
Journal of Computational Science 2 (2011) 165– 177

Contents lists available at ScienceDirect

Journal of Computational Science

jo ur nal homepage: www.elsev ier .com/ l ocate / jocs

Beyond graphs: A new synthesis

Claudio Mattiussi ∗, Peter Dürr, Daniel Marbach, Dario Floreano

Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

a r t i c l e i n f o

Article history:

Received 28 July 2010

Received in revised form 11 January 2011

Accepted 25 January 2011

Available online 10 March 2011

Keywords:

Graph

Terminal graph (t-graph)

Network representation

Network synthesis

Network inference

Complex networks

Gene networks

Neural networks

a b s t r a c t

Artificial neural networks, electronic circuits, and gene networks are some examples of systems that can

be modeled as networks, that is, as collections of interconnected nodes. In this paper we introduce the

concept of the terminal graph (t-graph for short), which improves on the concept of graph as a unifying

principle for the representation, computational synthesis, and inference of technological and biological

networks. We begin by showing how to use the t-graph concept to better understand the working of

existing methods for the computational synthesis of networks. Then, we discuss the issue of the “missing

methods”, that is, of new computational methods of network synthesis whose existence can be inferred

using the perspective provided by the concept of t-graph. Finally, we comment on the application of the

t-graph perspective to problems of network inference, to the field of complex networks, social networks,

and to the understanding of biological networks and developmental processes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many biological and technological systems of considerable rel-

evance can be modeled as networks, that is, as collections of

interconnected devices. For example, electronic circuits are col-

lections of interconnected electronic devices; neural networks are

collections of interconnected neurons; gene regulatory networks

are collections of interconnected genes, and similar interpretations

can be maintained for many other systems like communication net-

works, control systems, and metabolic networks. Typically, these

systems contain nonlinearities, feedback loops, and exhibit com-

plex dynamics at different timescales. As a consequence, they are

in general difficult to synthesize (design) by hand. Thus, many

deterministic and stochastic methods for their computational syn-

thesis have been proposed. For example, [13] and [41] describe

several stochastic methods for the computational synthesis of neu-

ral networks, [14] and [42] illustrate various approaches to the

computational synthesis of electronic circuits, and [24] considers

the problem in the context of biological networks.

In this paper we describe a new approach to the representation

of networks. This approach is based on the concept of t-graph, which

will be introduced in the next section. The proposed approach pro-

∗ Corresponding author.

E-mail addresses: claudio.mattiussi@gmail.com (C. Mattiussi),

duerrp@gmail.com (P. Dürr), dmarbach@mit.edu (D. Marbach),

dario.floreano@epfl.ch (D. Floreano).

vides a common framework for the classification and assessment of

existing methods, and for the design of new methods for the com-

putational synthesis and inference of networks. Thus, in addition

to its contribution to the understanding of existing methods, the

present work constitutes also a position paper proposing a research

agenda for the development of new algorithms for the synthesis

and inference of networks.

2. t-Graphs

To introduce the concept of t-graph let us start by consider-

ing the artificial neural network represented in Fig. 1a. Here the

devices1 are artificial neurons, and they are connected by weighted

directed links. This kind of neural network is often represented

using the abstract structure from graph theory called weighted

directed graph [39,18], which is composed of a set of nodes, a set

of directed edges connecting ordered pairs of nodes, and a func-

tion that assigns a weight to every edge. For many applications the

graph drawn in Fig. 1a is ideally suited to model the neural network.

In fact, in graph theory the term “network” is sometimes used as a

synonym of “weighted directed graph” [18].

1 Strictly speaking, we should distinguish the actual devices from their models.

For example, in circuit theory one refers to the actual devices as circuit devices and

to their models as circuit elements [6,16]. With some abuse of terminology, we will

use the term “device” to refer to both the actual devices and to their models, relying

on the context for disambiguation.

1877-7503/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jocs.2011.01.007

166 C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177

Fig. 1. (a) The conventional graphical representation of an artificial neural network. The network is seen as a collection of devices, drawn here as black circles, connected

by directed weighted links, drawn as labeled arrows. (b) The representation of the same neural network as a collection of devices with terminals connected by weighted

links. According to their role, the devices in the network are now explicitly attributed input (I) and output (O) terminals, and the links connect the terminals rather than the

devices.

Fig. 2. (a) A schematic representation of neuromodulatory connections in biolog-

ical neural networks. Neuron N3 releases a neuromodulator (represented as small

vesicles) that affect the interaction between the remaining neurons. (b) The pres-

ence of neuromodulatory effects affecting neuron N4 can be modeled by adding a

distinct modulatory input terminal (M) to the standard input (S) of the conventional

artificial neuron model.

For some other applications, however, the graph abstraction can

be improved by the simple act of specifying and keeping distinct

the identity of the points of interconnection between the devices.

Adopting the circuit theory terminology [6,16] we will call the

points of interconnection between the devices, terminals. Using

this approach, the neural network of Fig. 1a can be represented

as in Fig. 1b, that is, as a collection of devices whose terminals

are connected via weighted links.2 In this simple example the two

representations look very similar and the advantages of the new

approach are not readily apparent. Let us then consider a few addi-

tional examples where the advantages of the new representation

can be better appreciated.

The first example is drawn from biological neural systems. In

these systems a crucial role is played by signals called modulatory

signals [19] which influence the characteristics of the neurons or

the behavior of the connections between them, rather than their

level of activation (Fig. 2a). The influence of modulatory signals

range from the change of the sensitivity of the neurons to incoming

signals, to the reconfiguration of the network connectivity, to the

modulation of the plasticity and learning rates. Observations of bio-

logical neural systems [19] and experiments with simulated agents

[33,10] provide evidence that the inclusion of neuromodulatory

effects can substantially increase the potential and evolvability of

neural networks. The presence of a neuromodulatory signal affect-

ing the characteristics of a neuron and of its synapses can easily be

included in an artificial neuron model by adding a modulatory input

to the model. This implies, however, that a neuron can no longer

be simply represented as a node in a graph as in Fig. 1a, because

2 Note that in the representation of Fig. 1b the links are undirected, because the

role played by the directed nature of the links in the graph representation is taken

by the identity of the terminals in the new representation.

Fig. 3. The schematic representation of a simple electronic circuit.

the model must retain the distinct character of the neuron inputs.

In the words of neurobiologist Katz [19, p. 15]:

By ignoring neuromodulatory actions, these so-called ‘ball and

stick’ diagrams [i.e., diagrams equivalent to those shown in our

Fig. 1a] do not represent adequately the richness of communi-

cation between neurons. Such diagrams can be very misleading

because [. . .] neurons communicate with both neurotransmis-

sion and neuromodulation simultaneously, providing a rich

environment where signals vary not only in time, space, and

intensity but also in character. [emphasis in the original]

To overcome the limitation lamented by Katz it is necessary to

model neurons as devices with as many separate connection points

as there are inputs and outputs conveying signals with different

character, i.e., signals playing distinct roles in the operation of the

device.3 For example, the effect of the neuromodulatory neuron N3

on the neuron N4 in Fig. 2a can be represented using for N4 a model

with three terminals, as shown in Fig. 2b.4

As second example, let us consider electronic circuits. Fig. 3

shows a schematic diagram of a simple electronic circuit, where the

symbol associated with the label Q1 stands for a bipolar transistor,

that is, a semiconductor device with three terminals called base

(B), collector (C) and emitter (E) (Fig. 4a). Using for the transistor

3 On the other hand, signals that have the same role (e.g., because they are all

summed together before further processing) can be carried by links connected to

the same terminal.
4 Note that in the model represented in Fig. 2b it is the special nature of the input

terminal M which distinguishes the role of the neuromodulatory signal, and not the

special nature of neuron N3. This means that, in the t-graph perspective, we can

interpret the existence of special neuromodulatory neurons in biological brains as

motivated by the need to keep distinct the character of the signals conveyed to other

neurons, and by the biological constraint that signals with different roles are better

kept distinct and carried by different chemicals.

C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177 167

Fig. 4. (a) The standard symbol representing a bipolar transistor for circuit drawing.

(b) The representation of a transistor as a graph with two edges used for circuit

analysis. (c) The representation of a transistor as a device with terminals suited to

the new approach proposed in this paper.

the conventional graph representations used in circuit theory [6]

(Fig. 4b), and representing each two-terminal device as a directed

edge, the circuit can be drawn as the graph shown in Fig. 5a. This

graph representation is very useful if one wants to write the circuit

equations and compute the circuit currents and voltages. Fig. 5a,

however, reveals that devices with three terminals correspond to

two links in the graph representation (more generally, n-terminal

devices correspond to n − 1 links). Thus, although essential for the

simulation of the circuit, the conventional graph representation of

electronic circuits is not ideal when the unity of the devices must

be preserved, for example, during the synthesis of circuits, when

devices are typically tentatively inserted and removed from the cir-

cuit. A model that complies with this latter requirement is shown

in Fig. 4c. Now the transistor is represented as a single device with

three terminals. Using this same approach to model all the non-

resistive devices appearing in the circuit of Fig. 3, one can represent

the circuit as in Fig. 5b, that is, as a collection of devices whose ter-

minals are interconnected via links which are weighted by the value

of resistance between pairs of terminals.

A further example that illustrates the advantages of endow-

ing with terminals the traditional nodes of a network can be

drawn from the design of computer networks and, more generally,

of communication networks. Present-day computers and routers

are typically equipped with several distinct communication inter-

faces [32]. For example, a computer may be equipped with several

types of wireless interface (implementing, for example, the Blue-

tooth, Wi-Fi 802.11, and Consumer Infrared standards) and several

types of wired interface (e.g., Ethernet, Firewire, USB). Each type

can further come in different versions having different maximum

transfer rates (e.g. 802.11 b/g/n, Ethernet 10/100/1000 Mbit/s, USB

1.1/2.0/3.0). The process of synthesizing and optimizing a computer

network must take into account the number, type, and version

of the communication interfaces available on each computer and

router composing the network. This is awkward using the conven-

tional representation of the network as a graph since there is no

natural way to identify the types of interfaces available on each

node, but can be easily done by representing the system as a net-

work of devices with terminals that correspond to the type and

version of communication interfaces available on the device.

As final example, let us consider gene regulatory networks (from

now on, simply gene networks). In the traditional graph representa-

tion of gene networks the genes are represented as nodes and the

interactions between regulator genes and regulated target genes

are represented as directed links [15]. But – in the words of Huang

and Kauffman [15, p. 1182] –

since each node can receive several inputs (“upstream regula-

tors”), it is more appropriate to combine modality of interaction

together with the way the target gene integrates the various

inputs to change its expression behavior (= output). Thus, each

node can be assigned a function that maps all its inputs in a

specific way to the output.

A discussion with further details on biological networks and on

gene networks in particular can be found in Section 6.4 below. How-

ever, a consequence of Huang and Kauffman’s observation that is

already apparent at this stage is that each gene should be repre-

sented as a device having one terminal for each way the target gene

can functionally integrate its inputs [28,23], rather than as a node

of the conventional graph representation, because the latter does

not permit to identify the way the regulator and regulated genes

interact.

Summing up, we have shown that many systems traditionally

represented as weighted graphs can be effectively and usefully rep-

resented as collections of devices that are explicitly provided with

one or more points of interconnection called terminals. Given the

crucial role played in it by terminals, we propose the name terminal

graph (t-graph for short) for this kind of representation.5

3. Representation and computational synthesis of
networks

In order to permit the computational use of the t-graph con-

cept we need a computational representation for it. A t-graph is

constituted of (see the Appendix A for a formal definition):

1. A finite collection of (possibly parametrized) devices

2. Each device possessing a finite collection of terminals

3. A collection of links between the terminals, each associated with

a value of interaction strength or weight

A simple computational representation for these elements can

be obtained by labeling the device terminals and defining an inter-

action map6 which associates a numeric value to every unordered

pair of terminal labels, possibly with a special value (e.g., zero) used

to denote the absence of a link between a pair of terminals.

As mentioned in the introduction, one of the most significant

problems concerning networks is their computational synthesis.

Given the constituents of the representation for t-graphs listed

above, a computational method of synthesis for networks can be

structured as a search involving one or more of the following three

elements (Fig. 6):

1. The number, type, and parameter values of the devices compos-

ing the network

2. The labels associated with the terminals of the devices

3. The interaction map associating a weighted link with each pair

of terminal labels

As we will show below, existing methods for the computational

synthesis of networks perform a search on one or two of these three

elements, and assign the remaining ones. We can thus classify these

methods according to which elements of the representation are

preassigned and which elements are instead the subject of a search

5 In previous works [26–28] we used the term analog network for this same rep-

resentation.
6 We use the term map rather than function to emphasize the fact that the terminal

labels are elements of an arbitrary set, which is not necessarily a numeric field.

168 C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177

Fig. 5. (a) The representation of the electronic circuit of Fig. 3 as a directed graph. (b) The representation of the same electronic circuit as a collection of devices with terminals

connected by weighted links.

process. To simplify the classification we will consider jointly the

number, the type, and the parameter values of the devices, and dis-

tinguish only methods that operate on one or more of these device

properties from methods that do not implicate any of them in the

search.

In the rest of this paper we will mainly cite examples of evo-

lutionary synthesis of artificial neural networks, considered as

representative of the general problem of defining methods for the

computational synthesis of networks. The reason for this choice is

that there exist a vast literature and a rich variety of methods for the

evolutionary synthesis of neural networks [41,13]. This choice does

not entail a loss of generality, because the discussion and results

apply to any kind of network, and they are valid in general for

stochastic and deterministic search and optimization methods.

4. Existing methods for the computational synthesis of
networks

4.1. Methods that search the space of interaction maps

The earlier methods [13,41] that were developed for the com-

putational synthesis of networks assign and keep fixed during the

synthesis the number, type, and parameter values of the devices

that compose the network. They also implicitly assign and keep

Fig. 6. The elements that realize the t-graph representation of a network in view of its computational synthesis: a collection of devices (with terminals), a collection of

terminal labels (here, ij for input terminals and ok for output terminals), and an interaction map. The interaction map m(·) takes as arguments an unordered pair of terminal

labels and produces the value of interaction strength between the corresponding terminals. By applying the interaction map to all pairs of terminal labels, one obtains the

complete network.

C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177 169

Fig. 7. A schematic representation of a class of methods for the synthesis of networks which assigns the collection of devices with labeled terminals of the t-graph represen-

tation, and synthesizes the interaction map as a matrix of values. The synthesis of the matrix entries is typically performed with a deterministic or stochastic search method

(e.g., gradient descent, or an evolutionary algorithm). In this schematic representation and in those shown in the following pages, the elements of the network that are the

subject of the synthesis process are represented in blue and drawn with thick lines. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of the article.)

fixed the terminal labels of the t-graph representation by deriving

them from the labels of the devices. Once the devices and terminal

labels are assigned, what remains as the subject of the synthesis

is thus the sole interaction map. For example, assuming as given

the indexed collection of devices shown in the top row of Fig. 6,

the labels ij and oj can be considered as implicitly assigned to the

input and output terminal, respectively, of the jth device. The fact

that actual connections can be established only between inputs and

outputs corresponds to assigning a default null value of the interac-

tion map to all the pairs of terminal labels of the type (ij, ik) and (oj,

ok). The synthesis method is thus required to generate the values of

interaction strength wj,k = m({ij, ok}) taken by the interaction map

on all the unordered pairs of terminal labels of the type (ij, ok). This

corresponds to the generation of the entries of a matrix (Fig. 7).7

Examples of methods falling under this heading are most of

the fixed-genome-length methods for evolutionary neural network

synthesis described in [13,41]. Some of these methods encode and

evolve the entries of this matrix in a binary genome; other meth-

ods, for example, Evolutionary Strategies [2], represent and evolve

this matrix as a real-valued vector. Note that even classical meth-

ods of neural network training such as back-propagation of error

[3,14] can be interpreted in this framework as searching for the

7 This matrix is similar to the weighted adjacency matrix defined for weighted

graphs [4], except for its defining the values associated with connections between

terminals rather than with connections between nodes.

minimum of the error function in the space of interaction maps

represented by the matrix of values shown in Fig. 7. Searching

in the space of interaction maps that are represented as matrices

of map values has the advantage of simplicity but suffers from a

lack of scalability since the number of entries in the matrix grows

quadratically with the number of devices in the network. This is a

well-known problem of representations of multidimensional maps

based on simple structures such as matrices and look-up tables

[3]. We will consider below methods capable of assuaging this

problem.

4.2. Methods that operate on an efficient representation of the

interaction map

In the t-graph perspective, an obvious way to overcome the scal-

ability problem of the matrix representation of the interaction map

that was mentioned above is to employ a more efficient represen-

tation of the interaction map (Fig. 8). An example of a potentially

efficient representation of a map is a feed-forward neural network

(Fig. 8c). A feed-forward neural network represents a map as a

parametrized composition of simple maps selected from a set of

neuron activation functions [3]. The first benefit of this kind of repre-

sentation is that with a judicious choice of the activation functions

one can generate a large variety of maps by using a reasonably

small number of parameters. A neural network used to repre-

sent the interaction map of a t-graph will take pairs of terminal

labels as inputs, and will produce the value of interaction strength

170 C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177

Fig. 8. Methods for the synthesis of networks that search in the space of the interaction maps (a) can operate on a simple representation of the map such as a weight matrix

(b) or adopt a more efficient representation of the map. For example (c), the interaction map can be represented as a neural network that takes as inputs pairs of terminal

labels and produces as output the value of the weight associated with the connection between the terminals.

associated with the connection between the corresponding termi-

nals as output.8

Using this representation, a method for the synthesis of net-

works which performs a search in the space of interaction maps

will actually search in the space of the neural networks represent-

ing the interaction map. More generally, this kind of method will

search in the space of some efficient representation of the inter-

action map (Fig. 9). An efficient representation of the interaction

map such as a feed-forward neural network has the benefit that it

scales better than the matrix representation when the number of

devices and terminals of the synthesized network increases. More-

over, a composition of functions defined on a continuous domain is

not limited to a unique, predefined resolution, but, once generated

by the search process, it can be sampled at several different resolu-

tions and can thus be used to generate the connectivity pattern of

networks with largely different number of devices [35]. An actual

example the class of methods illustrated in Fig. 9 is Hyper-NEAT

[35,9].

4.3. Methods that search the space of devices and interaction

maps

To increase the flexibility of the methods described in Section

4.1, many methods add to the search in the space of the interac-

tion maps, a search in the space of devices [13,41]. Fig. 10 shows a

schematic representation of a class of methods that explicitly repre-

sent the number and kind of devices present in the network and the

weights between the terminals of the devices. This gives the pos-

sibility of generating networks with different numbers of devices.

Examples of methods falling under this heading are many of the

variable-genome-length methods for evolutionary neural network

synthesis described in [13,41].

4.4. Methods that search the space of devices and terminal labels

An approach to the synthesis of networks which is complemen-

tary to the assignment of the terminal labels combined with the

synthesis of the interaction map described so far, consists in assign-

8 Note that, as pointed out previously, each terminal label can be an entity more

complex than a single numeric value. For example, it could be a list of numeric

values, or an arbitrary sequence of symbols. Thus, each of the two inputs of the

box representing the interaction map in Fig. 8a must be interpreted as potentially

corresponding to several (not necessarily numerical) actual inputs.

ing the interaction map while synthesizing the devices and the

terminal labels. Fig. 11 shows a schematic representation of this

class of methods, where the terminal labels, the number, the type,

and the parameters of the devices forming the network are syn-

thesized by the search algorithm. This approach to the synthesis

of networks has the advantage that the interaction map must no

longer be represented in view of the search, an operation which,

as we have seen, can suffer from scalability problems. On the other

hand, this approach creates the problem of the choice of an inter-

action map, which may also be far from trivial [26]. Examples of

methods for the synthesis of networks belonging to this class are

the evolutionary methods based on the analog genetic encoding

(AGE) [26–28].

5. The missing methods

The examples considered so far show that it is possible to clas-

sify existing methods for the computational synthesis of networks

according to their way of handling the three elements that form

the t-graph representation of the network (Fig. 6). We have seen

that each element of the representation can be either assigned and

kept fixed, or synthesized by the algorithm. Moreover, we have

seen that when the interaction map is synthesized, it can be repre-

sented either in an inefficient or in an efficient way. The upper half

of Table 1 summarizes this classification. Note that further combi-

nations corresponding to methods that are obvious simplifications

of existing entries have not been included in the table (e.g., synthe-

sizing only the terminal labels while keeping fixed both the devices

and the interaction map would be a simplification of the methods

corresponding to the fourth row).

What is interesting at this point is to consider combinations

that, to the best of our knowledge, do not correspond to any exist-

ing method for the computational synthesis of networks. We will

call the methods corresponding to these combinations the missing

methods. Let us proceed to consider a few of these and to list them in

the lower half of Table 1. A first combination that does not appear

among the existing methods is one where all the three elements

of the representation are synthesized. Note that the representa-

tions considered so far for the devices and terminal labels are all

potentially inefficient, in the sense that they involve the explicit

representation of each device or of each terminal label. It is cer-

tainly possible, however, to conceive of an efficient representation

for the devices and the terminal labels as well. Just to give an exam-

ple, mimicking the efficient representation of the interaction map

C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177 171

Fig. 9. A schematic representation of a class of methods for the synthesis of networks which assigns the collection of devices with labeled terminals and synthesizes an

efficient representation of the interaction map.

described above, we could use a function whose properties (say, the

position in the domain and the nature of some kind of critical point

of the function [11,43]) determine a set of coordinates to be used

as terminal labels and the properties of the device, respectively.

This means that we can conceive of classes of missing methods

that synthesize an efficient representation of one or more of the

three elements forming the computer representation of t-graphs,

as shown schematically in the last four rows of Table 1.

6. Discussion

Equipped with the t-graph concept and with the classification

scheme of Table 1 for the methods of network synthesis we can now

consider a few questions that arise in relation to the application of

the missing methods and discuss the place of further social, tech-

nological, and biological examples of networks in the classification

scheme of Table 1.

Table 1
The sketch of a classification scheme for the methods of synthesis of networks (a finer classification can be obtained considering separately the status of the number, type,

and parameters of the devices). In the synthesis of a network, each element of the t-graph representation can be either fixed or synthesized. Additionally, the synthesized

elements can be represented in an inefficient or an efficient way. The top half of the table lists existing methods that have been discussed in the text. The bottom half of

the table represents combinations that do not correspond to existing computational methods for network synthesis (missing methods). Besides methods that synthesize all

the elements of the t-graph representation, we can infer the existence of missing methods based on combinations of one or more efficient representations of the devices,

terminal labels, and interaction map.

Devices Terminal labels Interaction map Examples

Existing methods

Fixed Fixed Synthesized Fixed-length direct

encodings

Fixed Fixed Synthesized, with

efficient representation

Hyper-NEAT

Synthesized Fixed Synthesized Variable-length direct

encodings

Synthesized Synthesized Fixed AGE

Missing methods

Synthesized Synthesized Synthesized

Biological circuits (e.g., gene

networks), but no

computational method so far

Synthesized, with

efficient representation

Fixed or synthesized Fixed or synthesized

Fixed or synthesized Synthesized, with

efficient representation

Fixed or synthesized

At least one synthesized Synthesized, with

efficient representation

At least two synthesized and with efficient representation

172 C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177

Fig. 10. A schematic representation of a class of methods for the synthesis of networks which synthesizes both the collection of devices with terminals composing the t-graph

representation, and the interaction map represented as a matrix of values. The terminal labels are implicitly derived from the device identifiers.

6.1. Applications of the missing methods

A first question that is worth considering concerns the pos-

sible advantages and applications of the missing methods listed

in Table 1. For example, assuming that it is necessary to con-

sider networks having different number and type of devices in the

search, one can consider the possibility of defining a new method

which synthesizes both the interaction map and the terminal labels

rather than use existing methods that operate on only one of these

two elements. The possibility of using methods that operate on

the space of both elements adds degrees of freedom to the def-

inition of the network, so that a search process that might get

stuck when operating on only one of these elements could use

the additional degrees of freedom to escape this condition. Other

advantages and improvements over existing methods might stem

from the use of novel combinations of efficient representations.

For example, the experiments reported in [35] have shown how

the use of an efficient representation for the interaction map can

lead to an excellent scalability of the outcome of the synthesis. The

use of combinations of more than one efficiently encoded element

of the t-graph representation could further extend this favorable

property to cases where, for example, it is also crucial to define

networks that are heterogeneous in terms of the nature of the

devices.

We must keep in mind, however, that each type of method has

its own niche of applicability, and that we don’t always have to

turn to the most complex method. For example, if the network

need only be composed of a small and fixed number of preassigned

devices, the adoption of a simple, inefficient representation of the

interaction map might be the best choice.

6.2. Network inference

So far we have considered mainly the impact of the t-graph

perspective on the computational synthesis of networks. There is,

however, another important class of computational problems con-

cerning networks: that of network inference (also called reverse

engineering of networks). In a network inference problem one is

given some prior information about the network and some data

collected from it, and is asked to estimate its structure and param-

eters. As explained in [23,28,36], a computational inference process

can be based on algorithms that synthesize an ensemble of tenta-

tive solutions. Thus, the approach presented above in relation with

the problem of classifying and designing methods for network syn-

thesis extends naturally to the important problem of classifying and

designing methods for the computational inference of networks.

6.3. Complex networks

Fostered by the wealth of newly available data on large biologi-

cal, technological, and social networks, a new discipline of complex

networks has emerged in the last few years [1,5,8,31,37]. There is

no universally agreed definition of what constitutes the field of

complex network studies, but we can take as a reasonably encom-

passing viewpoint the one that sees it (or at least most of it) as

the application of the methods of statistical physics to the study of

networks [8]. The main goal is typically to estimate the statistical

properties of a class of networks based on a few global properties

observed in a sample of networks representative of the class. Mim-

icking the approach followed by statistical mechanics, in studying

complex networks one thus starts by observing a few structural

C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177 173

Fig. 11. A schematic representation of a class of methods for the synthesis of networks which assigns the interaction map and synthesizes the collection of devices and the

terminal labels.

characteristic of some actual network (for example, one may count

the total number of nodes, and evaluate the degree distribution

[1,8] of, say, a given gene network). Next, one tries to determine

the ensemble of networks that comply with the observed struc-

tural characteristics. Ideally, one would like to determine and focus

on the ensemble of networks that maximize the entropy given the

constraints represented by the observed structural characteristics,

since this ensemble represents the most probable type of network

complying with these characteristics. Endowed with the maximum

entropy ensemble one can finally determine the statistical proper-

ties possessed by the networks of the kind originally observed.

Unfortunately, for many real-world networks the number of

structural characteristics that must be taken into account to rea-

sonably characterize them is large. This is especially true if the

networks are not static but change over time. The consequence is

that the number of constraints that must be considered for entropy

maximization is so large that the problem becomes computation-

ally infeasible [1]. To circumvent this issue one can try to generate

a sample of the maximum entropy ensemble of networks by means

of stochastic dynamical procedures that specify how to construct

the networks [1,5,8]. This implies that the constraints derived from

the observation of the actual networks can no longer be structural

characteristics but, rather, constraints on the construction proce-

dures themselves. This, in turn, presupposes that one can easily

represent those constraints in the network construction algorithm.

It is in relation to this requirement that we see a first way in

which the study of complex networks can benefit from the con-

cept of t-graph introduced in this paper. As we have shown in the

examples of Section 2, for many real-world networks the establish-

ment of the connections between the devices is contingent upon

the nature of the device terminals. Thus, any growth process con-

cerning the network is constrained by the nature of the terminals.

This implies that the representation of the real-world network as a

collection of devices with terminals, i.e., as a t-graph, is essential for

the representation of the actual constraints existing in the process

of network growth.9

This aspect is related to a second way in which the t-graph per-

spective can benefit the study of complex networks, namely, in

helping to answer some criticisms that have been leveled at the

complex network approach regarding its actual relevance for many

kinds of real-world systems, and the necessity to move beyond

observation and modeling to tackle problems of validation and

control [20,22,29]. For example, Li and coworkers note that [22,

p. 495] “[in] domains like engineering (or biology) . . . design, evo-

lution, functionality, and constraints are all key ingredients that

simply cannot be ignored”. The use of the t-graph perspective can

help realize a first step towards the inclusion of these ingredients

in the complex network analysis by expressing existing functional

constraints via the functional identity of the device terminals. Dis-

cussing the problem of adopting new approaches to validation,

Mitzenmacher observes that [29, p. 529] “A compelling possibility is

to make use of time series analysis, with the goal that one observes

the system over time to judge the underlying assumptions of the

proposed model.” As shown in [24] for the case of gene networks,

9 Note that once the collection of networks has been generated using the t-graph

representation, one can always reduce the t-graph representation to a conventional

graph representation in order to perform the traditional kind of statistical analyses

on the collection.

174 C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177

the analysis of the compatibility of a given network model with a

collection of observed time series can be effectively founded on a

process of network inference. Thus, the use of time series analysis

advocated by Mitzenmacher may benefit from the new methods

of network inference whose existence is revealed by the t-graph

perspective.

Finally, the t-graph concept can lead to the identification of

new classes of networks sharing important structural properties.

For example, many real-world systems can be seen as networks

composed by devices possessing input and output terminals, and a

gating terminal that regulates the input–output flow (active devices

in electronic circuits, enzymes in metabolic networks, and gated

and modulated neurons in neural networks can be interpreted as

such kind of device [25], and the effect of sanitary interventions

might be interpreted in a similar way in the context of the modeling

of epidemic spreading in population networks [7]). Thus, one could

conceive a program of study of the properties of a class of “gated”

complex networks. Other classes of networks may be identified on

the basis of similar structural properties related to the nature of the

device terminals.

6.4. Biological networks

Another interesting question is whether the genetic represen-

tations of biological networks can be classified according to the

scheme of Table 1 and, the case being, to which class they belong.

Let us first consider the case of gene networks.

As schematized in Fig. 12, and detailed in [28,23], a gene net-

work can be modeled as a t-graph where the genes correspond to

the devices and the interaction between two genes is determined

by the interaction between the gene products of the first gene with

the regulatory regions of the second gene. Thus, it is possible to

consider the coding and the regulatory regions of two genes as ter-

minal labels associated with the genes’ output and input terminals,

respectively. Evolution can modify these regions of the genes and,

thus, we can interpret the evolution of biological gene networks

as a method of network synthesis where the genes are the devices

and the terminal labels are encoded and evolved. Since genes can be

mutated, duplicated, and inactivated, the devices are also encoded

and evolved. The interaction map is determined by the cellular

environment in which the genome is immersed and depend on the

laws of physics and chemistry which influence the generation of the

gene products and their interactions with the regulatory regions of

the genome. Since the cellular environment can also change dur-

ing evolution, and is determined in part epigenetically [17], in part

by the molecular machinery and by other gene products encoded

in the genome, we can conclude that the interaction map is also

encoded and evolved. Thus, the evolutionary synthesis of biologi-

cal gene networks can be interpreted as belonging to the class of

methods of network synthesis that vary all the three elements of the

t-graph representation. Concerning the distinction between ineffi-

cient and efficient representations, we might tentatively say that

in the case of biological gene networks the representation of the

devices and terminal labels is inefficient, since all the elements are

explicitly encoded in the genome. The case of the interaction map

is less clear, because the genome also influences the properties of

the interaction map via the encoding of the molecular machinery

and of the chemicals that will be released within the cell. One could

argue that this representation is potentially efficient.

Another example of biological networks that can be modeled

as t-graphs are neural networks. The case of the classification of

biological neural networks according to the scheme of Table 1 is

definitely less clear than that of gene networks just examined, since

the synthesis of biological neural networks depends on a still poorly

understood developmental process that certainly depends on the

genome but is also heavily influenced by environmental factors. The

devices are certainly evolved, and the connectivity is also geneti-

cally influenced. Moreover, the complexity and scalability of the

neural network with respect to the genetic information points to

an efficient representation. It is however difficult to say if and how

in biological nervous systems the genetic instructions determine

a hypothetical labeling of the device terminals and a hypothetical

interaction map which establish a set of tentative connections, to

be later refined according to environmental and functional factors.

6.5. Multiplex networks

Social network analysis is the joint subfield of network and social

science that studies the relations between social entities called

actors (which can be either individuals or social groups) [40]. In a

social network, nodes represent actors, and links represent relations

between actors. Typically, given a set of actors one is interested

in representing and studying several distinct relations between

pairs of actors. These distinct relations can be represented using

several distinct networks on the same set of nodes, or using a net-

work representation called multiplex (or multivariate) network that

allows the presence of several distinct links between pairs of nodes

[30,38,40].

A multiplex network can be realized as a t-graph by simply

endowing each of its nodes, considered as a t-graph device, with as

many distinct terminals as possible relations in the multiplex net-

work, and stipulating that only pairs of terminals of the same type

can be connected. In general, however, this interpretation appears

contrived because it shifts the multiple nature of the relations from

the links – where it belongs – to the terminals. A possible excep-

tion to this contra-indication concerns the computational inference

of a multiplex network, where one is given the set of nodes and

must reconstruct the links from indirect observations. In this case

it appears useful to employ the t-graph representation, which, con-

trary to the multiplex network representation, explicitly identifies

the number and kind of links that can exist between nodes before

the links themselves are inferred.

6.6. Developmental representations

At first sight, the important class of developmental representa-

tions for the synthesis of networks [21,12,14] does not fit in the

classification proposed above and schematized in Table 1. In most

cases, however, the result of an artificial developmental process

can be conceived of as defining a hierarchy of coordinate systems

in the evolved structure, and the final outcome of the developmen-

tal process can be replicated in terms of a composition of functions,

without the intervention of the developmental process [34].

One could object that biological developmental processes also

have the additional role of permitting the conditioning of the devel-

opmental outcome by the environmental conditions under which

development takes place. Although this additional role might be

mimicked in an artificial setting using an efficiently encoded inter-

action map that includes inputs from the environment, most

existing artificial developmental processes do not include any kind

of effect based on the interaction with the environment. Thus,

most of them could be properly represented by methods capable

of reproducing just their final outcome such as those schematically

illustrated in Table 1.

6.7. The self-decoding paradox

Methods of network synthesis like those described in Section

4.2, which represent and evolve the interaction map of the t-graph

representation using a feed-forward neural network, that is, using

a further network, materialize at first sight a paradoxical infinite

regress because in the t-graph representation the decoding of the

C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177 175

Fig. 12. (a) In biological gene networks, the interaction between genes is realized by molecules that are synthesized (by molecular machines such as the RNA polymerase)

from the coding region of one gene and interact with the regulatory region of another gene. (b) Abstracting the details of the biological process, the interaction can be

interpreted as involving the coding region of the first gene and the regulatory region of the second gene. (c) This abstraction can be interpreted as a t-graph where the genes

correspond to the devices and the coding and regulatory regions correspond to terminal labels associated with the output and input terminals of the genes, respectively. The

interaction map is determined by the action of the molecular machines that transform the coding regions into gene products, by the cellular environment, and by the laws

of physics and chemistry which determine the working of the molecular machines and the interaction of the gene products with the regulatory regions.

second network in turn requires the definition of an interaction

map. In fact, the paradox is easily solved. The simplest solution is

to adopt two different classes of representations for the two net-

works, using the first network to define the interaction map of the

second, and assigning or synthesizing, for example, as a matrix of

weights the interaction map of the first network. Biological gene

networks illustrate another interesting solution to the paradox. In

biological gene networks, the molecular machinery and chemical

environment that initially realize the interaction map (for exam-

ple, in a fertilized cell) are essentially epigenetically inherited from

the mother [17] and determine the initial “wiring” of the gene net-

work. Subsequently, the working of this initial gene network results

in the decoding of the genetic information to produce new molec-

ular machinery and a new cellular environment, which gradually

replaces those that were epigenetically inherited. In the t-graph

perspective, the whole process can be interpreted as an initial

assignment of the interaction map by epigenetic inheritance, fol-

lowed by the gradual replacement of this interaction map with one

that is encoded in the genome and can be genetically evolved. Tak-

ing inspiration from this interpretation of the biological evidence,

one could conceive a computational approach to the synthesis of

networks where the interaction map is efficiently represented as a

t-graph, and this further network is initially decoded using an epi-

genetically inherited interaction map, possibly later replaced by

the one encoded in the genome and initially decoded using the

epigenetically inherited decoding information.

7. Conclusion

In this paper we have shown that for some important application

like the computational synthesis and inference of networks, that is,

of systems composed of collections of connected devices, it is very

useful to represent the networks in terms of a new abstraction that

we have tentatively named terminal graph (t-graph for short). This

new representation differs from the conventional graph represen-

tation by attributing terminals to the devices and by connecting

the device terminals rather than the devices as in the conventional

graph representation. Using the t-graph concept as a guideline, we

have proposed a computational representation that is based on

the labeling of the device terminals and the definition of an inter-

action map that transforms pairs of terminal labels into weights

associated with the links. This representation can be used as a

basis for the computational synthesis and inference of networks.

We have shown that the existing computational methods for net-

work synthesis can be classified according to the elements of the

t-graph representation that the user must assign, those that are

176 C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177

synthesized by the search process, and on the efficiency of the

representation used for the latter. Finally, we have shown that

the proposed representation and the ensuing classification per-

mits the identification of a whole class of missing methods for the

synthesis and inference of networks which operate on combina-

tions of the elements that constitute the t-graph representation.

The next step consists in the implementation of the missing meth-

ods and in the identification of the conditions under which each of

them performs best and holds the greatest potential of improve-

ment over existing techniques for the synthesis and inference of

networks.

Acknowledgments

This work was supported by the Swiss National Science Foun-

dation, grants no. 200021-112060 and no. 200021-127143. Many

thanks to Sara Mitri and Thomas Schaffter for reading and com-

menting on the manuscript.

Appendix A. Definitions

Graph: A graph [18] is a pair G = (N, L) in which N is a finite set of

nodes and L is a set of two-element subsets of N called links.

Weighted graph: A weighted graph [18] is a triple W = (N, L, w) in

which G = (N, L) is a graph, and w is a function that assigns a weight

to each link of G.

Terminal graph: A terminal graph (t-graph) is a quadruple R = (D,

N, L, w) in which D is a finite set of devices, N = {(d, t ∈ Td)|d ∈ D} is a

set of device terminals with {Td}d∈D a family of finite sets of terminals

indexed by D, and W = (N, L, w) is a weighted graph.

References

[1] A. Barrat, M. Barthelemy, A. Vespignani, Dynamical Processes on Complex Net-
works, Cambridge University Press, Cambridge, 2008.

[2] T. Bäck, F. Hoffmeister, Basic aspects of evolution strategies, Statistics and Com-
puting 4 (June (2)) (1994) 51–63.

[3] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,
New York, 1995.

[4] D. Bonchev, G.A. Buck, Quantitative measures of network complexity, in: D.
Bonchev, D.H. Rouvray (Eds.), Complexity in Chemistry, Biology, and Ecology,
Mathematical and Computational Chemistry, Springer, New York, 2005, pp.
191–235 (Chapter 5).

[5] G. Caldarelli, Scale-Free Networks: Complex Webs in Nature and Technology,
Oxford University Press, Oxford, 2007.

[6] L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits, McGraw-Hill,
New York, 1987.

[7] V. Colizza, M. Barthélemy, A. Barrat, A. Vespignani, Epidemic modeling
in complex realities, Comptes Rendus Biologies 330 (April (4)) (2007)
364–374.

[8] S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets
to the Internet and WWW, Oxford University Press, Oxford, 2003.

[9] J. Drchal, J. Koutník, M. Šnorek, HyperNEAT controlled robots learn how to drive
on roads in simulated environment, in: CEC’09: Proceedings of the Eleventh
Conference on Congress on Evolutionary Computation, IEEE Press, Piscataway,
NJ, 2009, pp. 1087–1092.

[10] P. Dürr, C. Mattiussi, D. Floreano, Genetic representation and evolvability
of modular neural controllers, IEEE Computational Intelligence Magazine 5
(August (3)) (2010) 10–19.

[11] W. Ebeling, Functions of Several Complex Variables and Their Singularities,
American Mathematical Society, Providence, RI, 2007.

[12] D. Federici, K. Downing, Evolution and development of a multicellular organ-
ism: scalability, resilience, and neutral complexification, Artificial Life 12 (3)
(2006) 381–409.

[13] D. Floreano, P. Dürr, C. Mattiussi, Neuroevolution: from architectures to learn-
ing, Evolutionary Intelligence 1 (1) (2008) 47–62.

[14] D. Floreano, C. Mattiussi, Bio-inspired Artificial Intelligence: Theories, Methods,
and Technologies, MIT Press, Cambridge, MA, 2008.

[15] S. Huang, S.A. Kauffman, Complex gene regulatory networks—from structure
to biological observables: cell fate determination, in: R.A. Meyers (Ed.), Ency-
clopedia of Complexity and Systems Science, Springer, New York, 2009, pp.
1180–1213.

[16] IEC TC/SC 1. IEC 60050-131 2.0 b, International Electrotechnical
Vocabulary—Part 131: Circuit Theory, International Electrotechnical
Commission, Genève, 2002.

[17] E. Jablonka, M.J. Lamb, Epigenetic inheritance in evolution, Journal of Evolu-
tionary Biology 11 (2) (1998) 159–183.

[18] D. Jungnickel, Graphs, Networks and Algorithms, Springer, Berlin, 2008.
[19] P. Katz (Ed.), Beyond Neurotransmission: Neuromodulation and its Importance

for Information Processing, Oxford University Press, Oxford, 1999.
[20] E.F. Keller, Revisiting “scale-free” networks, BioEssays 27 (10) (2005)

1060–1068.
[21] S. Kumar, P.J. Bentley (Eds.), On Growth, Form and Computers, Academic Press,

Orlando, FL, 2003.
[22] L. Li, D. Alderson, J.C. Doyle, W. Willinger, Towards a theory of scale-free graphs:

definition, properties, and implications, Internet Mathematics 2 (4) (2005)
431–523.

[23] D. Marbach, C. Mattiussi, D. Floreano, Replaying the evolutionary tape:
biomimetic reverse engineering of gene networks, Annals of the New York
Academy of Sciences 1158 (2009) 234–245.

[24] D. Marbach, R.J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, G. Stolovitzky,
Revealing strengths and weaknesses of methods for gene network inference,
Proceedings of the National Academy of Sciences of the United States of America
(PNAS) 107 (14) (2010) 6286–6291.

[25] C. Mattiussi, D. Floreano, Connecting transistors and proteins, in: J. Pollack, M.
Bedau, P. Husbands, T. Ikegami, R.A. Watson (Eds.), ALife IX: Proceedings of the
Ninth International Conference on Artificial Life, MIT Press, Boston, MA, 2004,
pp. 9–14.

[26] C. Mattiussi, Evolutionary Synthesis of Analog Networks, PhD thesis, École Poly-
technique Fédérale de Lausanne, Lausanne, 2005.

[27] C. Mattiussi, D. Floreano, Analog genetic encoding for the evolution of circuits
and networks, IEEE Transaction on Evolutionary Computation 11 (October (5))
(2007) 596–607.

[28] C. Mattiussi, D. Marbach, P. Dürr, D. Floreano, The age of analog networks, AI
Magazine 29 (3) (2008) 63–76.

[29] M. Mitzenmacher, The future of power law research, Internet Mathematics 2
(4) (2005) 525–534.

[30] P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.-P. Onnela, Community struc-
ture in time-dependent, multiscale, and multiplex networks, Science 328 (May
(5980)) (2010) 876–878.

[31] M.E.J. Newman, The structure and function of complex networks, SIAM Review
45 (2) (2003) 167–256.

[32] L.L. Peterson, B.S. Davie, Computer Networks: A Systems Approach, 4th edition,
Morgan Kaufmann, San Francisco, 2007.

[33] A. Soltoggio, P. Dürr, C. Mattiussi, D. Floreano, Evolving neuromodulatory
topologies for reinforcement learning-like problems, in: Proceedings of the
2007 IEEE Congress on Evolutionary Computation (CEC 2007), 25–28 Septem-
ber 2007, 2007, pp. 2471–2478.

[34] K.O. Stanley, Compositional pattern producing networks: a novel abstraction
of development, Genetic Programming and Evolvable Machines 8 (June (2))
(2007) 131–162.

[35] K.O. Stanley, D.B. D’Ambrosio, J. Gauci, A hypercube-based encoding for
evolving large-scale neural networks, Artificial Life 15 (April (2)) (2009)
185–212.

[36] G. Stolovitzky, A. Califano (Eds.), Reverse Engineering Biological Networks:
Opportunities and Challenges in Computational Methods for Pathway Infer-
ence, volume 1115 of Annals of the New York Academy of Sciences,
Wiley-Blackwell, New York, 2008.

[37] S.H. Strogatz, Exploring complex networks, Nature 410 (March (6825)) (2001)
268–276.

[38] M. Szell, R. Lambiotte, S. Thurner, Multirelational organization of large-scale
social networks in an online world, Proceedings of the National Academy of
Sciences 107 (31) (2010) 13636–13641.

[39] J. van Leeuwen, Graph algorithms, in: J. van Leeuwen (Ed.), Handbook of The-
oretical Computer Science, Volume A: Algorithms and Complexity, Elsevier,
Amsterdam, 1990, pp. 525–631 (Chapter 10).

[40] S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications,
Cambridge University Press, New York, 1994.

[41] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE 87 (Septem-
ber (9)) (1999) 1423–1447.

[42] R.S. Zebulum, M.A.C. Pacheco, M.M.B.R. Vellasco, Evolutionary Electronics:
Automatic Design of Electronic Circuits and Systems by Genetic Algorithms,
CRC Press, Boca Raton, FL, 2002.

[43] W. Zou, M. Schechter, Critical Point Theory and its Applications, Springer, New
York, 2006.

Claudio Mattiussi is an independent researcher. His
interests include evolutionary computation, evolutionary
electronics, artificial immune systems, cellular systems,
developmental systems, machine learning, probabilistic
and bio-inspired intelligence and engineering, and the
consistent numerical formulation of physical field prob-
lems.

C. Mattiussi et al. / Journal of Computational Science 2 (2011) 165– 177 177

Peter Dürr received the M.Sc. degree in Mechanical Engi-
neering from the Swiss Federal Institute of Technology
in Zürich, Switzerland in 2005. He is currently with the
Laboratory of Intelligent Systems (LIS), School of Engi-
neering, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland. His research interest is in evolu-
tionary computation and biologically inspired robotics. He
regularly contributes to the popular “Robots Podcast”.

Daniel Marbach is a Postdoctoral Research Fellow at
the Computer Science and Artificial Intelligence Labora-
tory (CSAIL) of the Massachusetts Institute of Technology
(MIT). His research aims at understanding the structure,
function, and evolution of regulatory networks of bio-
logical cells by means of computational methods. During
his doctoral studies at the Laboratory of Intelligent Sys-
tems, Ecole Polytechnique Fédérale de Lausanne (EPFL) he
developed methods for inference and modeling of gene
regulatory networks. He won the international network
inference competition in 2007 (DREAM challenge) and his
thesis was nominated for the best doctoral thesis at EPFL
in 2010.

Prof. Dario Floreano is Director of the Laboratory of
Intelligent Systems at the School of Engineering in Ecole
Polytechnique Federale de Lausanne (EPFL). He received
an M.A. in Cognitive Science from University of Trieste
(Italy) in 1988, an M.S. in Neural Computation from the
University of Stirling (UK) in 1991, and a Ph.D. in Evolu-
tionary Robotics in 1995 from University of Trieste (Italy),
all of them with distinction. In 1996 he was appointed
senior researcher at the Department of Computer Sci-
ence of EPFL where he established the Robot Learning
group. In 1998 he was invited researcher at Sony Com-
puter Science Labs in Tokyo. In 2000 he was awarded a
Swiss National Science Foundation professorship at EPFL

and in 2005 he was appointed associate professor by EPFL and established the
Laboratory of Intelligent Systems. His research interests cover Bio-inspired Arti-
ficial Intelligence and Robotics. Prof. Floreano is co-founder of the International
Society for Artificial Life, Inc., member of the Advisory Group to the European
Commission for Future Emerging Technologies, and past-member of the Board of
Governors of the International Society for Neural Networks. He published almost
200 peer-reviewed technical papers and edited and co-authored several books,
among which Evolutionary Robotics with Stefano Nolfi (hardcover 2000; paperback
2004) and Bioinspired Artificial Intelligence with Claudio Mattiussi (2008), both by
MIT Press. He delivered more than 100 invited talks worldwide, co-organized more
than 10 international conferences, and is on the editorial board of 10 international
journals.

