transfer function.

Questions:

Q9.26 Using the function firpm design a linear-phase FIR filter of length 15 with a
normalized passband edge at 0.55, a normalized stopband edge at 0.65, and equal weights to
passband and stopband ripples. Using the function freqz compute the magnitude response
of the FIR filter at 1024 equally spaced frequency points between 0 and 1, and divide
the impulse response samples of the filter by the maximum of the absolute value of the
magnitude response obtained using the command max. The scaled transfer function H(z)
should be a BR function. Verify this property by computing the frequency response of the
scaled filter H(z). Quantize the coefficients of the scaled filter H(z) using the function a2dT
with five bits assigned to the fractional part of the binary equivalent. Plot the magnitude
responses of the scaled filter H(z) and the scaled quantized filter on the same figure, and
comment on your results.

9.9 Limit Cycles 167

Q9.27 Determine the coefficients of the delay-complementary filterG(z)of the scaled FIR
filter developed in Question Q9.26. Determine the the zeros of the delay-complementary
filter G(z) using the command roots and form the factor Gb(z) composed of the zeros
on the unit circle. Determine the remaining factor Ga(z) of G(z) by deconvolving G(z)
with Gb(z) using the command deconv. Quantize the coefficients of Ga(z) and individual
factors of Gb(z) using the function a2dT with five bits assigned to the fractional part of the
binary equivalents. Develop the delay-complementary filter of G(z) realized as a cascade
of Ga(z) and Gb(z) with quantized coefficients and plot its magnitude response. Does this
realization of H(z) exhibit low passband sensitivity?

9.9 Limit Cycles

Project 9.8 Granular Limit Cycle Generation

In this project you will investigate the generation of granular limit cycles in a first-order IIR
filter given by

ŷ[n] = Q (α ŷ[n − 1]) + x[n], (9.30)

where ŷ[n] is the output obtained by rounding the product α ŷ[n− 1] and x[n] is the input.
To this end Program P9 5 given below can be used.

% Program P9_5
% Granular Limit Cycles in First-Order IIR Filter
clear y;
alpha = input(’Type in the value of alpha = ’);
yi = 0; x = 0.411;
for n = 1:21

y(n) = a2dR(alpha*yi,5) + x;
yi = y(n); x = 0;

end
k = 0:20;
stem(k,y)
ylabel(’Amplitude’); xlabel(’Time index n’)

Questions:

Q9.28 What is the purpose of the function a2dR? How many bits are assigned to the
fractional part of the binary equivalent? Run the above program for the following values of
α: −0.55 and 0.55. Comment on your results.

Q9.29 Repeat Question Q9.28 varying the number of bits assigned to the fractional part
of the binary equivalent.

Q9.30 Repeat Question Q9.28 with different values for the filter coefficient α. Comment
on your results.

168 Chapter 9 • Analysis of FiniteWord-Length Effects

Project 9.9 Overflow Limit Cycle Generation

In this project you will investigate the generation of overflow limit cycles in a second-order
IIR filter given by

ŷ[n] = Q (−α1ŷ[n − 1] − α2ŷ[n − 2]) + x[n], (9.31)

where ŷ[n] is the output obtained by rounding the sum of the products −α1ŷ[n − 1] and
−α2ŷ[n − 2], and x[n] is the input. To this end Program P9 6 given below can be used.

% Program P9_6
% Overflow Limit Cycles in Second-Order IIR Filter
%
clear y;
alpha = input(’alpha1 and alpha2 values = ’);
yi1 = 0.75; yi2 = -0.75;
for n = 1:41

y(n) = - alpha(1)*yi1 - alpha(2)*yi2;
y(n) = a2dR(y(n),3);
yi2 = yi1; yi1 = y(n);

end
k = 0:40;
stem(k,y)
ylabel(’Amplitude’); xlabel(’Time index n’)

Questions:

Q9.31 How many bits are assigned to the fractional part of the binary equivalent? Run
the above program for the following values of the filter coefficients: α1 = −0.875 and α2

= 0.875. Comment on your results. How does this limit cycle differ from the limit cycle
generated in Question Q9.28?

Q9.32 Repeat Question Q9.31 varying the number of bits assigned to the fractional part
of the binary equivalent.

Q9.33 Repeat Question Q9.31 with different values for the filter coefficients α1 and α2.
Comment on your results.

Q9.34 Repeat Question Q9.31 by replacing the function a2dR with a2dT in Program
P9 6, which quantizes the sum of the products of −α1ŷ[n − 1] and −α2ŷ[n − 2] using
truncation. Comment on your results.

9.10 Background Reading

[1] A. Antoniou. Digital Filters: Analysis, Design, and Applications. McGraw-Hill, New
York NY, second edition, 1993. Ch. 11.

9.10 Background Reading 169

[2] E. Cunningham. Digital Filtering: An Introduction. Houghton-Mifflin, Boston MA,
1992. Ch. 8.

[3] D.J. DeFatta, J.G. Lucas, and W.S. Hodgkiss. Digital Signal Processing: A System
Design Approach. Wiley, New York NY, 1988. Ch. 9.

[4] L.B. Jackson. Digital Filters and Signal Processing. Kluwer, Boston MA, third
edition, 1996. Ch. 11.

[5] R. Kuc. Introduction to Digital Signal Processing. McGraw-Hill, New York NY,
1988. Ch. 10.

[6] S.K. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-Hill,
New York NY, third edition, 2005. Sec. 11.8, Ch. 12.

[7] A.V. Oppenheim, R.W. Schafer, and J. R. Buck. Discrete-Time Signal Processing.
Prentice-Hall, Upper Saddle River NJ, second edition, 1998. Secs. 6.6–6.9.

[8] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, Englewood Cliffs
NJ, 1996. Ch. 2, Sec. 7.6.

[9] B. Porat. A Course in Digital Signal Processing. Wiley, New York NY, 1996. Sec.
11.4–11.8.

[10] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms,
and Applications. Prentice-Hall, Upper Saddle River NJ, third edition, 1996. Sec.
1.4, Secs. 7.5–7.7.

[11] R.A. Roberts and C.T. Mullis. Digital Signal Processing. Addison-Wesley, Reading
MA, 1987. Ch. 9.

170 Chapter 9 • Analysis of FiniteWord-Length Effects

Multirate Digital
Signal Processing 10
10.1 Introduction

The digital signal processing structures discussed so far belong to the class of single-rate
systems as the sampling rates at the input and the output and all internal nodes are the same.
There are applications where it is necessary and often convenient to have unequal rates of
sampling at various parts of the system including the input and the output. In this laboratory
exercise you will investigate first using MATLAB the properties of the up-sampler and the
down-sampler, the two basic components of a multirate system. You will then investigate
their use in designing more complex systems, such as interpolators and decimators, and
filter banks.

10.2 Background Review

R10.1 The up-sampler, shown in Figure 10.1, is employed in the increase of the sampling
rate of a sequence x[n] by an integer factor L > 1. It inserts L− 1 equidistant zero-valued
samples between each consecutive pair of samples of x[n] to develop an output sequence
xu[n] given by

xu[n] =
{

x[n/L], n = 0,±L,±2L, . . . ,
0, otherwise.

(10.1)

x[n] xu[n]L

Figure 10.1 Representation of an up-sampler.

The up-sampler is a linear but time-varying discrete-time system. In the z-domain, its
input-output relation is given by

Xu(z) = X(zL), (10.2)

where X(z) and Xu(z) denote, respectively, the z-transforms of x[n] and xu[n]. For
z = ejω the above equation becomes Xu(ejω) = X(ejωL).

R10.2 The down-sampler, shown in Figure 10.2, is employed in the decrease of the sam-
pling rate of a sequence x[n] by an integer factor M > 1. It removes M − 1 in-between

171

172 Chapter 10 • Multirate Digital Signal Processing

samples to generate an output sequence y[n] according to the relation

y[n] = x[nM]. (10.3)

x[n] M y[n]

Figure 10.2 Representation of a down-sampler.

The down-sampler is a linear but time-varying discrete-time system. In the z-domain, its
input-output relation is given by

Y (z) =
1
M

M−1∑
k=0

X(z1/M W−k
M), (10.4)

where X(z) and Y (z) denote, respectively, the z-transforms of x[n] and y[n]. For z = ejω

the above equation becomes

Y (ejω) =
1
M

M−1∑
k=0

X(ej(ω−2πk
M)), (10.5)

It follows from Eq. (10.5) that the aliasing due to a factor-of-M down-sampling is absent
if and only if the signal x[n] is bandlimited to ±π/M .

R10.3 A cascade of a factor-of-M down-sampler with a factor-of-L up-sampler (Figure
10.3) is interchangeable with no change in the input-output relation if and only if M and L
are relatively prime, that is, M and L do not have a common factor that is an integer k > 1.

==
?

L M LMx[n] x[n]y [n]1 y [n]2

v [n]1 v [n]2

Figure 10.3 An up-sampler in cascade with a down-sampler.

R10.4 Two other cascade equivalences are shown in Figure 10.4.

R10.5 The unwanted images in the spectra of the up-sampled signal xu[n], due to the
periodic repetition of the spectrum ofx[n] caused by the up-sampler, is removed by a lowpass
filter H(z) as indicated in Figure 10.5(a) after the up-sampling operation. The system of
Figure 10.5(a) is called an interpolator. The specifications for the lowpass interpolation
filter H(z) are given by

|H(ejω)| =
{

L, |ω| ≤ ωc/L,
0, π/L ≤ |ω| ≤ π.

(10.6)

where ωc denotes the highest frequency that need to be preserved in the signal to be inter-
polated.

10.2 Background Review 173

M M
x[n] x[n]y [n]1v [n]1 v [n]2 y [n]2

H(z) H(z)M

(a)

L
x[n] x[n]y [n]3v [n]3 v [n]4 y [n]4H(z)H(z)L L

(b)

Figure 10.4 Cascade equivalences.

R10.6 Similarly, prior to down-sampling the signal v[n] should be band limited to |ω| <
π/M by means of a lowpass filter H(z) to avoid aliasing caused by the down-sampling
operation. The system of Figure 10.5(b) is called a decimator. The specifications for the
lowpass decimation filter H(z) are given by

|H(ejω)| =
{

1, |ω| ≤ ωc/M,
0, π/M ≤ |ω| ≤ π.

(10.7)

Lx[n] y[n]
x [n]u

H(z) Mx[n] y[n]H(z)
v[n]

(a) (b)

Figure 10.5 (a) Interpolator and (b) decimator.

R10.7 The desired configuration for a fractional sampling rate alteration is as indicated
in Figure 10.6 where the lowpass filter H(z) has a normalized stopband cutoff frequency
at

ωs = min (
π

L
,

π

M
). (10.8)

M y[n]Lx[n] H (z)u H (z)d L Mx[n] y[n]H(z)
w[n]

Figure 10.6 Fractional rate sampling rate alteration scheme.

R10.8 In general the computational efficiency is improved significantly by designing the
sampling rate alteration system as a casacde of several stages. Figure 10.7(a) illustrates a
two-stage design of a factor-of-L interpolator where L = L1L2. Likewise, Figure 10.7(b)
illustrates a two-stage design of a factor-of-M decimator where M = M1M2.

R10.9 The M -band polyphase decomposition of the z-transform X(z) of an arbitrary
sequence {x[n]}

X(z) =
∞∑

n=−∞
x[n] z−n, (10.9)

174 Chapter 10 • Multirate Digital Signal Processing

H (z)1L1 L2 H (z)2

(a)

H (z)1 M1 H (z)2 M2

(b)

Figure 10.7 Two-stage implementations: (a) interpolator, and (b) decimator.

is given by

X(z) =
M−1∑
k=0

z−k Xk(zM), (10.10)

where

Xk(z) =
∞∑

n=−∞
xk[n] z−n =

∞∑
n=−∞

x[Mn + k] z−n, k = 0, 1, . . . , M − 1. (10.11)

The subsequences {xk[n]} are called the polyphase components of the parent sequence
{x[n]}, and the functions Xk(z), given by the z-transform of {xk[n]}, are called the
polyphase components of X(z). The relation between the subsequences {xk[n]} and the
original sequence {x[n]} is given by

xk[n] = x[Mn + k], k = 0, 1, . . . , M − 1. (10.12)

R10.10 The Type I polyphase decomposition of an N th order FIR transfer function H(z)
is given by

H(z) =
M−1∑
k=0

z−k Ek(zM) (10.13)

whereas its Type II polyphase decomposition is given by

H(z) =
M−1∑
�=0

z−(M−1−�) R�(zM) (10.14)

where
R�(z) = EM−1−�(z), � = 0, 1, . . . , M − 1. (10.15)

The direct realization of H(z) based on the decompositions of Eqs. (10.13) and (10.14) is
shown in Figure 10.8.

R10.11 The digital filter bank is a set of digital bandpass filters with either a common
input or a summed output as shown in Figure 10.2. The structure of Figure 10.2(a) is called
an M -band analysis filter bank with the subfilters Hk(z) known as the analysis filters.
Likewise, the structure of Figure 10.2(b) is called an L-band synthesis filter bank with the
subfilters Fk(z) known as the synthesis filters.

10.2 Background Review 175

z
_1

+

+

+

z
_1

z
_1

x[n] y[n]
0E (z)M

1E (z)M

2E (z)M

M 1_E (z)M

x[n]

y[n]

z–1

z–1

z–1

R 0(zM)

R 1(zM)

R 2(zM)

R M–1(zM)

(a) (b)

Figure 10.8 FIR filter realization based on a polyphase decomposition: (a) Type I polyphase de-
composition and (b) Type II polyphase decomposition.

x[n] H0 (z)

H1(z)

HM–1(z)

v0[n]

v1[n]

vM–1[n]

y[n]v [n]^
0

v [n]^
1

v [n]^
L 1_

F (z)0

1F (z)

L 1_F (z)

(a) (b)

Figure 10.9 (a) Analysis filter bank and (b) synthesis filter bank.

R10.12 Let H0(z) represent a causal lowpass digital filter with an impulse response h0[n]:

H0(z) =
∞∑

n=0

h0[n] z−n, (10.16)

with a passband edge ωp, and a stopband edge ωs, where ωp < π/M < ωs with M being
an arbitrary integer. Consider the transfer functions Hk(z) defined by

Hk(z) =
∞∑

n=0

hk[n] z−n =
∞∑

n=0

h0[n] (z W k
M)−n

= H0(z W k
M), k = 0, 1, . . . , M − 1, (10.17)

where WM = e−j2π/M . The frequency response of these transfer functions is given by

Hk(ejω) = H0(ej(ω− 2πk
M)), k = 0, 1, . . . , M − 1. (10.18)

176 Chapter 10 • Multirate Digital Signal Processing

Thus, the frequency response of Hk(z) is obtained by shifting the response of H0(z) to the
right, by an amount 2πk/M . The M filters Hk(z) defined by Eq. (10.17) could be used as
the analysis filters in the analysis filter bank of Figure (a) or as the synthesis filters Fk(z)
in the synthesis filter bank of Figure (b). The filter bank obtained is called a uniform filter
bank.

R10.13 If the lowpass prototype transfer function H0(z) is represented in its M -band
polyphase form:

H(z) =
M−1∑
�=0

z−� E�(zM), (10.19)

where E�(z) is the �th polyphase component of H0(z) given by

E�(z) =
∞∑

n=0

e�[n] z−n =
∞∑

n=0

h0[� + nM] z−n, 0 ≤ � ≤ M − 1, (10.20)

the M filters, Hk(z), k = 0, 1, . . . , M − 1, can be expressed in matrix form as⎡
⎢⎢⎢⎢⎢⎣

H0(z)
H1(z)
H2(z)

...
HM−1(z)

⎤
⎥⎥⎥⎥⎥⎦ = M D−1

M

⎡
⎢⎢⎢⎢⎢⎣

E0(zM)
z−1E1(zM)
z−2E2(zM)

...
z−(M−1)EM−1(zM)

⎤
⎥⎥⎥⎥⎥⎦ , (10.21)

where DM denotes the M × M DFT matrix:

DM =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 W 1

M W 2
M . . . WM−1

M

1 W 2
M W 4

M . . . W
2(M−1)
M

...
...

...
. . .

...

1 W
(M−1)
M W

2(M−1)1
M . . . W

(M−1)2

M

⎤
⎥⎥⎥⎥⎥⎥⎦

. (10.22)

An efficient implementation of the M -band analysis filter bank based on Eq. (10.21) is thus
as shown in Figure 10.10 where the prototype lowpass filter H0(z) has been implemented in
a polyphase form. The structure of Figure 10.10 is more commonly known as the uniform
DFT analysis filter bank. The corresponding polyphase implementation of a uniform DFT
synthesis filter bank can be similarly derived and is shown in Figure 10.11.

R10.14 A lowpass filter H(z) with a passband edge ωp and a stopband edge ωs satisfying
ωp < π/M < ωs is called an Lth band filter or a Nyquist filter if its impulse response h[n]
also satisfies the condition

h[Ln] =
{

α, n = 0,
0, otherwise.

(10.23)

For such a filter, the polyphase decomposition is of the form

H(z) = α +
L−1∑
�=1

z−�E�(zL), (10.24)

10.2 Background Review 177

z
_1

z
_1

z
_1

x[n]
M

E (z)M
0

E (z)M
1

E (z)M
2

E (z)M
M 1_

v [n]0

v [n]1

v [n]2

M 1_v [n]

M
-p

oi
nt

 I
D

FT

Figure 10.10 Uniform DFT analysis filter bank.

z
_1

z
_1

z
_1

E (z)L
0

1E (z)L

2E (z)L

L 1_E (z)L

v [n]0
^

v [n]1
^

v [n]2
^

v [n]^
L 1_

y[n]

L
-p

oi
nt

 D
FT

Figure 10.11 Uniform DFT synthesis filter bank.

and
L−1∑
k=0

H(z W k
L) = L α = 1, (assuming α = 1

L). (10.25)

R10.15 An Lth band filter H(z) for L = 2 is called a half-band filter, for which the
transfer function is given by

H(z) = α + z−1E1(z2), (10.26)

and its impulse response satisfies Eq. (10.23) with L = 2. The condition of Eq. (10.25) on
the frequency response here reduces to

H(z) + H(−z) = 1 (assuming α = 1
2). (10.27)

If H(z) has real coefficients, then H(−ejω) = H(ej(π−ω)), and Eq. (10.27) leads to

H(ejω) + H(ej(π−ω)) = 1. (10.28)

178 Chapter 10 • Multirate Digital Signal Processing

The length of the impulse response h[n] of a linear-phase FIR half-band filter H(z) is
restricted to be of the form 4K + 3 (unless H(z) is a constant).

10.3 MATLAB Commands Used

The MATLAB commands you will encounter in this exercise are as follows:

General Purpose Commands

length

Operators and Special Characters

: . + - * / ;
% .* =

Language Constructs and Debugging

end for

Elementary Matrices and Matrix Manipulation

pi sum :

Elementary Functions

abs exp log10 sin

Two-Dimensional Graphics

axis clf grid plot stem
subplot title xlabel ylabel

Signal Processing Toolbox

decimate fir2 firpm freqz hamming
interp resample sinc

10.4 Basic Sampling Rate Alteration Devices 179

For additional information on these commands, see the MATLAB Reference Guide [Mat05]
or type help commandname in the Command window. A brief explanation of the MATLAB
functions used here can be found in Appendix B.

10.4 Basic Sampling Rate Alteration Devices

The objective of this section is to investigate using MATLAB the operations of the up-
sampler and the down-sampler both in the time domain and in the frequency domain.

Project 10.1 Input-Output Relations in the Time-Domain

Program P10 1 can be used to study the operation of a up-sampler.

% Program 10_1
% Illustration of Up-Sampling by an Integer Factor
%
clf;
n = 0:50;
x = sin(2*pi*0.12*n);
y = zeros(1, 3*length(x));
y([1: 3: length(y)]) = x;
subplot(2,1,1)
stem(n,x);
title(’Input Sequence’);
xlabel(’Time index n’);ylabel(’Amplitude’);
subplot(2,1,2)
stem(n,y(1:length(x)));
title(’Output Sequence’);
xlabel(’Time index n’);ylabel(’Amplitude’);

Questions:

Q10.1 What is the angular frequency in radians of the sinusoidal sequence? What is its
length? What is the up-sampling factor L?

Q10.2 How is the up-sampling operation implemented in Program P10 1?

Q10.3 Run Program P10 1 and verify that the relation between the output and the input
sequences satisfies Eq. (10.1).

Q10.4 Repeat Question Q10.3 for two different values of the angular frequency and two
different values of the up-sampling factor L.

Q10.5 Modify Program P10 1 to study the operation of an up-sampler on a ramp sequence.

180 Chapter 10 • Multirate Digital Signal Processing

Program P10 2 can be used to study the operation of a down-sampler.

% Program P10_2
% Illustration of Down-Sampling by an Integer Factor
%
clf;
n = 0: 49;
m = 0: 50*3 - 1;
x = sin(2*pi*0.042*m);
y = x([1: 3: length(x)]);
subplot(2,1,1)
stem(n, x(1:50)); axis([0 50 -1.2 1.2]);
title(’Input Sequence’);
xlabel(’Time index n’);
ylabel(’Amplitude’);
subplot(2,1,2)
stem(n, y); axis([0 50 -1.2 1.2]);
title(’Output Sequence’);
xlabel(’Time index n’);
ylabel(’Amplitude’);

Questions:

Q10.6 What is the angular frequency in radians of the sinusoidal sequence? What is its
length? What is the down-sampling factor M?

Q10.7 How is the down-sampling operation implemented in Program P10 2?

Q10.8 Run Program P10 2 and verify that the relation between the output and the input
sequences satisfies Eq. (10.3).

Q10.9 Repeat Question Q10.8 for two different values of the angular frequency and two
different values of the down-sampling factor M .

Project 10.2 Input-Output Relations in the Frequency Domain

To demonstrate the effect of up-sampling and down-sampling in the frequency domain
we need to create a finite-length input sequence that is also bandlimited in the frequency
domain. To this end we can utilize the M-function fir2 (see Section 7.5).

Program P10 3 can be employed to study the frequency domain properties of the up-sampler.

% Program P10_3
% Effect of Up-sampling in the Frequency Domain

10.4 Basic Sampling Rate Alteration Devices 181

% Use fir2 to create a bandlimited input sequence
clf;
freq = [0 0.45 0.5 1];
mag = [0 1 0 0];
x = fir2(99, freq, mag);
% Evaluate and plot the input spectrum
[Xz, w] = freqz(x, 1, 512, ’whole’);
subplot(2,1,1);
plot(w/pi, abs(Xz)); axis([0 1 0 1]); grid
xlabel(’\omega/\pi’); ylabel(’Magnitude’);
title(’Input Spectrum’);
subplot(2,1,2);
% Generate the up-sampled sequence
L = input(’Type in the up-sampling factor = ’);
y = zeros(1, L*length(x));
y([1: L: length(y)]) = x;
% Evaluate and plot the output spectrum
[Yz, w] = freqz(y, 1, 512, ’whole’);
plot(w/pi, abs(Yz)); axis([0 1 0 1]); grid
xlabel(’\omega/\pi’); ylabel(’Magnitude’);
title(’Output Spectrum’);

Questions:

Q10.10 What is the length of the input sequence? What is its magnitude spectrum?

Q10.11 Run Program P10 3 for the following values of the up-sampling factor: L = 2,
3, and 5. Comment on the plots generated by the program. Do the results agree with Eq.
(10.2)?

Program P10 4 can be employed to study the frequency-domain properties of the down-
sampler.

% Program P10_4
% Effect of Down-sampling in the Frequency Domain
% Use fir2 to create a bandlimited input sequence
clf;
freq = [0 0.42 0.48 1]; mag = [0 1 0 0];
x = fir2(101, freq, mag);
% Evaluate and plot the input spectrum
[Xz, w] = freqz(x, 1, 512);
subplot(2,1,1);
plot(w/pi, abs(Xz)); grid
xlabel(’\omega/\pi’); ylabel(’Magnitude’);
title(’Input Spectrum’);

182 Chapter 10 • Multirate Digital Signal Processing

% Generate the down-sampled sequence
M = input(’Type in the down-sampling factor = ’);
y = x([1: M: length(x)]);
% Evaluate and plot the output spectrum
[Yz, w] = freqz(y, 1, 512);
subplot(2,1,2);
plot(w/pi, abs(Yz)); grid
xlabel(’\omega/\pi’); ylabel(’Magnitude’);
title(’Output Spectrum’);

Questions:

Q10.12 What is the length of the input sequence? What is its magnitude spectrum?

Q10.13 Run Program P10 4 for the following values of the down-sampling factor: M =
2, 3, and 5. Comment on the plots generated by the program. Do the results agree with Eq.
(10.5)? What is the minimum value of M for which aliasing occurs?

10.5 Decimator and Interpolator Design
and Implementation

The Signal Processing Toolbox includes three M-functions which can be employed to de-
sign and implement an interpolator or a decimator. The three M-functions are decimate,
interp, and resample. Each function is available with several options. In this section
you will study the decimation and interpolation operation using these functions.

Project 10.3 Decimator Design and Implementation

Program P10 5 illustrates the use of the M-function decimate in the design and implemen-
tation of a decimator with an integer-valued decimation factor M . In the option utilized in
this program, decimate designs and uses a lowpass decimation filter with a stopband edge
satisfying Eq. (10.7).

% Program P10_5
% Illustration of Decimation Process
%
clf;
M = input(’Down-sampling factor = ’);
n = 0:99;
x = sin(2*pi*0.043*n) + sin(2*pi*0.031*n);
y = decimate(x,M,’fir’);
subplot(2,1,1);

10.5 Decimator and Interpolator Designand Implementation 183

stem(n,x(1:100));
title(’Input Sequence’);
xlabel(’Time index n’);ylabel(’Amplitude’);
subplot(2,1,2);
m = 0:(100/M)-1;
stem(m,y(1:100/M));
title(’Output Sequence’);
xlabel(’Time index n’);ylabel(’Amplitude’);

Questions:

Q10.14 What are the frequencies of the two sinusoidal sequences forming the input se-
quence? What is the length of the input?

Q10.15 What are the type and order of the decimation filter?

Q10.16 Run Program P10 5 for M = 2 and comment on the results.

Q10.17 Change the frequencies of the two sinusoidal sequences in the input signal to
0.045 and 0.029, and the length of the input to 120. Run the modified Program P10 5 for
M = 3. Comment on your results.

Project 10.4 Interpolator Design and Implementation

Program P10 6 illustrates the use of the M-function interp in the design and implemen-
tation of an interpolator with an integer-valued interpolation factor L. interp designs and
uses a lowpass interpolation filter with a stopband edge satisfying Eq. (10.6).

% Program P10_6
% Illustration of Interpolation Process
%
clf;
L = input(’Up-sampling factor = ’);
% Generate the input sequence
n = 0:49;
x = sin(2*pi*0.043*n) + sin(2*pi*0.031*n);
% Generate the interpolated output sequence
y = interp(x,L);
% Plot the input and the output sequences
subplot(2,1,1);
stem(n,x(1:50));
title(’Input Sequence’);
xlabel(’Time index n’); ylabel(’Amplitude’);
subplot(2,1,2);
m = 0:(50*L)-1;

184 Chapter 10 • Multirate Digital Signal Processing

stem(m,y(1:50*L));
title(’Output Sequence’);
xlabel(’Time index n’); ylabel(’Amplitude’);

Questions:

Q10.18 What are the frequencies of the two sinusoidal sequences forming the input se-
quence? What is the length of the input?

Q10.19 What are the type and order of the interpolation filter?

Q10.20 Run Program P10 6 for L = 2 and comment on the results.

Q10.21 Change the frequencies of the two sinusoidal sequences in the input signal to
0.045 and 0.029, and the length of the input to 40. Run the modified Program P10 6 for
L = 3. Comment on your results.

Project 10.5 Fractional-Rate Sampling Rate Alteration

Program P10 7 illustrates the use of the M-function resample in the design and imple-
mentation of an interpolator with a fractional-rate interpolation factor L/M . resample
designs and uses a lowpass interpolation filter with a stopband edge satisfying Eq. (10.8).

% Program 10_7
% Illustration of Sampling Rate Alteration by
% a Ratio of Two Integers
%
clf;
L = input(’Up-sampling factor = ’);
M = input(’Down-sampling factor = ’);
n = 0:29;
x = sin(2*pi*0.43*n) + sin(2*pi*0.31*n);
y = resample(x,L,M);
subplot(2,1,1);
stem(n,x(1:30));axis([0 29 -2.2 2.2]);
title(’Input Sequence’);
xlabel(’Time index n’); ylabel(’Amplitude’);
subplot(2,1,2);
m = 0:(30*L/M)-1;
stem(m,y(1:30*L/M));axis([0 (30*L/M)-1 -2.2 2.2]);
title(’Output Sequence’);
xlabel(’Time index n’); ylabel(’Amplitude’);

10.6 Design of Filter Banks 185

Questions:

Q10.22 What are the frequencies of the two sinusoidal sequences forming the input se-
quence? What is the length of the input?

Q10.23 What are the type and order of the bandlimiting filter?

Q10.24 Run Program P10 7 for L = 5 and M = 3. Comment on the results.

Q10.25 Change the frequencies of the two sinusoidal sequences in the input signal to
0.045 and 0.029, and the length of the input to 40. Run the modified Program P10 7 for
L = 3 and M = 5. Comment on your results.

10.6 Design of Filter Banks

Project 10.6 Design of Uniform Analysis/Synthesis Filter Banks

The design of an M -channel uniform analysis or synthesis filter bank can be carried out
easily using Eq. (10.17) where {h0[n]} is a prototype lowpass filter with a passband edge
ωp and a stopband edge ωs satisfying the condition ωp < π/M < ωs. The design can be
carried out using Program P10 8.

% Program P10_8
% Design of Uniform DFT Filter Banks
clf;
% Design the prototype lowpass filter
b = firpm(20, [0 0.2 0.25 1], [1 1 0 0], [10 1]);
w = 0:2*pi/255:2*pi; n = 0:20;
for k = 1:4;

c = exp(2*pi*(k-1)*n*i/4);
FB = b.*c;
HB(k,:) = freqz(FB,1,w);

end
% Plot magnitude responses of each filter
subplot(2,2,1)
plot(w/pi, abs(HB(1,:)));
xlabel(’\omega/\pi’);ylabel(’Amplitude’);
title(’Filter No. 1’); axis([0 2 0 1.1]);
subplot(2,2,2)
plot(w/pi,abs(HB(2,:)));
xlabel(’\omega/\pi’);ylabel(’Amplitude’);
title(’Filter No. 2’);axis([0 2 0 1.1]);
subplot(2,2,3)
plot(w/pi,abs(HB(3,:)));
xlabel(’\omega/\pi’);ylabel(’Amplitude’);

186 Chapter 10 • Multirate Digital Signal Processing

title(’Filter No. 3’); axis([0 2 0 1.1]);
subplot(2,2,4)
plot(w/pi,abs(HB(4,:)));
xlabel(’\omega/\pi’);ylabel(’Amplitude’);
title(’Filter No. 4’); axis([0 2 0 1.1]);

Questions:

Q10.26 What are the type and order of the prototype lowpass filter in Program P10 8?
What are its specifications? How many channels are in the filter bank?

Q10.27 Run Program P10 8 and comment on your results.

Q10.28 Modify Program P10 8 to design a three-channel uniform filter bank and plot its
magnitude responses. Use the same prototype lowpass filter.

10.7 Design of Nyquist Filters

Project 10.7 Windowed Fourier Series Approach

A lowpass linear-phase Nyquist Lth band FIR filter with a cutoff at ωc = π/L and a
good frequency response can be readily designed via the windowed Fourier series approach
described in Section R7.9. In this approach the impulse response coefficients of the lowpass
filter are chosen as

h[n] = hLP [n] · w[n]. (10.29)

where hLP [n] is the impulse response of an ideal lowpass filter with a cutoff at π/L and
w[n] is a suitable window function. If

hLP [n] = 0 for n = 0,±L,±2L, . . . , (10.30)

then Eq. (10.23) is indeed satisfied.

Now the impulse response hLP [n] of an ideal Lth band filter is obtained from Eq. (7.14)
by substituting ωc = π/L and is given by

hLP [n] =
sin(πn/L)

πn
, −∞ ≤ n ≤ ∞. (10.31)

It can be seen from the above that the impulse response coefficients do indeed satisfy the
condition of Eq. (10.23). Hence, an Lth band filter can be designed by applying a suitable
window function to Eq. (10.31).

The design of an Lth band lowpass filter can be carried out using Program P10 9.

% Program P10_9

10.8 Background Reading 187

% Design of Lth Band FIR Filter Using the
% Windowed Fourier Series Approach
%
clf;
K = 11;
n = -K:K;
% Generate the truncated impulse response of
% the ideal lowpass filter
b = sinc(n/2)/2;
% Generate the window sequence
win = hamming(23);
% Generate the coefficients of the windowed filter
fil = b.*win’;
c = fil/sum(fil);
% Plot the gain response of the windowed filter
[h,w] = freqz(c,1,256);
g = 20*log10(abs(h));
plot(w/pi,g);axis([0 1 -90 10]); grid
xlabel(’\omega/\pi’);ylabel(’Gain, dB’);

Questions:

Q10.29 What are the value of L and the length of the Lth band FIR filter being designed
by Program P10 9? What type of window is being used?

Q10.30 Run Program P10 9 and comment on your results. Print the coefficients of the
Lth band filter and verify that it satisfies Eq. (10.23).

Q10.31 Repeat Question Q10.30 for a different value of L and a different window.

10.8 Background Reading

[1] R.E. Crochiere and L.R. Rabiner. Multirate Digital Signal Processing. Prentice-Hall,
Englewood Cliffs NJ, 1996. Chs. 2, 4, 7.

[2] D.J. DeFatta, J.G. Lucas, and W.S. Hodgkiss. Digital Signal Processing: A System
Design Approach. Wiley, New York NY, 1988. Ch. 7.

[3] S.K. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-Hill,
New York NY, third edition, 2005. Sec. 11.8 and Ch. 13.

[4] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, EUpper Saddle River,
NJ, 1996. Ch. 12.

[5] B. Porat, A Course in Digital Signal Processing. John Wiley, New York NY, 1996. Ch.
12.

188 Chapter 10 • Multirate Digital Signal Processing

[6] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms,
and Applications. Prentice-Hall, Upper Saddle River NJ, third Edition, 1996. Ch. 10.

[7] P.P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice-Hall, Upper Saddle
River NJ, 1993. Chs. 4, 5.

Advanced Projects 11
11.1 Introduction

This exercise contains 12 advanced projects for implementation using MATLAB. These
projects make use of the concepts and tools of digital signal processing that you have
learned in the previous 10 laboratory exercises. The projects considered here require careful
planning before you start implementing them and may require reading additional materials
beyond those to which you have been exposed so far. By completing these projects you will
learn more about some interesting applications of the theory and algorithms of digital signal
processing and gain a better appreciation of this field. In addition, you will be exposed to
some recent advances in the field.

11.2 Discrete Transforms

Project 11.1 Subband Discrete Fourier Transform

The N -point DFT X[k], k = 0, 1, · · · , N−1, of a length-N sequence x[n], 0 ≤ n ≤ N−1,
is given by the samples of its z-transform X(z) =

∑N−1
n=0 x[n] z−n evaluated on the unit

circle at equally spaced points:

X[k] = X(z)
∣∣∣z=W−k

N
, =

N−1∑
n=0

x[n] W kn
N , 0 ≤ k ≤ N − 1, (11.1)

where WN = e−j2π/N . The subband discrete Fourier transform (SB-DFT) computation
method can be used to compute efficiently the approximate values of the dominant DFT
samples in one or more portions of the frequency range of a sequence of a length that is a
power of 2. To illustrate the basic idea behind this method, decompose x[n] first into two
length-N

2 subsequences gL[n] and gH [n] according to

gL[n] = 1
2 (x[2n] + x[2n + 1]) ,

gH [n] = 1
2 (x[2n] − x[2n + 1]) , 0 ≤ n ≤ N

2 − 1. (11.2)

Note that the original sequence x[n] can be recovered from the above subsequences using

x[2n] = gL[n] + gH [n],

x[2n + 1] = gL[n] − gH [n], 0 ≤ n ≤ N

2
− 1. (11.3)

189

190 Chapter 11 • Advanced Projects

The z-transform X(z) of x[n] can now be expressed as

X(z) = (1 + z−1)GL(z2) + (1 − z−1)GH(z2), (11.4)

where GL(z) and GH(z) are, respectively, the z-transforms of gL[n] and gH [n]. The
N -point DFT X[k] of x[n] thus can be expressed alternately as

X[k] = (1 + W k
N)GL[〈k〉N/2] + (1 − W k

N)GH [〈k〉N/2], 0 ≤ k ≤ N − 1, (11.5)

where GL[k] and GH [k] are the N/2-point DFTs of the subsequences gL[n] and gH [n],
respectively. The DFT computation of Eq. (11.5) has been called the subband DFT [She95].
Note that the two N/2-point DFTs can be computed using any FFT algorithms.

Equation (11.5) can be written in matrix form as

X[k] = [1 W k
N]R−1

2

[
GL[〈k〉N/2]
GH [〈k〉N/2]

]
, (11.6)

where R2 =
[

1 1
1 −1

]
is the 2×2 Hadamard matrix. The process can be repeated,

resulting in a two-stage algorithm given by

X[k] = [1 W k
N W 2k

N W 3k
N]R−1

4

⎡
⎢⎢⎣

GLL[〈k〉N/4]
GLH [〈k〉N/4

GHL[〈k〉N/4]
GHH [〈k〉N/4

⎤
⎥⎥⎦ , (11.7)

where R4 is the 4×4 Hadamard matrix and GLL[〈k〉N/4] and so forth are now N/4-point
DFTs. This process can be continued until all the necessary DFTs are of length 2. If N = 2µ,
the total number of complex multiplications required in a µ-stage subband DFT algorithm
is the same as any Cooley-Tukey-type FFT algorithm, but requires more additions.

The DFT computation algorithm can be simplified by eliminating the calculations corre-
sponding to the bands with negligible energy. For example, for a sequence x[n] with mostly
low-frequency components, an approximate DFT is obtained by eliminating the contribution
of GH [k] from Eq. (11.5):

X[k] ∼= (1 + W k
N)GL[〈k〉N/2], 0 ≤ k ≤ N

4
− 1, (11.8)

assuming x[n] is a real-valued sequence. The high-frequency samples of X[k] are assumed
to be of zero value. The total computation requirements in using the approximate algorithm
of Eq. (11.8) are now one-half of those required in the original algorithm of Eq. (11.5).
Depending on the spectral property of the sequence x[n], in an M -stage decomposition,
any one or more of the N/M dominant DFT samples can be approximately evaluated using
the SB-DFT computation scheme.

Write a MATLAB program to determine the DFT of a sequence based on a two-stage SB-
DFT computation scheme. Generate a length-64 real sequence with a bandlimited spectrum
restricted to the range 0 ≤ ω ≤ π

4 using the M-function fir2. Determine its approximate

11.2 Discrete Transforms 191

DFT using the SB-DFT program. Compare the low-frequency samples of the SB-DFT with
those of the exact low frequency samples of the DFT obtained using the function fft.

Next, modify the above program to determine the DFT of a sequence based on a 4-stage
SB-DFT computation scheme. Determine the approximate DFT of the length-64 sequence
generated earlier using the new SB-DFT program. Compare the low-frequency samples
generated by the 4-stage SB-DFT with those generated by the 2-stage SB-DFT. Comment
on your results.

Project 11.2 Nonuniform Discrete Fourier Transform

The N -point nonuniform discrete Fourier transform (NDFT) XNDFT [k] of a length-N
sequence x[n] is defined by [Bag98]

XNDFT [k] =
N−1∑
n=0

x[n] z−n
k , 0 ≤ k ≤ N − 1, (11.9)

where z0, z1, · · · , zN−1 are N distinct points located arbitrarily in the z-plane. The above
set of N equations can be expressed in matrix form as⎡

⎢⎢⎢⎣
XNDFT [0]
XNDFT [1]

...
XNDFT [N − 1]

⎤
⎥⎥⎥⎦ = DN

⎡
⎢⎢⎢⎣

x[0]
x[1]

...
x[N − 1]

⎤
⎥⎥⎥⎦ , (11.10)

where

DN =

⎡
⎢⎢⎢⎢⎣

1 z−1
0 z−2

0 · · · z
−(N−1)
0

1 z−1
1 z−2

1 · · · z
−(N−1)
1

...
...

...
. . .

...

1 z−1
N−1 z−2

N−1 · · · z
−(N−1)
N−1

⎤
⎥⎥⎥⎥⎦ , (11.11)

is the N × N NDFT matrix. Note that for zk = ej2πk/N , 0 ≤ k ≤ N − 1, the NDFT
reduces to the more conventional discrete Fourier transform (DFT) given in Eq. (11.1). The
NDFT matrix of Eq. (11.11) is a Vandermonde matrix, and for distinct zk it has a unique
inverse. We can then solve Eq. (11.10) for the samples of the sequence x[n] using⎡

⎢⎢⎢⎣
x[0]
x[1]

...
x[N − 1]

⎤
⎥⎥⎥⎦ = D−1

N

⎡
⎢⎢⎢⎣

XNDFT [0]
XNDFT [1]

...
XNDFT [N − 1]

⎤
⎥⎥⎥⎦ . (11.12)

The inverse NDFT computation indicated above is not recommended in practice as the
Vandermonde matrix is, in general, ill-conditioned and can lead to large numerical errors.
The inverse NDFT can be computed more efficiently by evaluating the z-transform X(z),

X(z) =
N−1∑
n=0

x[n] z−n, (11.13)

192 Chapter 11 • Advanced Projects

from the given N -point NDFT XNDFT [k] by using some type of polynomial interpolation
method, such as the Lagrange interpolation method. In this method, X(z) is expressed as

X(z) =
N−1∑
n=0

Ik(z)
Ik(zk)

XNDFT [k], (11.14)

where

Ik(z) =
N−1∏
i=0
i �=k

(
1 − zi z−1

)
. (11.15)

Write an M-function to compute the N -point NDFT of a sequence at a prescribed set of
distinct N points zk on the unit circle in the z-plane. The input to the function is the set
of frequency points zk and the input sequence, whereas, the output is the vector of NDFT
samples. Write another M-function to evaluate the inverse NDFT using the Lagrange
interpolation method. Using these functions evaluate the NDFT of sequences of various
lengths and their inverse NDFTs.

An elegant application of the NDFT is in the efficient design of one-dimensional and two-
dimensional FIR filters using a modified frequency-sampling approach, and in the design
of beamformers with prescribed nulls [Bag98].

Project 11.3 Warped Discrete Fourier Transform

As indicated in Eq. (11.1), the N -point DFT X[k] of a length-N sequence x[n] is given by
the frequency samples of the z-transform X(z) of x[n] at N equally-spaced points on the
unit circle. The warped discrete Fourier transform (WDFT) can be employed to determine
the N frequency samples of X(z) at a warped frequency scale. The N -point WDFT X̆[k] of
x[n] is given by the N equally spaced frequency samples on the unit circle of the modified
z-transform X(ẑ) obtained by applying an allpass first-order spectral transformation to
X(z) [Mit98b]:

X(ẑ) = X(z)
∣∣∣∣z−1=−α+ẑ−1

1−αẑ−1
, (11.16)

where |α| < 1. Thus, the N -point WDFT X̆[k] of x[n] is given by

X̆[k] = X(ẑ) |ẑ=ej2πk/N , 0 ≤ k ≤ N − 1. (11.17)

Now, the modified z-transform X(ẑ) is given by

X(ẑ) =
N−1∑
n=0

x[n]
(−α + ẑ−1

1 − αẑ−1

)−n

=
P (ẑ)
D(ẑ)

, (11.18)

where

P (ẑ) =
N−1∑
n=0

p[n] ẑ−n =
N−1∑
n=0

x[n] (1 − αẑ−1)N−1−n(−α + ẑ−1)n, (11.19)

11.2 Discrete Transforms 193

and

D(ẑ) =
N−1∑
n=0

d[n] ẑ−n = (1 − αẑ−1)N−1. (11.20)

Note that the polynomial D(ẑ) depends only on the warping parameter α, whereas the
polynomial P (ẑ) depends on both the input x[n] and α. It follows from the above that
the N -point WDFT X̆[k] is simply given by X̆[k] = P [k]/D[k] where P [k] and D[k] are,
respectively, the N -point DFTs of the sequences p[n] and d[n] defined in Eqs. (11.19) and
(11.20).

If we denote P = [p[0] p[1] · · · p[N − 1]]T and X = [x[0] x[1] · · · x[N − 1]]T ,
then it can be shown that P = Q · X where Q = [qr,s] is a real N × N matrix whose
first row is given by q0,s = αs, 0 ≤ s ≤ N − 1, and whose first column is given by
qr,0 =N−1 Crα

r. The remaining elements qr,s can be derived using the recursion relation

qr,s = qr−1,s−1 + α qr,s−1 − α qr−1,s. (11.21)

There are several interesting applications of the WDFT. For example, the warping parameter
can be chosen to increase the frequency resolution at a selected portion of the angular fre-
quency axis without changing the length N of the sequence and, if necessary, to determine
a frequency sample at a specified frequency point. This is particularly attractive in spectral
analysis of signals containing closely spaced sinusoids as here a short-length WDFT with
an appropriate warping parameter can be used to provide the necessary spectral resolu-
tion. Another application of the WDFT is in designing FIR filters with tunable magnitude
response.

Write a MATLAB function wdft to compute the WDFT of a sequence. The input data to
your function are the input sequence vector and the warping parameter α, and the output
is the vector of the WDFT samples. Using this function for α = −0.45 perform a spectral
analysis of a signal composed of two sinusoids located at 0.35 and 0.65 radians for different
values of the DFT size. What is the smallest size N1 of the WDFT necessary to resolve the
two sinusoids? Now, perform a spectral analysis of the same signal using the function fft.
What is the smallest size N2 of the DFT necessary to resolve the two sinusoids? Compare
the computational complexities of the WDFT- and the DFT-based approaches.

As a second application, write a MATLAB program to design and plot the magnitude
response of a lowpass FIR filter with a specified passband edge and that of its transformed
filter with a different passband edge. Use the function kaiord (see Section 7.5) to estimate
the length N of the FIR filter and use firpm to design the prototype FIR filter. Compute the
WDFT of the impulse response of the prototype FIR filter for the given warping parameter.
An inverse DFT of these frequency samples then yields the impulse response samples of the
transformed filter. The input data to your program are the passband and stopband edges of
the prototype, its length, and the warping parameter. Assume equal weights in the specified
bands. Run your program for various values of the input data. Comment on your results.

194 Chapter 11 • Advanced Projects

11.3 FIR Filter Design and Implementation

In many applications FIR filters are preferred over IIR filters as they are guaranteed stable
and do not exhibit limit cycles. However, the length of the FIR filter meeting a specified
magnitude response is inversely proportional to the width of the transition band, and hence,
in the case of a sharp cutoff filter, the length is often prohibitively large requiring an excessive
number of multiplication and addition operations. In this section you will investigate the
design of certain specific types of computationally efficient FIR filters.

Project 11.4 Interpolated FIR Filters

The interpolated FIR filter design approach is based on the realization of the filter as a
cascade of two FIR filters with transfer functions F (zL) and G(z), resulting in an overall
transfer function given by

H(z) = F (zL) G(z). (11.22)

The filter F (zL) has a frequency response that is periodic with a period 2π/L. The filter G(z)
attenuates the undesired passbands of this frequency response and keeps only the desired
passband. In the time domain, F (zL) has a sparse impulse response with L−1 zero-valued
samples inserted between consecutive impulse response samples of F (z), called the model
filter. The filter G(z), called the interpolation filter, thus peforms an interpolation of the
impulse response of F (zL) and fills in the zero-valued samples.

The IFIR approach can be used to design narrowband lowpass, highpass, and bandpass
filters [Neu84]. We consider here first the design of a narrowband lowpass filter H(z) with
a passband edge at ωp, a stopband edge at ωs, a passband ripple of δp, and a stopband ripple
of δs. To this end, first design a wideband lowpass filter F (z) with a passband edge at L ωp,
a stopband edge at L ωs, a passband ripple of δp, and a stopband ripple of δs. Note that the
maximum value of L is given by �π/ωs�. In practice, L should be chosen slightly smaller
than this value to provide some separation between the replicated passbands in F (zL) to
make the design of G(z) simpler. To attenuate the replica at ω = π, one can choose the FIR
section G0(z) = 1

2 (1 + z−1) and to attenuate the replicas centered at ωo, the FIR section
G2(z) = 1

K (1− 2 cos ωo z−1 + z−2), can be used where the value of K is chosen to give
a maximum gain value of 0 dB. To provide more attenuation in the undesired passbands,
multiple use of the above two sections can be used. Note that once L and the form of G(z)
have been selected, the effect of the magnitude response |G(ejω)| of G(z) on the overall
magnitude response of the cascade can be compensated for by using the inverse of |G(ejω)|
to modify the magnitude response of F (z) in the desired passband of H(z).

Using the function remez, design a length-99 IFIR lowpass filter with a passband edge
at ωp = 0.0404π, a stopband edge at ωs = 0.0556π, and equal weights in the passband
and the stopband. Design the model filter F (z) for the L = 2 case first with length 49
and predistort its passband to compensate for the effect of G(z). Compare the magnitude
responses and the computational complexities of the IFIR filter and the FIR filter designed
using the function firpm. Next, design the IFIR filter using L = 3 and 4. Compare their
performances with the IFIR filter designed using L = 2. Using the function a2dT described

11.3 FIR Filter Design and Implementation 195

in Chapter 9, compare the coefficient sensitivity properties of the IFIR filters with that of
the FIR filter designed using the function firpm.

By a simple modification, the design approach outlined above can be used to design an IFIR
highpass filter and an IFIR bandpass filter. For example, if H(z) is a model lowpass FIR
filter, by attenuating the replica of H(z2) at ω = 0 by an interpolator G1(z) = (1 − z−1),
one can design a highpass filter. Using this modification, design a narrowband highpass
FIR filter with a passband edge ωp = 0.9596π, a stopband edge at ωs = 0.94454π, and
equal weights in the passband and the stopband.

It is also possible to design a wideband FIR filter by designing a narrow-band delay comple-
mentary IFIR filter. However, in this case, the wideband filter must be a Type 1 linear-phase
filter. For further details on the IFIR method see [Neu84].

The IFIR approach has been extended for the design of computationally efficient FIR band-
pass filters [Neu87]. The method is based on modulating the impulse response h[n] of the
model lowpass filter H(z) to generate a complex coefficient bandpass FIR filter H1(z) with
passband centered at ωo and a complex coefficient bandpass FIR filter H2(z) with passband
centered at −ωo. The unwanted passbands of H1(zL) and H2(zL) are then attenuated with
complex coefficient FIR interpolators G1(z) and G2(z), respectively. For a real coefficient
H(z), the coefficients of H2(zL) are complex conjugate of those of H1(zL). Likewise,
the coefficients of G2(z) can be made to be complex conjugate of those of G1(z). Let
H(z) = Hre(z) + j Him(z), and G1(z) = Gre(z) + j Gim(z), where Hre(z), Him(z),
Gre(z), and Gim(z), have real coefficients. Then the transfer function of the desired FIR
bandpass filter is given by 1

2{Hre(z) Gre(z) + Him(z) Gim(z)}, resulting in a parallel
structure.

Using the approach outlined above, write a MATLAB program to design a symmetric
FIR bandpass filter with a center frequency at 0.87π, a passband width of 0.02π, and a
transition bandwidth of 0.045π. The passband ripple is less than or equal to ±0.025 dB and
the minimum stopband attenuation is 51 dB [Neu87]. Plot the magnitude responses of this
filter and compare them with those of an FIR bandpass filter designed using the function
firpm. Compare the hardware complexities of both filters.

Project 11.5 Frequency-Response Masking Approach

The frequency-response masking approach can be used to design linear-phase FIR filters
with sharp transition bands [Lim86]. The basic idea behind this approach is as follows: Let
Fa(z) be a Type 1 lowpass FIR filter of order N with a frequency response

Fa(ejω) = e−nω/2 R(ω), (11.23)

where R(ω) is its amplitude response. Let ωa,p and ωa,s denote, respectively, the passband
and stopband edges of Fa(z). The delay-complementaty filter Fc(z) of Fa(z) is given by

Fc(z) = z−N/2 − Fa(z), (11.24)

which has an amplitude response [1−R(ω)]. Now consider the structure of Figure 11.1(a)
where the filter Fa(zM) is a multiband filter with M passbands. Likewise, the filter Fc(zM)

196 Chapter 11 • Advanced Projects

is also a multiband filter with an amplitude response that is complementary to that of
Fa(zM). Any one or more of the passbands of Fa(zM) can be masked by using a mask-
ing filter Ga(z), and similarly, one or more of the passbands of Fc(zM) can be masked
by using a masking filter Gc(z). By adding the outputs of the cascades Fa(zM) Ga(z)
and Fc(zM) Gc(z) as shown in Figure 11.1(b), where Ga(z) and Gc(z) have been chosen
appropriately, a wideband linear-phase FIR filter with a sharp transition band can be de-
signed. For example, if the passband and stopband edges of Ga(z) are at (2 m π+ωa,p)/M
and [2 (m + 1) π − ωa,s]/M , and if the passband and stopband edges of Gc(z) are at
(2 m π − ωa,p)/M and (2 m π + ωa,s)/M , the structure of Figure 11.1(b) realizes a wide-
band lowpass filter with passband and stopband edges at

ωp =
2 m π + ωa,p

M
, ωs =

2 m π + ωa,s

M
, (11.25)

where m is an integer less than M . Note that it is tacitly assumed here that the group delays
of Ga(z) and Gc(z) are equal. If they are not equal, they should be made equal by adding an
appropriate amount of leading delays to the one with the smaller group delay. Moreover, to
avoid half-sample delay, NM must be even. For further details on this method see [Lim86].

x[n]

y [n]1

y [n]2+

_

+

F (z)a
M

z N/2_

x[n]

+

_

+

F (z)a
M

z N/2_

+
+

_
y[n]

G (z)a

G (z)b

(a) (b)

Figure 11.1 (a) Delay-complementary pair and (b) FIR filter structure employing frequency-masking
approach.

Using MATLAB, design a linear-phase FIR filter based on the frequency-masking approach
with the following specifications: passband edge at 0.3π, stopband edge at 0.305π, passband
ripple of ±0.1 dB and minimum stopband attenuation of 40 dB.

Project 11.6 FIR Filters with 0, +1, and −1 Coefficients

To simplify the hardware implementation, the design of FIR filters with 0, +1, and −1
coefficients has been proposed. In one such design approach, the overall filter structure is
implemented as indicated in Figure 11.2 [Bat80]. The basic idea behind this approach is to
convert the coefficients of a conventionally designed FIR filter H(z) into a sequence with
sample values 0, +1, and −1 by a delta modulation-like scheme. To this end, the impulse
response {h[n]} of H(z) is up-sampled by a factor L, resulting in a transfer function
HL(z) = H(zL) with a corresponding impulse response {hL[n]}. The objective is then to
determine the sequence {w[n]}, with sample values 0, +1, and −1, whose running sum is
a good approximation to the sequence {hL[n]} in the mean-square error sense, that is, for

11.3 FIR Filter Design and Implementation 197

which the error

EL =
∞∑

n=0

(
hL[n] − ∆L

n∑
�=0

w[�]

)2

, (11.26)

is minimized within a prescribed tolerance. In Eq. (11.26), ∆L is a scaling factor corre-
sponding to the stepsize in delta modulation. Further details on this method along with the
optimization algorithm can be found in [Bat80].

+x[n] FIR FILTER
L y[n]L

z L_

+

+
w[n] {0,+1, 1}_ε

Figure 11.2 FIR filter implementation with 0, +1, and −1 coefficients.

Using MATLAB design a lowpass filter with a passband edge at 0.007π and a stopband
edge at 0.023π based on the above approach. Use an up-sampling factor of 6.

Project 11.7 Running FIR Filter Structure

Various structures for the computationally efficient implementation of FIR filters using
multirate techniques have been advanced by many authors. One such structure is shown
in Figure 11.3 [Vet88]. Analyze this structure and show that it is alias-free with an overall
transfer function

T (z) = z−1
[
H0(z2) + z−1H1(z2)

]
. (11.27)

+

2

2

22

2

2_1z

_1z

1 z_ _1

_11 + z

0H (z)

1H (z)

1H (z)0H (z) +

z z_
_2 _1

X(z) Y(z)

Figure 11.3 A fast running convolution structure.

For a given FIR transfer function T (z), one can obtain the two transfer functions H0(z2)
and H1(z2) as follows:

H0(z2) = 1
2 [T (z) + T (−z)],

H1(z2) = 1
2 z [T (z) − T (−z)], (11.28)

If the length of T (z) is 2K, then the two filters H0(z) and H1(z) are of length K each.

198 Chapter 11 • Advanced Projects

Write a MATLAB program to determine from a given FIR transfer function T (z) the
transfer functions H0(z) and H1(z), and then simulate the structure of Figure 11.3. Verify
the correctness of your simulation using the structure verification method given in R8.1.

11.4 Filter Bank Applications

Digital analysis and synthesis filter banks, discussed in sections R10.11–R10.13 in the
previous chapter, have many practical applications. You will investigate here two such
applications.

Project 11.8 Transmultiplexer

The transmultiplexer is an L-input, L-output, multirate structure formed by a synthesis
filter bank at the input end and an analysis filter bank at the output end as shown in Figure
11.4. The transmultiplexer is designed to ensure that the kth output yk[n] is a reasonable
replica of the kth input xk[n] for all values of k. There is cross talk between the kth
and rth channels with r �= n, if xk[n] contains contributions from xr[n]. In a perfect
reconstruction transmultiplexer, yk[n] = αk xk[n − D], where αk is a constant and D is
a positive integer. The transmultiplexer is used in the time-division multiplex (TDM) to
frequency-division multiplex (FDM) format conversion. Additional details on the theory,
design, and application of the transmultiplexer can be found in [Mit98a].

TDM TDMFDM

H0 (z)

H1(z)

HL–1(z)GL–1(z)

G1(z)

G0(z)x0[n]

x1[n]

xL–1[n] yL –1[n]

y1[n]

y0[n]L

L

L

L

L

L

u[n]

Figure 11.4 An L-channel transmultiplexer.

In this project you will investigate the operation of a two-channel transmultiplexer with the
following synthesis and analysis filters [Mit98a]:

G0(z) = z−1 + z−2, G1(z) = z−1 − z−2,

H0(z) = 1 + z−1, H1(z) = 1 − z−1.

Write a MATLAB program to simulate this structure and process two arbitrary input se-
quences of length-20 each. Show that yk[n] = 2xk[n − 2] for k = 0, 1.

11.4 Filter Bank Applications 199

Project 11.9 Quadrature-Mirror Filter Bank

The L-channel quadrature-mirror filter (QMF) bank shown in Figure 11.5 consists of an
L-channel analysis filter bank at the input end followed by an L-channel synthesis bank
at the output end. The down-sampled output signals uk[n], called subband signals, of
the analysis filters operate at a lower rate than the input to the QMF bank and can thus be
processed more efficiently. The analysis and synthesis filters can be designed so that the
QMF bank is alias-free and the output y[n] is some type of replica of the input x[n]. A
common application of the QMF bank is in the subband coding of speech, audio, image,
and video signals.

H0(z)

H1(z)

G0(z)

G1(z) y[n]x[n]

v [n]0

v [n]1 u [n]1

u [n]0

v [n]1
^

v [n]0
^

L L

L

L

L

L
u [n]L 1_v [n]L 1_

L 1_H (z) L 1_G (z)
L 1_v [n]^

Figure 11.5 An L-channel quadrature-mirror filter bank.

y[n]

x[n]

__

++

2

z 1_
z 1_

2

2 20A (z)

Analysis filter bank Synthesis filter bank

1
4
_

1A (z)

1A (z)

0A (z)

Figure 11.6 A magnitude-preserving two-channel quadrature-mirror filter bank.

In this project you will investigate the design and operation of a two-channel QMF bank
shown in Figure 11.6. Analyze the structure and show that the analysis and the synthesis
filters here are given by

H0(z) = 1
2{A0(z2) + z−1A1(z2)}, H1(z) = 1

2{A0(z2) − z−1A1(z2)}, (11.29)

G0(z) = 1
2{A0(z2) + z−1A1(z2)}, G1(z) = 1

2{z−1A1(z2) −A0(z2)}. (11.30)

Next show that the input-output relation of this QMF bank in the z-domain is given by

Y (z) = 1
4A0(z2)A1(z2), (11.31)

200 Chapter 11 • Advanced Projects

indicating that it is an alias-free magnitude-preserving QMF bank.

Consider the fifth-order Butterworth half-band lowpass transfer function

H0(z) =
0.0527864045 (1 + z−1)5

1 + 0.633436854 z−2 + 0.05572809 z−4
. (11.32)

Show that it can be decomposed into the form

H0(z) =
1
2

[(
0.10557281 + z−2

1 + 0.10557281 z−2

)
+ z−1

(
0.527864045 + z−2

1 + 0.527864045 z−2

)]
. (11.33)

From the above decomposition, determine the two allpass filters A0(z) and A1(z).

Write a MATLAB program to simulate the two-channel QMF bank of Figure 11.6 with the
two allpass filters developed above. Next generate a length-50 sequence with a triangular
magnitude response using the M-function fir2 and process it using the QMF bank you have
simulated. Determine the magnitude spectrum of the output and show that it is of the same
form as that of the input. The initial conditions present in the allpass filters may introduce
some visible distortion in the output magnitude spectrum. How would you minimize their
effects?

If your computer has a microphone along with A/D and D/A converter boards, you may
consider the capture and digitization of a speech signal, and the processing of this signal
using the QMF bank you have simulated and then playing back the output of the filter bank
to find out its quality.

11.5 Modulation and Demodulation

For the transmission of a low-frequency signal over a channel, the signal is transformed into
a high-frequency signal by a modulation operation. The modulated high-frequency signal
is demodulated at the receiving end and the desired low-frequency signal is then extracted
by further processing. You will investigate here the operation of two types of modulation
schemes: amplitude modulation and quadrature amplitude modulation.

Project 11.10 Amplitude Modulation

In amplitude modulation, the amplitude of a high-frequency sinusoidal signal A cos(ωon),
called the carrier signal, is varied by the low-frequency signal x[n], called the modulating
signal, generating a high-frequency signal, called the modulated signal y[n], according to

y[n] = A x[n] cos(ωon). (11.34)

The spectrum X(ejω) of the modulating signal x[n] is assumed to be bandlimited to ωm.
Thus, amplitude modulation can be implemented by forming the product of the modulating
signal with the carrier signal. The spectrum Y (ejω) of y[n] is given by

Y (ejω) = A
2 X(ej(ω−ωo)) + A

2 X(ej(ω+ωo)). (11.35)

11.5 Modulation and Demodulation 201

The recovery of x[n] from y[n], called demodulation, assuming ωo > ωm, is carried out in
two steps. First, the product of y[n] with a sinusoidal signal of the same frequency as the
carrier is formed. This results in

r[n] = y[n] cos(ωon) = A x[n] cos2(ωon) = A
2 x[n] + A

2 x[n] cos(2ωon). (11.36)

The product signal is therefore composed of the original modulating signal x[n] scaled by
a factor 1

2 and an amplitude modulated signal with a carrier frequency of 2ωo . The original
modulating signal can now be recovered from r[n] by passing it through a lowpass filter
with a cutoff frequency ωc, satisfying the relation ωm < ωc < 2 ωo − ωm. The output of
the filter is then a scaled replica of the modulating signal.

Figure 11.7 shows the block diagram representations of the amplitude modulation and
demodulation schemes.

Write a MATLAB program to demonstrate the operation of the amplitude modulation and
demodulation schemes.

x[n] y[n]

Acosω no

Lowpass
filtery[n]

r[n]
x[n]A

2
_

cosω no

(a) (b)

Figure 11.7 Schematic representations of the amplitude modulation and demodulation schemes: (a)
modulator and (b) demodulator.

Project 11.11 Quadrature Amplitude Modulation

To understand the basic idea behind the quadrature amplitude modulation (QAM) approach,
consider two bandlimited low-frequency signals x1[n] and x2[n], with a bandwidth of ωm

each. The two modulating signals are individually modulated by the two carrier signals
A cos(ωon) and A sin(ωon), respectively, and summed, resulting in a composite signal
y[n] given by

y[n] = A x1[n] cos(ωon) + A x2[n] sin(ωon). (11.37)

Note that the two carrier signals have the same carrier frequency ωo but have a phase
difference of 90o. In general, the carrier A cos(ωon) is called the in-phase component and
the carrier A sin(ωon) is called the quadrature component. The spectrum Y (ejω) of the
composite signal y[n] is now given by

Y (ejω) = A
2

{
X1(ej(ω−ωo)) + X1(ej(ω+ωo))

}
+ A

2j

{
X2(ej(ω−ωo)) − X2(ej(ω+ωo))

}
. (11.38)

To recover the original modulating signals, the composite signal is multiplied by both the
in-phase and the quadrature components of the carrier separately resulting in two signals:

r1[n] = y[n] cos(ωon), r2[n] = y[n] sin(ωon). (11.39)

202 Chapter 11 • Advanced Projects

Substituting y[n] from Eq. (11.37) into Eq. (11.39), we obtain, after some algebra,

r1[n] = A
2 x1[n] + A

2 x1[n] cos(2 ωon) + A
2 x2[n] sin(2ωon),

r2[n] = A
2 x2[n] + A

2 x1[n] sin(2ωon) − A
2 x2[n] cos(2 ωon). (11.40)

Lowpass filtering of r1[n] and r2[n] by filters with a cutoff at ωm yields the two modulating
signals. Figure 11.8 shows the block diagram representations of the quadrature amplitude
modulation and demodulation schemes.

Write a MATLAB program to demonstrate the operation of the quadrature amplitude mod-
ulation and demodulation schemes.

90 phase
shifter

o y[n]

x [n]1

x [n]2

Acosω no

90 phase
shifter

o

Lowpass
filter

Lowpass
filtery[n] A

2
_ x [n]2

A
2
_ x [n]1

cosω no

(a) (b)

Figure 11.8 Schematic representations of the quadrature amplitude modulation and demodulation
schemes: (a) modulator and (b) demodulator.

11.6 Digital Data Transmission

Binary data are normally transmitted serially as a pulse train. However, in order to extract
faithfully the information transmitted, the receiver requires complex equalization proce-
dures to compensate for channel imperfection and to make full use of the channel band-
width. To alleviate the problems encountered with the transmission of data as a pulse train,
a multi-carrier modulation/demodulation scheme for digital data transmission is preferred.

Project 11.12 Discrete Multitone Transmission

A widely used form of the multicarrier modulation is the discrete multitone transmission
(DMT) scheme in which the modulation and demodulation processes are implemented

11.6 Digital Data Transmission 203

via the discrete Fourier transform (DFT), efficiently realized using fast Fourier transform
(FFT) methods [Cio91], [Pel80]. To understand the basic idea behind the DMT scheme,
consider the transmission of two M − 1 real-valued data sequences, {ak[n]} and {bk[n]},
1 ≤ k ≤ M −1 operating at a sampling rate of FT . Define a new set of complex sequences
αk[n] of length N = 2 M according to

αk[n] =

⎧⎪⎪⎨
⎪⎪⎩

0, k = 0,
ak[n] + j bk[n], 1 ≤ k ≤ N

2 − 1,
0, k = N

2 ,
aN−k[n] − j bN−k[n], N

2 + 1 ≤ k ≤ N − 1.

(11.41)

By applying an inverse DFT, the above set of N sequences is transformed into another new
set of N signals {u�[n]}, given by

u�[n] =
1
N

N−1∑
k=0

αk[n] W−�k
N , 0 ≤ � ≤ N − 1, (11.42)

where WN = e−j2π/N . Note that the method of generation of the complex sequence
{αk[n]} ensures that its IDFT {u�[n]} will be a real sequence. Each of these N signals
is then up-sampled by a factor of N and time-interleaved, generating a composite signal
{x[n]} operating at a rate N FT , which is assumed to be equal to 2 Fc. The composite signal
is converted into an analog signal xa(t) by passing it through a D/A converter followed by
an analog reconstruction filter. The analog signal xa(t) is then transmitted over the channel.

At the receiver, the received analog signal ya(t) is passed through an analog anti-aliasing
filter and then converted into a digital signal {y[n]} by a sample-and-hold (S/H) circuit
followed by an A/D converter operating at a rate N FT = 2 Fc. The received digital signal
is then de-interleaved by a delay chain containing N −1 unit delays whose outputs are next
down-sampled by a factor of N generating the set of signals {v�[n]}. Application of the
DFT to these N signals then results in the N signals {βk[n]} given by

βk[n] =
N−1∑
�=0

v�[n] W �k
N , 0 ≤ k ≤ N − 1. (11.43)

Figure 11.9 shows schematically the overall DMT scheme. If we assume the frequency
response of the channel to have a flat passband, and assume the analog reconstruction and
anti-aliasing filters to be ideal lowpass filters, then neglecting the nonideal effects of the
A/D and the D/A converters, we can assume y[n] = x[n]. In this case, the interleaving
circuit of the DMT structure at the transmitting end connected to the de-interleaving circuit
at the receiving end is an ideal transmultiplexer structure and, hence, it follows that

vk[n] = uk−1[n], 1 ≤ k ≤ N − 2,

v0[n] = uN−1[n], (11.44)

or, in other words,

βk[n] = αk−1[n − 1], 1 ≤ k ≤ N − 2,

β0[n] = αN−1[n]. (11.45)

204 Chapter 11 • Advanced Projects

D/A

N
-p

oi
nt

 I
D

FT

α0[n]

α1[n]

α N –1[n]

z–1

z–1
uN –1[n]

u1[n]

u0[n]
N

N

N
Lowpass

filter To channelx[n]

xa (t)

(a)

N
-p

oi
nt

 D
FT

z–1

z–1

S/H A/D
Lowpass

filter

ya(t)
N

N

N βN –1[n]

β1[n]

β0[n]
y[n] v0[n]

v1[n]

vN –1[n]

From channel

(b)

Figure 11.9 The DMT scheme. (a) transmitter and (b) receiver.

Write a MATLAB program to demonstrate the operation of the DMT data scheme.

Introduction to MATLABA
MATLAB is a powerful high-level programming language for scientific computations. It
is very easy to learn and use in solving numerically complex engineering problems. The
exercises in this book have been written assuming you are not proficient in MATLAB.
However, some basic concepts of MATLAB are included here for a quick review to facilitate
your understanding of the programs and for performing the exercises. A more detailed
review can be found in [Mat05].

MATLAB consists of functions that are either built into the interpreter or available as M-files,
with each containing a sequence of program statements that execute a certain algorithm.
A completely new algorithm can be written as a program containing only a few of these
functions and can be saved as another M-file.

MATLAB works with three types of windows on your computer screen. These are the
Command window, the Figure window and the Editor window. The Command window has
the heading Command, the Figure window has the heading Figure No. 1, and the Editor
window has the heading showing the name of an opened existing M-file or Untitled if
it is a new M-file under construction. The Command window also shows the prompt >>
indicating it is ready to execute MATLAB commands. Results of most printing commands
are displayed in the Command window. This window can also be used to run small programs
and saved M-files. All plots generated by the plotting commands appear in a Figure window.
Either new M-files or old M-files are run from the Command window. Existing M-files can
also be run from the Command window by typing the name of the file.

In the remaining part of this appendix we illustrate the use of some of the most commonly
used functions and review some fundamental concepts associated with MATLAB.

A.1 Number and Data Representation

MATLAB uses conventional decimal notations to represent numbers with a leading minus
sign for negative numbers. The approximate range of numbers that can be represented is
from 10−308 to 10308. Very large or very small numbers can be represented using exponents.
Typical examples of valid number representations are as follows:

1234.56789 123456.789E-2 1.23456789e3 -1234.56789

There should be no blank space before the exponent.

The data in MATLAB are represented in the form of a rectangular matrix that does not

205

206 Appendix A • Introduction to MATLAB

require dimensioning. Its elements can be either real or complex numbers. Thus, a one-
dimensional discrete-time signal can be represented either as a row or a column vector. For
example the row vector data representation in

x = [3.5+4*j -2.1-7.4*j 1.05-0.8*j 0 9.2*j];

denotes a complex-valued signal x of length 5. Note the use of square brackets to indicate
that x is a rectangular matrix. Note also that the imaginary part of a complex number is
represented using the operator * and the letter j. An alternate form of representation of
the imaginary part uses the letter i instead of the letter j. The real and imaginary parts of
a complex number should be entered without any blank spaces on either side of the + or
− sign as indicated above. The elements in the row of a matrix can also be separated by
commas as indicated below:

x = [3.5+4*j, -2.1 - 7.4*j, 1.05-0.8*j, 0, 9.2*j];

The semicolon ; at the end of the square brackets ensures that the data are not printed in
the command window after they have been entered. If the above data were entered without
the semicolon, MATLAB would print in the Command window

x =
Columns 1 through 4
3.5000 + 4.0000i -2.1000 - 7.4000i 1.0500 - 0.8000i 0
Column 5
0 + 9.2000i

Alternately, if needed, the actual value of x can be printed by typing x in the Command
window.

The elements of a matrix can be entered in two different ways. The rows can be typed on a
single line separated with semicolons or on different lines. For example, the 3×4 matrix A

A =

⎡
⎣ 1 3 5 7

2 4 6 8
9 11 13 15

⎤
⎦

can be entered either as

A = [1 3 5 7; 2 4 6 8; 9 11 13 15];

or as

A = [1 3 5 7

2 4 6 8

9 11 13 15];

The indexing of vectors and matrices in MATLAB begins with 1. For example, x(1)
in the above vector x is 3.5000 + 4.0000i, x(2) is -2.1000 - 7.4000i, and so on.
Similarly, the first element in the first row of a matrix A is given by A(1,1), the second

A.1 Number and Data Representation 207

element in the first row is given by A(1,2), and so on. The index cannot be less than 1 or
greater than the dimension of the vector or matrix under consideration.

The size of an array in the workspace of MATLAB can be determined by using the function
size. For example, by typing size(x) we obtain the result

ans =
1 5

The length of a vector can also be found by using the function length. For example, typing
length(x) yields the result

ans =
5

The array transpose operation is implemented using the operator .′. Thus the transpose of
X is given by the expression X.′. If X is a matrix with complex-valued elements, X′ is the
complex conjugate transpose of X, whereas if X is a matrix with real-valued elements, X′ is
the transpose of X.

The data vectors and matrices in MATLAB can be labeled by a collection of characters
including the numbers, such as x, x1, X, X1, XY, and so on. It should be noted that MATLAB
normally differentiates between lowercase and uppercase letters.

Example A.1

Let X denote the 3×4 real-valued matrix entered by typing

X = [1 2 3 4; 5 6 7 8; 9 10 11 12];

Then typing X in the Command window results in the display of

ans =
1 2 3 4
5 6 7 8
9 10 11 12

and typing X′ we get

ans =
1 5 9
2 6 10
3 7 11
4 8 12

Consider next a 2×3 complex-valued matrix Y entered as

Y = [1+2*i, 3-4*i, 5+6*i; 7-8*i, 9+10*i, 11-12*i];

Typing of Y yields

208 Appendix A • Introduction to MATLAB

Y =
1.0000 + 2.0000i 3.0000 - 4.0000i 5.0000 + 6.0000i
7.0000 - 8.0000i 9.0000 + 10.0000i 11.0000 - 12.0000i

whereas typing Y′ we get

ans =
1.0000 - 2.0000i 7.0000 + 8.0000i
3.0000 + 4.0000i 9.0000 - 10.0000i
5.0000 - 6.0000i 11.0000 + 12.0000i

To obtain the transpose of Y we type Y.′ resulting in

ans =
1.0000 + 2.0000i 7.0000 - 8.0000i
3.0000 - 4.0000i 9.0000 + 10.0000i
5.0000 + 6.0000i 11.0000 - 12.0000i

A.2 Arithmetic Operations

Two different types of arithmetic operations are available in MATLAB for the manipulation
of stored data, as indicated below where X and Y denote two different matrices. If X and
Y are of the same dimensions, the addition of X and Y is implemented by the expression X
+ Y. The addition operation + can also be used to add a scalar to a matrix. Likewise, the
subtraction of Y from X is implemented by the expression X - Y. The subtraction operation
− can also be used to subtract a scalar from a matrix.

If the number of columns of X is the same as the number of rows of Y, the matrix multi-
plication X*Y yields the linear algebraic product of X and Y. The multiplication operation
* can also be used to multiply a matrix by a scalar. If X and Y have the same dimensions,
X.*Y is an array multiplication forming the element-by-element product of X and Y.

If Y is a square matrix and X is a matrix with the same number of columns as that of Y, then
the matrix right division X/Y is equivalent to X*inv(Y) where inv(Y) denotes the inverse
of Y. The right division operation X/Y can also be carried out if one of them is a scalar. If
Y is a square matrix and X is a matrix with the same number of rows as that of Y, then the
matrix left division Y\X is equivalent to inv(Y)*X. If X and Y are of the same dimension,
the array right division is implemented using the expression X./Y, resulting in a matrix
whose (r,s)-th element is given by X(r,s)/Y(r,s).

If multiple operations are employed in a statement, the usual precedence rules are followed
in evaluating the expression. However, parentheses can be used to change the precedence
of operations.

Arithmetic operations on matrices are illustrated in the following example.

A.2 Arithmetic Operations 209

Example A.2

Let X = [1 2 3; 4 5 6] and Y = [12 11 10; 9 8 7]. Then X+Y yields

ans =
13 13 13
13 13 13

and X-Y yields

ans =
-11 -9 -7
-5 -3 -1

The result of the operation X+3 is given by

ans =
4 5 6
7 8 9

whereas the result of the operation X*3 yields

ans =
3 6 9
12 15 18

The statement X.*Y develops the answer

ans =
12 22 30
36 40 42

Typing X*Y′ we obtain the result

ans =
64 46
163 118

and typing X′*Y we arrive at

ans =
48 43 38
69 62 55
90 81 72

Consider the two matrices X = [1 2 3; 4 5 6; 7 8 9] and Y = [1 1 2; 2 2 3;

210 Appendix A • Introduction to MATLAB

1 3 4].

Then X/Y yields

ans =
0.5000 0 0.5000

-2.5000 3.0000 0.5000
-5.5000 6.0000 0.5000

and Y\X results in

ans =
0 0 0
5 4 3

-2 -1 0

A.3 Relational Operators

The relational operators in MATLAB <, <=, >, >=, ==, and =, represent the comparison
operations less than, less than or equal to (≤), greater than, greater than or equal to (≥),
equal to, and not equal to (�=), respectively. Element-by-element comparisons between two
matrices of the same size are carried out using these operators with the result appearing as
a matrix of the same size whose elements are set to 1 when the relation is TRUE and set
to 0 when the relation is FALSE. In the case of complex-valued matrices, the operators <,
<=, >, and >= are applied to compare only the real parts of each element of the matrices,
whereas the operators == and = are applied to compare both real and imaginary parts.

We illustrate the use of these operators in the following example.

Example A.3

Consider the two matrices C = [1 2 3; 4 5 6] and D = [1 7 2; 6 5 1]. Then the
results of applying the above relational operators on C and D are indicated below:

C < D = 0 1 0
1 0 0

C > D = 0 0 1
0 0 1

C <= D = 1 1 0
1 1 0

C >= D = 1 0 1
0 1 1

A.4 Logical Operators 211

C == D = 1 0 0
0 1 0

C = D = 0 1 1
1 0 1

A.4 Logical Operators

The three logical operators in MATLAB,&, |, and , perform the logicalAND, OR, and NOT
operations. When applied to matrices, they operate element-wise, with FALSE represented
by a 0 and TRUE represented by a 1. We illustrate the use of these operators in the following
example.

Example A.4

Consider the two matrices A = [1 1 0 1] and B = [0 1 0 0]. The results of applying
the above logical operators on A and B are illustrated below:

A & B = 0 1 0 0

A | B = 1 1 0 1

A = 0 0 1 0

A.5 Control Flow

The control flow commands of MATLAB are break, else, elseif, end, error, for,
if, return, and while. These commands permit the conditional execution of certain
program statements. The command for is used to repeat a group of program statements
a specific number of times. The command if is used to execute a group of program
statements conditionally, and the command while can be used to repeat program statements
an indefinite number of times. The statements following the commands for, while, and
if must be terminated with the command end. The command break is used to terminate
the execution of a loop. The commands else and elseif are used with the command if
to provide conditional breaks inside a loop. The command error is employed to display
error message and abort functions.

The use of these commands is illustrated in the following examples.

Example A.5

Consider the generation of a length-N sequence x of integers beginning with a specified first
element x(1) and with each succeeding element increasing linearly by a specified positive
integer D. The MATLAB program generating and displaying this sequence is given below:

212 Appendix A • Introduction to MATLAB

N = 10;
D = 3;
x = [5 zeros(1,N-1)];
for k = 2:N

x(k) = x(k-1) + D;
end
disp(’The generated sequence is’);disp(x)

Example A.6

Now consider the generation of a length-N sequence x of integers beginning with a specified
first element x(1) and with each succeeding element increasing linearly by a specified
positive integer D until an element is equal to R*D + x(1), where R is a positive integer,
and then each succeeding element decreasing linearly by an amount D until an element
is equal to x(1), and then repeating the process. A MATLAB program generating this
sequence is as follows:

N = 15; D = 3;
x = [5 zeros(1,N-1)];
for k = 2:N

x(k) = x(k-1) + D;
if x(k) == 3*D + x(1)
D = -abs(D);
elseif x(k) == x(1)
D = abs(D);
end

end
disp(’The generated sequence is’);disp(x)

Example A.7

The following program illustrates the use of the command break. The program develops the
sum of a series of numbers beginning with a specified initial value y, with each succeeding
number increasing by a fixed positive increment D; stops the addition process when the total
sum exceeds 100; and then displays the total sum.

y = 5; D = 3;
while 1

y = y + D;
if y > 100, break, end

end
disp(’y is’);disp(y)

A.6 Special Characters and Variables 213

A.6 Special Characters and Variables

MATLAB uses a number of special characters and words to denote certain items exclusively.
These characters and words should not be used for any other purpose. For example, if the
letter i or the letter j is used as a variable, it cannot be used to represent the imaginary part
of a complex number. Hence, it is a good practice to restrict either the letter i or the letter
j exclusively for the representation of the imaginary part of complex numbers.

There are several permanent variables that cannot be cleared by the user and should not be
used to denote any other quantities. The word pi is used to denote π. Thus, sin(pi/4)
yields 0.70710678118655, which is equal to 1/

√
2. The variable eps is equal to 2−52

and is a tolerance for determining precision of certain computations such as the rank of a
matrix. It can be set to any other value by the user. NaN represents Not-a-Number, which is
obtained when computing mathematically undefined operations such as 0/0 and ∞−∞.
inf represents +∞ and results from operations such as dividing by zero, for example, 2/0,
or from overflow, for example, e1000. The variable ans stores the results of the most recent
operation.

The square brackets [] are used to enter matrices and vectors. The elements of a matrix
can be separated by spaces or commas. A semicolon ; indicates the end of a row in a
matrix. It is also used to suppress printing. The precedence in arithmetic expressions can
be indicated using the parentheses (). The parentheses are also employed to enclose the
indices of an array and arguments of functions. The operator notation for transpose of an
array is ’. However, two such symbols can be used to denote a quote. For example, ’dsp
program’ is a vector containing the ASCII codes of the characters inside the quotation
marks. Any text following a percent symbol % denotes a comment and is not treated as a
program statement.

The colon symbol : has many different applications in MATLAB. It is used to generate
vectors, subscript matrices, and perform iterations of a block of commands. For example,
x = M:N generates the vector

x = [M M+1 M+2 . . . N],

if M < N. However x = M:N is an empty matrix, denoted by [], if M > N. The command
x = M:k:N generates the vector

x = [M M+k M+2k . . . N],

where k can be a positive or a negative integer. Note that x = M:k:N generates the empty
matrix [] if k > 0 and M > N or if k < 0 and M < N.

The colon can also be employed to select specific rows, columns, and elements of a matrix
or a vector. For example, Y(:,N) represents the N th column of Y. Likewise, the M th
row of Y is represented by Y(M,:). Y(:,M:N) is equivalent to Y(:,M), Y(:,M+1), . . .
, Y(:,N). Finally, Y(:) is equivalent to a column vector formed by concatenating the
columns of Y.

214 Appendix A • Introduction to MATLAB

A.7 Output Data Format

All arithmetic operations in MATLAB are performed in double precision. However, differ-
ent formats can be used to display the result of such operations in the Command window. If
all results are exact integers, they are displayed as such without any decimal points. If one
or more data elements are not integers, the results can be displayed with various precision.
format short displays five significant decimal digits and is the default format. format
short e displays five significant decimal digits with two positive or negative decimal ex-
ponents. format long shows results in 15 significant decimal digits, while format long
e adds two positive or negative decimal exponents to 15 significant decimal digits. There
are three other formats for displaying results. However, these are not that useful in signal
processing applications.

A.8 Graphics

MATLAB includes high-level graphics capability for displaying the results of a computa-
tion. In most situations, we shall be concerned with two-dimensional (2-D) graphics and
will use three-dimensional (3-D) graphics in some special cases. For 2-D graphics, plotting
can be done in various forms with either linear or logarithmic scales for one or both axes of
the plots. Grid lines can be added to the plots along with labels for the two axes and a title on
top of the plot. Text can be placed anywhere on the graph using a mouse or specifying the
starting position through commands in the program. Moreover, by including appropriate
symbols in the argument of the plotting command, specific line styles, plot symbols, and
colors can be displayed in the graph.

For 3-D data, plotting can also be done in various forms with either linear or logarithmic
scales for one or two or all three axes of the plots. For example, lines and points can be
plotted in three dimensions. Contour plots, 3-D perspective plots, surface plots, pseudocolor
plots, and so forth can also be generated.

The M-file in the following section illustrates the use of several graphics commands.

A.9 M-Files: Scripts and Functions

An M-file is a sequence of MATLAB statements developed using a word processor or a
text editor and saved with a name that must be in the form filename.m. The names of
M-files must begin with a letter followed by at most 18 letters and/or digits (or underscores).
However certain characters, such as hyphen - and decimal point ., are not allowed in the
names. Also, do not use the names of existing M-files. An M-file can include references to
other existing M-files.

Each statement of a new program is typed in the Editor window line by line as ASCII text
files and can be edited using the text editor or the word processor of your computer. The

A.9 M-Files: Scripts and Functions 215

complete program can then be saved as an M-file.

There are two types of M-files: scripts and functions. A function file must contain the word
function in the first line of all program statements. Arguments in a function file may be
passed from another M-file, and all variables used inside the function file are local.

The script file makes use of workspace data globally. The first line of a function file contains
the word function and does not make use of workspace data globally. The variables defined
inside a function file are manipulated locally, and the arguments of the file may be passed.
When a function is completed, all local variables are lost. Only values specifically passed
out are retained.

A simple example of a function file runsum is given below.

function y = runsum(x)
% Computes the mean of a vector x
L = length(x);
y = sum(x)/L;

A simple example of a script file lowpass.m follows.

% Script M-file lowpass.m
% Program to Perform Lowpass Filtering
% Using Three-Point Averaging of a Random Signal
% Program uses the function file runsum
z = zeros(1,11);data = randn(size(z));
u = [zeros(1,3) data];
N = 3; % N is the filter length
for k = 1:10;

w = u(k:k+N);
z(k) = runsum(w);

end
n = 0:10;
% Plot the noise in solid line and
% the smoothed version in dashed line
plot(n,data,’r-’,n,z,’b--’);grid
xlabel(’Time index n’);
ylabel(’Amplitude’);
gtext(’Noisy data’);gtext(’Smoothed data’);

The plot generated by executing the M-file lowpass.m is shown in Figure A.1.

Note that the function file runsum uses the built-in function sum. Likewise, the script file
lowpass.m uses the function file runsum.

216 Appendix A • Introduction to MATLAB

0 2 4 6 8 10
-2

-1

0

1

2

Time index n

A
m

pl
itu

de

Noisy data

Smoothed data

Figure A.1 Signal smoothing example.

A.10 MAT-Files

Data generated by a MATLAB program can be saved as a binary file, called a MAT-file, for
later use. For example, the noisy data generated by executing the program lowpass.m of
the previous section can be saved using the command

save noise.mat data

Later it can be retrieved using the command

load noise

for use in another MATLAB session.

The data can also be saved in ASCII form. For example, after execution of the program
lowpass.m, we can generate a 2×11 matrix containing the noisy data and the smoothed
data using the command

result = [noise; z];

and then save the matrix result in ASCII form using the command

save tempo.dat result -ascii

The stored data can later be retrieved using the command

load tempo

A.11 Printing

To develop a hardcopy version of the current Figure window, the command print can be
used. There are many versions of this command. See the MathWorks Online Documen-

A.12 Diagnostics and Help Facility 217

tation [Mat05] for details. In a PC or a Mac environment, a figure can also be copied to
the clipboard and then inserted into a word processing document. This approach permits
generating a smaller size figure and also pasting the figure on to a text.

A.12 Diagnostics and Help Facility

MATLAB has very good diagnostic capabilities, making it easier to correct any errors
detected during execution. If any program statement has errors, the execution of the program
will stop with a self-evident error message appearing in the Command window. For example,
entering the real number 1.23456789e3 with a space before the exponent will result in the
error message

??? 1.23456789 e3
|

Missing operator, comma, or semi-colon.

Entering the real number 1.23456789e3 with a colon in place of the decimal point as
1:23456789e3 will cause the error message

??? Error using ==> colon
Maximum variable size allowed by the program is exceeded.

MATLAB provides online information for most topics through the command help. If
help is typed in the Command window with no arguments, a list of directories containing
MATLAB files are displayed in the window. For help on specific M-files or directories, the
name of the file or the directory should be used as an argument. For example typing help
runsum results in

Computes the mean of a vector x
Likewise, typing help lowpass yields

A Script M-File to Perform Lowpass Filtering
Using Three-Point Averaging
Program uses the function file runsum

A list of variables in the workspace can be obtained by typing who. To obtain information
about the size of the variables, use the command whos. Other useful commands are what,
which, lookfor, echo, and pause.

The command what lists all files in the current directory, whereas the command what
dryname lists the files in the directory named dryname on MATLAB’s search path. The
command which is used to locate functions and files on MATLAB’s search path. The
command lookfor abc searches through all help entries on MATLAB’s search path and

218 Appendix A • Introduction to MATLAB

looks for the stringabc in the first comment line. The command echo is useful for debugging
a new program and is used to list all M-files being invoked during the execution of a program.
There are several versions of this command. See the MathWorks Online Documentation
[Mat05] to determine the appropriate ones for you to use. The command pause stops
program execution temporarily at the point it is invoked; the execution can be restarted at
that point by pressing any key on the keyboard. This command is particularly useful when
the program is generating a large number of plots and each plot can be examined or copied
individually if the command pause is inserted after each plotting command.

A.13 Remarks

Even though MATLAB uses double precision arithmetic, numerical approximations used
in the computations may generate errors in the results. Care must be taken in such cases
to interpret the results correctly. As an example, the computation of the expression 1 -
0.1 - 0.3 - 0.2 - 0.2 - 0.1 - 0.1yields5.551115123125783e-17 in the output
format long when the result should have been ideally equal to 0. On the other hand, a
slight change in the expression to1 - (0.1 + 0.3 + 0.2 + 0.2 + 0.1 + 0.1)yields
the correct result 0.

A Summary of MATLAB
Commands Used B
We provide below a quick review with a brief description of all MATLAB functions used
in this book. For additional details on these functions, use the help command.

Function Description
abs Computes the absolute value
angle Computes the phase angle in radians
axis Sets manual scaling of axes on plots
blackman Generates the Blackman window coefficients
break Terminates the execution of loops
butter Designs digital and analog Butterworth filters

of all four types
buttord Selects the minimum order of the digital

or analog Butterworth transfer function
ceil Rounds to the nearest integer towards +∞
cheb1ord Selects the minimum order of the digital

or analog Type 1 Chebyshev transfer function
cheb2ord Selects the minimum order of the digital

or analog Type 2 Chebyshev transfer function
chebwin Generates the Dolph-Chebyshev window coefficients
cheby1 Designs digital and analog Type 1 Chebyshev filters

of all four types
cheby2 Designs digital and analog Type 2 Chebyshev filters

of all four types
clf Deletes all objects from the current figure
conj Computes the complex conjugate
conv Performs the multiplication of two polynomials
cos Computes the cosine
decimate Decreases the sampling rate of a sequence by an integer factor
deconv Performs polynomial division
disp Displays text or a matrix on the screen
echo Echoes M-files during execution
ellip Designs digital and analog elliptic filters of all four types
ellipord Selects the minimum order of the digital or analog

elliptic transfer function
else Delineates an alternate block of statements inside an if loop

219

220 Appendix B • A Summary of MATLAB Commands Used

elseif Conditionally executes a block of statements inside an if loop
end Terminates a loop
eps Indicates floating-point relative accuracy
error Displays an error message
exp Computes the exponential
fft Computes the discrete Fourier transform coefficients
filter Filters data with an IIR or FIR filter implemented

in the transposed direct form II structure
filtfilt Performs zero-phase filtering of data
fir1 Designs linear-phase FIR filters of all four types

using the windowed Fourier series method
fir2 Designs linear-phase FIR filters with arbitrary magnitude

responses using the windowed Fourier series method
firpm Designs linear-phase FIR filters using the Parks-McClellan

algorithm
firpmord Determines the approximate order, normalized band edges,

frequency band magnitude levels, and weights to use
with the firpm command

fix Rounds towards zero
fliplr Flips matrices left to right
for Used for repeated execution of a block of statements

a specific number of times
format Controls the format of the output display
freqs Computes the complex frequency response of an analog

transfer function at specified frequency points
freqz Computes the complex frequency response of a digital

transfer function at specified frequency points
function Used to generate new M-functions
grid Adds or deletes grid lines to or from the current plot
grpdelay Computes the group delay of a digital transfer function

at specified frequency points
gtext Places a text on a graph with the aid of a mouse
hamming Generates the Hamming window coefficients
hann Generates the von Hann window coefficients
help Provides online documentation for MATLAB functions

and M-files
hold Holds the current graph
if Conditionally executes statements
ifft Computes the inverse discrete Fourier transform coefficients
imag Determines the imaginary part of a complex number or matrix
impz Computes a specific number of the impulse response coefficients

of a digital transfer function
input Requests data to be supplied by the user
interp Increases the sampling rate of a sequence by an integer factor
inv Determines the inverse of a matrix
kaiser Determines the Kaiser window coefficients

221

kaiserord Detemines the filter order and the parameter β
of a Kaiser window

latc2tf Determines the transfer function from the specified lattice
parameters and the feed-forward coefficients of the
Gray-Markel realization

legend Inserts a legend on the current plot using the specified
strings as labels

length Determines the length of a vector
linspace Generates linearly spaced vectors
load Retrieves saved data from the disk
log10 Computes the common logarithm
lookfor Provides keyword search through all help entries
max Detemines the largest element of a vector
min Detemines the smallest element of a vector
NaN Not-a-number
nargin Indicates the number of arguments inside the body

of a function M-file
num2str Converts a number to its string representation
ones Generates a vector or a matrix with element values 1
pause Halts execution temporarily until user presses any key
pi Returns the floating-point number nearest to π
plot Generates linear 2-D plots
poly2rc Determines the coefficients in the cascade realization

of an IIR allpass transfer function
rand Generates random numbers and matrices uniformly distributed

in the interval (0,1)
randn Generates random numbers and matrices normally distributed

with zero mean and unity variance
real Determines the real part of a complex number or matrix
rem Determines the remainder of a matrix divided by another

matrix of same size
resample Changes the sampling rate of a sequence by a rational number
residue Determines the partial-fraction of a discrete-time

transfer function expressed as a ratio of polynomials in z
residuez Determines the partial-fraction of a discrete-time

transfer function expressed as a ratio of polynomials in z−1

return Causes a return to the keyboard or to the invoking function
roots Determines the roots of a polynomial
save Saves workspace variables on a disk
sawtooth Generates a sawtooth wave with a period 2π
sign Implements the signum function
sin Determines the sine
sinc Computes the sinc function of a vector or array
size Returns the matrix dimensions
sqrt Computes the square root
square Generates a square wave with a period 2π

222 Appendix B • A Summary of MATLAB Commands Used

stairs Draws a stairstep graph
stem Plots the data sequence as stems from the x axis

terminated with circles for the data value
subplot Breaks figure window into multiple rectangular panes

for the display of multiple plots
sum Determines the sum of all elements in a vector
tf2latc Determines the lattice-parameters and the feed-forward

coefficients in the Gray-Markel realization of an IIR
transfer function

tf2zp Determines the zeros, poles, and gains of the specified
transfer function

title Write specified text on the top of the current plot
unwrap Eliminates jumps in phase angles to provide smooth

transition across branch cuts
what Provides directory listing of files
which Locates functions and files
while Repeats statements an indefinite number of times
who Lists the current variables in the memory
whos Lists the current variables in the memory, their sizes,

and whether they have non-zero imaginary parts
xlabel Write specified text below the x-axis of the current 2-D plot
ylabel Write specified text on the left side of the

y-axis of the current 2-D plot
zeros Generates a vector or a matrix with element 0
zp2sos Determines an equivalent second-order representation

from a specified zero-pole-gain representation
zp2tf Determines the numerator and the denominator coefficients

of a transfer function from its specified zeros, poles, and gains
zplane Displays poles and zeros in the z-plane

References

[Abr72] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions.
Dover Publications, New York NY, 1972.

[Bag98] S. Bagchi and S.K. Mitra. Nonuniform Discrete Fourier Transform and Its Signal
Processing Applications. Kluwer, Boston MA, 1998.

[Bat80] M.R. Bateman and B. Liu. An approach to programmable CTD filters using
coefficients 0, +1, and −1. IEEE Trans. on Circuits and Systems, CAS-27:451-
456, June 1980.

[Cio91] J. Cioffi. A Multicarrier Primer. ANSI T1E1.4 Committee Contribution, Boca
Raton FL, November 1991.

[Con70] A.C. Constantinides. Spectral transformations for digital filters. Proc. IEE
(London), 117:1585–1590, August 1970.

[Cro75] R.E. Crochiere and A.V. Oppenheim. Analysis of linear digital networks. Proc.
IEEE, 62:581–595, April 1975.

[Gas85] L. Gaszi. Explicit formulas for lattice wave digital filters. IEEE Trans. on
Circuits & Systems, CAS-32:68–88, January 1985.

[Gra73] A.H. Gray, Jr. and J. D. Markel. Digital lattice and ladder filter synthesis. IEEE
Trans. on Audio and Electroacoustics, AU-21:491–500, December 1973.

[Her73] O. Herrmann, L.R. Rabiner, and D.S.K. Chan. Practical design rules for optimum
finite impulse response lowpass digital filters. Bell System Tech. J., 52:769-799,
1973.

[Jac70] L.B. Jackson. On the interaction of roundoff noise and dynamic range in digital
filters. Bell System Technical Journal, 49:159–184, February 1970.

[Jac96] L.B. Jackson. Digital Filters and Signal Processing. Kluwer, Boston MA, third
edition, 1996.

[Jar88] P. Jarske, Y. Neuvo, and S.K. Mitra. A simple approach to the design of FIR
filters with variable characteristics. Signal Processing, 14:313–326, 1988.

[Kai74] J.F. Kaiser. Nonrecursive digital filter design using the I0-sinh window function.
Proc. 1974 IEEE International Symposium on Circuits and Systems, pages 20-23,
San Francisco CA, April 1974.

[Kra94] T.P. Krauss, L. Shure, and J.N. Little. Signal Processing TOOLBOX for use with
MATLAB. The Mathworks, Inc., Natick MA, 1994.

223

224 References

[Lim86] Y.C. Lim. Frequency-response masking approach for the synthesis of sharp linear
phase digital filters. IEEE Trans. on Circuits and Systems, CAS-33:357-364,
April 1986.

[Mar92] A. Mar, editor. Digital Signal Processing Applications Using the ADSP-2100
Family. Prentice-Hall, Englewood Cliffs NJ, 1992.

[Mat05] The Mathworks Online Documentation. available at http://www.mathworks.com
/access/helpdesk/help/helpdesk.html.

[Mit74a] S.K. Mitra and K. Hirano. Digital allpass networks. IEEE Trans. on Circuits
and Systems, CAS-21:688–700, 1974.

[Mit74b] S.K. Mitra, K. Hirano, and H. Sakaguchi. A simple method of computing the
input quantization and the multiplication roundoff errors in digital filters. IEEE
Trans. on Acoustics, Speech, and Signal Processing, ASSP-22:326–329, October
1974.

[Mit77a] S.K. Mitra, K. Mondal, and J. Szczupak. An alternate parallel realization of a
digital transfer function. Proc. IEEE (Letters), 65:577–578, April 1977.

[Mit77b] S.K. Mitra and C.S. Burrus. A simple efficient method for the analysis of struc-
tures of digital and analog systems. Archiv für Elektrotechnik und Übertragungs-
technik, 31:33-36, 1977.

[Mit90] S.K. Mitra, Y. Neuvo, and H. Roivainen. Design and implementation of digital
filters with variable characteristics. International Journal on Circuit Theory and
Applications, 18:107-119, 1990.

[Mit98a] S. K. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-
Hill, New York NY, 1998.

[Mit98b] S.K. Mitra and A. Makur. Warped discrete Fourier transform. Proc. IEEE
Workshop on Digital Signal Processing, Bryce UT, August 1998.

[Neu84] Y. Neuvo, C-Y Dong, and S.K. Mitra. Interpolated finite impulse response filters.
IEEE Trans. on Acoustics, Speech, and Signal Processing, ASSP-32:563-570,
June 1984.

[Neu87] Y. Neuvo, G. Rajan, and S.K. Mitra. Design of narrow-band FIR bandpass digital
filters with reduced arithmetic complexity. IEEE Trans. on Circuits and Systems,
CAS-34:409-419, April 1987.

[Par72] T. W. Parks and J. H. McClellan. Chebyshev approximation for nonrecursive
digital filters with linear phase. IEEE Trans. on Circuit Theory. CT-19:189-194,
1972.

[Pel80] A. Peled andA. Ruiz. Frequency domain data transmission using reduced compu-
tational complexity algorithm. Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing, Denver CO, pages 964-967, August 1980.

References 225

[She95] O. Shentov, S.K. Mitra, A.N. Hossen, and U. Heute. Subband DFT - Part I: Def-
inition, interpretation and extension. Signal Processing, 41:261-277, February
1995.

[Vai86] P.P. Vaidyanathan, S.K. Mitra, andY. Neuvo. A new approach to the realization of
low sensitivity IIR digital filters. IEEE Trans. on Acoustics, Speech, and Signal
Processing, ASSP-34:350–361, April 1986.

[Vai87] P.P. Vaidyanathan and S.K. Mitra. A unified structural interpretation and tutorial
review of stability test procedures for linear systems. Proc. IEEE, 75:478–497,
April 1987.

[Vet88] M. Vetterli. Running FIR and IIR filtering using multirate techniques. IEEE
Trans. on Acoustics, Speech, and Signal Processing, 36:730-738, May 1988.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

