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ABSTRACT 

 
 
In-lined Reference Monitoring frameworks are an emerging technology for enforcing 

security policies over untrusted, mobile, binary code. However, formulating correct policy 

specifications for such frameworks to enforce remains a daunting undertaking with few 

supporting tools. A visualization approach is proposed to aid in this task. In contrast to 

existing approaches, which typically involve tedious and error-prone manual inspection of 

complex binary code, the proposed framework provides automatically generated, security-

aware visual models that follow the UML specification. This facilitates formulation and 

testing of prototype security policy specifications in a faster and more reliable manner than is 

possible with existing manual approaches. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Motivation 

Software security is becoming increasingly important with the growth of the Internet 

and mobile code technologies like Java. Mobile code technologies generate software 

components for environments in which code-consumers receive code from separate code-

producers. These software components are mainly distributed as binary executable files that 

are downloaded from web pages or as email attachments. In many realistic settings, not all 

code-producers are fully trusted; for example, webpages may be served from untrusted 

servers or emails may arrive from untrusted senders. Security is an obvious concern in such 

an environment where binary, executable mobile code is received over the Internet, whose 

code-producer is not known or is not fully trusted. Malicious adversaries can cause security 

attacks in the form of malware that is distributed over the Internet as mobile code. Every year 

billions of dollars are invested by business enterprises to protect against or recover from such 

software security attacks [1]. Security violations range from information leakage to access 

control violations and data corruption. Given the high financial costs, software security 

concerns have become increasingly critical for many business environments. 

 

1.2 Software Security Background 

To ensure a secure mobile code environment, we would typically want to define 

security policies that specify certain constraints on software behavior, and then enforce these 
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policies on any untrusted software to be executed on the system. Specifically, security 

policies define trace properties of a program execution. These include liveness properties, 

which specify that some “good event” should eventually happen; for example a process 

should eventually release a lock that it has acquired during its execution. And they include 

safety properties, which specify that some “bad event” should not happen; for example, a 

process should not attempt to modify system executable files. Precisely enforcing arbitrary 

liveness policies at the software level remains an open challenge [2], but most practical 

policies can be reformulated as safety policies. For example, time-bounded policies, such as 

the policy that prohibits a process from holding a lock for more than 1000 instruction cycles, 

are safety policies [3]. Hence, we focus on the class of security policies that are safety 

properties.  

A classic example for a safety policy is the access control policy that prohibits writes 

to files for which the user does not have write permission and prohibits reads from files for 

which the user does not have read permission. Such a security policy defines these 

unauthorized accesses as “bad” events. The definition of a “bad” event can also rely on the 

past history of the execution. An example of such a history-based policy is to avoid 

information leakage over the network by prohibiting a process from sending any information 

over the network once it has read a confidential file. A resource bound policy could dictate 

that the application should not open more than 100 files in its lifetime, to avoid resource 

exhaustion. An auditing policy could ensure that any security relevant operation should be 

logged before the next security relevant operation is executed. A peer-to-peer network might 

stipulate that any user may download at most 2 files more than the number of uploads made 

by the user, hence preventing the occurrence of ‘free-riding’, see [6].  
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Safety policies that are history-based (i.e., stateful) can be encoded as security 

automata. A security automaton is a finite state automaton that accepts policy-permitted 

sequences of security-relevant events [3]. The security automaton makes transitions on 

program operations that constitute security-relevant events. If a security-relevant event is 

encountered that causes a policy violation, the automaton rejects the corresponding execution 

sequence. Bisimulation of the security automaton with the untrusted program is used as a 

mechanism to enforce the underlying security policies. When a security violation is detected 

by the automaton, the corresponding execution is terminated. This approach is demonstrated 

by in-lined reference monitors (IRM’s) [3].  

The IRM systems are one of the current state-of-art enforcement mechanisms that 

monitor the program execution for any security relevant event that occurs and halts the 

execution (or takes some other corrective action) if an impending security violation is 

detected. The SASI system [4] implements these for x86 assembly code and Java bytecode 

architectures. The Java-MOP system [5] works with the aspect-oriented programming 

paradigm. It specifies the desired security properties, along with the code to execute if a 

security violation is detected. The specification is then translated to AspectJ code and 

integrated into the application program using an aspect weaver. The specification is written 

as a combination of linear temporal logic (LTL) and trusted code fragments [5]. The SPoX 

(Security Policy XML) system [6] provides a purely declarative policy specification 

language in which security-relevant events are designated via AspectJ pointcuts and policies 

over these events are specified as security state transitions [6]. A SPoX specification denotes 

a (finite or infinite state) security automaton that makes transitions on security relevant 

events and rejects the execution sequence if a security violation is detected. 
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1.3 Research Problem 

IRM's provide a powerful means to enforce application-specific security policies, but 

identifying and defining a good security policy usually requires a fairly deep understanding 

the underlying application code. Since in many contexts at least some components of 

untrusted software are not available as source code, this often requires the policy writer to 

analyze the underlying application structure and control-flows. 

For example, to prohibit network-send operations, one must be able to rigorously define 

what constitutes a network-send operation at the binary level. In architectures with complex 

runtime systems, such as Java, there may be hundreds of primitive instructions that constitute 

security-relevant operations, each of which must be identified in a complete specification of 

the policy. If the IRM signals unexpected policy violations for non-malicious applications 

during testing, the policy-writer must understand which operations may have been 

misidentified as policy-violating by the flawed specification. In general, much manual 

analysis and inspection of malicious and non-malicious binary code may be required in order 

to formulate a policy that prohibits all undesired program behaviors without curtailing 

desired behaviors. 

This manual task becomes very tedious and error-prone as the size of the binary code 

increases. A visualization tool is needed to aid the analysis of the untrusted binary code and 

to facilitate faster and more reliable discovery and prototyping of application-specific 

security policies. 

 

1.4 Proposed Solution 

We present a Visualization Framework that generates security-aware visual models 

for the low-level Java bytecode. The static visual model represents the underlying class 
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structures; the dynamic visual model represents the possible execution sequences (control 

flows) in the application. We choose the Unified Modeling Language (UML) specification 

for our visual model. The UML has become the de facto standard for visual modeling of 

software applications [8]. We represent the class structures and their relationships using the 

UML Class Diagram, and the control flows using the UML Activity Diagram.  

Our Visualization Framework further helps the policy writer to statically analyze the 

security policy written, with respect to the possible execution sequences in the underlying 

bytecode. Our approach identifies the possible execution sequences in the program and maps 

each execution sequence to the set of corresponding state transitions of the security 

automaton (given by the security policy). A user-defined “color code” is provided to visually 

map the control flow blocks to the corresponding security automaton states. The resulting 

control flow diagram is a collection of color coded control flows of the program that identify 

the possible security violations and security-relevant program operations. 

We take a conservative approach in which the detection of policy violations may 

include some false positives. For example, a potential violation might be identified within an 

execution branch that may not be traversed at runtime based on the value of some input 

variable. However, false negatives will not occur; all possible security violations are 

detected. To validate our tool we have written a test application that causes an information 

leakage over the network and a security policy that prohibits any send operation after a read 

has been executed. On applying the security policy to the test program, we manually 

validated the output visual model with the expected results (detection of policy violations).  
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A prototype tool has been developed as a proof of concept. A test client server application 

has been written, with a prototype security policy to avoid information leakage on the 

network, to test and validate security aware diagram specifications generated by the tool. 

 

1.5 Organization of thesis 

The rest of the thesis is organized as follows: Chapter 2 discusses the existing tool 

support for analysis of bytecode and the related work for software visualization. Chapter 3 

outlines the visualization framework proposed for security analysis. Chapter 4 describes the 

validation for the prototype tool developed. Chapter 5 discusses the future work for the 

visualization for security analysis. 
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CHAPTER 2 
 

RELATED WORK 
 
 

2.1 Introduction 

Practical IRM systems constitute a growing body of past work (c.f., [2]). These 

systems employ enforcement mechanism for given specification of a security policy [5, 6]. 

The formulation and testing of these prototype, security policies however remains a largely 

manual task. This section discusses the existing tool support that aids in the formulation of 

security policies. The available tools follow a textual or a graphical approach. We examine 

each of these individually and then summarize the approach proposed by this thesis. 

 

2.2 Code Level Visualization: Textual 

Traditional text-based, code-level visualization is supported by established tools 

including decompilers, debuggers; libraries are available for static code analysis [9, 10] [15]. 

These tools are general purpose; they do not provide specialized support for security. For 

example, code related to a specific security policy is not identified by highlighting the code. 

Several decompilers are available for the Java bytecode. Amongst the popular ones are 

JAD - the fast JAva Decompiler[9], is available free for non-commercial use. Various GUI 

based front-ends are available for JAD, including DJ Java Decompiler, Cavaj and JadClipse. 

Another useful commercial decompiler available is the SourceAgain decompiler [10]. A 

decompiler gives an estimate of the original source code, generated from its low-level 
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executable code. This source code can then be examined manually to understand the 

application structure and to identify the possible control flows.  

Debuggers for source code [11] and bytecode are available. Eclipse provides an 

integrated debugger for the java source code that allows executing the source code 

interactively, by stepping through each line of code. Some open source byte code debuggers 

are also available for finding the trace of execution at binary code level. 

The BCEL API (Byte Code Engineering Library) [15] also provides a set of APIs for the 

static analysis of Java bytecode. These APIs can be used to print out all the necessary 

information about the bytecode structure. However, it still remains a text-based analysis to 

determine the application structure and possible control flows from the low-level bytecode. 

Table 2.1 given below, summarizes the text-based approach for bytecode analysis. 

 

Table 2.1. Text-based approach for bytecode analysis 

 Decompilers/ 
disassembled 

Debuggers Static analysis 
libraries, BCEL 

Code Bytecode Source code/ 
bytecode 

Bytecode 

Visual modeling 
notation 

None None None 

Static/ dynamic  
support 

Static textual 
information 

Dynamic (runtime) 
analysis of bytecode 

Static textual 
information 

Explicit support for 
security 

None None None 
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2.3 Code Level Visualization: Graphical 

As the size of the application increases, it becomes quite cumbersome to do a text-based 

analysis of the code. In addition, some execution traces may be overlooked or missed during 

the manual code analysis. A graphical model of the low-level code provides a tool for easy, 

faster and more reliable analysis of the application structure and the possible control flows. 

The main quality attributes and functional requirements for visualization tools have been 

identified; however, security is not specifically considered [16]. The suggested quality 

attributes require the visualizer’s rendering speed to scale to larger amounts of data. To avoid 

an information overload to user on the interface, detailed information should be hidden in the 

main view but easily available to the user on a mouse click. A visualization tool is desired to 

be interoperable with other tools, customizable, interactive and explorative in nature, easy to 

use and easy to adopt by the user’s environment. The functional requirements specify having 

different views of the target system, providing different levels of abstraction, and having 

search and filter features. It further requires providing a fast and easy access to underlying 

source code, automatic layout capabilities and the possibility to record the history and to 

undo user actions.  

Modeling and development tools are available that provide the capabilities to reverse 

engineer code to UML class and sequence diagrams [12]. These tools are also general 

purpose; they do not provide specialized support for security. For example, code related to a 

specific security policy is not identified by highlighting the related classes on a class 

diagram. 

Software visualization has been very useful for research tools that provide reverse 

engineering of applications. Rigi, an environment for software reverse engineering, 

exploration, visualization, and re-documentation has been developed [13]. It provides a 
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visualization engine that integrates both interactive and automated functionality for reverse 

engineering. It uses a methodology of structural re-documentation that starts out by laying 

out a flat graph of lowest level artifacts and then iteratively builds upon these by method of 

grouping and refining until the desired level of abstraction is reached.  

Context independent analysis [14] is another example of a visualization tool that has been 

developed for binary files whose underlying format is not known. The tool incorporates the 

functionality provided by a hex editor and enhances it using byte plot visualization for the 

underlying file. The tool gives visual cues to identifying byte presence, repeated sequences of 

bytes or regions of compression or encryption.  

Table 2.2 given below, summarizes the available graphical tool support for bytecode 

analysis. 

Table 2.2. Graphical approach to bytecode analysis 

 Commercial Modelling 
tools - IBM software 
architect 

Research Reverse 
engineering tools - 
Rigi 

Binary Visualization 
tools - context 
independent analysis 

Code Source code/ bytecode Bytecode Binary code (unknown 
format) 

Visual modeling 
notation 

UML Graph based Byte plot visualization 

Static/ dynamic  
support 

Static and dynamic 
views supported as 
UML specifications 

Static Static analysis 

Explicit support for 
security 

None None None 
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2.4 Conclusion 

These available commercial and research tools are proficient but leave most of the 

burden of performing a rigorous security analysis to the user. The modeling tools like the 

IBM software architect use UML as the modeling notation, which is a powerful and 

established standard for the graphical modeling of object oriented software design and 

analysis. The reverse engineering tools developed provide support for building abstraction 

over the low-level code. However, these tools do not support for more specific, security 

related tasks like identifying the control flows in the application, mapping candidate policies 

on the control flow and testing prototype policies for identifying security violations. We take 

the approach of catering to these security-related requirements, while utilizing the powerful 

features of a visual modeling notation like UML and using the concept of abstraction for a 

better representation of the underlying bytecode. 

The BCEL API (Byte Code Engineering Library) [15] provides a programmatic 

foundation for analyzing Java bytecode. Our visualization framework uses this API to extract 

low-level Java bytecode information.  

Graphical models of low-level code provide easier, faster, and more reliable analysis 

of an application's structure and its possible control-flows than their text-only counterparts. 

We therefore adopt a graphical approach. Desirable quality attributes and functional 

requirements for general-purpose code visualization tools have been well-studied [16], but 

there has been no similar study of security-aware tool functionality to our knowledge. 
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CHAPTER 3 
 

VISUALIZATION FRAMEWORK FOR SECURITY ANALYSIS 
 
 
3.1 Introduction 

The visualization framework provides a graphical model for easier, faster, and more 

reliable analysis of an application's structure and its possible control-flows. The visual 

diagram model is represented as the UML notation. We use UML diagrams to represent the 

structure of the underlying bytecode to aid the required security analysis. We hence 

emphasize on identifying and visualizing the selective UML constructs that are required for 

the security analysis. The implementation of the entire UML specification is left for future 

work. This section describes the proposed architecture for the visualization framework and 

the approach taken for generation of the UML-based, security-aware diagram views. A 

prototype tool has been developed as a proof of concept and used for the validation. A hand-

written client server application, that causes information leakage on the network has been 

used as an example throughout the chapter. (see Appendix A for the example application 

code) 

 

3.2 Overview 

The Visualization Framework transforms the low-level bytecode into UML-based 

visual models. The framework is composed of a controller and separate view engines for the 

generation of static and dynamic visual models (see Figure 3-1). Based on the user request, 

the controller delegates control to the respective view engine. The static views engine 
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generates the view for the static structure of the application modeled as the UML Class 

Diagram. The dynamic views engine generates the dynamic views for the detailed control 

flow diagrams for each class method within the application code, modeled as the UML 

Activity Diagram. 

 

 

Figure 3.1. Security-Aware Visualization Framework Overview 

 

These UML specifications are used to provide the security-aware views of the 

application. The UML Class diagrams can be used to compare the untrusted bytecode with 

the self-monitoring, rewritten code obtained by enforcing the security policy. The UML 

Controller 

low-level 
bytecode 

Security-
Aware 
Static 
View 

Security-
Aware 
Dynamic 
Views 

Parser UML Class 
Diagram 
Layout 

UML Class 
Diagram 
Creator 

Static Views Engine 

Security-
aware view 
generator 

Parser UML 
Activity 
Diagram 
Layout 

UML 
Activity 
Diagram 
Creator 

Dynamic Views Engine 

Security-
aware view 
generator 
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Activity diagrams can be used to map the prototype security policy to the underlying control 

structure and to visually identify the security events in the control flows. The UML Diagrams 

are generated using an incremental graph generation approach. This approach taken for the 

security-aware static and dynamic view generation is described in more detail in Sections 3.2 

and 3.3. 

 

3.3 Security-Aware Static View 

To effectively prototype and analyze real IRM’s and the policies they enforce, it is 

important to be able to easily visualize and compare the class structure of original and IRM-

modified Java bytecode applications. For example, most practical policies constrain usage of 

certain security-relevant system classes by untrusted applications.  The IRM must therefore 

track the security state of these security-relevant objects at runtime to enforce the policy. The 

IRM typically accomplishes this by injecting wrapper classes that inherit from and extend the 

system classes with extra security state fields maintained by the IRM [5, 6]. Thus, visualizing 

the class structure of original and IRM-modified applications reveals much about the 

potential effects of the policy-enforcement upon the untrusted application, including 

undesired side-effects and potential runtime overhead. 

The static class structures of applications are modeled as the UML Class Diagrams [8]. 

They define the structure of classes and relationships between them. A class diagram can be 

represented as a graph with nodes as the UML class elements and the edges as the 

relationships between them. 
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3.3.1 Graph model representation 

The security-aware UML Class Diagram is represented as a graph G=(N,E), where N 

is the set of nodes in the graph and E is the set of edges in the graph. The set of nodes N 

denote the class elements of a UML Class Diagram. Each node has an associated tuple to 

represent the various attributes and methods associated with the class. For each node N, we 

have the tuple definition N=(name, access, type, attributes, operations) where, 

name: the string attribute denoting name of the class 

access: the string attribute denoting the access modifier(visibility attribute) for the class 

type: the string attribute used to identify a class added by the security mechanism 

attributes: the data attributes contained by the class 

operations: the operations contained by the class 

The set of edges E denote the relationships between the classes in a UML Class 

Diagram. Each edge has an associated tuple defined as E=(originN, targetN) where, originN 

represents the class element where the relationship originates and targetN represents the target 

class element of the relationship. The set of edges E can be further divided into two sets 

generalizationE and associationE, to denote the UML generalization and association 

relationships. These edges are defined as below, 

A generalization edge generalizationE is defined as the subclass-superclass 

relationship between classes, generalizationE=(originN, targetN) where 

originN: represents the class element that is the subclass 

targetN: represents the class element that is the superclass of originN 

An association edge associationE is defined as the reference relation between the two 

classes, associationE=(originN, targetN) where 
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originN: represents the class element that contains a call reference to targetN 

targetN: represents the target class element whose reference is called by originN 

 

3.3.2 Incremental graph generation approach 

The graph model representing the security-aware static view (UML Class Diagram) is 

incrementally generated over the four pipelined components of the Security-Aware Static 

Views Engine− the Bytecode Parser, UML Class Diagram Creator, UML Class Diagram 

Layout, Security-Aware View Generator. Figure 3.2 summarizes this incremental graph 

generation approach. 

 

 

Figure 3.2. Pipelined components of Static Views Engine 

 

The Bytecode Parser identifies the graph elements from the underlying bytecode. The 

graph nodes N represent the classes, their data attributes and methods. The visibility options 

of the data attributes and methods are extracted. The relationships between the classes are 

also parsed from the bytecode and are represented as the edges E of the graph. The UML 

relationships supported include generalization and association which are represented in the 

Low level 
bytecode 

Security-
aware 
static view 

Parser UML Class 
Diagram 
Layout 

UML Class 
Diagram 
Creator 

Security-
aware view 
generator 

Parse the 
bytecode to 

identify graph 
elements 

Determine 
the layout of 

the graph 

Map the graph 
elements to the 
respective UML 
Diagram entities 

Identify the security 
related structures and 
apply special color 
coding for graph 

elements 
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graph using edges generalizationE and associationE respectively. The generalization 

relationship is identified as the inheritance relation between the superclass and its inheriting 

subclass. The association relationship is identified as references to class objects [7]. The table 

3.1 defines the approach taken by the bytecode parser to identify the graph elements. 

 

Table 3.1. Algorithm to identify graph elements 

 

For the test client server application, the bytecode parser extracts all the information 

about the classes in the application, their data attributes, operations, superclasses and the 

relationships between the classes identified. For example, the main function of the Client 

class contains the bytecode: 

0:    new  <ClientSocket> (16) 
3:    dup 
4:    invokespecial ClientSocket.<init> ()V (18) 

readGraphElements:  
                  forall “.class” files in the jar  
                            N ← instantiate class parser to read the classes in this file 
                  end forall 
 
                  forall clazz ϵ N 
                            generalizationE ← (clazz, superclass of clazz) 
                  end forall 
 
                  forall instr ϵ InstructionList contained by each clazz ϵ N 
                            if instr instanceof InvokeInstruction 
                               associationE ← (invoking class, invoked class) 
                            end if 
                  end forall 
end readGraphElements 
 
 
Note: The class parser to read .class files, extracting superclass of each clazz, the 
instruction-list’s to work on and identification of the invoking class and invoked class 
is done using the BCEL api. 
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7:    astore_1 
8:    aload_1 
9:    ldc  "Test" (19) 
11:   bipush  7 
13:   invokevirtual ClientSocket.createSocket (Ljava/lang/String;I)V (21) .....  
 

Since the Client class creates an instance of the ClientSocket class (at byteoffset 0) 

and then further invokes the methods of the ClientSocket class (at byteoffset 4, 13), the 

bytecode parser identifies this as an association relation between the two classes. 

The Diagram Creator generates the entities of the UML Class Diagram that represent 

the graph elements extracted from the bytecode by the parser. The classes in the bytecode are 

mapped to the UML Class Elements and the relationships between these classes are mapped 

as the generalization or association relationships of the UML Class Diagram. The UML 

metamodel identified therefore consists of the ClassElements, data attributes, operations, 

visibility attributes, generalization and association relationships. Table 3.2 illustrates the 

mapping method used to create the UML Class Diagram entities. 

We construct the UML Class Diagram with inheritance relationships up to one level 

into the system libraries. Since every class in Java inherits from the java.lang.Object by 

default, we have a strong inheritance based structure for the class elements. 

For the test application developed, the UML Diagram generated hence includes the 

system library class java.lang.Object alongwith the application classes Server, Client, 

ClientSocket. The generalization relationships are identified between the java.lang.Object 

class and each of the application classes, since they inherit this class by default in Java. The 

association relationship identified from the bytecode is between the Client and ClientSocket 

class. These UML Diagram entities identified are then input as graph elements to the Layout 

algorithm, to generate the visual diagram. 
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Table 3.2. Mapping graph elements to UML Class Diagram entities 

 

The UML Diagram Layout takes an approach of using the inheritance based structure 

for the automatic layout generation of the Class Diagram. Graph drawing algorithms have 

been used for generating automatic layouts of software diagrams. An inheritance based 

approach has been utilized in [17] for UML Class Diagrams defined for architectures that 

have a considerable use of the inheritance/generalization relationships. Since our diagrams 

have a strong inheritance based structure, we use a simplification of the algorithm. 

The Class diagram represented as a graph model is input to the layout algorithm. The 

algorithm decides the layout of the graph by positioning the nodes on horizontal layers L. 

maptoUML: (N,E):ClassDiagramEntities 
                     forall n ϵ N 
                               create a new UML class element 
                               classElementUML ← n 
                               Set the details for the class: jvm class/interface 
                               classElementUML ← setDetails 
                               Set the data attributes for the class 
                               classElementUML ← setAttributes 
                               Set the methods contained by the class 
                               classElementUML ← setOperations 
                               ClassDiagramEntities ← classElementUML 
                     end forall 
 
                     forall g ϵ generalizationE  
                               create a new UML generalization 
                               generalizationUML ← g 
                               ClassDiagramEntities ← generalizationUML 
                     end forall 
 
                     forall a ϵ associationE  
                               create a new UML association 
                               associationUML ← a 
                               ClassDiagramEntities ← associationUML 
                     end forall 
end maptoUML 
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Each horizontal layer Li consists of a set of nodes Ni. The following summarizes the three-

step adaptation of the algorithm in [17] for automatic layout generation of the class diagram 

with minimal edge cross-overs. (see table 3.3 for the detailed algorithm) 

1) Generalization-based layering: Start with the nodes that represent JVM class elements 

placed on layer L0. Iteratively position the remaining nodes such that nodes that inherit from 

layer Li are positioned on layer Li+1. 

2) Association-based reordering: To minimize the edges crossing over class elements, classes 

having an association relationship should preferably be placed adjacently. For each 

association, position the two nodes as neighbors if possible. If this is not possible, move both 

nodes to a newly inserted new layer immediately below the current one. 

3) Offset calculation: To position each class within its layer, compute a base-point for each 

class, where a basepoint is defined as the minimum offset required for all its subclasses 

relative to the position of the superclass. The class' final offset is computed as the sum of the 

offsets of the nodes preceding this class on the current layer, plus its base-point. 

This algorithm generates a simple layout with minimum edge cross-overs. The 

visualizer further allows the users to manually adjust the generated layout by providing a 

select, drag and drop functionality for the class elements of the diagram. 

Screen-shot 2 shows a UML Class Diagram generated using the framework, for the 

test client-server application. The classes are positioned on layers as per their inheritance 

graph structure (step 1), level 0 contains the system class java.lang.Object and the application 

classes form the level 1. The Association based re-ordering, (step 2) decides the order of 

classes on each level, at level 1, the classes Client and ClientSocket are made neighbors since 

they have an association relationship. Finally the x-axis offsets for each layer are computed 
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(step 3), which completes the positioning of the classes by computing their x-axis co-

ordinates on each layer. 

 

Table 3.3. Layout algorithm for the UML Class Diagram 

 

 

Layout: (N, L) 
             Step 1: Generalization-based layering:  
             forall nϵN ∧ nϵ jvm class elements,  
                       L0 ← n 
                       N ← N - n 
             end forall 
 
             forall l1,l2 ϵ L0,  
                       if l2 inherits from l1 then L1 ← l2 
             end forall 
 
             forall ni ϵ Li  
                       if n ϵ N inherits from ni then  
                           Li+1 ← n 
                           N ← N - n 
                      end if 
             end forall 
           
             Step 2: Association-based reordering: 
             compute the set of association edges I=(originN, targetN), I⊆E  
             if originN, targetN ϵ Li  
             Position the originN and targetN to be neighbors if possible,  
             else insert a new layer Li+1 and Li+1 ← targetN ∪ originN  
 
             Step 3: Offset calculation: 
             forall niϵ Li  
                       basepointn ← minimum offset based on position of parent class 
                       relative_offset ← basepointn + offsets introduced by the nodes 
                       positioned before ni on Li  
             end forall 
 
end Layout 
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The framework can additionally render a visual comparison between the original and 

the rewritten, IRM-modified application bytecode. The Security-Aware View Generator 

decides on the color coding for the graph (diagram) elements. It compares the original and 

the rewritten bytecode, over their class structures and the new classes introduced by the IRM 

are visually highlighted, (see Table 3.4). This is extremely useful for analyzing changes in 

the static structure that result from enforcement of a given policy by an IRM. Separate UML 

class diagrams are generated for the original and IRM-modified application bytecode, with 

visually highlighted color cues for the security-relevant classes introduced by the rewriter.  

 

Table 3.4. Compare algorithm to highlight the classes added by the IRM 

 

Screen-shot 1 demonstrates the UML Class Diagram views generated for a test 

application that opens a file and then creates a socket connection. We enforce a security 

policy that prohibits a call to the socket class once a confidential file has been opened for 

read. The IRM introduces a security class during the process of re-writing. This new security 

class added by the re-writer is highlighted in the generated diagram view for comparing the 

Compare: (Noriginal, Nrewritten): Nnew 
                 forall n ϵ Nrewritten 
                           if n ∉ Noriginal  
                               Nnew ← n 
                           end if 
                 end forall 
                  
                 forall n ϵ Nnew  
                           set a highlight for the fillcolor of n 
                 end forall 
end Compare 
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two bytecode applications. The next section discusses the detailed generation of the security-

aware static view using the framework. 

 

3.3.3 Example for security-aware UML Class Diagram 

To illustrate the generation of the security-aware static view, we use a hand-written 

client-server application that opens a file from a local directory and then proceeds to establish 

network connections. We used the SPoX system to enforce a security policy on the bytecode 

of this application. The security property defined is that no network connection can be 

allowed once a local file has been opened for access. The visualizer was used to generate a 

comparison of the class structures for the original and the rewritten bytecode. The two 

separate class diagrams generated by the tool are shown in screenshot 1. The following is a 

walk-through for the approach taken by the tool to generate the security-aware UML Class 

Diagrams for the test application. 

The bytecode parser extracts the class structure information from the bytecode using 

the BCEL API. The static components of the bytecode are identified using the 

org.apache.bcel.classfile package of the BCEL library. The top level data structure in 

BCEL is the JavaClass that corresponds to the class in the underlying bytecode.  

The JavaClass components for the original bytecode are identified as the classes 

java.lang.Object, Hello. The subclass-superclass relationship between class Hello and class 

java.lang.Object is obtained from the JavaClass api. The graph elements identified for the 

original bytecode are illustrated in table 3.5.  

A similar approach is taken for the re-written bytecode. The bytecode parser 

identifies the JavaClass components corresponding to the classes java.lang.Object, Hello, 
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security.policy.Policy. The subclass-superclass relationships are identified between (class 

Hello and class java.lang.Object), (class security.poilcy.Policy and java.lang.Object). The 

class reference to security.policy.Policy class is found in bytecode of class Hello as shown 

below.  

// Method signature: ([Ljava/lang/String;)V 
main(); 
Code(max_stack = 3, max_locals = 4, code_length = 48) 
……  
7:    invokestatic     security.policy.Policy.edge_hasRead ()V (46) 
…… 
 

These components identified from the bytecode are translated as the graph elements for the 

rewritten bytecode. The classes identify the nodes N of the graph, the subclass-superclass 

relationships identify the generalization edges generalizationE of the graph and the class 

references identify the association edges associationE of the graph. The underlying graphs 

generated for the original and rewritten bytecode are shown in figure 3.3. 

 

Figure 3.3. Graphs generated for the original and rewritten application bytecode 

 

associationE 

generalizationE generalizationE 
generalizationE 

Java.lang.Object 

Hello 

Java.lang.Object 

security.policy
.Policy Hello 

Graph generated for original 
application bytecode 

Graph generated for rewritten, IRM-modified 
application bytecode 
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The UML Class Diagram generator generates the UML Class Diagram entities 

corresponding to these graph elements. The nodes N form the class elements, edges 

generalizationE form the generalization relationships and edges associationE form the 

association relationships of a UML Class Diagram. 

The UML Class Diagram Layout component then generates two separate class 

diagram layouts for the original and rewritten bytecode views, using the graph-based 

algorithm explained in section 3.3.2. 

The security-aware view generator compares the graph elements of the original and 

rewritten bytecode to detect the new classes added by the IRM system, (see table 3.5). As we 

can see in this example the IRM has introduced a new security.policy.Policy class to the 

application. The security-aware view generator then adds visual high-lighting to the 

generated UML Class Diagram and the security-related class security.policy.Policy is 

highlighted in its corresponding Class Diagram. 

 

Table 3.5. Comparison of graph elements for the original and rewritten bytecode 

Graph elements for original bytecode Graph elements for rewritten bytecode 

N={java.lang.Object, Hello} N={java.lang.Object, Hello, 

security.policy.Policy} 

generalizationE={(Hello, java.lang.Object)} generalizationE={(Hello, java.lang.Object), 

(security.policy.Policy, java.lang.Object)} 

associationE={} associationE={(Hello, 

security.policy.Policy)} 
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3.4 Security-Aware Dynamic View 

To identify the possible security violations defined by history-based security policies, 

the sequences of security-relevant events occurring in the execution need to be tracked. This 

involves identifying all possible control flows in the execution. A visual model for the 

control flows in the application becomes important for examining every possible flow of 

execution in the application, in a faster and more reliable manner. Further the policy writer 

needs to analyze if a particular control flow will reach a security violation, for a given 

candidate security policy. The visualization for the effect of applying this security policy to 

the application (resulting in detection of possible security violations) aids in rapid 

formulation and testing of prototype security policies. 

The control flows in an application are illustrated using the UML Activity Diagrams 

[7, 8]. Activities typically consist of a graph of nodes and edges, that represent the flow 

within the activity.  

 

3.4.1 Graph model representation 

The UML Activity Diagram can be denoted as a graph G=(N,E), where N is the set of 

nodes in the graph and E is the set of edges in the graph. The set of nodes N denote the nodes 

in a UML Activity diagram. The set of nodes is divided further to represent the supported 

UML activity nodes− the set of nodes callaction N denote the call action nodes and can be 

defined as callactionN=(basicblock) where, basicblock is the contained instruction list that 

forms a basic block(as explained in section 3.4.2). The control nodes−initial node, exit node 

and decision node of the UML activity diagram are represented by initialnodeN, exitnodeN 

and decisionnodeN respectively. The decision node set can be defined as 
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decisionnodeN=(targetList) where, targetList defines the list of decision targets contained by 

the node. 

The control flow edges of a UML Activity diagram are denoted by the set of edges E, 

defined as E={( initialnodeN, callactionN), (callactionN, callactionN), (callactionN, 

decisionnodeN), (decisionnodeN, callactionN), (callactionN, exitnodeN)}. These define all the 

control flow edges in the activity diagram, including the exception handler edges that have a 

special visual representation (as explained in section 3.4.2). 

 

3.4.2 Incremental graph generation approach 

The graph model representing the security-aware dynamic view (the UML Activity 

Diagram) is incrementally generated over the four pipelined components of the Security-

Aware Dynamic Views Engine− the Bytecode Parser, UML Activity Diagram Creator, UML 

Activity Diagram Layout, Security-Aware View Generator. Figure 3.4 summarizes this 

incremental graph generation approach. 

 

 

Figure 3.4. Pipelined components of Dynamic Views Engine 

 

Low level 
bytecode 

Security-
aware 
dynamic 
view 

Parser UML 
Activity 
Diagram 
Layout 

UML 
Activity 
Diagram 
Creator 

Security-
aware view 
generator 

Parse the 
bytecode to 

identify graph 
elements 

(basic blocks) 

Determine 
the layout of 

the graph 

Map the graph 
elements to the 
respective UML 
Diagram entities 

Identify the security 
related control 

structures and apply 
special color coding 
for graph elements 



28 

 

The Bytecode Parser parses the sets of instructions from the bytecode that form the 

basic blocks. A basic block is a sequence of consecutive bytecode instructions for which the 

control flow enters at the beginning and leaves at the end without halt or branching [18] 

(other than exceptions, which receive special treatment described below). Basic blocks have 

one entry-point and one exit-point. A basic block entry-point is identified as: 

- The first instruction of a method. 

- Each instruction that is target of an unconditional or conditional branch instruction. (All 

branch targets are static in Java bytecode.) 

- Each instruction that immediately follows a branch instruction. 

- Each instruction that is the start of an exception handler. 

Each entry-point identifies a basic block in the system and each basic block includes 

instructions starting from the entry-point up to and not including the next entry-point in 

sequence.  

The bytecode parser identifies the entry-points and the basic blocks in the underlying 

bytecode. Table 3.6 demonstrates the detailed algorithm for identifying the basic blocks from 

the bytecode of a method of a given class. 

The identified basic blocks are used to generate the complete graph for the dynamic 

view. The basic blocks form the nodes and the control flow structures (branch instructions of 

the basic blocks determine the control flow edges) Table 3.7 illustrates the algorithm to 

identify all the graph elements. 
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Table 3.6. Algorithm to identify the basicblocks from the bytecode 

 

 

 

 

 

 

IdentifyBasicBlocks (InstructionList):basicBlocksN 
                                forall instr ϵ InstructionList 
                                          if instr is first instruction 
                                              entrypoint ← bytecode offset for instr 
                                          end if 
                                           
                                          if instr is branch instruction 
                                              entrypoint ← bytecode offsets of all targets of instr  
                                              entrypoint ← bytecode offset of instr immediately 
                                                                    following this branch instr 
                                          end if 
 
                                          if instr is start of an exception handler 
                                              entrypoint ← bytecode offset for instr 
                                          end if 
                                end forall    
 
                                sort the recorded entrypoint and eliminate duplicate entries 
 
                                forall instr ϵ InstructionList 
                                          if bytecode offset for instr ϵ entrypoint 
                                             create new basicblock basicblocki+1 
                                             basicblocki+1 ← instr 
                                             record the previous complete basicblock to output 
                                             basicBlocksN ← basicblocki 
                                          else 
                                             add to the previous basicblock 
                                             basicblocki ← instr 
                                          end if 
                                end forall 
end IdentifyBasicBlocks  
 
Note: The bytecode offsets are obtained using the BCEL api’s. 
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Table 3.7. Algorithm to identify the graph elements 

 

The UML Activity Diagram Creator maps these basic blocks as the Call Action nodes 

of the activity diagrams, callactionN=(basicblock). Call Action nodes define the units of work 

that are atomic within the activity [8]. Since the basic blocks define set of operations that are 

all executed sequentially without a halt or branch, we map these as Call Action nodes of the 

readGraphElements: 
                    create the initial node 
                    N ← initialnodeN  
                    BasicBlocksN ← IdentifyBasicBlocks 
                    forall basicblock ϵ BasicBlocksN  
                              callactionN ← basicblock 
                              N ← callactionN  
                              if basicblock contains a branch instruction 
                                 decisionnodeN ← target bytecode offsets 
                                 N ← decisionnodeN 
                              end if  
                    end forall 
                    N ← exitnodeN 
 
                    forall n ϵ N 
                              if n ϵ decisionnodeN 
                                  record all the edges corresponding to the target bytecode offsets 
                                  e ← (n, node containing target bytecode offset) 
                                  E ← e 
                              else 
                                  e ← (n, next node in sequence) 
                                  E ← e 
                              end if 
 
                              if n contains an exception handler  
                                  add the corresponding exception handler edge, this edge is  
                                  marked as exception handler edge to draw it as a dashed edge 
                                  e  ← (n, node containing the corresponding exception handler) 
                                  E ← e 
                              end if 
                    end forall 
 
end readGraphElements 
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UML Activity Diagram. Each basic block that ends in a conditional/compound conditional 

branch introduces the decision nodes in the diagram (decisionnodeN) and the target of the 

decision form the targetList for the decisionnodeN. Basic blocks that could throw exceptions 

caught by a local handler are visualized via control-flow edges from the basic block to the 

entry-point of the local exception handler. For visual clarity, the control-flow edges to 

exception handler blocks are shown as dashed arrows to differentiate from the normal control 

flow edges. Table 3.8 gives the map function used to generate the UML Activity Diagram 

entities. 

Table 3.8. Algorithm to map graph elements to UML Activity Diagram entities 

 

maptoUML: (N,E):ActivityDiagramEntities 
                     forall n ϵ N 
                               if n ϵ initialnodeN  
                                   initialNodeUML ← n 
                                   ActivityDiagramEntities ← initialNodeUML 
                               else if n ϵ callactionN  
                                   callActionNodeUML← n 
                                   ActivityDiagramEntities ← callActionNodeUML 
                               else if n ϵ decisionnodeN  
                                   decisionNodeUML← n 
                                   ActivityDiagramEntities ← decisionNodeUML  
                               else if n ϵ exitnodeN  
                                   exitNodeUML← n 
                                   ActivityDiagramEntities ← exitNodeUML  
                               end if 
                     end forall 
 
                     forall e ϵ E 
                               create new control flow edge 
                               EdgeUML ← e 
                               if e is marked as an exception handler edge, 
                                   EdgeUML ← mark as dashed edge 
                               end if 
                               ActivityDiagramEntities ← EdgeUML 
                     end forall 
end maptoUML 
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The UML Activity Diagram constructs identified include the Call Action nodes, the 

control nodes that include Initial node, Final nodes, Decision nodes and the control flow 

edges. We use a dataflow analysis technique to identify all possible control flows in the 

control structure of the activity diagram by traversing them statically, (see Table 3.9). The 

UML Diagram Layout generates a flow-chart like layout that contains Call Action nodes 

ordered by the underlying bytecode offsets and the control flows between them. 

 

Table 3.9. Dataflow analysis algorithm to statically identify all control flows 

 

identifyControlFlows: (currentControlFlow, elementId) 
                         currentElement ← getDiagramElement(elementId) 
                         currentTop ← stack.peek() 
 
                         if currentElement is instanceof FinalNode 
                             record the currentControlFlow 
                             controlFlows ← currentControlFlow 
                         end if 
 
                         while true 
                                   currentControlFlow ← currentElement 
 
                                   if (currentElement contains a branch instruction ||  
                                     currentElement has an exception handler) 
                                      break; 
                                   end if 
 
                                   if currentElement is instanceof FinalNode 
                                      record the currentControlFlow 
                                      controlFlows ← currentControlFlow 
                                      break; 
                                   end if 
 
                                   currentElement ← getDiagramElement(next elementId) 
                         end while 
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Table 3.9 continued 

 

 

The Security-Aware View Generator further provides security-aware views of the 

activity diagram. It takes an input security policy from the user and maps the policy to the 

control flows depicted by the activity diagram. We detect all possible policy violations in the 

control flows using the algorithm described below. 

Our visualizer computes a function f:Q→2 S that maps each node qϵ Q in the control 

flow graph to a conservative approximation of the set of security automaton states sϵ S that 

 
                         if currentElement contains a branch instruction 
                             add all its target bytecode offsets to the stack provided they 
                             have not been traversed before and recorded in currentControlFlow 
                             target ← elements containing target bytecode offsets 
                             if target ∉ currentControlFlow 
                                 stack.push(target bytecode offsets) 
                              end if 
                         end if 
 
                         if currentElement has an exception handler 
                             add the exception handler block’s offset to stack  
                              stack.push(offset of exception handler) 
                         end if 
 
                         while stack.peek != currentTop 
                                   identifyControlFlows (currentControlFlow, stack.peek()) 
                                   lastPopped ← stack.pop() 
                                   remove everything upto and including the lastpopped element  
                                   from the currentControlFlow 
                         end while 
 
end identifyControlFlows 
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the node could assume during execution of the program.  The computation involves obtaining 

the least fixed point of the functional F defined by 

F(f) = f ∪ {(q0,s0)} ∪ {( qʹ,δ(q,s)) | (q, qʹ)ϵ E, sϵ f(q)} 

where q0 and s0 are the start states of the control flow graph and security automaton 

(respectively), E⊆2Q×Q is the transition relation for the control flow graph, and δ:(Q×S)→S is 

the transition function for the security automaton, which defines how each basic block 

modifies the security state when executed.  Our current dataflow analysis implementation is 

intra-procedural; an inter-procedural extension is left for future work.  

The visualizer then identifies sites of potential policy violations by identifying the 

control-flow graph nodes qϵ Q for which there exists a security state sϵ (fix(F))(q) such that 

(q,s)∉δ←.  These are the states for which the security automaton has no transition, and that 

therefore might exhibit a policy violation at runtime.  These nodes q are therefore the sites 

where an IRM will typically implement runtime security checks to detect and prevent 

potential violations.  The visualizer renders these nodes in a unique, user-specified color to 

bring them to the attention of the user. 

On the implementation level, we maintain a hashmap to record the possible security 

states for each node q. We then iterate to discover the security states that the basic blocks 

may transition into. The algorithm terminates when the fixed point is reached—i.e., when no 

new security state transitions are detected for any node on a pass. Table 3.10 shows the 

pseudocode used for the implementation of the fixed-point algorithm. 

The security states identified for each node are depicted using a color code provided 

by the user in the security policy. The color-coded control flows are provided to user on-
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demand. A high-level color-coding for the control structure is included in the control flows 

that show all possible security states, allowing a view of all the possible security violations. 

 

Table 3.10. Pseudocode for implementation of fixed point algorithm 

 

 We use a test client-server application that causes information leakage over the 

network to demonstrate the security-aware diagram generation. The security policy mapped 

on the generated control structure prohibits any send operation once a read has been 

performed. The visualizer generates the security-aware view of the control structure (see 

Screen-shot 4) that maps the possible security states of the automaton that each control flow 

block could enter, identifying the basic blocks where the security violation could result. The 

identified security states (including the security violation) is depicted using a color code 

FixedPoint: (Q, S):f 
                    while true 
                              track if an iteration over the nodes updates f 
                              node_state_changed ← false 
                              forall q ϵ Q  
                                        compute all possible security states sϵS such that 
                                        if (q, s)∉δ← ∧ (q, s)∉f 
                                             f ← (q, #) 
                                            node_state_changed ← true 
                                        end if 
                                        if (q, s) ϵ δ← ∧ (q, s)∉f 
                                            f ← (q, s) 
                                            node_state_changed ← true 
                                        end if 
                              end forall 
                              if node_state_changed = false 
                                  break; 
                              end if 
                    end while 
end FixedPoint 
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applied to the UML Activity Diagram. The generated highlevel view of the control structure 

(see Screen-shot 4) maps the possible security states of the automaton that each control flow 

block could enter, identifying the basic blocks where the security violation could result. In 

this case the yellow node indicates that the security automaton is in an initial state, the violet 

nodes indicate that the security automaton may be in various different policy-adherent states 

on various different runs, and the red node indicates a possible policy violation. The next 

section discusses in detail, the generation of this security-aware view.  

 

3.4.3 Example for security-aware UML Activity Diagram 

To illustrate the generation of the security-aware UML Activity Digram, we use a 

hand-written test client-server application whose control flow is simple enough to allow 

manual inspection. We focus on the main method of the Client, which is responsible for 

information leakage over the network. Further, we use a security policy that prohibits any 

send operations over the network, once a read has been performed. The security-aware view 

of the underlying control flows is generated by applying this security policy. We discuss in 

further detail the approach explained in section 3.4.2, using this test client server application. 

The application bytecode is parsed by the bytecode parser component of the 

visualizer, to extract the basic blocks using the rules defined in section 3.4.2. Figure 3-5 

shows the basic blocks identified for the main method of the client. These basic blocks form 

the callactionN nodes of the graph. Each basic block that ends in a conditional branch 

instruction introduces a decisionnodeN to the graph. The initialnodeN and exitnodeN are 

identified as the start of the method and the return instruction. The set of control flow edges 

E is identified. 
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Figure 3.5. Basic blocks identified for Client.main method 

 

The UML Diagram creator maps the graph elements to the UML Activity Diagram 

elements, callactionN are mapped to the call action nodes, the initialnodeN, exitnodeN and 

decisionnodeN are mapped to the control nodes of the activity diagram. The UML Diagram 

layout generates a flow-chart like layout based ordered by the underlying bytecode offsets.  

The security policy defined for avoiding the information leakage is then applied to the 

generated control flow. The main method of the client contains a loop, offsets 70, 71 form 

the loop condition and the loop body is from offset 21 through 67 (see Figure 4). We can see 

that the loop body includes a send operation (at offset 38) followed a read operation (at offset 

0:    new     
3:    dup  
4:    invokespecial    ClientSocket.<init> ()V (18)  
…… 
17:   istore_2  
18:   goto    #70 

21:   aload_1  
…… 
38:   invokevirtual    ClientSocket.send (Ljava/lang/String;)V (40)  
…… 
53:   ldc    "C:/Data/test.txt" (51)  
55:   invokestatic    Client.read (Ljava/lang/String;)Ljava/lang/String; (53) 
...... 
67:   iinc    %2  

70:   iload_2  
71:   ifgt     #21 

74:   aload_1  
75:   invokevirtual     ClientSocket.closeSocket ()V (65)  
78:   return 
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55). The security policy mapped on the generated control structure prohibits any send 

operation once a read has been performed. This could result in a policy violation for control 

flows that execute two or more iterations of the loop body. The fixed-point algorithm 

computes the set of possible security states that could be reached by each of the basic blocks 

over the entire iterations of the loop. The function f computed by fixed point algorithm is, 

f = {(basicblock1, {0}), (basicblock2, {0,1,#}), (basicblock3, {0,1}), (basicblock4, {0,1})} 

As we can see the set of security states identified for basicblock2 includes the initial state 0, 

when the loop body is not executed even once, the state 1 relates to the scenario where the 

loop body is executed exactly once and finally the error state # is identified for the possible 

scenario of the loop body being executed more than once (resulting in a security violation).  

A high level view of the control structure is generated by mapping the function f 

computed by the fixed point algorithm to the color codes defined in the security policy by the 

user (see Screen-shot 4). In this case we use the color coding, yellow to depict security state 

0, red depicts the error state representing a possible security violation and violet indicates 

that the security automaton may be in various different policy-adherent states. This color-

code applied to the generated UML Activity Diagram hence provides the security-aware 

dynamic view that identifies all possible security violations for the given policy. 

 

3.5 Tool Support 

The Visualization Framework is built on top of the Eclipse plug-in architecture. A 

plug-in is the smallest modular unit in Eclipse that contributes to functionality. Plug-ins can 

specify extension points that define the point where additional functionality can be extended 

by other plug-ins, [11]. Other plug-ins specify the extensions that implement this additional 

functionality. Figure 3.6 shows the plug-ins that compose the visualization framework. The 
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UDV is the main, high-level plug-in that controls the creation of various diagrams and 

navigation between them. This plug-in defines the extension points to add the functionality of 

generation and display of the diagrams. The level 2 plug-ins—ClassDiagram, 

ActivityDiagram and ByteCodeViewer—provide the extensions to generate the various 

diagrams and views.  

 

 

             Figure 3.6. Platform Architecture 

 

UDV plug-in: This plug-in is the Controller for the visualization tool. It is the main 

application that implements the IApplication interface and provides the main entry point to 

the tool. It uses the Eclipse platform runtime but controls the execution of the tool by itself. 

In addition it also includes a tree widget that allows the user to load the low-level bytecode, 

generate diagrams on-demand and navigate between the diagram views. This plug-in 

provides the extension points to extend the generation and display of the various diagrams. 

The level-2 plug-ins extend the functionality of generating the diagram views. They 

form the view engines required for the generation of the visual models. These plug-ins 

Eclipse Platform 

Workbench 

Workspace 

Eclipse Runtime 

JFace SWT 

UDV 

ClassDiagram 

ByteCodeViewer 

Visualizer 

ActivityDiagram 
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contain three main components: ByteCodeReader, Entities, and Views (Figure 3.7). The 

ByteCodeReader component provides the parser for the low-level bytecode; it parses the 

bytecode using the BCEL api’s to extract the required information about the application 

structure. The Entities component encapsulates the graphical specifications for drawing the 

diagram entities as per the UML standard. The Views component provides the engine to 

integrate the data from the parser, identify the UML diagram entities, generate and layout the 

corresponding UML Diagram View.  

 

Figure 3.7. Conceptual components for diagram generation 

 

ClassDiagram plug-in: This plug-in implements the Static Views Engine of the framework. It 

extends the functionality of generation of the diagram view for the UML Class Diagram 

using the automatic layout algorithm described earlier. The plug-in also provides the 

functionality to select, drag and drop diagram elements, to modify and refine the generated 

automatic layout manually. It further allows the reset or auto-adjust to original layout. In 

addition, the plug-in provides the functionality to compare the structures of two applications 

from their bytecode. This allows original and IRM-modified bytecode to be compared 

automatically, revealing how policy enforcement will tend to affect program structure. The 
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components of this plug-in are structured as shown in Figure 3.8. ClassDiagramVisualizer 

class forms the main views engine. ByteCodeReader class contains the bytecode parser. 

ToolTipHandler provides a custom SWT ToolTip implementation to provide a point-and-

click mechanism to view underlying bytecode of the Class Elements. The Diagram class 

provides the container for all the diagram elements that constitute a UML Class Diagram.  

 

Figure 3.8. Structural view of the Class Diagram plug-in. 

 

ActivityDiagram plug-in: This plug-in implements the Dynamic Views Engine of the 

framework. It extends the functionality of representing the control flow in a method as a 
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UML Activity Diagram. It further generates the security-ware dynamic views as described 

earlier, to validate the prototype policy written for the control flow by mapping the security 

automaton to the generated control structures. Each node in the diagram depicts a color-

coded visual cue to the possible security state in the security automaton. The control flows 

are statically identified and visualized and all possible security violations are depicted. The 

plug-in is structured as shown in Figure 3.9.  

 

 

Figure 3.9. Structural view of the Activity Diagram plug-in. 

 

The ActivityDiagramVisualizer composes the main views engine to create and layout the 

UML Activity Diagram Views. The ByteCodeReader class provides the bytecode parser that 
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identifies the BasicBlocks in the underlying code. A ToolTipHandler is provided to 

implement the point-and-click mechanism to view the bytecode instructions contained in 

each basic block. The Diagram class acts as the container for all diagram elements that 

constitute a UML Activity Diagram. 

ByteCodeViewer plug-in: provides a view of the bytecode that is analyzed, at class-level and 

method-level. This provides a fast and easy access to the entire bytecode for the user’s 

convenience. 

Given the plug-in architecture, the visualization framework can be easily extended to 

add further custom diagrams related to the security specifications. It also provides for ease of 

adoption of the tool as plug-in perspective in the eclipse SDK or use as a standalone rich 

client desktop application. Further it does not require any special set-up, the only requirement 

being a java runtime environment. 

 

3.6 Discussion 

The visualization framework adheres to most of the quality attributes and functional 

requirements identified for software visualization [5]. A summary of the framework support 

for these has been demonstrated; see Table 3.11, Table 3.12. 

 

Table 3.11. Quality Attributes for a software visualization tool 

Quality Attribute Support in our framework 

Rendering scalability The framework generates diagram views with small 

response time, and we found that the rendering speed scaled 

well to a medium-scale application with about 17 classes. 
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Table 3.11 continued 

Information scalability There is a limited amount of information displayed per view, 

and more information is accessible via point-and-click 

interaction. 

Interoperability As an Eclipse plug-in, the tool can be easily integrated with 

existing Java development environments or executed as a 

standalone application. 

Customizability Views can be customized via user-specified color-coding, 

drag-and-drop, and additional Eclipse plug-in extensions. 

Interactivity The tool is explorative in nature, showing different security-

aware views on demand. 

Usability Provides an easy-to-use interface to users. 

Adoptability It is Eclipse-compatible and requires only a standard Java 

runtime environment. 

 

 

Table 3.12. Functional Requirements for a software visualization tool 

Functional 

Requirements 
Support in our tool 

Views The framework provides separate views of the system to analyze 

the static structure of the underlying application and to view the 

control-flows of individual methods. 
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Table 3.12 continued 

Code Proximity The underlying bytecode of the application is available to the user 

at both class and method levels from all generated diagram views. 

This is achieved via a built-in bytecode viewer accessed by point-

and-click. This provides for traceability and code proximity 

between the generated diagram view elements and their 

underlying bytecode. 

Abstraction An abstraction level is achieved by denoting the low-level 

bytecode as high-level elements of a control-flow in a class 

method or as class structures of the application. This is essential 

for quickly identifying pertinent code features and structures at a 

high level and then examining their details at a lower level. 

Search Could be a possible enhancement for the tool. 

Filters Could be a possible enhancement for the tool. 

Automatic layouts The tool uses a hierarchical layout for the class diagrams, along 

with ability to manually change the layout using a selection tool to 

drag and drop diagram elements on the diagram view. 

Undo/History  Since the tool provides static analysis visualization, there is no 

edit operation for the user. 
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3.7 Screenshots 

 

Figure 3.10. Screen-shot 1: Security aware UML Class Diagrams generated for the original 
and re-written application bytecode. 
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Figure 3.11. Screenshot 2: UML Class Diagram generated for Client-Server application. 
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Figure 3.12. Screenshot 3: UML Activity Diagram generated, showing exception handlers. 
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Figure 3.13. Screenshot 4: UML Activity Diagram generated, with all possible control flows 
mapped to a security policy. 
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Figure 3.14. Screenshot 5: ByteCode view for viewing the underlying bytecode.
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CHAPTER 4 
 

VALIDATION 
 
 
The visualization framework was validated using test applications. The static views 

engine as first tested using a medium-sized file-browsing application consisting of 17 classes. 

The visual class model produced by the static views engine was manually validated against 

the original source code of the test application. 

We then validated the security-aware features of the static view using a test application 

that divulges a confidential file by sending its content over the network. We used the SPoX 

IRM system [6] to enforce a policy that prohibits write-access to the Java Socket library once 

a confidential file has been accessed. The class structures of the original, unsafe application 

bytecode and the SPoX-modified bytecode were then compared using the visualization 

framework. The new security class injected by the IRM was identified and highlighted in the 

visual model (see Screenshot 1). 

To validate the output of the dynamic views engine, we enforced the same policy on a 

smaller, hand-written client-server application whose control-flow structure is simple enough 

to allow manual inspection. (see Appendix B for details of the specification of the security 

policy) The compiled bytecode was then used to generate UML diagram views using our 

framework. These diagram views were manually validated against the application class 

structures and control-flows. After the policy was applied, our visualizer generated security-

aware control flows for the client application. These were manually inspected to confirm that 
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policy-violating instructions (i.e., network-send operations that could execute after file-read 

instructions) were correctly identified by the visual model (see Screenshot 3). 
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CHAPTER 5 
 

CONCLUSION AND FUTURE WORK 
 
 

We have introduced a security-aware, bytecode visualization framework that facilitates 

fast and easy prototyping and analysis of IRM security policies and their implementations. 

This is the first approach to address this concern. Experiments show that the framework, 

implemented as a prototype tool, can generate visual diagrams and identify code points 

where possible security violations could occur at runtime. Without an automated tool, such 

analyses are extremely difficult and time-consuming even for experts, since they involve 

manually understanding an application's binary structure, its possible control-flows, and its 

potentially security-relevant operations. Rapid development and prototyping of candidate 

security policies is therefore typically impractical without such a tool.  

A number of limitations have been identified in the visualization framework. With 

respect to the UML diagrams created, for example, the framework does not support reverse 

engineering to the complete, standard definitions of UML class and activity diagrams. The 

current subset has been adequate for the example applications used in the validation, but may 

need to be extended in the future. In addition, the securityaware color coding scheme used 

has not been rigorously defined as a UML extension, such as a profile or a stereotype. The 

graph based algorithms to create the diagrams also need to be systematically defined and 

analyzed.  

The approach taken to identify the possible security violations may include false positives, 

wherein some unreachable control-flows are identified as possible sources of policy 



54 

 

violations. However, the approach does not suffer from false negatives, conservatively 

detecting all possible security violations. The framework can be easily extended to provide 

further support for visualization with respect to security, including extended debugging 

functionality and support for visual modeling. These are avenues we intend to explore in 

future work. 
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APPENDIX A 
 
 
Source code for Client.java from test Client-Server Application: 

import java.io.BufferedReader; 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.FileReader; 
import java.io.IOException; 
 
public class Client { 
 
 public static void main(String[] args) { 
  ClientSocket cs = new ClientSocket(); 
  cs.createSocket("Test", 7); 
  int i = 3; 
       while(i>0){ 
          System.out.println("echo: " + read("C:/Data/test.txt")); 
          cs.send("client: "+i); 
           i--; 
         } 
  cs.closeSocket(); 
 } 
  
 public static String read(String path) { 
  String contents = null; 
  try { 
   File file = new File(path); 
   BufferedReader input =  new BufferedReader(new 
FileReader(file)); 
   String line = null; 
   while((line=input.readLine())!=null){ 
    if(contents==null){ 
     contents = line+"\n"; 
    } 
    else{ 
     contents.concat(line+"\n"); 
    } 
   } 
  } catch (FileNotFoundException e) { 
   e.printStackTrace(); 
  } catch (IOException e) { 
   e.printStackTrace(); 
  } 
     return contents; 
 } 
 
} 
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Source code for ClientSocket.java 

import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStreamReader; 
import java.io.PrintWriter; 
import java.net.Socket; 
import java.net.UnknownHostException; 
 
public class ClientSocket { 
 Socket mySocket = null; 
     PrintWriter out = null; 
     BufferedReader in = null; 
     
 public void createSocket(String host, int port) { 
  try { 
   mySocket = new Socket(host, port); 
   out = new PrintWriter(mySocket.getOutputStream(), true); 
        in = new BufferedReader(new 
InputStreamReader(mySocket.getInputStream())); 
  }  

catch (UnknownHostException e) { 
   e.printStackTrace(); 
  }  

catch (IOException e) { 
   e.printStackTrace(); 
  } 
 } 
  
 public void closeSocket() { 
  try { 
   out.close(); 
   in.close(); 
   mySocket.close(); 
  }  

catch (IOException e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace(); 
  } 
 } 
  
 public void send(String data) { 
  out.println(data); 
 } 
  
 public String receive() { 
  String data=null; 
  try { 
   data = in.readLine(); 
  }  

catch (IOException e) { 
   e.printStackTrace(); 
  } 
  return data; 
 } 
} 
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Bytecode for Client.main from test Client-Server Application: 

Code(max_stack = 4, max_locals = 3, code_length = 79) 
0:    new  <ClientSocket> (16) 
3:    dup 
4:    invokespecial ClientSocket.<init> ()V (18) 
7:    astore_1 
8:    aload_1 
9:    ldc  "Test" (19) 
11:   bipush  7 
13:   invokevirtual ClientSocket.createSocket (Ljava/lang/String;I)V (21) 
16:   iconst_3 
17:   istore_2 
18:   goto  #70 
21:   getstatic  java.lang.System.out Ljava/io/PrintStream; (25) 
24:   new  <java.lang.StringBuilder> (31) 
27:   dup 
28:   ldc  "echo: " (33) 
30:   invokespecial java.lang.StringBuilder.<init> (Ljava/lang/String;)V (35) 
33:   ldc  "C:/Data/test.txt" (38) 
35:   invokestatic Client.read (Ljava/lang/String;)Ljava/lang/String; (40) 
38:   invokevirtual java.lang.StringBuilder.append (Ljava/lang/String;)Ljava/lang/StringBuilder; (44) 
41:   invokevirtual java.lang.StringBuilder.toString ()Ljava/lang/String; (48) 
44:   invokevirtual java.io.PrintStream.println (Ljava/lang/String;)V (52) 
47:   aload_1 
48:   new  <java.lang.StringBuilder> (31) 
51:   dup 
52:   ldc  "client: " (57) 
54:   invokespecial java.lang.StringBuilder.<init> (Ljava/lang/String;)V (35) 
57:   iload_2 
58:   invokevirtual java.lang.StringBuilder.append (I)Ljava/lang/StringBuilder; (59) 
61:   invokevirtual java.lang.StringBuilder.toString ()Ljava/lang/String; (48) 
64:   invokevirtual ClientSocket.send (Ljava/lang/String;)V (62) 
67:   iinc  %2 -1 
70:   iload_2 
71:   ifgt  #21 
74:   aload_1 
75:   invokevirtual ClientSocket.closeSocket ()V (65) 
78:   return 
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APPENDIX B 
 
 
Security policy specification: 

The security policy input to the visualizer is converted to a simplified non-deterministic 

version of the original policy. The original security automaton for the security policy that 

prohibits information leakage over the network is given as below. 

 

 

Security automaton for the prototype policy used 

 

The simplified deterministic version of the security automaton, introduces an error state # 

representing the occurrence of the specified security violation. 

 

 

Deterministic automaton for the security policy 

 

0 1 

send read 

read 
# 

send 

0 1 

send ⌐send 

read 
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The text-based version of the automaton that is input to the tool: The first four lines of the 

text-based specification define the security states of the automaton and the corresponding 

color code to be used for each of them. The next four lines define the various security state 

transitions in the security automaton on the specific security-relevant operations of the 

bytecode. 

 

0 255,255,156 

1 204,255,156 

-99 204,100,100 

++ 204,153,204 

0 0 call ClientSocket.send 

0 1 call Client.read 

1 1 call Client.read 

1 -99 call ClientSocket.send 

Text-based security policy for information leakage 
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