

SECURITY-AWARE PROGRAM VISUALIZATION FOR ANALYZING IN-LINED

REFERENCE MONITORS

by

Aditi A. Patwardhan

 APPROVED BY SUPERVISORY COMMITTEE:

 Dr. Kevin Hamlen, Chair

 Dr. Kendra Cooper

 Dr. Murat Kantarcioglu

Copyright 2010

Aditi A. Patwardhan

All Rights Reserved

SECURITY-AWARE PROGRAM VISUALIZATION FOR ANALYZING IN-LINED

REFERENCE MONITORS

by

ADITI A. PATWARDHAN, B.S.

THESIS

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

August, 2010

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr Hamlen and Dr Cooper for accepting me

as their student, initially for an independent study project and later to continue it as a thesis. I

thank them both for the numerous reviews and constant feedback, especially with the

documentation work. I thank Dr Hamlen for being my advisor and for guiding me through all

the challenges that I faced while completing this thesis. I thank Dr Cooper for continually

motivating me towards achieving greater quality.

I would like to say a special thank-you to Dr Murat for serving as a committee member and

extending his support for the thesis defense.

I thank Jeannette Bennett for the tool developed for her thesis which served as an initial

implementation and technology idea for the visualizer tool. I am grateful to the Language-

Based Security group and I learnt a lot by participating in the research meetings.

I express great gratitude towards my parents Swati and Abhijit Patwardhan and my fiancé

Ashutosh Watway, for their unconditional love and support. I will always attribute my

success and achievements in my life to them. Lastly I acknowledge all my friends and

roommates here at UTD for being my constant emotional support throughout my graduate

studies away from home.

June, 2010

v

SECURITY-AWARE PROGRAM VISUALIZATION FOR ANALYZING IN-LINED

REFERENCE MONITORS

Publication No. ___________________

Aditi A. Patwardhan, M.S.
The University of Texas at Dallas, 2010

 Supervising Professor: Dr. Kevin Hamlen

ABSTRACT

In-lined Reference Monitoring frameworks are an emerging technology for enforcing

security policies over untrusted, mobile, binary code. However, formulating correct policy

specifications for such frameworks to enforce remains a daunting undertaking with few

supporting tools. A visualization approach is proposed to aid in this task. In contrast to

existing approaches, which typically involve tedious and error-prone manual inspection of

complex binary code, the proposed framework provides automatically generated, security-

aware visual models that follow the UML specification. This facilitates formulation and

testing of prototype security policy specifications in a faster and more reliable manner than is

possible with existing manual approaches.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

CHAPTER 1 INTRODUCTION ...1

1.1 Motivation ..1

1.2 Software Security Background ..1

1.3 Research Problem ..4

1.4 Proposed Solution ..4

1.5 Organization of thesis ..6

CHAPTER 2 RELATED WORK ..7

2.1 Introduction ..7

2.2 Code Level Visualization: Textual ..7

2.3 Code Level Visualization: Graphical ...9

2.4 Conclusion ...11

CHAPTER 3 VISUALIZATION FRAMEWORK FOR SECURITY ANALYSIS12

3.1 Introduction ..12

3.2 Overview ..12

3.3 Security-Aware Static View ..14

3.3.1 Graph model representation ...15

3.3.2 Incremental graph generation approach ...16

vii

3.3.3 Example for security-aware UML Class Diagram23

3.4 Security-Aware Dynamic View ...26

3.4.1 Graph model representation ...26

3.4.2 Incremental graph generation approach ...27

3.4.3 Example for security-aware UML Activity Diagram36

3.5 Tool Support ..38

3.6 Discussion ..43

3.7 Screenshots ..46

CHAPTER 4 VALIDATION ..51

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ..53

APPENDIX A ..55

APPENDIX B ..58

REFERENCES ..60

VITA

viii

LIST OF FIGURES

Number Page

Figure 3.1. Security-Aware Visualization Framework Overview .. 13

Figure 3.2. Pipelined components of Static Views Engine ... 16

Figure 3.3. Graphs generated for the original and rewritten application bytecode 24

Figure 3.4. Pipelined components of Dynamic Views Engine ... 27

Figure 3.5. Basic blocks identified for Client.main method ... 37

Figure 3.6. Platform Architecture ... 39

Figure 3.7. Conceptual components for diagram generation .. 40

Figure 3.8. Structural view of the Class Diagram plug-in. ... 41

Figure 3.9. Structural view of the Activity Diagram plug-in. ... 42

Figure 3.10. Screen-shot 1: Security aware UML Class Diagrams generated for the original
and re-written application bytecode. ... 46

Figure 3.11. Screenshot 2: UML Class Diagram generated for Client-Server application. ... 47

Figure 3.12. Screenshot 3: UML Activity Diagram generated, showing exception handlers. 48

Figure 3.13. Screenshot 4: UML Activity Diagram generated, with all possible control flows
mapped to a security policy. ... 49

Figure 3.14. Screenshot 5: ByteCode view for viewing the underlying bytecode. 50

ix

LIST OF TABLES

Number Page

Table 2.1. Text-based approach for bytecode analysis ... 8

Table 2.2. Graphical approach to bytecode analysis ... 10

Table 3.1. Algorithm to identify graph elements .. 17

Table 3.2. Mapping graph elements to UML Class Diagram entities 19

Table 3.3. Layout algorithm for the UML Class Diagram ... 21

Table 3.4. Compare algorithm to highlight the classes added by the IRM 22

Table 3.5. Comparison of graph elements for the original and rewritten bytecode 25

Table 3.6. Algorithm to identify the basicblocks from the bytecode 29

Table 3.7. Algorithm to identify the graph elements .. 30

Table 3.8. Algorithm to map graph elements to UML Activity Diagram entities 31

Table 3.9. Dataflow analysis algorithm to statically identify all control flows 32

Table 3.10. Pseudocode for implementation of fixed point algorithm 35

Table 3.11. Quality Attributes for a software visualization tool ... 43

Table 3.12. Functional Requirements for a software visualization tool 44

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Software security is becoming increasingly important with the growth of the Internet

and mobile code technologies like Java. Mobile code technologies generate software

components for environments in which code-consumers receive code from separate code-

producers. These software components are mainly distributed as binary executable files that

are downloaded from web pages or as email attachments. In many realistic settings, not all

code-producers are fully trusted; for example, webpages may be served from untrusted

servers or emails may arrive from untrusted senders. Security is an obvious concern in such

an environment where binary, executable mobile code is received over the Internet, whose

code-producer is not known or is not fully trusted. Malicious adversaries can cause security

attacks in the form of malware that is distributed over the Internet as mobile code. Every year

billions of dollars are invested by business enterprises to protect against or recover from such

software security attacks [1]. Security violations range from information leakage to access

control violations and data corruption. Given the high financial costs, software security

concerns have become increasingly critical for many business environments.

1.2 Software Security Background

To ensure a secure mobile code environment, we would typically want to define

security policies that specify certain constraints on software behavior, and then enforce these

2

policies on any untrusted software to be executed on the system. Specifically, security

policies define trace properties of a program execution. These include liveness properties,

which specify that some “good event” should eventually happen; for example a process

should eventually release a lock that it has acquired during its execution. And they include

safety properties, which specify that some “bad event” should not happen; for example, a

process should not attempt to modify system executable files. Precisely enforcing arbitrary

liveness policies at the software level remains an open challenge [2], but most practical

policies can be reformulated as safety policies. For example, time-bounded policies, such as

the policy that prohibits a process from holding a lock for more than 1000 instruction cycles,

are safety policies [3]. Hence, we focus on the class of security policies that are safety

properties.

A classic example for a safety policy is the access control policy that prohibits writes

to files for which the user does not have write permission and prohibits reads from files for

which the user does not have read permission. Such a security policy defines these

unauthorized accesses as “bad” events. The definition of a “bad” event can also rely on the

past history of the execution. An example of such a history-based policy is to avoid

information leakage over the network by prohibiting a process from sending any information

over the network once it has read a confidential file. A resource bound policy could dictate

that the application should not open more than 100 files in its lifetime, to avoid resource

exhaustion. An auditing policy could ensure that any security relevant operation should be

logged before the next security relevant operation is executed. A peer-to-peer network might

stipulate that any user may download at most 2 files more than the number of uploads made

by the user, hence preventing the occurrence of ‘free-riding’, see [6].

3

Safety policies that are history-based (i.e., stateful) can be encoded as security

automata. A security automaton is a finite state automaton that accepts policy-permitted

sequences of security-relevant events [3]. The security automaton makes transitions on

program operations that constitute security-relevant events. If a security-relevant event is

encountered that causes a policy violation, the automaton rejects the corresponding execution

sequence. Bisimulation of the security automaton with the untrusted program is used as a

mechanism to enforce the underlying security policies. When a security violation is detected

by the automaton, the corresponding execution is terminated. This approach is demonstrated

by in-lined reference monitors (IRM’s) [3].

The IRM systems are one of the current state-of-art enforcement mechanisms that

monitor the program execution for any security relevant event that occurs and halts the

execution (or takes some other corrective action) if an impending security violation is

detected. The SASI system [4] implements these for x86 assembly code and Java bytecode

architectures. The Java-MOP system [5] works with the aspect-oriented programming

paradigm. It specifies the desired security properties, along with the code to execute if a

security violation is detected. The specification is then translated to AspectJ code and

integrated into the application program using an aspect weaver. The specification is written

as a combination of linear temporal logic (LTL) and trusted code fragments [5]. The SPoX

(Security Policy XML) system [6] provides a purely declarative policy specification

language in which security-relevant events are designated via AspectJ pointcuts and policies

over these events are specified as security state transitions [6]. A SPoX specification denotes

a (finite or infinite state) security automaton that makes transitions on security relevant

events and rejects the execution sequence if a security violation is detected.

4

1.3 Research Problem

IRM's provide a powerful means to enforce application-specific security policies, but

identifying and defining a good security policy usually requires a fairly deep understanding

the underlying application code. Since in many contexts at least some components of

untrusted software are not available as source code, this often requires the policy writer to

analyze the underlying application structure and control-flows.

For example, to prohibit network-send operations, one must be able to rigorously define

what constitutes a network-send operation at the binary level. In architectures with complex

runtime systems, such as Java, there may be hundreds of primitive instructions that constitute

security-relevant operations, each of which must be identified in a complete specification of

the policy. If the IRM signals unexpected policy violations for non-malicious applications

during testing, the policy-writer must understand which operations may have been

misidentified as policy-violating by the flawed specification. In general, much manual

analysis and inspection of malicious and non-malicious binary code may be required in order

to formulate a policy that prohibits all undesired program behaviors without curtailing

desired behaviors.

This manual task becomes very tedious and error-prone as the size of the binary code

increases. A visualization tool is needed to aid the analysis of the untrusted binary code and

to facilitate faster and more reliable discovery and prototyping of application-specific

security policies.

1.4 Proposed Solution

We present a Visualization Framework that generates security-aware visual models

for the low-level Java bytecode. The static visual model represents the underlying class

5

structures; the dynamic visual model represents the possible execution sequences (control

flows) in the application. We choose the Unified Modeling Language (UML) specification

for our visual model. The UML has become the de facto standard for visual modeling of

software applications [8]. We represent the class structures and their relationships using the

UML Class Diagram, and the control flows using the UML Activity Diagram.

Our Visualization Framework further helps the policy writer to statically analyze the

security policy written, with respect to the possible execution sequences in the underlying

bytecode. Our approach identifies the possible execution sequences in the program and maps

each execution sequence to the set of corresponding state transitions of the security

automaton (given by the security policy). A user-defined “color code” is provided to visually

map the control flow blocks to the corresponding security automaton states. The resulting

control flow diagram is a collection of color coded control flows of the program that identify

the possible security violations and security-relevant program operations.

We take a conservative approach in which the detection of policy violations may

include some false positives. For example, a potential violation might be identified within an

execution branch that may not be traversed at runtime based on the value of some input

variable. However, false negatives will not occur; all possible security violations are

detected. To validate our tool we have written a test application that causes an information

leakage over the network and a security policy that prohibits any send operation after a read

has been executed. On applying the security policy to the test program, we manually

validated the output visual model with the expected results (detection of policy violations).

6

A prototype tool has been developed as a proof of concept. A test client server application

has been written, with a prototype security policy to avoid information leakage on the

network, to test and validate security aware diagram specifications generated by the tool.

1.5 Organization of thesis

The rest of the thesis is organized as follows: Chapter 2 discusses the existing tool

support for analysis of bytecode and the related work for software visualization. Chapter 3

outlines the visualization framework proposed for security analysis. Chapter 4 describes the

validation for the prototype tool developed. Chapter 5 discusses the future work for the

visualization for security analysis.

7

CHAPTER 2

RELATED WORK

2.1 Introduction

Practical IRM systems constitute a growing body of past work (c.f., [2]). These

systems employ enforcement mechanism for given specification of a security policy [5, 6].

The formulation and testing of these prototype, security policies however remains a largely

manual task. This section discusses the existing tool support that aids in the formulation of

security policies. The available tools follow a textual or a graphical approach. We examine

each of these individually and then summarize the approach proposed by this thesis.

2.2 Code Level Visualization: Textual

Traditional text-based, code-level visualization is supported by established tools

including decompilers, debuggers; libraries are available for static code analysis [9, 10] [15].

These tools are general purpose; they do not provide specialized support for security. For

example, code related to a specific security policy is not identified by highlighting the code.

Several decompilers are available for the Java bytecode. Amongst the popular ones are

JAD - the fast JAva Decompiler[9], is available free for non-commercial use. Various GUI

based front-ends are available for JAD, including DJ Java Decompiler, Cavaj and JadClipse.

Another useful commercial decompiler available is the SourceAgain decompiler [10]. A

decompiler gives an estimate of the original source code, generated from its low-level

8

executable code. This source code can then be examined manually to understand the

application structure and to identify the possible control flows.

Debuggers for source code [11] and bytecode are available. Eclipse provides an

integrated debugger for the java source code that allows executing the source code

interactively, by stepping through each line of code. Some open source byte code debuggers

are also available for finding the trace of execution at binary code level.

The BCEL API (Byte Code Engineering Library) [15] also provides a set of APIs for the

static analysis of Java bytecode. These APIs can be used to print out all the necessary

information about the bytecode structure. However, it still remains a text-based analysis to

determine the application structure and possible control flows from the low-level bytecode.

Table 2.1 given below, summarizes the text-based approach for bytecode analysis.

Table 2.1. Text-based approach for bytecode analysis

 Decompilers/
disassembled

Debuggers Static analysis
libraries, BCEL

Code Bytecode Source code/
bytecode

Bytecode

Visual modeling
notation

None None None

Static/ dynamic
support

Static textual
information

Dynamic (runtime)
analysis of bytecode

Static textual
information

Explicit support for
security

None None None

9

2.3 Code Level Visualization: Graphical

As the size of the application increases, it becomes quite cumbersome to do a text-based

analysis of the code. In addition, some execution traces may be overlooked or missed during

the manual code analysis. A graphical model of the low-level code provides a tool for easy,

faster and more reliable analysis of the application structure and the possible control flows.

The main quality attributes and functional requirements for visualization tools have been

identified; however, security is not specifically considered [16]. The suggested quality

attributes require the visualizer’s rendering speed to scale to larger amounts of data. To avoid

an information overload to user on the interface, detailed information should be hidden in the

main view but easily available to the user on a mouse click. A visualization tool is desired to

be interoperable with other tools, customizable, interactive and explorative in nature, easy to

use and easy to adopt by the user’s environment. The functional requirements specify having

different views of the target system, providing different levels of abstraction, and having

search and filter features. It further requires providing a fast and easy access to underlying

source code, automatic layout capabilities and the possibility to record the history and to

undo user actions.

Modeling and development tools are available that provide the capabilities to reverse

engineer code to UML class and sequence diagrams [12]. These tools are also general

purpose; they do not provide specialized support for security. For example, code related to a

specific security policy is not identified by highlighting the related classes on a class

diagram.

Software visualization has been very useful for research tools that provide reverse

engineering of applications. Rigi, an environment for software reverse engineering,

exploration, visualization, and re-documentation has been developed [13]. It provides a

10

visualization engine that integrates both interactive and automated functionality for reverse

engineering. It uses a methodology of structural re-documentation that starts out by laying

out a flat graph of lowest level artifacts and then iteratively builds upon these by method of

grouping and refining until the desired level of abstraction is reached.

Context independent analysis [14] is another example of a visualization tool that has been

developed for binary files whose underlying format is not known. The tool incorporates the

functionality provided by a hex editor and enhances it using byte plot visualization for the

underlying file. The tool gives visual cues to identifying byte presence, repeated sequences of

bytes or regions of compression or encryption.

Table 2.2 given below, summarizes the available graphical tool support for bytecode

analysis.

Table 2.2. Graphical approach to bytecode analysis

 Commercial Modelling
tools - IBM software
architect

Research Reverse
engineering tools -
Rigi

Binary Visualization
tools - context
independent analysis

Code Source code/ bytecode Bytecode Binary code (unknown
format)

Visual modeling
notation

UML Graph based Byte plot visualization

Static/ dynamic
support

Static and dynamic
views supported as
UML specifications

Static Static analysis

Explicit support for
security

None None None

11

2.4 Conclusion

These available commercial and research tools are proficient but leave most of the

burden of performing a rigorous security analysis to the user. The modeling tools like the

IBM software architect use UML as the modeling notation, which is a powerful and

established standard for the graphical modeling of object oriented software design and

analysis. The reverse engineering tools developed provide support for building abstraction

over the low-level code. However, these tools do not support for more specific, security

related tasks like identifying the control flows in the application, mapping candidate policies

on the control flow and testing prototype policies for identifying security violations. We take

the approach of catering to these security-related requirements, while utilizing the powerful

features of a visual modeling notation like UML and using the concept of abstraction for a

better representation of the underlying bytecode.

The BCEL API (Byte Code Engineering Library) [15] provides a programmatic

foundation for analyzing Java bytecode. Our visualization framework uses this API to extract

low-level Java bytecode information.

Graphical models of low-level code provide easier, faster, and more reliable analysis

of an application's structure and its possible control-flows than their text-only counterparts.

We therefore adopt a graphical approach. Desirable quality attributes and functional

requirements for general-purpose code visualization tools have been well-studied [16], but

there has been no similar study of security-aware tool functionality to our knowledge.

12

CHAPTER 3

VISUALIZATION FRAMEWORK FOR SECURITY ANALYSIS

3.1 Introduction

The visualization framework provides a graphical model for easier, faster, and more

reliable analysis of an application's structure and its possible control-flows. The visual

diagram model is represented as the UML notation. We use UML diagrams to represent the

structure of the underlying bytecode to aid the required security analysis. We hence

emphasize on identifying and visualizing the selective UML constructs that are required for

the security analysis. The implementation of the entire UML specification is left for future

work. This section describes the proposed architecture for the visualization framework and

the approach taken for generation of the UML-based, security-aware diagram views. A

prototype tool has been developed as a proof of concept and used for the validation. A hand-

written client server application, that causes information leakage on the network has been

used as an example throughout the chapter. (see Appendix A for the example application

code)

3.2 Overview

The Visualization Framework transforms the low-level bytecode into UML-based

visual models. The framework is composed of a controller and separate view engines for the

generation of static and dynamic visual models (see Figure 3-1). Based on the user request,

the controller delegates control to the respective view engine. The static views engine

13

generates the view for the static structure of the application modeled as the UML Class

Diagram. The dynamic views engine generates the dynamic views for the detailed control

flow diagrams for each class method within the application code, modeled as the UML

Activity Diagram.

Figure 3.1. Security-Aware Visualization Framework Overview

These UML specifications are used to provide the security-aware views of the

application. The UML Class diagrams can be used to compare the untrusted bytecode with

the self-monitoring, rewritten code obtained by enforcing the security policy. The UML

Controller

low-level
bytecode

Security-
Aware
Static
View

Security-
Aware
Dynamic
Views

Parser UML Class
Diagram
Layout

UML Class
Diagram
Creator

Static Views Engine

Security-
aware view
generator

Parser UML
Activity
Diagram
Layout

UML
Activity
Diagram
Creator

Dynamic Views Engine

Security-
aware view
generator

14

Activity diagrams can be used to map the prototype security policy to the underlying control

structure and to visually identify the security events in the control flows. The UML Diagrams

are generated using an incremental graph generation approach. This approach taken for the

security-aware static and dynamic view generation is described in more detail in Sections 3.2

and 3.3.

3.3 Security-Aware Static View

To effectively prototype and analyze real IRM’s and the policies they enforce, it is

important to be able to easily visualize and compare the class structure of original and IRM-

modified Java bytecode applications. For example, most practical policies constrain usage of

certain security-relevant system classes by untrusted applications. The IRM must therefore

track the security state of these security-relevant objects at runtime to enforce the policy. The

IRM typically accomplishes this by injecting wrapper classes that inherit from and extend the

system classes with extra security state fields maintained by the IRM [5, 6]. Thus, visualizing

the class structure of original and IRM-modified applications reveals much about the

potential effects of the policy-enforcement upon the untrusted application, including

undesired side-effects and potential runtime overhead.

The static class structures of applications are modeled as the UML Class Diagrams [8].

They define the structure of classes and relationships between them. A class diagram can be

represented as a graph with nodes as the UML class elements and the edges as the

relationships between them.

15

3.3.1 Graph model representation

The security-aware UML Class Diagram is represented as a graph G=(N,E), where N

is the set of nodes in the graph and E is the set of edges in the graph. The set of nodes N

denote the class elements of a UML Class Diagram. Each node has an associated tuple to

represent the various attributes and methods associated with the class. For each node N, we

have the tuple definition N=(name, access, type, attributes, operations) where,

name: the string attribute denoting name of the class

access: the string attribute denoting the access modifier(visibility attribute) for the class

type: the string attribute used to identify a class added by the security mechanism

attributes: the data attributes contained by the class

operations: the operations contained by the class

The set of edges E denote the relationships between the classes in a UML Class

Diagram. Each edge has an associated tuple defined as E=(originN, targetN) where, originN

represents the class element where the relationship originates and targetN represents the target

class element of the relationship. The set of edges E can be further divided into two sets

generalizationE and associationE, to denote the UML generalization and association

relationships. These edges are defined as below,

A generalization edge generalizationE is defined as the subclass-superclass

relationship between classes, generalizationE=(originN, targetN) where

originN: represents the class element that is the subclass

targetN: represents the class element that is the superclass of originN

An association edge associationE is defined as the reference relation between the two

classes, associationE=(originN, targetN) where

16

originN: represents the class element that contains a call reference to targetN

targetN: represents the target class element whose reference is called by originN

3.3.2 Incremental graph generation approach

The graph model representing the security-aware static view (UML Class Diagram) is

incrementally generated over the four pipelined components of the Security-Aware Static

Views Engine− the Bytecode Parser, UML Class Diagram Creator, UML Class Diagram

Layout, Security-Aware View Generator. Figure 3.2 summarizes this incremental graph

generation approach.

Figure 3.2. Pipelined components of Static Views Engine

The Bytecode Parser identifies the graph elements from the underlying bytecode. The

graph nodes N represent the classes, their data attributes and methods. The visibility options

of the data attributes and methods are extracted. The relationships between the classes are

also parsed from the bytecode and are represented as the edges E of the graph. The UML

relationships supported include generalization and association which are represented in the

Low level
bytecode

Security-
aware
static view

Parser UML Class
Diagram
Layout

UML Class
Diagram
Creator

Security-
aware view
generator

Parse the
bytecode to

identify graph
elements

Determine
the layout of

the graph

Map the graph
elements to the
respective UML
Diagram entities

Identify the security
related structures and
apply special color
coding for graph

elements

17

graph using edges generalizationE and associationE respectively. The generalization

relationship is identified as the inheritance relation between the superclass and its inheriting

subclass. The association relationship is identified as references to class objects [7]. The table

3.1 defines the approach taken by the bytecode parser to identify the graph elements.

Table 3.1. Algorithm to identify graph elements

For the test client server application, the bytecode parser extracts all the information

about the classes in the application, their data attributes, operations, superclasses and the

relationships between the classes identified. For example, the main function of the Client

class contains the bytecode:

0: new <ClientSocket> (16)
3: dup
4: invokespecial ClientSocket.<init> ()V (18)

readGraphElements:
 forall “.class” files in the jar
 N ← instantiate class parser to read the classes in this file
 end forall

 forall clazz ϵ N
 generalizationE ← (clazz, superclass of clazz)
 end forall

 forall instr ϵ InstructionList contained by each clazz ϵ N
 if instr instanceof InvokeInstruction
 associationE ← (invoking class, invoked class)
 end if
 end forall
end readGraphElements

Note: The class parser to read .class files, extracting superclass of each clazz, the
instruction-list’s to work on and identification of the invoking class and invoked class
is done using the BCEL api.

18

7: astore_1
8: aload_1
9: ldc "Test" (19)
11: bipush 7
13: invokevirtual ClientSocket.createSocket (Ljava/lang/String;I)V (21)

Since the Client class creates an instance of the ClientSocket class (at byteoffset 0)

and then further invokes the methods of the ClientSocket class (at byteoffset 4, 13), the

bytecode parser identifies this as an association relation between the two classes.

The Diagram Creator generates the entities of the UML Class Diagram that represent

the graph elements extracted from the bytecode by the parser. The classes in the bytecode are

mapped to the UML Class Elements and the relationships between these classes are mapped

as the generalization or association relationships of the UML Class Diagram. The UML

metamodel identified therefore consists of the ClassElements, data attributes, operations,

visibility attributes, generalization and association relationships. Table 3.2 illustrates the

mapping method used to create the UML Class Diagram entities.

We construct the UML Class Diagram with inheritance relationships up to one level

into the system libraries. Since every class in Java inherits from the java.lang.Object by

default, we have a strong inheritance based structure for the class elements.

For the test application developed, the UML Diagram generated hence includes the

system library class java.lang.Object alongwith the application classes Server, Client,

ClientSocket. The generalization relationships are identified between the java.lang.Object

class and each of the application classes, since they inherit this class by default in Java. The

association relationship identified from the bytecode is between the Client and ClientSocket

class. These UML Diagram entities identified are then input as graph elements to the Layout

algorithm, to generate the visual diagram.

19

Table 3.2. Mapping graph elements to UML Class Diagram entities

The UML Diagram Layout takes an approach of using the inheritance based structure

for the automatic layout generation of the Class Diagram. Graph drawing algorithms have

been used for generating automatic layouts of software diagrams. An inheritance based

approach has been utilized in [17] for UML Class Diagrams defined for architectures that

have a considerable use of the inheritance/generalization relationships. Since our diagrams

have a strong inheritance based structure, we use a simplification of the algorithm.

The Class diagram represented as a graph model is input to the layout algorithm. The

algorithm decides the layout of the graph by positioning the nodes on horizontal layers L.

maptoUML: (N,E):ClassDiagramEntities
 forall n ϵ N
 create a new UML class element
 classElementUML ← n
 Set the details for the class: jvm class/interface
 classElementUML ← setDetails
 Set the data attributes for the class
 classElementUML ← setAttributes
 Set the methods contained by the class
 classElementUML ← setOperations
 ClassDiagramEntities ← classElementUML
 end forall

 forall g ϵ generalizationE
 create a new UML generalization
 generalizationUML ← g
 ClassDiagramEntities ← generalizationUML
 end forall

 forall a ϵ associationE
 create a new UML association
 associationUML ← a
 ClassDiagramEntities ← associationUML
 end forall
end maptoUML

20

Each horizontal layer Li consists of a set of nodes Ni. The following summarizes the three-

step adaptation of the algorithm in [17] for automatic layout generation of the class diagram

with minimal edge cross-overs. (see table 3.3 for the detailed algorithm)

1) Generalization-based layering: Start with the nodes that represent JVM class elements

placed on layer L0. Iteratively position the remaining nodes such that nodes that inherit from

layer Li are positioned on layer Li+1.

2) Association-based reordering: To minimize the edges crossing over class elements, classes

having an association relationship should preferably be placed adjacently. For each

association, position the two nodes as neighbors if possible. If this is not possible, move both

nodes to a newly inserted new layer immediately below the current one.

3) Offset calculation: To position each class within its layer, compute a base-point for each

class, where a basepoint is defined as the minimum offset required for all its subclasses

relative to the position of the superclass. The class' final offset is computed as the sum of the

offsets of the nodes preceding this class on the current layer, plus its base-point.

This algorithm generates a simple layout with minimum edge cross-overs. The

visualizer further allows the users to manually adjust the generated layout by providing a

select, drag and drop functionality for the class elements of the diagram.

Screen-shot 2 shows a UML Class Diagram generated using the framework, for the

test client-server application. The classes are positioned on layers as per their inheritance

graph structure (step 1), level 0 contains the system class java.lang.Object and the application

classes form the level 1. The Association based re-ordering, (step 2) decides the order of

classes on each level, at level 1, the classes Client and ClientSocket are made neighbors since

they have an association relationship. Finally the x-axis offsets for each layer are computed

21

(step 3), which completes the positioning of the classes by computing their x-axis co-

ordinates on each layer.

Table 3.3. Layout algorithm for the UML Class Diagram

Layout: (N, L)
 Step 1: Generalization-based layering:
 forall nϵN ∧ nϵ jvm class elements,
 L0 ← n
 N ← N - n
 end forall

 forall l1,l2 ϵ L0,
 if l2 inherits from l1 then L1 ← l2
 end forall

 forall ni ϵ Li
 if n ϵ N inherits from ni then
 Li+1 ← n
 N ← N - n
 end if
 end forall

 Step 2: Association-based reordering:
 compute the set of association edges I=(originN, targetN), I⊆E
 if originN, targetN ϵ Li
 Position the originN and targetN to be neighbors if possible,
 else insert a new layer Li+1 and Li+1 ← targetN ∪ originN

 Step 3: Offset calculation:
 forall niϵ Li
 basepointn ← minimum offset based on position of parent class
 relative_offset ← basepointn + offsets introduced by the nodes
 positioned before ni on Li
 end forall

end Layout

22

The framework can additionally render a visual comparison between the original and

the rewritten, IRM-modified application bytecode. The Security-Aware View Generator

decides on the color coding for the graph (diagram) elements. It compares the original and

the rewritten bytecode, over their class structures and the new classes introduced by the IRM

are visually highlighted, (see Table 3.4). This is extremely useful for analyzing changes in

the static structure that result from enforcement of a given policy by an IRM. Separate UML

class diagrams are generated for the original and IRM-modified application bytecode, with

visually highlighted color cues for the security-relevant classes introduced by the rewriter.

Table 3.4. Compare algorithm to highlight the classes added by the IRM

Screen-shot 1 demonstrates the UML Class Diagram views generated for a test

application that opens a file and then creates a socket connection. We enforce a security

policy that prohibits a call to the socket class once a confidential file has been opened for

read. The IRM introduces a security class during the process of re-writing. This new security

class added by the re-writer is highlighted in the generated diagram view for comparing the

Compare: (Noriginal, Nrewritten): Nnew
 forall n ϵ Nrewritten
 if n ∉ Noriginal
 Nnew ← n
 end if
 end forall

 forall n ϵ Nnew
 set a highlight for the fillcolor of n
 end forall
end Compare

23

two bytecode applications. The next section discusses the detailed generation of the security-

aware static view using the framework.

3.3.3 Example for security-aware UML Class Diagram

To illustrate the generation of the security-aware static view, we use a hand-written

client-server application that opens a file from a local directory and then proceeds to establish

network connections. We used the SPoX system to enforce a security policy on the bytecode

of this application. The security property defined is that no network connection can be

allowed once a local file has been opened for access. The visualizer was used to generate a

comparison of the class structures for the original and the rewritten bytecode. The two

separate class diagrams generated by the tool are shown in screenshot 1. The following is a

walk-through for the approach taken by the tool to generate the security-aware UML Class

Diagrams for the test application.

The bytecode parser extracts the class structure information from the bytecode using

the BCEL API. The static components of the bytecode are identified using the

org.apache.bcel.classfile package of the BCEL library. The top level data structure in

BCEL is the JavaClass that corresponds to the class in the underlying bytecode.

The JavaClass components for the original bytecode are identified as the classes

java.lang.Object, Hello. The subclass-superclass relationship between class Hello and class

java.lang.Object is obtained from the JavaClass api. The graph elements identified for the

original bytecode are illustrated in table 3.5.

A similar approach is taken for the re-written bytecode. The bytecode parser

identifies the JavaClass components corresponding to the classes java.lang.Object, Hello,

24

security.policy.Policy. The subclass-superclass relationships are identified between (class

Hello and class java.lang.Object), (class security.poilcy.Policy and java.lang.Object). The

class reference to security.policy.Policy class is found in bytecode of class Hello as shown

below.

// Method signature: ([Ljava/lang/String;)V
main();
Code(max_stack = 3, max_locals = 4, code_length = 48)
……
7: invokestatic security.policy.Policy.edge_hasRead ()V (46)
……

These components identified from the bytecode are translated as the graph elements for the

rewritten bytecode. The classes identify the nodes N of the graph, the subclass-superclass

relationships identify the generalization edges generalizationE of the graph and the class

references identify the association edges associationE of the graph. The underlying graphs

generated for the original and rewritten bytecode are shown in figure 3.3.

Figure 3.3. Graphs generated for the original and rewritten application bytecode

associationE

generalizationE generalizationE
generalizationE

Java.lang.Object

Hello

Java.lang.Object

security.policy
.Policy Hello

Graph generated for original
application bytecode

Graph generated for rewritten, IRM-modified
application bytecode

25

The UML Class Diagram generator generates the UML Class Diagram entities

corresponding to these graph elements. The nodes N form the class elements, edges

generalizationE form the generalization relationships and edges associationE form the

association relationships of a UML Class Diagram.

The UML Class Diagram Layout component then generates two separate class

diagram layouts for the original and rewritten bytecode views, using the graph-based

algorithm explained in section 3.3.2.

The security-aware view generator compares the graph elements of the original and

rewritten bytecode to detect the new classes added by the IRM system, (see table 3.5). As we

can see in this example the IRM has introduced a new security.policy.Policy class to the

application. The security-aware view generator then adds visual high-lighting to the

generated UML Class Diagram and the security-related class security.policy.Policy is

highlighted in its corresponding Class Diagram.

Table 3.5. Comparison of graph elements for the original and rewritten bytecode

Graph elements for original bytecode Graph elements for rewritten bytecode

N={java.lang.Object, Hello} N={java.lang.Object, Hello,

security.policy.Policy}

generalizationE={(Hello, java.lang.Object)} generalizationE={(Hello, java.lang.Object),

(security.policy.Policy, java.lang.Object)}

associationE={} associationE={(Hello,

security.policy.Policy)}

26

3.4 Security-Aware Dynamic View

To identify the possible security violations defined by history-based security policies,

the sequences of security-relevant events occurring in the execution need to be tracked. This

involves identifying all possible control flows in the execution. A visual model for the

control flows in the application becomes important for examining every possible flow of

execution in the application, in a faster and more reliable manner. Further the policy writer

needs to analyze if a particular control flow will reach a security violation, for a given

candidate security policy. The visualization for the effect of applying this security policy to

the application (resulting in detection of possible security violations) aids in rapid

formulation and testing of prototype security policies.

The control flows in an application are illustrated using the UML Activity Diagrams

[7, 8]. Activities typically consist of a graph of nodes and edges, that represent the flow

within the activity.

3.4.1 Graph model representation

The UML Activity Diagram can be denoted as a graph G=(N,E), where N is the set of

nodes in the graph and E is the set of edges in the graph. The set of nodes N denote the nodes

in a UML Activity diagram. The set of nodes is divided further to represent the supported

UML activity nodes− the set of nodes callaction N denote the call action nodes and can be

defined as callactionN=(basicblock) where, basicblock is the contained instruction list that

forms a basic block(as explained in section 3.4.2). The control nodes−initial node, exit node

and decision node of the UML activity diagram are represented by initialnodeN, exitnodeN

and decisionnodeN respectively. The decision node set can be defined as

27

decisionnodeN=(targetList) where, targetList defines the list of decision targets contained by

the node.

The control flow edges of a UML Activity diagram are denoted by the set of edges E,

defined as E={(initialnodeN, callactionN), (callactionN, callactionN), (callactionN,

decisionnodeN), (decisionnodeN, callactionN), (callactionN, exitnodeN)}. These define all the

control flow edges in the activity diagram, including the exception handler edges that have a

special visual representation (as explained in section 3.4.2).

3.4.2 Incremental graph generation approach

The graph model representing the security-aware dynamic view (the UML Activity

Diagram) is incrementally generated over the four pipelined components of the Security-

Aware Dynamic Views Engine− the Bytecode Parser, UML Activity Diagram Creator, UML

Activity Diagram Layout, Security-Aware View Generator. Figure 3.4 summarizes this

incremental graph generation approach.

Figure 3.4. Pipelined components of Dynamic Views Engine

Low level
bytecode

Security-
aware
dynamic
view

Parser UML
Activity
Diagram
Layout

UML
Activity
Diagram
Creator

Security-
aware view
generator

Parse the
bytecode to

identify graph
elements

(basic blocks)

Determine
the layout of

the graph

Map the graph
elements to the
respective UML
Diagram entities

Identify the security
related control

structures and apply
special color coding
for graph elements

28

The Bytecode Parser parses the sets of instructions from the bytecode that form the

basic blocks. A basic block is a sequence of consecutive bytecode instructions for which the

control flow enters at the beginning and leaves at the end without halt or branching [18]

(other than exceptions, which receive special treatment described below). Basic blocks have

one entry-point and one exit-point. A basic block entry-point is identified as:

- The first instruction of a method.

- Each instruction that is target of an unconditional or conditional branch instruction. (All

branch targets are static in Java bytecode.)

- Each instruction that immediately follows a branch instruction.

- Each instruction that is the start of an exception handler.

Each entry-point identifies a basic block in the system and each basic block includes

instructions starting from the entry-point up to and not including the next entry-point in

sequence.

The bytecode parser identifies the entry-points and the basic blocks in the underlying

bytecode. Table 3.6 demonstrates the detailed algorithm for identifying the basic blocks from

the bytecode of a method of a given class.

The identified basic blocks are used to generate the complete graph for the dynamic

view. The basic blocks form the nodes and the control flow structures (branch instructions of

the basic blocks determine the control flow edges) Table 3.7 illustrates the algorithm to

identify all the graph elements.

29

Table 3.6. Algorithm to identify the basicblocks from the bytecode

IdentifyBasicBlocks (InstructionList):basicBlocksN
 forall instr ϵ InstructionList
 if instr is first instruction
 entrypoint ← bytecode offset for instr
 end if

 if instr is branch instruction
 entrypoint ← bytecode offsets of all targets of instr
 entrypoint ← bytecode offset of instr immediately
 following this branch instr
 end if

 if instr is start of an exception handler
 entrypoint ← bytecode offset for instr
 end if
 end forall

 sort the recorded entrypoint and eliminate duplicate entries

 forall instr ϵ InstructionList
 if bytecode offset for instr ϵ entrypoint
 create new basicblock basicblocki+1
 basicblocki+1 ← instr
 record the previous complete basicblock to output
 basicBlocksN ← basicblocki
 else
 add to the previous basicblock
 basicblocki ← instr
 end if
 end forall
end IdentifyBasicBlocks

Note: The bytecode offsets are obtained using the BCEL api’s.

30

Table 3.7. Algorithm to identify the graph elements

The UML Activity Diagram Creator maps these basic blocks as the Call Action nodes

of the activity diagrams, callactionN=(basicblock). Call Action nodes define the units of work

that are atomic within the activity [8]. Since the basic blocks define set of operations that are

all executed sequentially without a halt or branch, we map these as Call Action nodes of the

readGraphElements:
 create the initial node
 N ← initialnodeN
 BasicBlocksN ← IdentifyBasicBlocks
 forall basicblock ϵ BasicBlocksN
 callactionN ← basicblock
 N ← callactionN
 if basicblock contains a branch instruction
 decisionnodeN ← target bytecode offsets
 N ← decisionnodeN
 end if
 end forall
 N ← exitnodeN

 forall n ϵ N
 if n ϵ decisionnodeN
 record all the edges corresponding to the target bytecode offsets
 e ← (n, node containing target bytecode offset)
 E ← e
 else
 e ← (n, next node in sequence)
 E ← e
 end if

 if n contains an exception handler
 add the corresponding exception handler edge, this edge is
 marked as exception handler edge to draw it as a dashed edge
 e ← (n, node containing the corresponding exception handler)
 E ← e
 end if
 end forall

end readGraphElements

31

UML Activity Diagram. Each basic block that ends in a conditional/compound conditional

branch introduces the decision nodes in the diagram (decisionnodeN) and the target of the

decision form the targetList for the decisionnodeN. Basic blocks that could throw exceptions

caught by a local handler are visualized via control-flow edges from the basic block to the

entry-point of the local exception handler. For visual clarity, the control-flow edges to

exception handler blocks are shown as dashed arrows to differentiate from the normal control

flow edges. Table 3.8 gives the map function used to generate the UML Activity Diagram

entities.

Table 3.8. Algorithm to map graph elements to UML Activity Diagram entities

maptoUML: (N,E):ActivityDiagramEntities
 forall n ϵ N
 if n ϵ initialnodeN
 initialNodeUML ← n
 ActivityDiagramEntities ← initialNodeUML
 else if n ϵ callactionN
 callActionNodeUML← n
 ActivityDiagramEntities ← callActionNodeUML
 else if n ϵ decisionnodeN
 decisionNodeUML← n
 ActivityDiagramEntities ← decisionNodeUML
 else if n ϵ exitnodeN
 exitNodeUML← n
 ActivityDiagramEntities ← exitNodeUML
 end if
 end forall

 forall e ϵ E
 create new control flow edge
 EdgeUML ← e
 if e is marked as an exception handler edge,
 EdgeUML ← mark as dashed edge
 end if
 ActivityDiagramEntities ← EdgeUML
 end forall
end maptoUML

32

The UML Activity Diagram constructs identified include the Call Action nodes, the

control nodes that include Initial node, Final nodes, Decision nodes and the control flow

edges. We use a dataflow analysis technique to identify all possible control flows in the

control structure of the activity diagram by traversing them statically, (see Table 3.9). The

UML Diagram Layout generates a flow-chart like layout that contains Call Action nodes

ordered by the underlying bytecode offsets and the control flows between them.

Table 3.9. Dataflow analysis algorithm to statically identify all control flows

identifyControlFlows: (currentControlFlow, elementId)
 currentElement ← getDiagramElement(elementId)
 currentTop ← stack.peek()

 if currentElement is instanceof FinalNode
 record the currentControlFlow
 controlFlows ← currentControlFlow
 end if

 while true
 currentControlFlow ← currentElement

 if (currentElement contains a branch instruction ||
 currentElement has an exception handler)
 break;
 end if

 if currentElement is instanceof FinalNode
 record the currentControlFlow
 controlFlows ← currentControlFlow
 break;
 end if

 currentElement ← getDiagramElement(next elementId)
 end while

33

Table 3.9 continued

The Security-Aware View Generator further provides security-aware views of the

activity diagram. It takes an input security policy from the user and maps the policy to the

control flows depicted by the activity diagram. We detect all possible policy violations in the

control flows using the algorithm described below.

Our visualizer computes a function f:Q→2 S that maps each node qϵ Q in the control

flow graph to a conservative approximation of the set of security automaton states sϵ S that

 if currentElement contains a branch instruction
 add all its target bytecode offsets to the stack provided they
 have not been traversed before and recorded in currentControlFlow
 target ← elements containing target bytecode offsets
 if target ∉ currentControlFlow
 stack.push(target bytecode offsets)
 end if
 end if

 if currentElement has an exception handler
 add the exception handler block’s offset to stack
 stack.push(offset of exception handler)
 end if

 while stack.peek != currentTop
 identifyControlFlows (currentControlFlow, stack.peek())
 lastPopped ← stack.pop()
 remove everything upto and including the lastpopped element
 from the currentControlFlow
 end while

end identifyControlFlows

34

the node could assume during execution of the program. The computation involves obtaining

the least fixed point of the functional F defined by

F(f) = f ∪ {(q0,s0)} ∪ {(qʹ,δ(q,s)) | (q, qʹ)ϵ E, sϵ f(q)}

where q0 and s0 are the start states of the control flow graph and security automaton

(respectively), E⊆2Q×Q is the transition relation for the control flow graph, and δ:(Q×S)→S is

the transition function for the security automaton, which defines how each basic block

modifies the security state when executed. Our current dataflow analysis implementation is

intra-procedural; an inter-procedural extension is left for future work.

The visualizer then identifies sites of potential policy violations by identifying the

control-flow graph nodes qϵ Q for which there exists a security state sϵ (fix(F))(q) such that

(q,s)∉δ←. These are the states for which the security automaton has no transition, and that

therefore might exhibit a policy violation at runtime. These nodes q are therefore the sites

where an IRM will typically implement runtime security checks to detect and prevent

potential violations. The visualizer renders these nodes in a unique, user-specified color to

bring them to the attention of the user.

On the implementation level, we maintain a hashmap to record the possible security

states for each node q. We then iterate to discover the security states that the basic blocks

may transition into. The algorithm terminates when the fixed point is reached—i.e., when no

new security state transitions are detected for any node on a pass. Table 3.10 shows the

pseudocode used for the implementation of the fixed-point algorithm.

The security states identified for each node are depicted using a color code provided

by the user in the security policy. The color-coded control flows are provided to user on-

35

demand. A high-level color-coding for the control structure is included in the control flows

that show all possible security states, allowing a view of all the possible security violations.

Table 3.10. Pseudocode for implementation of fixed point algorithm

 We use a test client-server application that causes information leakage over the

network to demonstrate the security-aware diagram generation. The security policy mapped

on the generated control structure prohibits any send operation once a read has been

performed. The visualizer generates the security-aware view of the control structure (see

Screen-shot 4) that maps the possible security states of the automaton that each control flow

block could enter, identifying the basic blocks where the security violation could result. The

identified security states (including the security violation) is depicted using a color code

FixedPoint: (Q, S):f
 while true
 track if an iteration over the nodes updates f
 node_state_changed ← false
 forall q ϵ Q
 compute all possible security states sϵS such that
 if (q, s)∉δ← ∧ (q, s)∉f
 f ← (q, #)
 node_state_changed ← true
 end if
 if (q, s) ϵ δ← ∧ (q, s)∉f
 f ← (q, s)
 node_state_changed ← true
 end if
 end forall
 if node_state_changed = false
 break;
 end if
 end while
end FixedPoint

36

applied to the UML Activity Diagram. The generated highlevel view of the control structure

(see Screen-shot 4) maps the possible security states of the automaton that each control flow

block could enter, identifying the basic blocks where the security violation could result. In

this case the yellow node indicates that the security automaton is in an initial state, the violet

nodes indicate that the security automaton may be in various different policy-adherent states

on various different runs, and the red node indicates a possible policy violation. The next

section discusses in detail, the generation of this security-aware view.

3.4.3 Example for security-aware UML Activity Diagram

To illustrate the generation of the security-aware UML Activity Digram, we use a

hand-written test client-server application whose control flow is simple enough to allow

manual inspection. We focus on the main method of the Client, which is responsible for

information leakage over the network. Further, we use a security policy that prohibits any

send operations over the network, once a read has been performed. The security-aware view

of the underlying control flows is generated by applying this security policy. We discuss in

further detail the approach explained in section 3.4.2, using this test client server application.

The application bytecode is parsed by the bytecode parser component of the

visualizer, to extract the basic blocks using the rules defined in section 3.4.2. Figure 3-5

shows the basic blocks identified for the main method of the client. These basic blocks form

the callactionN nodes of the graph. Each basic block that ends in a conditional branch

instruction introduces a decisionnodeN to the graph. The initialnodeN and exitnodeN are

identified as the start of the method and the return instruction. The set of control flow edges

E is identified.

37

Figure 3.5. Basic blocks identified for Client.main method

The UML Diagram creator maps the graph elements to the UML Activity Diagram

elements, callactionN are mapped to the call action nodes, the initialnodeN, exitnodeN and

decisionnodeN are mapped to the control nodes of the activity diagram. The UML Diagram

layout generates a flow-chart like layout based ordered by the underlying bytecode offsets.

The security policy defined for avoiding the information leakage is then applied to the

generated control flow. The main method of the client contains a loop, offsets 70, 71 form

the loop condition and the loop body is from offset 21 through 67 (see Figure 4). We can see

that the loop body includes a send operation (at offset 38) followed a read operation (at offset

0: new
3: dup
4: invokespecial ClientSocket.<init> ()V (18)
……
17: istore_2
18: goto #70

21: aload_1
……
38: invokevirtual ClientSocket.send (Ljava/lang/String;)V (40)
……
53: ldc "C:/Data/test.txt" (51)
55: invokestatic Client.read (Ljava/lang/String;)Ljava/lang/String; (53)
......
67: iinc %2

70: iload_2
71: ifgt #21

74: aload_1
75: invokevirtual ClientSocket.closeSocket ()V (65)
78: return

38

55). The security policy mapped on the generated control structure prohibits any send

operation once a read has been performed. This could result in a policy violation for control

flows that execute two or more iterations of the loop body. The fixed-point algorithm

computes the set of possible security states that could be reached by each of the basic blocks

over the entire iterations of the loop. The function f computed by fixed point algorithm is,

f = {(basicblock1, {0}), (basicblock2, {0,1,#}), (basicblock3, {0,1}), (basicblock4, {0,1})}

As we can see the set of security states identified for basicblock2 includes the initial state 0,

when the loop body is not executed even once, the state 1 relates to the scenario where the

loop body is executed exactly once and finally the error state # is identified for the possible

scenario of the loop body being executed more than once (resulting in a security violation).

A high level view of the control structure is generated by mapping the function f

computed by the fixed point algorithm to the color codes defined in the security policy by the

user (see Screen-shot 4). In this case we use the color coding, yellow to depict security state

0, red depicts the error state representing a possible security violation and violet indicates

that the security automaton may be in various different policy-adherent states. This color-

code applied to the generated UML Activity Diagram hence provides the security-aware

dynamic view that identifies all possible security violations for the given policy.

3.5 Tool Support

The Visualization Framework is built on top of the Eclipse plug-in architecture. A

plug-in is the smallest modular unit in Eclipse that contributes to functionality. Plug-ins can

specify extension points that define the point where additional functionality can be extended

by other plug-ins, [11]. Other plug-ins specify the extensions that implement this additional

functionality. Figure 3.6 shows the plug-ins that compose the visualization framework. The

39

UDV is the main, high-level plug-in that controls the creation of various diagrams and

navigation between them. This plug-in defines the extension points to add the functionality of

generation and display of the diagrams. The level 2 plug-ins—ClassDiagram,

ActivityDiagram and ByteCodeViewer—provide the extensions to generate the various

diagrams and views.

 Figure 3.6. Platform Architecture

UDV plug-in: This plug-in is the Controller for the visualization tool. It is the main

application that implements the IApplication interface and provides the main entry point to

the tool. It uses the Eclipse platform runtime but controls the execution of the tool by itself.

In addition it also includes a tree widget that allows the user to load the low-level bytecode,

generate diagrams on-demand and navigate between the diagram views. This plug-in

provides the extension points to extend the generation and display of the various diagrams.

The level-2 plug-ins extend the functionality of generating the diagram views. They

form the view engines required for the generation of the visual models. These plug-ins

Eclipse Platform

Workbench

Workspace

Eclipse Runtime

JFace SWT

UDV

ClassDiagram

ByteCodeViewer

Visualizer

ActivityDiagram

40

contain three main components: ByteCodeReader, Entities, and Views (Figure 3.7). The

ByteCodeReader component provides the parser for the low-level bytecode; it parses the

bytecode using the BCEL api’s to extract the required information about the application

structure. The Entities component encapsulates the graphical specifications for drawing the

diagram entities as per the UML standard. The Views component provides the engine to

integrate the data from the parser, identify the UML diagram entities, generate and layout the

corresponding UML Diagram View.

Figure 3.7. Conceptual components for diagram generation

ClassDiagram plug-in: This plug-in implements the Static Views Engine of the framework. It

extends the functionality of generation of the diagram view for the UML Class Diagram

using the automatic layout algorithm described earlier. The plug-in also provides the

functionality to select, drag and drop diagram elements, to modify and refine the generated

automatic layout manually. It further allows the reset or auto-adjust to original layout. In

addition, the plug-in provides the functionality to compare the structures of two applications

from their bytecode. This allows original and IRM-modified bytecode to be compared

automatically, revealing how policy enforcement will tend to affect program structure. The

41

components of this plug-in are structured as shown in Figure 3.8. ClassDiagramVisualizer

class forms the main views engine. ByteCodeReader class contains the bytecode parser.

ToolTipHandler provides a custom SWT ToolTip implementation to provide a point-and-

click mechanism to view underlying bytecode of the Class Elements. The Diagram class

provides the container for all the diagram elements that constitute a UML Class Diagram.

Figure 3.8. Structural view of the Class Diagram plug-in.

ActivityDiagram plug-in: This plug-in implements the Dynamic Views Engine of the

framework. It extends the functionality of representing the control flow in a method as a

42

UML Activity Diagram. It further generates the security-ware dynamic views as described

earlier, to validate the prototype policy written for the control flow by mapping the security

automaton to the generated control structures. Each node in the diagram depicts a color-

coded visual cue to the possible security state in the security automaton. The control flows

are statically identified and visualized and all possible security violations are depicted. The

plug-in is structured as shown in Figure 3.9.

Figure 3.9. Structural view of the Activity Diagram plug-in.

The ActivityDiagramVisualizer composes the main views engine to create and layout the

UML Activity Diagram Views. The ByteCodeReader class provides the bytecode parser that

43

identifies the BasicBlocks in the underlying code. A ToolTipHandler is provided to

implement the point-and-click mechanism to view the bytecode instructions contained in

each basic block. The Diagram class acts as the container for all diagram elements that

constitute a UML Activity Diagram.

ByteCodeViewer plug-in: provides a view of the bytecode that is analyzed, at class-level and

method-level. This provides a fast and easy access to the entire bytecode for the user’s

convenience.

Given the plug-in architecture, the visualization framework can be easily extended to

add further custom diagrams related to the security specifications. It also provides for ease of

adoption of the tool as plug-in perspective in the eclipse SDK or use as a standalone rich

client desktop application. Further it does not require any special set-up, the only requirement

being a java runtime environment.

3.6 Discussion

The visualization framework adheres to most of the quality attributes and functional

requirements identified for software visualization [5]. A summary of the framework support

for these has been demonstrated; see Table 3.11, Table 3.12.

Table 3.11. Quality Attributes for a software visualization tool

Quality Attribute Support in our framework

Rendering scalability The framework generates diagram views with small

response time, and we found that the rendering speed scaled

well to a medium-scale application with about 17 classes.

44

Table 3.11 continued

Information scalability There is a limited amount of information displayed per view,

and more information is accessible via point-and-click

interaction.

Interoperability As an Eclipse plug-in, the tool can be easily integrated with

existing Java development environments or executed as a

standalone application.

Customizability Views can be customized via user-specified color-coding,

drag-and-drop, and additional Eclipse plug-in extensions.

Interactivity The tool is explorative in nature, showing different security-

aware views on demand.

Usability Provides an easy-to-use interface to users.

Adoptability It is Eclipse-compatible and requires only a standard Java

runtime environment.

Table 3.12. Functional Requirements for a software visualization tool

Functional

Requirements
Support in our tool

Views The framework provides separate views of the system to analyze

the static structure of the underlying application and to view the

control-flows of individual methods.

45

Table 3.12 continued

Code Proximity The underlying bytecode of the application is available to the user

at both class and method levels from all generated diagram views.

This is achieved via a built-in bytecode viewer accessed by point-

and-click. This provides for traceability and code proximity

between the generated diagram view elements and their

underlying bytecode.

Abstraction An abstraction level is achieved by denoting the low-level

bytecode as high-level elements of a control-flow in a class

method or as class structures of the application. This is essential

for quickly identifying pertinent code features and structures at a

high level and then examining their details at a lower level.

Search Could be a possible enhancement for the tool.

Filters Could be a possible enhancement for the tool.

Automatic layouts The tool uses a hierarchical layout for the class diagrams, along

with ability to manually change the layout using a selection tool to

drag and drop diagram elements on the diagram view.

Undo/History Since the tool provides static analysis visualization, there is no

edit operation for the user.

46

3.7 Screenshots

Figure 3.10. Screen-shot 1: Security aware UML Class Diagrams generated for the original
and re-written application bytecode.

47

Figure 3.11. Screenshot 2: UML Class Diagram generated for Client-Server application.

48

Figure 3.12. Screenshot 3: UML Activity Diagram generated, showing exception handlers.

49

Figure 3.13. Screenshot 4: UML Activity Diagram generated, with all possible control flows
mapped to a security policy.

50

Figure 3.14. Screenshot 5: ByteCode view for viewing the underlying bytecode.

51

CHAPTER 4

VALIDATION

The visualization framework was validated using test applications. The static views

engine as first tested using a medium-sized file-browsing application consisting of 17 classes.

The visual class model produced by the static views engine was manually validated against

the original source code of the test application.

We then validated the security-aware features of the static view using a test application

that divulges a confidential file by sending its content over the network. We used the SPoX

IRM system [6] to enforce a policy that prohibits write-access to the Java Socket library once

a confidential file has been accessed. The class structures of the original, unsafe application

bytecode and the SPoX-modified bytecode were then compared using the visualization

framework. The new security class injected by the IRM was identified and highlighted in the

visual model (see Screenshot 1).

To validate the output of the dynamic views engine, we enforced the same policy on a

smaller, hand-written client-server application whose control-flow structure is simple enough

to allow manual inspection. (see Appendix B for details of the specification of the security

policy) The compiled bytecode was then used to generate UML diagram views using our

framework. These diagram views were manually validated against the application class

structures and control-flows. After the policy was applied, our visualizer generated security-

aware control flows for the client application. These were manually inspected to confirm that

52

policy-violating instructions (i.e., network-send operations that could execute after file-read

instructions) were correctly identified by the visual model (see Screenshot 3).

53

CHAPTER 5

CONCLUSION AND FUTURE WORK

We have introduced a security-aware, bytecode visualization framework that facilitates

fast and easy prototyping and analysis of IRM security policies and their implementations.

This is the first approach to address this concern. Experiments show that the framework,

implemented as a prototype tool, can generate visual diagrams and identify code points

where possible security violations could occur at runtime. Without an automated tool, such

analyses are extremely difficult and time-consuming even for experts, since they involve

manually understanding an application's binary structure, its possible control-flows, and its

potentially security-relevant operations. Rapid development and prototyping of candidate

security policies is therefore typically impractical without such a tool.

A number of limitations have been identified in the visualization framework. With

respect to the UML diagrams created, for example, the framework does not support reverse

engineering to the complete, standard definitions of UML class and activity diagrams. The

current subset has been adequate for the example applications used in the validation, but may

need to be extended in the future. In addition, the securityaware color coding scheme used

has not been rigorously defined as a UML extension, such as a profile or a stereotype. The

graph based algorithms to create the diagrams also need to be systematically defined and

analyzed.

The approach taken to identify the possible security violations may include false positives,

wherein some unreachable control-flows are identified as possible sources of policy

54

violations. However, the approach does not suffer from false negatives, conservatively

detecting all possible security violations. The framework can be easily extended to provide

further support for visualization with respect to security, including extended debugging

functionality and support for visual modeling. These are avenues we intend to explore in

future work.

55

APPENDIX A

Source code for Client.java from test Client-Server Application:

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;

public class Client {

 public static void main(String[] args) {
 ClientSocket cs = new ClientSocket();
 cs.createSocket("Test", 7);
 int i = 3;
 while(i>0){
 System.out.println("echo: " + read("C:/Data/test.txt"));
 cs.send("client: "+i);
 i--;
 }
 cs.closeSocket();
 }

 public static String read(String path) {
 String contents = null;
 try {
 File file = new File(path);
 BufferedReader input = new BufferedReader(new
FileReader(file));
 String line = null;
 while((line=input.readLine())!=null){
 if(contents==null){
 contents = line+"\n";
 }
 else{
 contents.concat(line+"\n");
 }
 }
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return contents;
 }

}

56

Source code for ClientSocket.java

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.Socket;
import java.net.UnknownHostException;

public class ClientSocket {
 Socket mySocket = null;
 PrintWriter out = null;
 BufferedReader in = null;

 public void createSocket(String host, int port) {
 try {
 mySocket = new Socket(host, port);
 out = new PrintWriter(mySocket.getOutputStream(), true);
 in = new BufferedReader(new
InputStreamReader(mySocket.getInputStream()));
 }

catch (UnknownHostException e) {
 e.printStackTrace();
 }

catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void closeSocket() {
 try {
 out.close();
 in.close();
 mySocket.close();
 }

catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public void send(String data) {
 out.println(data);
 }

 public String receive() {
 String data=null;
 try {
 data = in.readLine();
 }

catch (IOException e) {
 e.printStackTrace();
 }
 return data;
 }
}

57

Bytecode for Client.main from test Client-Server Application:

Code(max_stack = 4, max_locals = 3, code_length = 79)
0: new <ClientSocket> (16)
3: dup
4: invokespecial ClientSocket.<init> ()V (18)
7: astore_1
8: aload_1
9: ldc "Test" (19)
11: bipush 7
13: invokevirtual ClientSocket.createSocket (Ljava/lang/String;I)V (21)
16: iconst_3
17: istore_2
18: goto #70
21: getstatic java.lang.System.out Ljava/io/PrintStream; (25)
24: new <java.lang.StringBuilder> (31)
27: dup
28: ldc "echo: " (33)
30: invokespecial java.lang.StringBuilder.<init> (Ljava/lang/String;)V (35)
33: ldc "C:/Data/test.txt" (38)
35: invokestatic Client.read (Ljava/lang/String;)Ljava/lang/String; (40)
38: invokevirtual java.lang.StringBuilder.append (Ljava/lang/String;)Ljava/lang/StringBuilder; (44)
41: invokevirtual java.lang.StringBuilder.toString ()Ljava/lang/String; (48)
44: invokevirtual java.io.PrintStream.println (Ljava/lang/String;)V (52)
47: aload_1
48: new <java.lang.StringBuilder> (31)
51: dup
52: ldc "client: " (57)
54: invokespecial java.lang.StringBuilder.<init> (Ljava/lang/String;)V (35)
57: iload_2
58: invokevirtual java.lang.StringBuilder.append (I)Ljava/lang/StringBuilder; (59)
61: invokevirtual java.lang.StringBuilder.toString ()Ljava/lang/String; (48)
64: invokevirtual ClientSocket.send (Ljava/lang/String;)V (62)
67: iinc %2 -1
70: iload_2
71: ifgt #21
74: aload_1
75: invokevirtual ClientSocket.closeSocket ()V (65)
78: return

58

APPENDIX B

Security policy specification:

The security policy input to the visualizer is converted to a simplified non-deterministic

version of the original policy. The original security automaton for the security policy that

prohibits information leakage over the network is given as below.

Security automaton for the prototype policy used

The simplified deterministic version of the security automaton, introduces an error state #

representing the occurrence of the specified security violation.

Deterministic automaton for the security policy

0 1

send read

read

send

0 1

send ⌐send

read

59

The text-based version of the automaton that is input to the tool: The first four lines of the

text-based specification define the security states of the automaton and the corresponding

color code to be used for each of them. The next four lines define the various security state

transitions in the security automaton on the specific security-relevant operations of the

bytecode.

0 255,255,156

1 204,255,156

-99 204,100,100

++ 204,153,204

0 0 call ClientSocket.send

0 1 call Client.read

1 1 call Client.read

1 -99 call ClientSocket.send

Text-based security policy for information leakage

60

REFERENCES

[1] T. Thibodeaux, .End user IT security training can save billions,. IndustryWeek, May

2009.

[2] J. Ligatti, L. Bauer, and D. Walker, .Run-time enforcement of nonsafety policies,. ACM

Transactions on Information and System Security, vol. 12, no. 3, January 2009.

[3] F. B. Schneider, .Enforceable security policies,. ACM Transactions on Information and

System Security, vol. 3, no. 1, pp. 30.50, February 2000.

[4] U. Erlingsson and F. B. Schneider, .SASI enforcement of security policies: A

retrospective,. in Proc. New Security Paradigms Workshop, September 1999, pp. 87.95.

[5] F. Chen and G. Rosu, .Java-MOP: A monitoring oriented programming environment for

Java,. Lecture Notes in Computer Science, vol. 3440, pp. 546.550, 2005.

[6] K. W. Hamlen and M. Jones, .Aspect-oriented in-lined reference monitors, . in Proc.

ACM Workshop on Programming Languages and Analysis for Security, 2008.

[7] B. Gruegge and A. H. Dutoit, Object-Oriented Software Engineering: Using UML,

Patterns and Java, 2nd ed. Prentice Hall, 2004.

[8] J. Arlow and I. Neustadt, UML 2 and the Uni_ed Process: Practical Object-oriented

Analysis and Design, 2nd ed. Addison-Wesley, June 2005.

[9] P. Kouznetsov, .JAD: The fast Java decompiler,. http://www.kpdus.com/ jad.html.

[10] Ahpah Software, Inc., .The SourceAgain decompiler,.

http://www.ahpah.com/products.html.

[11] The Eclipse platform,. http://www.eclipse.org.

61

[12] International Business Machines, .IBM software architect,. http://www-

01.ibm.com/software/awdtools/swarchitect.

[13] H. M. Kienle and H. A. Müller, .Rigi: An environment for software reverse engineering,

exploration, visualization, and redocumentation,. Science of Computer Programming, vol.

75, no. 4, pp. 247.263, April 2010.

[14] G. Conti, E. Dean, M. Sinda, and B. Sangster, .Visual reverse engineering of binary and

data files,. Lecture Notes in Computer Science, vol. 5210, pp. 1.17, 2008.

[15] Byte code engineering library,. http://jakarta/apache/org/bcel/index.html.

[16] H. M. Kienle and H. A. Müller, .Requirements of software visualization tools: A

literature survey,. in Proc. 4th IEEE International Workshop on Visualizing Software for

Understanding and Analysis, June 2007.

[17] J. Seemann, .Extending the Sugiyama algorithm for drawing UML class diagrams:

Towards automatic layout of object-oriented software diagrams,. Lecture Notes in Computer

Science, vol. 1353, pp. 415.424, 1997.

[18] Compilers- principles, techniques and tools, Alfred Aho, Ravi Sethi, Jeffery Ullman.

VITA

Aditi A. Patwardhan was born to Swati Patwardhan and Abhijit Patwardhan in Pune, India,

where she did most of her schooling. In 2006, she graduated from the Univerysity of Pune

with a Bachelors degree in Computer Science. Soon she joined Infosys Tecnologies ltd as an

early career Software Engineer. After working at Infosys for about 22 months, she joined the

University of Texas, Dallas in fall 2008 to pursue Master of Science in Computer Science.

She is getting married to her fiancé Ashutosh Watway and plans to move to her hometown

Pune with him.

