OilEd: a Reason-able Ontology Editor for the
Semantic Web

Sean Bechhofer, ITan Horrocks, Carole Goble and Robert Stevens
Department of Computer Science,
University of Manchester, UK
seanb@cs.man.ac.uk,
http://img.cs.man.ac.uk

Abstract

Ontologies will play a pivotal role in the “Semantic Web”, where they
will provide a source of precisely defined terms that can be communicated
across people and applications. OilEd, is an ontology editor that has an
easy to use frame interface, yet at the same time allows users to exploit
the full power of an expressive web ontology language (OIL). OilEd uses
reasoning to support ontology design, facilitating the development of on-
tologies that are both more detailed and more accurate.

1 Introduction

Ontologies have become an increasingly important research topic. This is a re-
sult both of their usefulness in a range of application domains [1, 2, 3], and of the
pivotal role that they are set to play in the development of the Semantic Web.
The Semantic Web vision, as articulated by Tim Berners-Lee [4], is of a Web
in which resources are accessible not only to humans, but also to automated
processes, e.g., automated “agents” roaming the web performing useful tasks
such as improved search (in terms of precision) and resource discovery, informa-
tion brokering and information filtering. The automation of tasks depends on
elevating the status of the web from machine-readable to something we might
call machine-understandable. The key idea is to have data on the web defined
and linked in such a way that its meaning is explicitly interpretable by software
processes rather than just being implicitly interpretable by humans.

OIL [5] is a language that has been developed for the representation of on-
tologies within the Semantic Web. It extends RDF Schema (RDFS) [6] — itself a
proposed ontology /knowledge representation language — with a much richer set
of modelling primitives. A similar RDFS based web ontology language called
DAML has been developed as part of the DARPA DAML project [7]. These two

1

2 2 OIL AND DAML+OIL

languages have now been merged under the name DAML~+OIL, although there
are some differences between the approaches used in the languages [8].

OIL has a frame-like syntax, which facilitates tool building, yet can be
mapped onto an expressive description logic (DL), which facilitates the pro-
vision of reasoning services. OilEd is an ontology editing tool for OIL (and
DAMLA4-OIL) that exploits both these features in order to provide a familiar
and intuitive style of user interface with the added benefit of reasoning support.
Its main novelty lies in the extension of the frame editor paradigm to deal with a
very expressive language, and the use of a highly optimised DL reasoning engine
to provide sound and complete yet still empirically tractable reasoning services.

Reasoning with terms from deployed ontologies will be important for the
Semantic Web, but reasoning support is also extremely valuable at the ontology
design phase, where it can be used to to detect logically inconsistent classes
and to discover implicit subclass relations. This encourages a more descriptive
approach to ontology design, with the reasoner being used to infer part of the
subsumption lattice; the resulting ontologies contain fewer errors, yet provide
more detailed descriptions that can be exploited by automated processes in the
Semantic Web. Finally, reasoning is of particular benefit when ontologies are
large and/or multiply authored, and also facilitates ontology sharing, merging
and integration [9]; considerations that will be particularly important in the
distributed web environment.

2 Oil and DAML+OIL

The development of OIL resulted from efforts to combine the best features of
frame and DL based knowledge representation systems, while at the same time
maximising compatibility with emerging web standards. The intention was to
design a language that was intuitive to human users, and yet provided adequate
expressive power for realistic applications (many early DLs failed on this second
count—see [10]).

The resulting language combines a familiar frame like syntax (derived in part
from the OKBC-lite knowledge model [11]), with the power and flexibility of a
DL (i.e., boolean connectives, unlimited nesting of class elements, transitive and
inverse slots, general axioms, etc.). The language is defined as an extension
of RDFS, thereby making OIL ontologies (partially) accessible to any “RDFS-
aware” application.

The frame syntax is less daunting to ontologists/domain experts than a DL
style syntax, and it facilitates a modelling style in which ontologies start out
simple (in terms of their descriptive content) and are gradually extended, both as
the design itself is refined and as users become more familiar with the language’s
advanced features. The frame paradigm also facilitates the construction and

slot-def part-of class-def defined herbivore
subslot-of structural-relation subclass-of animal
inverse has-part slot-constraint eats
properties transitive value-type plant OR

slot-constraint part-of
has-value plant

Figure 1: OIL language example

adaption of tools, e.g., the OntoEdit and Protégé editors and the Chimaera
integration tool are all being adapted to use OIL/DAML+OIL [12, 13, 9].

On the other hand, basing the language on an underlying mapping to a very
expressive DL (SHZ Q) provides a well defined semantics and a clear understand-
ing of its formal properties. In particular the class subsumption/satisfiability
problem is decidable and has worst case ExpTime complexity [14]. The mapping
also provides a mechanism for the provision of practical reasoning services by
exploiting implemented DL systems, e.g., the FaCT system [15].

OIL extends standard frame languages in a number of directions. One of the
key ideas is that an anonymous class description, or even boolean combinations
of class descriptions, can occur anywhere that a class name would ordinarily be
used, e.g., in slot constraints and in the list of superclasses. For example, in
Figure 1, a herbivore is described as an animal that eats only plants or part-of
plants. Points to note are that universally quantified (value-type) and existen-
tially quantified (has-value) slot constraints are clearly differentiated, and that
the constraint on the eats slot is a disjunction, one of whose components is an
anonymous class description (in this case, just a single slot constraint). In ad-
dition, it is asserted that the part-of slot is transitive, and that its inverse is the
slot has-part. A complete specification of the language can be found in [5].

3 OilEd

OilEd is a simple ontology editor that supports the construction of OIL-based
ontologies. The basic design has been heavily influenced by similar tools such
as Protégé [13] and OntoEdit [12], but OilEd extends these approaches in a
number of ways, notably through an extension of expressive power and the use
of a reasoner.

However, OilEd is not intended as a replacement for such tools—the cur-
rent implementation of OilEd is intended primarily as a prototype to test and
demonstrate novel ideas, and compromises have been made in the design and
implementation. For example, the tool does not provide key functionality for

4 3 OILED

Gk e HE

Properties

O Primitive ® Defined

() [m8 03] 2¢] 54 %]

ller
[rart_ofhas value haulage_tompany)
truck

(© oually_broadsheet
2 _

&
]
x

DOILDiIEdontalogiesipeople

Figure 2: OilEd Class Panel

collaborative ontology development such as versioning, integration and merging
of ontologies. Similarly, the powerful tailorability and knowledge acquisition as-
pects of tools such as Protégé have been ignored completely. Rather, the design
has concentrated on demonstrating how the frame paradigm can be extended to
deal with a more expressive modelling language, and how reasoning can be used
to support the design and maintenance of ontologies.

The central component used throughout OilEd is the notion of a frame de-
seription. This consists of a collection of superclasses along with a list of slot
constraints. This is similar to other frame systems. Where OilEd differs, how-
ever, is that wherever a class name can appear, an anonymous frame descrip-
tion or arbitrary complexity can be used. In addition, boolean combinations of
frames or classes (using and, or and not) can also appear. This is in contrast to
conventional frame systems, where in general, slot constraints and superclasses
must be class names.

As well as being able to assert individuals as slot fillers, several types of
constraints on slot fillers can be asserted (these kinds of constraint are some-
times called facets). These include value-type (universal) restrictions, has-value
(existential) restrictions, and explicit cardinality restrictions (e.g., at most three
fillers of a given class). Each constraint has a clearly defined meaning, remov-
ing the confusion present in some frame systems, where, for example, it is not
always clear whether the semantics of a slot-constraint should be interpreted as
a universal or existential quantification.

A class definition specifies the class name, along with an optional frame
description (see above) and a specification of whether the class is defined or
primitive. If defined, the class is taken to be equivalent to the given description
(necessary and sufficient conditions). If primitive, the class is taken to be an
explicit subclass of the given description (necessary conditions). In the specifi-

cation of the OIL language, classes can have multiple definitions. In OilEd, this
is not allowed—classes must have a single definition—but the same effect can
be achieved through the use of equivalence axioms as discussed below.

A slot definition gives the name of the slot and allows additional properties of
the slot to be asserted, e.g., the names of any superslots or inverses. Domain and
range restrictions on a slot can be specified. For example, we can constrain the
relationship parent to have both domain and range person, asserting that only
persons can have, and be, parents. As with class descriptions, the domain and
range restrictions can be arbitrary class expressions such as anonymous frames
or boolean combinations of classes or frames, again extending the expressivity
of traditional frame editors. Note that in this context, the domain and range
restrictions are global, and apply to every occurrence of the slot, whether explicit
or implicit. A slot r can also be asserted to be transitive, functional or symmetric.

As well as standard class definitions (which are really a restricted form of
subsumption/equivalence axiom), OilEd azioms can also be used to assert the
disjointness or equivalence of classes (with the expected semantics) along with
coverings. A covering asserts that every instance of the covered class must also
be an instance of at least one of the covering classes. In addition, coverings
can be said to be disjoint, in which case every instance of the covered class
must be an instance of exactly one of the covering classes. Again, these axioms
are not restricted to class names, but can involve arbitrary class expressions
(anonymous frames or boolean combinations). This is a very powerful feature,
exceeding the expressivity of traditional frame languages/editors, and is one of
the main reasons for the high complexity of the underlying decision problem.

Limited functionality is provided to support the introduction and description
of individuals—the intention within OilEd is that such individuals are for use
within class descriptions, rather than supporting the production of large exis-
tential knowledge bases (it is supposed that RDF/RDFS will be used directly
for this purpose). As an example, we may wish to define the class of ltalians as
being all those Persons who were born in Italy, where Italy is not a class but an
individual.

As the FaCT system does not support reasoning with individuals, they are
treated (for reasoning purposes) as disjoint primitive classes. This is not an
ideal solution as it does lead to some inferences being lost, in particular those
resulting from the interaction between individuals and cardinality constraints.
E.g., it would not be possible to infer that Persons who are citizens of Italy,
and of no other Country, are citizens of at most one Country. Work is currently
underway to extend the FaCT reasoner to deal explicitly with such individuals,
so that complete inference can be provided.

Concrete datatypes (string and integers), along with expressions concern-
ing concrete datatypes (such as min, max or ranges) can also be used within
class descriptions. However, the FaCT reasoner does not support reasoning

6 3 OILED

over concrete datatypes, and at present OilEd simply ignores concrete datatype
restrictions when reasoning about ontologies. The theory underyling concrete
datatypes is, however, well understood [16], and work is also in progress to
extend the FaCT reasoner with support for concrete datatypes.

3.1 Reasoning

In addition to the extended expressivity discussed above, OilEd’s principal nov-
elty is in its use of reasoning to check class consistency and infer subsumption
relationships. Reasoning services are currently provided by the FaCT system, a
DL classifier that offers sound and complete reasoning (satisfiability, subsump-
tion and classification) for two DLs: SHF and SHZQ. FaCT’s most interesting
features are its expressive logic (in particular the SHZ Q reasoner), its optimised
tableaux implementation (which has now become the standard for DL systems),
and its CORBA based client-server architecture [17]. In principal any reasoner
with the appropriate functionality/connectivity could be used.

The SHZQ language can completely capture OIL ontologies, with the excep-
tion of two recently added features: concrete datatypes (strings, numbers, etc.)
and named individuals in class descriptions. As mentioned above, individuals
can be dealt with by treating them as pairwise disjoint atomic classes (although
with some loss of inferential power), while extending FaCT to deal with OIL’s
concrete datatypes should be relatively straightforward.

In the current version of OilEd, reasoning is performed on a “single-shot”
basis, i.e., at some suitable point the user connects to the reasoner and re-
quests verification of the ontology. Connection is via FaCT’s CORBA based
client-server interface, which has the advantage that FaCT servers(s) can be
running either locally or remotely, and can provide a service to many OilEd
users. Moreover, the FaCT system has reasoning engines for both SHZQ and
SHF knowledge bases, and if both services are available the user can choose
to connect to the faster SHF reasoner to verify an ontology that does not in-
clude either inverse slots or cardinality constraints. The current implementation
simply informs the user if this is appropriate; future enhancements will include
automatic selection of an appropriate reasoning service.

When verification is requested, the ontology is translated into an equivalent
SHZIQ (or SHF) knowledge base and sent to the reasoner for classification.
OilEd then queries the classified knowledge base, checking for inconsistent classes
and implicit subsumption relationships. The results are reported to the user by
highlighting inconsistent classes and rearranging the class hierarchy display to
reflect any changes discovered. FaCT/OilEd does not provide any explanation
of its inferences, although this would clearly be useful in ontology design [18].
Figure 3 shows the effects of classification on (part of) the hierarchy derived from
the TAMBIS ontology. When verifying the ontology, a number of new subsump-

[EiClass Hierarchy =1 E3 | &} Class Hierarchy M=
Hierarchy Hierarchy
8 @ top 2@ tp
@ cofactor =] @ cofactor
@ metal-ion @ metal-ion
@ prosthetic-group @ small-maolecule
B @ protein @ prosthetic-group
2 @ ENTyIMe = @ protein
@ holaenzyme =] @ Enzyme
@ haloprotein @ haloenzyme
@ reaction =] @ hu\uprulgm
@ small-molecule © holoenzyme
@ reaction
Supers: Supers:
(C) enzyme () enzyme
@ holoprotein
Done Done

Figure 3: Hierarchy pre- and post-classification

tion relationships are discovered (due to the class definitions in the model). In
particular we can see that, after verification, holoenzyme is not only an enzyme,
but also a holoprotein, and that metal-ion and small-molecule are both subclasses
of cofactor. During subsequent editing, changes to the ontology are not com-
municated to the reasoner instantaneously, but only when explicitly requested
by the user. Future versions of OilEd may incorporate “real-time” reasoning
support, but the simple interaction model described here was considered appro-
priate for the initial prototype.

4 Conclusion

We have presented OilEd, an ontology editor that has an easy to use frame
interface, yet at the same time allows users to exploit the full power of an
expressive web ontology language (OIL/DAML4OIL). We have also shown how
OilEd uses reasoning to support ontology design and maintenance.

OilEd is a prototype, designed to test and demonstrate novel ideas, and it
still lacks many features that would be required of a fully-fledged ontology devel-
opment environment, e.g., it provides no support for versioning, or for working
with multiple ontologies. Moreover, the reasoning support provided by the FaCT
system is incomplete for OIL extended with concrete datatypes and individuals,
and does not include additional services such as explanation. However, in spite
of these shortcomings, OilEd is already sufficiently well developed to be a very
useful tool, and to demonstrate the utility of OIL’s integration of features from
frame, DL and web languages.

REFERENCES

References

1]

2]

G. van Heijst, A. Schreiber, and B. Wielinga. Using explicit ontologies in
KBS development. Int. J. of Human-Computer Studies, 46(2/3), 1997.

D. L. McGuinness. Ontological issues for knowledge-enhanced search. In
Proc. of FOIS-98, 1998.

M. Uschold and M. Griininger. Ontologies: Principles, Methods and Ap-
plications. K. Eng. Review, 11(2):93-136, 1996.

T. Berners-Lee. Weaving the Web. Orion Business Books, 1999.
D. Fensel et al. OIL in a nutshell. In Proc. of EKAW-2000, LNAI, 2000.

S. Decker et al. The Semantic Web — on the respective roles of XML and
RDF. IEEE Internet Computing, 2000.

J. Hendler and D. L. McGuinness. The DARPA Agent Markup Language.
IEEFE Intelligent Systems, Jan 2001.

S. Bechhofer, C.A. Goble, and I. Horrocks. DAML+OIL is not enough. In
To appear in SWWS-1, Semantic Web working symposium, Stanford, CA,
August 2001.

D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An Environment for
Merging and Testing Large Ontologies. In Proc. of KR-00, 2000.

J. Doyle and R. Patil. Two Theses of Knowledge Representation. Artificial
Intelligence, 48:261-297, 1991.

V. K. Chaudhri et al. OKBC: A programmatic foundation for knowledge
base interoperability. In Proc. of AAAI-98, 1998.

S. Staab and A. Maedche. Ontology engineering beyond the modeling of
concepts and relations. In Proc. of the ECAI’2000 Workshop on Application
of Ontologies and Problem-Solving Methods, 2000.

W. E. Grosso et al. Knowledge Modeling at the Millennium (The Design
and Evolution of Protégé-2000). In Proc. of KAW99, 1999.

I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive
Description Logics. In Proc. of LPAR’99, pages 161-180, 1999.

I. Horrocks. Benchmark Analysis with FaCT. In Proc. TABLEAUX 2000,
pages 6266, 2000.

REFERENCES 9

[16] F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains
into Concept Languages. In Proc. of IJCAI-91, pages 452-457, 1991.

[17] S. Bechhofer, I. Horrocks, P. F. Patel-Schneider, and S. Tessaris. A Proposal
for a Description Logic Interface. In P. Lambrix, A. Borgida, M. Lenzerini,
R. Moller, and P. Patel-Schneider, editors, Proceedings of the International
Workshop on Description Logics (DL’99), pages 33-36, 1999.

[18] D. McGuinness and A. Borgida. Explaining Subsumption in Description
Logics. In Proc. of IJCAI-95, pages 816821, 1995.

