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Abstract

The traditional CAPM approach argues that only market risk should be incor-
porated into asset prices and command a risk premium. This result may not hold,
however, if some investors can not hold the market portfolio. For example, if one
group of investors fails to hold the market portfolio for exogenous reasons, the
remaining investors will also be unable to hold the market portfolio. Therefore,
idiosyncratic risk could also be priced to compensate rational investors for an in-
ability to hold the market portfolio. A variation of the CAPM model is derived to
capture this observation as well as to draw testable implications. Under both the
Fama and MacBeth (1973) and Fama and French (1992) testing frameworks, we
find that idiosyncratic volatility is useful in explaining cross-sectional expected
returns. We also discover that returns from constructed portfolios directly co-vary
with idiosyncratic risk hedging portfolio returns.
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Idiosyncratic Risk and Security Returns

Abstract

The traditional CAPM approach argues that only market risk should be incorporated
into asset prices and command a risk premium. This result may not hold, however, if some
investors can not hold the market portfolio. For example, if one group of investors fails
to hold the market portfolio for exogenous reasons, the remaining investors will also be
unable to hold the market portfolio. Therefore, idiosyncratic risk could also be priced to
compensate rational investors for an inability to hold the market portfolio. A variation of
the CAPM model is derived to capture this observation as well as to draw testable impli-
cations. Under both the Fama and MacBeth (1973) and Fama and French (1992) testing
frameworks, we find that idiosyncratic volatility is useful in explaining cross-sectional ex-
pected returns. We also discover that returns from constructed portfolios directly co-vary
with idiosyncratic risk hedging portfolio returns.



Introduction

The usefulness of the well-celebrated CAPM theory of Sharpe, Lintner, and Black to predict
cross-sectional security and portfolio returns has been challenged by researchers such as Fama
and French (1992, 1993). It is still debatable, however, whether Fama and French’s empirical
approach has invalidated the CAPM (see, for example, Berk, 1995; Ferson and Harvey, 1991;
Kothari, Shanken, and Sloan, 1995; Jagannathan and Wang, 1996; and Loughran, 1996).
Moreover, as Roll (1977) has pointed out, it is difficult, if not impossible, to devise an adequate
test of the theory. Nevertheless, financial economists have worked in several directions to
improve the theory of asset pricing. The first route has involved relaxing the underlying
assumptions of the model, including the introduction of a tax effect on dividends (e.g., Brennan
(1970)), non-marketable assets (e.g., Mayers (1972)), as well as accounting for inflation and
international assets (e.g., Stulz (1981)). A second route has been to extend the one period
CAPM to an intertemporal setting (e.g., Merton, 1973; Lucas, 1978, Breeden, 1979, and Cox,
Ingersoll and Ross, 1985) to connect factors that affect consumption growth to asset returns.
Ross! (1976) has taken a different route by assuming that the stochastic properties of asset
returns are consistent with a factor structure. We accept the CAPM modeling environment
as a reasonable first order approximation, but find that idiosyncratic risk might play a role

under certain plausible conditions.

Starting from mean variance analysis, the traditional CAPM theory predicts that only
market risk should be priced in equilibrium; any role for idiosyncratic risk is completely ex-
cluded through diversification. CAPM must surely hold if investors are alike and can hold a

combination of the market portfolio and a risk-free asset as the theory prescribes. In real-

T Also see, for example, Chamberlain and Rothschild, 1983; Chen, Roll, and Ross, 1986; Connor, 1984;
Connor and Korajczyk, 1988; Dybvig, 1983; Lehmann and Modest, 1988; Shanken, 1982; and Shukla and
Trzcinka 1990).



ity, however, institutional investors will often deliberately structure their portfolios to accept
considerable idiosyncratic risk in an attempt to obtain extraordinary returns. Even in the
absence of unusual cases such as Enron and WorldCom, these investors fully appreciate the
importance of idiosyncratic factors in affecting the risk to which they are exposed. Therefore,
as Merton (1987) wrote in his AFA presidential address, “... financial models based on fric-
tionless markets and complete information are often inadequate to capture the complexity of
rationality in action.” When one group of investors — who we call “constrained” investors — is
unable to hold the market portfolio for various reasons, such as transactions costs, incomplete
information, and institutional constraints such as, taxes, liquidity needs, imperfect divisibility
of securities, taxes, restrictions on short sales, and so on, the remaining investors — labeled as
“free” or “unconstrained” investors — will also be unable to hold the market portfolio. This
is so because it is the total holdings from the two groups of investors that make up the whole
market. Since the relative per capita supply will be high for those stocks that the constrained
investors only hold in very limited amounts, the prices of these stocks must be relatively low.
In other words, an idiosyncratic risk premium can be rationalized to compensate investors for
the “over supply” or “unbalanced supply” of some assets. An inability to hold the market
portfolio will force investors to care about total risk to some degree in addition to the market

risk.

Still another intuition can be gained in terms of diversification. Suppose the actual market
portfolio consists of only tradable securities. In other words, the market portfolio is observable
and measurable. If some investors are constrained from holding all securities, the “available
market portfolio” that unconstrained investors can hold will be less diversified than the ac-
tual market portfolio. When individual investors use the available market portfolio to price
individual securities, the corresponding risk premia tend to be higher than those under the

CAPM where all investors are able to hold the actual market portfolio. This is because some



of the systematic risk would be considered as idiosyncratic risk relative to the actual market

portfolio. Hence, idiosyncratic risk would be priced in the market.

Based on the above intuition, we will build a simple CAPM type of model to see what
kind of idiosyncratic risks might be priced in order to motivate our empirical investigation.
Although the static CAPM is rejected in almost all the empirical studies, “the CAPM is
wanted, dead or alive” (see Fama and French 1996). First, it is the CAPM that establishes
the role of the market factor in asset pricing. In fact, the market factor captures the most
variations in individual securities over time compared to other known factors or proxies.
Second, despite the fact that other factors such as size and book-to-market are important in
explaining security returns, they do not exist in the CAPM world. Therefore, by focusing on
the CAPM environment, we are able to study under what condition idiosyncratic risk might
play a role in asset pricing independent of these other factors. In fact, both the model and
the empirical results suggest that it is the “undiversified” idiosyncratic risk that explains the

cross-sectional difference in equity returns.

The role of idiosyncratic risk in asset pricing has been studied in the literature to some
extent. Most theoretical papers have focused on the effect of idiosyncratic (or uninsurable)
income risk on asset pricing (see for example, Heaton and Lucas (1996), Thaler (1994), Aiya-
gari (1994), Lucas (1994), Telmer (1993), Franke, Stapleton, and Subrahmanyam (1992), and
Kahn (1990)). Based on assumptions similar to ours, Levy (1978) derived a modified CAPM
that revealed a possible bias in the beta estimator as well as a possible role for idiosyncratic
risk. In contrast, our model demonstrates an explicit role of idiosyncratic risk in asset pric-
ing. Furthermore, we show that the beta estimator will be unbiased if idiosyncratic risk is
appropriately account for. Perhaps the paper most relevant to our study is Merton (1987).

Starting from a single factor structure of returns, he assumes that investors can only invest in



securities where they have exact information about the expected returns, beta loadings, and
volatilities. This assumption seems to be unduly restrictive. Although both the Merton model
and ours yield simular pricing implications, our model is less restrictive and more general in
two respects. First, we do not require that idiosyncratic returns are uncorrelated across indi-
vidual stocks. If this condition is imposed, our model will reduce to that of Merton (1987).
Second, we demonstrate that the price of idiosyncratic risk for an individual stock depends
on its correlation with the aggregated undiversified idiosyncratic return. This motivates the

construction of the return proxy for the idiosyncratic risk used in our time series study.

On the empirical front, Douglas (1969) is perhaps the first study that considers the role
of idiosyncratic risk. He concluded that residual variance was also priced based on a single
cross-sectional regression using average returns.”? Fama and MacBeth’s (1973) important
study both rejected the role of idiosyncratic risk in the CAPM and provided a more powerful
cross-sectional test. Lehmann (1990), however, studied the significance of residual risk in
the context of statistical testing methodology. Some indirect evidence regarding the role of
idiosyncratic risk has also surfaced. Falkenstein (1996) found some evidence that the equity
holdings of mutual fund managers appeared to be related to idiosyncratic volatility. Using
Swedish government lottery bonds where the underlying risk is idiosyncratic by construction,
Green and Rydqvist (1997), find that bond prices appear to reflect aversion to idiosyncratic
risk. Bessembinder (1992) finds strong evidence that idiosyncratic risk was priced, looking at
a cross-section of foreign currency and agricultural futures. In studying the volatility linkage
between national stock markets, King, Sentana, and Wadhwani (1994) have provided evidence
that idiosyncratic economic shocks are priced and that the ‘the price of risk’ is different across

stock markets. The time series pricing implications of idiosyncratic volatility have also been

2Miller and Scholes (1972) suggested that several sources of bias may exist including omitting the risk-free
rate, errors in beta measures, and correlation between betas and residual variances. They claimed that the
errors-in-variables issue is especially important.



studied by Goyal and Santa-Clara (2003). They find a significant positive relationship between

average idiosyncratic volatility and the return on the market.

Since most empirical evidence supporting the role of idiosyncratic risk from early studies
in asset pricing was disregarded after the comprehensive study by Fama and MacBeth (1973),
we start our empirical study by replicating the Fama and MacBeth study and extending it
to different settings and sample periods. In addition, we also consider Fama and French’s
(1992) framework. The empirical results support our model by showing that (1) idiosyncratic
volatility by itself is important in explaining cross-sectional expected return differences; (2) its
explanatory power does not seem to be taken away by other variables, such as size, book-to-
market, and liquidity; and (3) the findings are robust to Japanese stock return data. Recently,
Ang, Hodrick, Xing, and Zhang (2003) provide empirical evidence suggesting that individual
stock returns are negatively related to idiosyncratic volatility estimated using daily returns

over a short period of time.3

The paper is organized as follows: A simple CAPM type of model with some constrained
investors is constructed in the first section. After studying the implications of the model,
we discuss issues related to empirical testing and data construction in section 2. Section 3
presents cross-sectional evidence in the spirit of Fama and MacBeth (1973) and Fama and
French (1992). Times series evidence concerning the role of idiosyncratic volatility is briefly

discussed in Section 4. Section 5 presents concluding comments.

3The results might subject to “errors-in-variables problem” when fitting a market model to a short sample
of individual daily stock returns. This is one of the major concerns in Fama and French (1992) even when
monthly returns are used, which leads to the use of portfolio estimates. In contrast, we use “undiversified
idiosyncratic” volatility, which not only reduces the “error-in-variables” problem but also bears theoretical
support.



1 The basic model and its implications

The Capital Asset Pricing Model is an equilibrium model in which the demand for equity
securities is determined under a mean-variance optimization framework. The market clearing
condition then equates demand and the exogenous supply to achieve equilibrium. Since it
is assumed that investors are homogenous and are able to hold every asset in the market
portfolio, their holdings will be similar in equilibrium. As a result, investors’ holdings of
risky stocks will comprise shares held in proportion to the market portfolio, which is a value-
weighted portfolio of all the securities available for investment. In other words, the market
portfolio is always feasible and will be the only portfolio held in equilibrium. Such an available
market portfolio will be altered, however, whenever a group of investors does not or cannot

hold every stock for the following reasons.

First, transactions costs are likely to prevent individual investors from holding large num-
bers of individual stocks in their portfolios. In fact, Hirshleifer (1988) has predicted that
trading costs limit the participation of some classes of traders in commodity futures markets
and that idiosyncratic risk will be priced cross-sectionally. Furthermore, more than half of
the U.S. households have accounts with brokerage firms. Because of limited resources or their
desires to exploit the unique characteristics of individual stocks, these investors normally only
hold a handful of stocks.* In addition, as Hirshleifer (2001) has pointed out that “there is also
experimental evidence that investors sometimes fail to form efficient portfolios and violate
two-fund separation.” Also, in order to provide financial incentives for their employees, many
companies now grant stock options or restricted stock to match the employee contributions

to 401K retirement plans with company stock. In general, such employees are constrained

4One may argue that the idiosyncratic volatility of a portfolio is close to zero when there are more than 20
stocks. However, this conclusion is based on a random sampling. In reality, investors do not randomly select
their stocks. In addition, Campbell, Lettau, Malkiel, and Xu (2000) have shown that a well-diversified portfolio
must have 50 or more stocks in recent decades because idiosyncratic volatility has increased.



from liquidating their positions or to hedge the stocks of their own firms, hence they tend to
hold very unbalanced portfolios.® Moreover, some stock traders and market makers hold large

positions in individual stocks.

Finally, despite the fact that there are several thousand actively managed mutual funds
and pension funds, these funds typically do not hold a market portfolio even though they are
able to do 0.5 Moreover, Day, Wang, and Xu (2000) have demonstrated that the portfolios of
equity mutual funds are not even mean-variance efficient with respect to their holdings. These
“active” portfolio managers are able to obtain large management fees because they claim to be
able to find “undervalued” securities and hence offer investors the possibility of risk-adjusted
returns superior to the market averages. While there is no evidence that they can achieve this
goal even before expenses (see Jensen (1968) and Malkiel (1995)), they do affect the relative
supply of stocks available for other investors. Equity mutual funds hold portfolios comprising
almost one-third of the total capitalization of the U.S. stock market, and thus they have the
potential to alter the supply of securities available to other investors in an important way.
The fact that investors are willing to pay the high costs to invest in non-indexed mutual funds
indicates that they do not choose to allocate their portfolios between a market portfolio and

a risk-free asset as the CAPM theory assumes.

Behavioral finance provides additional insights that help to explain why institutional in-
vestors may be sensitive to idiosyncratic risk of individual securities even though such volatility
can be diversified away. The prospect theory of Kahneman and Tversky (1979) makes clear

that the major force influencing the decisions of investors is loss aversion. Mutual fund man-

5This practice is particularly prevalent in high technology industries.

SInstitutional investors are more likely to purchase index funds than are individual investors. A proximately
10 percent of the mutual funds held by individuals were indexed in 2003 while about one third of institutional
funds were indexed. Thus, the vast majority of investors do not hold the market portfolio. According to one
survey, about 15% of individual investors only held one stock in their account and an average investor only
owned about three stocks.



agers, pension fund managers and other institutional investors are usually required to report
quarterly to their directors, trustees, etc., on their recent investment performance. That re-
port typically includes a discussion of the best and worst performing stocks in their portfolios.
Even if balanced by favorable performance in other parts of the portfolio, it is extraordinarily
difficult to explain why the manager bought and held those stocks, that declined sharply in
value. Trustees and directors are quite likely to ask the indelicate question of the manager,
“How could you have held WorldCom or Enron as these common stocks had lost essentially
all of their value?” Trustees and directors are unlikely to be sympathetic to arguments that
idiosyncratic factors (accounting fraud, unexpected industry overcapacity, etc.) are valid ex-
cuses for such investment errors. It is reasonable, therefore, to believe that stocks that are

sensitive to substantial idiosyncratic risks may be subject to additional risk premiums.

There is no doubt, therefore, that not every investor is willing or able to hold the market
portfolio. Indeed, even index funds that attempt to replicate the very broad market indexes,
such as the Wilshire 5000 and Russell 3000, do not hold all the stocks in the index in order
to minimize transactions costs. To what extent this distortion will affect the CAPM is purely
an empirical question. Our approach is not to conduct a direct investigation of the portfolio
holdings of investors. Instead, we will take as given that investors are unable to hold the

market portfolio. Starting from there, we investigate the consequences.

1.1 Asset returns in a traditional CAPM world

For ease of exposition, we assume that there are three risky stocks denoted a, b, and ¢ that
generate a return vector R = [R,, Ry, R.]' and one riskless bond that pays interest rate r.
Not all of the stocks are necessarily on the traditional mean-variance efficient frontier. The

final result will not depend on the number of stocks assumed since we use vector notations.



The risk structure for the three stocks is represented by their variance-covariance matrix of
2
Oq Oab Obc
returns, V.= | og a,? 0cq |- Fach investor has the following utility function,
2
Oca Obe O

W(W) = E(W) — %Var(W), (1)

where W represents future wealth and 7 is the coefficient of risk tolerance. This particular
utility function is consistent with the family of exponential utility functions when future
wealth has a normal distribution. If we denote X; = [z, b, Zc;] as investor j’s dollar
amount invested in the three stocks, utility maximization of equation (1) subject to a budget

constraint leads to the well-known demand function,
X, =7V (- 1), (2)

where p = E(R) is the vector of expected returns for individual stocks and r is the risk-free
rate. Although the risk structure (variance-covariance matrix) of individual stock returns is
given exogenously, the expected returns should be determined in equilibrium by total supply.
In other words, the equity market clears with the condition of Z;l X; = S, where S =
[Sa, Sp, Sc] is the total supply of individual stocks and n is the total number of investors. The

equilibrium expected returns in this unrestricted world can thus be written as,

1
p—rl= EVS' (3)

Following convention, we define the market portfolio as a = ﬁs, where M =S1' = S, +.5,+
Sc. Under this notation, the expected market return and market volatility can be expressed as

pm = ' and 02, = &’Va. Equation (3) can thus be converted into the traditional CAPM,

p—1rl=B(m —1), (4)

where 3 = [B4, Bb, Bc) = U%Va is the conventional measure of systematic risk. What makes

this single factor model a truly equilibrium model is the existence of an equilibrium market



portfolio, which is determined by the aggregate supply. Since the variance-covariance structure
and the total supply of stocks are common knowledge, this market portfolio can be constructed
by an econometrician even when there are limited investment opportunities.” The important
implication of equation (4) is that only systematic risk, represented by the scaled covariance
between individual stock returns and the market return, matters for valuation. Idiosyncratic
risk can be diversified away in this framework, and will not command a risk premium. In
the discussion that follows, we will use idiosyncratic volatility to measure idiosyncratic risk.
In light of equation (4), idiosyncratic volatility V. can simply be defined as the difference

between the total volatility and the market volatility,
V.=V -o0.088. (5)

1.2 Asset returns under an imperfect market portfolio

When some investors cannot or do not hold every security for the reasons discussed at the
beginning of the section, the CAPM will fail to hold. For ease of exposition, we assume that
there are three groups of investors. While the “free” investors in the second group have full
investment opportunities and can hold all securities, the first and the third groups of investors
are assumed to be constrained from holding the first and the third stocks, respectively. Follow-
ing the same steps, we can derive demand equations similar to equation (2) for representative

investors in each group as,

0 0
X(l) = T[ 1

X = 7V i (p—-rl),

"For illustrative purposes, if we assume that only the NYSE/AMEX/NASDAQ listed stocks form the
entire universe of investment assets, the conventional market index portfolio, such as the value weighted
NYSE/AMEX/NASDAQ index, is indeed the market portfolio and is observable to everyone. Since we will
study the effect of limited investment opportunities under such a scenario where we know the market portfolio,
Roll’s (1977) critique is inapplicable.

10



where

2 2
o Oab o Obe
Zab:l @ 02], and ZbC:l b 2].

Obe OF
If there are ni, ne, and n3 number of investors in the first, the second, and the third groups,

respectively, the market clearing condition leads to the following,
S =mX )+ n2X(9) +n3X(3) = nr[ms(Ve) ™+ 0oV (uf —r1), (6)
where p¢ is the vector of expected equilibrium stock returns in this constrained world, and

0o o . | 2, 0

)~1 is the aggregate variance-covariance matrix

perceived by constrained investors. 71,3 = (n1+mn3)/n is the proportion of constrained investors
and 73 = ny/n = 1—mny 3 is the proportion of “free” investors. The expected equilibrium return

vector pu¢ is then determined by the following equation,

1
pe—rl = E[m.g(V*)_l + VIS, (7)

Equation (7) says that in a constrained market, investors apply an altered variance-covariance
matrix [71.3(V.) ™t + 72V 17! to price stocks instead of using the true variance-covariance
matrix V of individual stock returns. In other words, a CAPM would have prevailed, had
the altered variance-covariance matrix represented the true risk structure. However, since the

risk structure is given, we should rewrite equation (7) alternatively as,

1 1
C_prl=— TV I°'s = —VsS,. 8
pe—rl=—Vms(V.) "V +nl e (8)

where S, is the effective supply. Therefore, equation (8) can be interpreted as if investors are

subject to an altered market portfolio (= Ss/*l ). In other words, a CAPM type of relationship
continues to hold with regard to the altered market portfolio in equilibrium. But the CAPM

relationship will not hold with respect to the actual total market portfolio.
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Equation (8) also suggests that the portfolio a is a tangency portfolio in the space of
(u, V). However, since we (the econometricians) do not know the distribution of investors
among different groups, it is impossible to construct such an altered market portfolio in em-
pirical studies. When investors price individual stocks with respect to the altered market
portfolio (a) available to them, the econometricians tend to find an imperfect CAPM. This
is because econometricians can only use the market return R,,! derived from the actual ob-
servable market portfolio weights a constructed from all of the outstanding shares of stocks,
that is R,,! = a@/R. The net effect is that some of the idiosyncratic risk with respect to the

actual observed market portfolio will be priced.
In order to illustrate the point, we rewrite equation (7) in the following way;

1
c_ 1 = — V—l _ V—l _ V—l —ls
pe—rl m[ n1.3( <)l

1
= VS + Biyy,, (9)
nTt nTt

where w (= [(I-V;1V)~t—n; 31]71S) is the supply adjustment. Equation (9) reveals that the
equilibrium expected returns will adjust both to the actual total supply, as in the traditional
CAPM, and to the supply adjustment from constrained investors. When the aggregate demand
from the constrained investors is large, as we suggest it is, substantial adjustments will be
required. Next, we multiply both sides of equation (9) by the actual market portfolio weights
«, that is,

M M M M
f—r=—aVa+—nsaVw, = —0o + —n1305,8w., (10)
nTt nT nTt nTt

Hm

where p,,f = o’p, is the observed expected market return, and w, = ﬁw is the relative
supply adjustment. Substituting equation (10) back into equation (9) and applying equation

(5), we have the following result,

T_ T_ 2
P! — 7 (" —7) /0

C—rl = + M p aVw,
H - ﬁl + n1 3wl 1+ m3w,B s

12



. t (MmT_T)/U?n _a~2na
= Blum' —71)+ Tt B m.3[Vws — Bo,, 0w,

= Bpm' — 1) + kdsrVews, (11)

where V. is the idiosyncratic volatility defined in equation (5), k = Tnmc&u—/ﬁ and dggr =
1.3% %

% are constant and the market Sharpe Ratio, respectively.
If we define the undiversified market wide idiosyncratic return with respect to equation

5) as €/ = €w,, equation (11) can be rewritten as,
m

s — 1 = Bi(pm —7) + Bripte, (12)

Cov(R;,el)

m

where B;; = Var(el)

represents the sensitivity coefficient of the market wide undiversified
idiosyncratic risk factor, and pe = kVar (el )dsg is the market wide undiversified idiosyncratic
risk premium that arises in our model because of the constrained investors. Similar to the

implication of Shanken’s (1982) model, what matters here is the covariance risk between

individual stocks return and the market wide undiversified idiosyncratic risk.

Equation (12) says that, if not all investors can hold a market portfolio, the expected
return of a stock will be determined not only by the observed market expected return through
the conventional beta measure, but also by an extra risk premium because some undiversified
idiosyncratic risk will be forced on investors by the constraints imposed. Of course, the
portfolio w, is unobservable to an econometrician, but we are able to construct an idiosyncratic
risk hedging portfolio in the spirit of Fama and French (1993) to approximate portfolio wi

and will briefly discuss our empirical findings in section 4.

Similar to the CAPM model, our model offers cross-sectional implications that can be
tested in an empirical study. Under the assumption of zero or close to zero pairwise correlations

among the idiosyncratic returns for individual securities (see for example, Dybvig, 1983; and

13



Grinblatt and Titman, 1983), i.e. Cov(e;, €;) = 0, equation (11) can be further simplified as,
pi == Bilpm' —r) + kdsrod,;, (13)

where &%i(: wma%i) can be interpreted as stock i’s undiversified idiosyncratic volatility and

of

i is the conventional measure of idiosyncratic volatility. The appearance of the Sharpe
Ratio, dggr, in addition to the idiosyncratic volatility makes perfect sense in this context. It

translates idiosyncratic risk into a comparable risk premium.

Equation (13) is useful in understanding the cross-sectional implications of the pricing of
idiosyncratic risk. It suggests that the differences among individual stocks’ expected returns
will be related not only to their firms’ systematic volatilities (), but also to the firms’ undi-
versified idiosyncratic volatilities. In other words, firms that are subject to large idiosyncratic
shocks will tend to have high expected returns. There are two difficulties in implementation of
equation (13). First, undiversified idiosyncratic volatility cannot be estimated directly. Sec-
ond, residuals of individual stocks with similar characteristics are correlated to some degree.®
However, if the pairwise residual correlations are similar within a group of stocks with simi-
lar characteristics, equation (11) suggests that the equal weighted portfolio residual variance,
which represents the undiversified idiosyncratic risk, can be used in (13) instead. This is the
approach that we will adopt in our empirical study. Our methodology has another advantage.
Since individual stocks’ betas are poorly estimated, as argued by Fama and French (1992),
one should use the portfolio beta assigned to individual stocks within the portfolio in order
to reduce the “errors-in-variables” problem. A similar argument can be made for idiosyn-
cratic volatility estimates since they depend on the beta estimates. Therefore, using portfolio
residual volatility not only is consistent with the model implication but also helps to reduce

potential bias.

8The average absolute value of correlations among residuals of individual stocks is about 0.33.
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2 The data and idiosyncratic risk proxies

Three data sets are employed in this study. The first data set is the COMPUSTAT tape,
which is primarily used to obtain the book values for individual stocks in the later part of the
study. The second data set is from the CRSP (Center for Research in Security Prices) tape,
which includes NYSE, AMEX, and NASDAQ stock returns. Since so many papers have been
written on testing the CAPM and most researchers rely on the CRSP tapes, there might be
a data snooping concern (Leamer, 1983, and Lo and MacKinlay, 1990). In order to address
this issue, we also examine the Japanese stock market for all stocks listed on the First and
Second Sections of the Tokyo Stock Exchange (TSE). The monthly individual stock returns
and annual financial statements (for book value of equity) data are from the PACAP Japan
database.? The period covered in this study is from 1975 to 2000. The total number of stocks

available varies from 1174 to 1607.

Our study covers both the Fama and MacBeth (1973) sample period from January 1935
to June 1968 and the extended Fama and French (1992) sample period from July 1963 to
June 2000. Since the Fama and MacBeth (1973) study was influential in dismissing the role
of idiosyncratic risk, it is important to know why the rejection occured. We begin our in-
vestigation by replicating their study using their choice of sample of NYSE stocks only. Like
Fama and MacBeth (1973), the whole sample period under consideration is divided into port-
folio formation, estimation, and testing periods. Empirical tests are performed on portfolios
by aggregating individual estimates into the corresponding portfolio estimates using equal

weights.!? According to Fama and MacBeth (1973), 20 portfolios are constructed based on

9We are grateful to Yasushi Hamao for providing the data.

10 As Miller and Scholes (1972) pointed out, the residual variance will bias the coefficient estimate of the beta
variable in an cross-sectional regression. Therefore, we only use the orthogonal part of the residual variance to
the beta variable in the cross-sectional regressions of Tables 5 and 6. However, we still use the original residual
variance in Table 4 in order to make our results comparable to the Fama and MacBeth (1973) study.
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each stock’s beta obtained from the seven-year portfolio formation period prior to the corre-
sponding estimation period.!' Portfolio betas and idiosyncratic volatilities are time varying
in the same way as in the Fama and MacBeth (1973) study. Despite the fact that we have
had tremendous advances in computing since Fama and MacBeth did their original study at
the beginning of 1970s and CRSP has made numerous changes and updates for their stock
files, we are able to replicate Fama and MacBeth’s (1973) 20 portfolios closely in terms of
average beta and idiosyncratic volatility estimates. (available upon request). Since the early
version of the CRSP tape is no longer available, it is impossible to trace the exact differences
but they are small. Given the fact that we are able to replicate their study, we are able to

ask if the number of portfolios used in the study matters in the next section.

The size variable is one of the most important variables studied in Fama and French (1992)
and has been widely used in recent research. We have also incorporated the size variable in
the Fama and MacBeth (1973) framework in the following way. Stocks are first sorted into
five size groups according to their market capitalization in the month prior to each testing
period. There is no particular reason to choose five size groups except for insuring that the
portfolios have sufficient numbers of stocks. Within each size group, stocks are then sorted

into ten beta portfolios as in the original study.

The essential characteristics for the 50 portfolios over the sample period from 1935 to 1968
are shown in Table 1. We report the average monthly returns for each of the 50 portfolios
sorted on both size and beta computed from a market model. In general, portfolio returns
decrease with the portfolio sizes except for the portfolio with the lowest beta and smallest size.

Portfolio returns also increase with portfolio betas. But this relation weakens when portfolio

" The first portfolio formulation period has only four years from 1926 to 1929. According to Fama and
MacBeth (1973), a security available in the first month of a testing period must also have data for all five years
of the preceding estimation period and for at least four years of the portfolio formation period. In order to
have comparable numbers of stocks selected for the first period, we require that each stock has at least three
years of data in the portfolio formation period.
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size increases and when betas are large. At the same time portfolio betas are monotonic
over both the beta group and the size group. Although these betas range from 0.64 to 1.72,
only one-quarter of the portfolios have betas less than one. It is also interesting to note
that portfolio size does not vary much across beta groups. In contrast, portfolio idiosyncratic
volatilities aggregated from the root mean squared residuals of individual stocks computed
from a market model, vary considerably both across the size groups and beta deciles. This
suggests that the idiosyncratic volatility variable may be more useful in explaining the cross-

sectional return difference than the size variable.

Insert Table 1

For the sample period from 1963 to 2000, as show in Table 2, the average log market
capitalizations of the 50 portfolios have gone up between 40% to 60%. For example, the
overall average portfolio size for Fama and MacBeth period is 3.4 while that for the more
current sample period is 5.2 (not shown in the table). The increases in each portfolio size are
uniform across portfolios. However, portfolio returns seem to vary much less across both the
size groups and the beta deciles than those in the previous sample period. This suggests that
cross-sectional test results might be weaker for the recent sample period. Similarly, variations
in portfolio betas are also much smaller from 0.64 to 1.37 and are more symmetrical around
1. In contrast, variations in the portfolio aggregate idiosyncratic volatilities increase across

beta deciles but decrease across size quintiles.

Insert Table 2

A more powerful test can be undertaken by running cross-sectional regressions on individ-

uals stocks in the spirit of Fama and French (1992). Similar to their study, portfolio betas of
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the 100 portfolios are assigned to each individual stock within each portfolio in order to reduce
errors-in-variables problems. In particular, since there are so many small NASDAQ stocks in
terms of market capitalization, portfolio breakdowns are determined using only NYSE stocks
to avoid the small size portfolios from being too small. Each year, all NYSE stocks on the
CRSP tapes are sorted in groups according to their size. The ten NYSE size deciles are then
used to split the whole sample. At the same time, the beta of each stock is estimated from a
market model using the previous 24 to 60 months of sample returns. Within each size group
for NYSE stocks only, stocks are sorted again by their betas into ten equal number groups.
Similarly, the break points thus obtained are used to sort all the stocks in our sample. All
portfolios are rebalanced on June each year. The 100 portfolios thus constructed are very close
to those used in Fama and French (1992), except that we have extended the sample period to
June 2000. Using the whole sample period returns, we then estimate individual portfolio betas
from the sum of the beta coefficients from regressions of individual portfolio returns on market
and lagged market returns (see Fama and French, 1992). These portfolio beta estimates are
then assigned to individual stocks in the corresponding portfolios. Individual stocks used in
this part of the study should also have book values identifiable from the COMPUSTAT tape.
One average, we have 2537 stocks per month for the extended sample period. Finally, we
use NYSE/AMEX/NASDAQ index returns. The 3-month treasury-bill rates from Ibbotson

Associates (2001) are used as the risk-free rates.

In this part of the investigation, we measure idiosyncratic risk using portfolio residual
volatilities since we can consider the residual risk of a none randomly selected portfolio as the
undiversified idiosyncratic risk. In other words, the size-beta sorted portfolio idiosyncratic
volatility measures can also be used in the cross-sectional regression of individual stocks. This
is legitimate since our model suggests that it is the undiversified idiosyncratic volatilities that

affect returns of individual stocks when residuals are correlated to some degree. Moreover,
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by assigning portfolio idiosyncratic volatility to each individual stock within each portfolio,
we will also reduce “errors-in-variables” problems if individual betas cannot be accurately
estimated. At the same time, we recognize that, due to the diversification effect, a portfolio’s
idiosyncratic volatility will not be representative of individual stocks’ undiversified idiosyn-
cratic volatilities in the portfolio when there are too many stocks in a portfolio. Therefore,
in order to balance the benefit of accurate estimates and the diversification effect, we use 200
portfolios’ idiosyncratic volatilities to approximate those of the individual stocks within each

portfolio.'?

Since volatilities, especially idiosyncratic volatilities, are unobservable, most empirical
studies estimate them using residuals from fitting a market model. Empirically, however, it
is very difficult to interpret the residuals from the CAPM or even a multi-factor model as
solely reflecting idiosyncratic risk. One can always argue that these residuals simply represent
omitted factors. Therefore, we can only assert that the residuals from a market model measure
idiosyncratic risk in the context of that model. In fact, this is the approach used in Fama
and MacBeth (1973). Empirically, we should control for other empirically known factors in
the tests. Alternatively, since the current literature has leaned toward a three-factor model of

Fama and French (1993), we can compute residuals from equation (14) below,

Ri,t = ﬁm,iRm,t + ﬁsmb,iRsmb,t + ﬁhml,iRhml,t + €it, (14)

where R, ; is the market return, with R, and Ry, respectively representing the returns on
portfolios formed to capture the size effect and the book-to-market equity effect.'® Therefore,
in this part of the investigation, we use idiosyncratic volatility estimates both from a market
model and from the above Fama-French three-factor model. Since residual volatility is a

second moment, we view this approach as an indirect control for other factors.

12We first sort all stocks into 20 portfolios according to midyear market capitalization and the sort each size
portfolio into 10 beta portfolios.
3We are grateful to Eugene Fama for making these data available to us.
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3 The cross-sectional evidence

Ever since doubts were raised about the CAPM model by Fama and French (1992), con-
siderable attention has been devoted to risk measurement. For example, Jagannathan and
Wang (1996) have argued that a conditional CAPM behaves well. Some have argued that
the variables used by Fama and French are not robust (see for example Loughran (1996), and
Kothari, Shanken, and Sloan (1995)). Others have suggested that a multifactor model in the
spirit of the Merton’s (1973) ICAPM model provides a better explanation of returns than a
single factor CAPM model.'* As noted by Fama and French (1992) and others, the most sig-
nificant factors in “explaining” cross-sectional returns appear to be the market capitalization
(size) and book to market ratios. These are largely empirical findings rather than equilibrium
implications. Therefore, it is difficult to understand why these factors should matter in deter-
mining expected returns unless they are proxies for other (systematic) risk factors. Moreover,
combining time series evidence of return predictability and cross-sectional testing in a condi-
tional framework, Ferson and Harvey (1999) have rejected the three-factor model advocated
by Fama and French (1993) as a conditional asset pricing model. Meanwhile, Malkiel and
Xu (1997) have found that size and idiosyncratic volatility are highly correlated. Therefore,
the so-called size effect may just as well be attributed to idiosyncratic risk. Guided by our
theoretical model, we will study the empirical significance of idiosyncratic risk in addition to

other factors from both cross-sectional and time series perspectives.

As suggested by our model (13), idiosyncratic volatilities for individual securities and
their expected returns will be related. In other words, we need cross-sectional evidence to
conclude that return differences among securities can be partially explained by differences in

their idiosyncratic volatilities. In order to provide an overview of the relationship, we first

“This does not mean that the market factor is unimportant, only that other factors are important as well.
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plot the average monthly returns versus the average idiosyncratic volatility calculated from
the residuals to the three-factor model for the ten-decile portfolios in Figure 1. Clearly there
is a positive association between idiosyncratic volatility and average returns. The significance

of such a relationship is further demonstrated in the following cross-sectional tests.

Insert Figure 1

3.1 The Fama and MacBeth (1973) study revisited

The Fama and MacBeth (1973) study is an important one both in terms of its influential testing
methodology, and also in terms of its empirical support of the CAPM model. In addition, this
study also reversed earlier findings on the role of idiosyncratic risk. As a natural starting point
in investigating the cross-sectional implications of idiosyncratic risk, we replicate Fama and
MacBeth’s (1973) Table 3 in our Table 3. In particular, we report the time series averages
of the gamma estimates from cross-sectional regressions for each time t. For example, we
calculate the time series average 7, = %Zle Azt for the cross-sectional estimates 4, . The
corresponding ¢ ratio in Fama and MacBeth (1973) and Fama and French (1992) is defined
as ty = VT7,/ std(4z,+). Since the betas used in the cross-sectional regression are themselves
generated regressors, starting with Table 4'°, we use the Shanken (1992) correction factor
(1+ @2,/62,). In addition, since there might be autocorrelation in the estimates 4, ¢, we use

Newey and West (1987) estimator,'6

Insert Table 3

5The purpose of Table 3 is to replicate Fama and MacBeth (1973). We do not adjust the ¢ ratios in the
table.

Note that the t ratios in Table 3 are computed using std(9z,:) in order to faithfully replicate Fama and
MacBeth’s (1973) results.
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When the portfolio beta variable ﬁAm_l is used alone in the cross-sectional regressions, the
gamma estimates and the corresponding t-ratios closely match those of Fama and MacBeth
over both the whole sample period from 1935 to June 1968 and the six five-year subsample pe-
riods. After introducing the additional variable of portfolio beta squared, Bit_l, our estimates
suggest that the beta variable is very significant compared with only marginal significance in
Fama and MacBeth study. The main difference arises in the first two subsample periods.
In fact, two of the subsample periods have matched almost exactly. When the additional
variable introduced in the cross-sectional regressions is idiosyncratic volatility (residual stan-
dard deviation) 5,;_1(€) instead, Fama and MacBeth’s result continue to hold except that the
gamma estimate is much smaller and is statistically insignificant for the whole sample period.
FExamining the gamma estimates from each subsample period, we have a reasonable match

except for the first subsample period.

Finally, we include both the Bit_l variable and the 5,;_1(€) variable in addition to the
beta variable in the cross-sectional regressions. In contrast to Fama and MacBeth’s finding
that only the beta variable is marginally significant, we find that both the beta variable and
the beta-square variable are statistically significant at a 5% level for the whole sample period.
Therefore, Fama and MacBeth would have concluded that the asset pricing relationship is
non-linear if the current version of the CRSP tape is used. It is also interesting to note that,
despite the fact that the idiosyncratic risk variable is still insignificant, it has made the squared
beta variable significant. This suggests that the two variables might be correlated with each

other.

One caveat is that the significance of idiosyncratic volatility variable could be due to a
bias created when beta and the residual variable are correlated, as has been pointed out by

Miller and Scholes (1972). Since the Fama and MacBeth procedure is more powerful than the
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simple cross-sectional regression using average returns that was popular in the early studies,
and the beta variable itself is not significant when used alone except for the case of early
sample period, we do not believe that the above mentioned bias exists here. Nevertheless, we
only use the orthogonal part of the idiosyncratic volatility to the corresponding beta variable

in the cross-sectional regressions in the rest of the paper.

Three issues might arise in the Fama and MacBeth’s (1973) study. First, an equally
weighted index was used to estimate both the beta and the idiosyncratic volatility measures
in the original study. According to the CAPM theory, it is the value-weighted index that
should more closely resemble the market index. In Table 4, we will redo the estimation using
a value-weighted index instead. Second, forming large portfolios not only reduces the errors-
in-variables problem in the beta estimates, but also makes the residual variance estimates
more accurate. At the same time, due to diversification effects, idiosyncratic volatilities do
not have much variability across portfolios when there are too many stocks in each portfolio.
In fact, there is no particular reason for Fama and MacBeth to choose 20 portfolios except for
combatting the “errors-in-variables” problem. In order to increase the power of the tests, we
have also investigated a different specification with 50 portfolios in Table 4.17 Finally, it is also
important to see if the results are robust different sample period. Therefore, we extend the

Fama and MacBeth study to the sample period from 1963 to 2000 for NYSE/AMEX stocks.

Insert Table 4

To ensure the robustness of our results, we use Newy-West (1987) robust t-statistics from

now on. When a value-weighted index is used in the market model that estimates both beta

17As a result the average standard error of the 50 portfolio betas will be in the order of one half to one-
eleventh that of individual stocks. Fama and MacBeth (1973) reported the average standard error of the twenty
portfolio betas is of the order of one-third to one-seventh that of individual stocks. When 50 portfolios are
used instead, the relative increase in the standard error is about 4/50/20 = 1.58. In fact, the empirical results

suggests that the significance of beta variable is not affected by this grouping approach.
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and idiosyncratic volatility, the beta variable is almost significant at a 5% level, and the beta-
squared variable and the idiosyncratic volatility are only significant at a 10% level (see Panel
A of Table 4). When all three variables are used in the regression, only the beta and the
beta-squared variables are significant at a 1% level. Therefore, the significance of beta in
explaining differences in portfolio returns continue to hold in the early sample period. But
the relationship seems to be nonlinear. The positive relationship between beta and return is
weaker for large beta portfolios than that for small beta portfolio. If we increase the number
of portfolios to 50,'® the cross-sectional regression results are very similar except that the
idiosyncratic volatility variable is now statistically significant at a 5% level in both univariate
and multivariate regressions. Therefore, we conclude that both beta and idiosyncratic volatil-
ity appear to be important in explaining the cross-sectional return differences for the early

sample period.

The Fama and French (1992) study and the Fama and MacBeth (1973) study conducted
under a different framework including sample periods, came to different conclusions regarding
the importance of the beta variable. For consistency, it is important to study the same issue
within the same framework. Since AMEX stocks were introduced into CRSP tape after July
1962, we examine NYSE/AMEX stocks in this part of the study over the extended Fama and
French (1992) sample period from 1963 to 2000 using both 20 and 50 portfolio groupings.
When a value-weighted index is used in the market model that estimates both beta and
idiosyncratic volatility, the idiosyncratic volatility variable is again statistically significant
at a 1% level while the beta variable is insignificant in the multivariate regressions for both
groupings. The insignificance of the beta variable is consistent with Fama and French’s (1992)
finding using individual stocks. Therefore, the difference in the significance of beta found in

the two studies is largely due to differences in sample periods. In contrast, the idiosyncratic

8GSimilar results hold when grouping into 30 or 40 portfolios.
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volatility variable is significant in both sample periods. One may wonder why idiosyncratic
volatility variable is significant in the multivariate regression when none of the variables is
significant individually as in the left block of Panel B in Table 4.1 One explanation is that
there is substantial and correlated noise in all the three variables. If the true beta variable
does not have much explanatory power to begin with, noise in the beta variable may help to
cancel out noise in the idiosyncratic volatility variable when used jointly. The evidence from

portfolios thus suggests that the idiosyncratic risk factor may play some role in valuation.

3.2 The role of the size and the idiosyncratic volatility variables in the
framework of Fama and MacBeth (1973)

As suggested by Malkiel and Xu (1997), portfolio size and idiosyncratic volatility are highly
correlated, therefore, one could argue that the significance of the idiosyncratic volatility simply
captures the well-documented size effect. It is necessary, therefore, to consider the size and
idiosyncratic volatility variables simultaneously. Thus, we extend the basic Fama-MacBeth
sorting procedure by first sorting stocks into five size groups.?? Stocks in each size group are
then sorted into ten beta portfolios using exact procedure used in Fama and MacBeth (1973).
The details of this procedure and the characteristics of the 50 portfolios were described in the
previous section. For robustness, we apply both the market model and the Fama-French three-
factor model to estimate the idiosyncratic volatilities used in estimation. The cross-sectional

regression results for the 50 size-beta sorted portfolios are reported in Table 5.

Insert Table 5

9The beta variable and the idiosyncratic volatility variable are orthogonal to each other at the individual
stock level.

20The reason for five size groups instead of ten groups as in Fama and French (1992) is to have 50 portfolios
that are consistent with Table 4 and to allow for enough stocks in each portfolio for the early sample period to
reduce the “errors-in-variables” problem.
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For the early sample period of Fama and MacBeth (1973), using a market model to ob-
tain beta and idiosyncratic volatility, results in the first block of Panel A in Table 5 show
that all the four individual variables (ﬁAm_l, Bit_l, ME,; 1, and 5,;_1(€)) are statistically
significant at a 1% level with correct signs when used alone in cross-sectional regressions.?!
Note that ME,;_; denotes the log market capitalization of the p — th portfolio. Under the
original specification of Fama-MacBeth, the three variables—ﬁm_l, Bit_l, and 5,¢_1(€) are
simultaneously significant at a 1% level as shown in equation 6 of Panel A of Table 5, which
not only confirms our finding from Table 4 using a different sorting approach but also sup-
ports our model implication for the role for idiosyncratic risk. If we replace the idiosyncratic
volatility measure with the size measure of M E,;_1, a very similar result holds. This also
suggests that idiosyncratic volatility and size are likely to be highly correlated. Therefore, we
examine the cross-sectional regressions including both the size and the idiosyncratic volatility
variables. The result shown in equation 7 of Panel A of Table 5 indicates that idiosyncratic
volatility variable is still significant at a 5% level while the size variable is insignificant. If the
size variable were the primary driving force, the opposite result should have occurred. When
all the variables are used simultaneously, each variable, except for the size variable, continues
to be significant. This means that the size variable does not replace the role of idiosyncratic
risk in the cross-sectional regression. In addition, there is a decreasing positive relationship

between the expected return and the beta in the early sample period.

Results are little different when idiosyncratic volatilities are estimated from the residuals of
the Fama-French three-factor model. From the second block of Panel A in Table 5 we see that
the significance of the idiosyncratic volatility variable is virtually unchanged. When both the

size variable and the idiosyncratic volatility variable are used together in the cross-sectional

21Results are different from those reported in Table 4 since the 50 portfolio used in Table 4 are sorted
according to beta only.
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regression, only the latter variable is statistically significant at a 5% level. In other words,
the idiosyncratic volatility variable takes away all the explanatory power of the size variable
despite the fact that we have “double” counted the effect of the size variable. When all the
variables are included in the last equation of the right block of Panel A, the size variable is
again statistically insignificant while the idiosyncratic volatility variable continues to be very

significant. Therefore, the results are robust to different estimates of idiosyncratic risk.

For the most recent sample period of 1963-2000, results are not as strong as those of
the previous sample period in general. This is partly due to the fact that portfolio returns
are not as variable as before (see Table 2). Although the size variable and the idiosyncratic
variable are statistically significant at 5% and 7% levels, respectively when used alone, only
the idiosyncratic volatility variable continue to be significant at a 6% level in the multiple
cross-sectional regression while the size variable is insignificant (see the left block of Panel B
in Table 6). Despite a different specification from that of the Fama and French (1992), which
was based on individual stocks, the insignificance of the beta variable is confirmed here. More
interestingly, the noise in the beta measure seems to have helped in cancelling the noise in
idiosyncratic volatility measure. As a result, in a multiple cross-sectional regression without
the size variable shown in equation 6 of Panel B of Table 5, the idiosyncratic volatility variable
is significant at a 3% level. Therefore, our hypothesis that the size variable may have served
as a proxy for the idiosyncratic volatility variable, is again confirmed from evidence for the
most recent sample period. When idiosyncratic volatility is estimated from the Fama-French

three-factor model, results are similar.

We, therefore, conclude that (1) beta estimated from a market model is important in
explaining return differences for the early sample period but its role has substantially weakened

in the recent sample period; (2) the idiosyncratic volatility variable is very important especially

27



in the previous sample period no matter how it is measured; (3) the size effect is dominated
by the idiosyncratic risk factor in both sample periods; and (4) the beta variable seems to
help reduce the noise in the idiosyncratic volatility variable, especially in the recent sample
period.

3.3 The cross-sectional expected returns of individual stocks and idiosyn-
cratic volatilities in the framework of Fama and French (1992)

The fundamental differences between the Fama and French (1992) and Fama and MacBeth
(1973) studies are that in the later study (1) the cross-sectional regressions are run for individ-
ual stocks; (2) new variables such as size and book-to-market are considered; and (3) portfolio
betas (3,) are assigned to individual stocks within the portfolio. We extend the Fama and
French (1992) study by extending their sample period to June 2000 and introducing the id-
iosyncratic volatility variable in order to show its importance in explaining the cross-sectional
return differences. Note that we have dropped the beta-squared variable (ﬁg) introduced
in Fama and MacBeth’s (1973) study since it is insignificant in the current sample period.
While the log size variable (ME;;_1) can be specified accurately, idiosyncratic volatility is
unobservable and has to be estimated. Just like beta estimates for individual stocks that suffer
from errors-in-variables problems, idiosyncratic volatility estimates for individual stocks face
the same challenge since they are estimated from the same models. In order to mitigate the
problems, we apply the same approach as Fama and French (1992) by assigning the portfolio
idiosyncratic volatility (s,) to each stock within the portfolio.?? As pointed out earlier, we
have a diversification challenge when substituting a portfolio idiosyncratic volatility for those
of individual stocks within the portfolio. To mitigate the problem, we increase the number

of portfolios in computing the idiosyncratic volatilities to 200. Using portfolios’ idiosyncratic

22This is the major difference between this study and Ang, Hodrick, Xing, and Zhang (2003), where individual
stocks’ volatilities are used.
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volatilities is also justified by the fact that it is the undiversified idiosyncratic risk that mat-
ters in determining the asset prices implied by our model. As documented in Malkiel and Xu
(1997), size and idiosyncratic volatility are highly correlated. Thus, using a size portfolio’s
idiosyncratic volatility measure as an estimate of undiversified idiosyncratic volatility of in-
dividual stocks in the portfolio makes sense. Similar to Fama and French (1992), we use the
book value from the last fiscal year to compute the log book-to-market value (B/M;;—1). The
results reported in Table 6 are for all the NYSE/AMEX/NASDAQ stocks over the sample

period from July 1963 to June 2000.

Insert Table 6

Comparable to Fama and French’s (1992) results, the first equation in Panel A of Table
6 shows a statistically insignificant estimate for the beta variable when used alone although
it is a little stronger now. This result provides supplemental evidence that beta does not
appear to be useful in explaining the cross-sectional stock return differences. However, as
noted by Fama and French (1992), the size variable does appear to explain the cross sectional
variability of returns as shown in the third equation with an estimate of —.0019 and a t—value
of —3.50. This is much stronger than Fama and French’s (1992) estimates, where a shorter
sample period is used. The size variable is even strong when both the beta variable 3, and the
size variable M E; ;1 are added shown in equation 6. In addition, the book-to-market variable
produces a similar estimate as that in Fama and French (1992), no matter whether it is used
alone or with other variables. As suggested by equation (13), high undiversified idiosyncratic
risk, measured by idiosyncratic volatility, is associated with high returns on average. This
is exactly the case as shown in the fourth equation for s, of Panel A. The significance of
the idiosyncratic volatility variable is also even stronger when the beta variable is also added

shown in equation 7 of Table 6, suggesting that the beta variable is useful in reducing the
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noise in the volatility measure. The idiosyncratic volatility measure (s,), however, again takes

away the explanatory power of the size variable shown in equation 8.

More importantly, including the B/M; variable does not alter the coefficient estimate of
the idiosyncratic volatility variable very much as shown in equation 10. Therefore, control-
ling for the book-to-market variable does not have a large impact on the significance of the
idiosyncratic volatility variable. Finally, when all the four variables are used, both the book-
to-market and the idiosyncratic volatility variables continue to be statistically significant,
while the size variable is insignificant with the wrong sign in the regression. It is interesting
to note that the beta variable is also significant with the right sign. This could due to the fact
that correlation between size and idiosyncratic volatility variables helps to reduce the noise

in the beta measure.

As noted above, portfolio size is strongly related to idiosyncratic volatility. Stocks of
smaller size tend to have larger idiosyncratic risks than stocks of larger size. As Berk (1995)
and Cochrane (2001) have forcefully argued, characteristic based variables, such as size, cannot
be considered risk factors. Our empirical evidence suggests that the size variable can effectively
be interpreted as a proxy for idiosyncratic risk. Arguably, large companies tend to have more
diversified lines of business which will have low idiosyncratic volatility, while small firms tend
to have more focused business which are more susceptible to exogenous shocks. Thus, this

study provides an alternative way to understand the role of the size effect in Fama and French.

3.4 The Robustness of Our Results

When the idiosyncratic volatility measure s, is computed from the residuals of a three-factor
model, the fourth equation from Panel B of Table 6 shows that the positive relationship

between return and idiosyncratic risk continues to be significant at the 1%. In fact, the
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results for either of the idiosyncratic volatility measures we used change only slightly relative
to the results using CAPM residuals as a measure of idiosyncratic risk. Therefore, our results

appear to be robust whatever definition we use for idiosyncratic volatility.

Since the size effect may be concentrated on very small stocks as Loughran (1996) has
noted, we need to study the robustness of the idiosyncratic risk factor relative to the smallest
stocks. NASDAQ stocks were added to the CRSP tape in July, 1973 and the additions mostly
consisted of small stocks. A natural empirical design is to exclude these NASDAQ stocks from

our study. Results for NYSE/AMEX stocks only are reported in Table 7.

Insert Table 7

Comparing estimates with those shown in Table 6, the overall results are a little weaker.
Nevertheless, the idiosyncratic volatility measure of s, is still very significant at a 1% level
when estimated from the CAPM residuals shown in Panel A of Table 7. When the book-
to-market variable is added, the idiosyncratic volatility measure continue to be significant at
a conventional level as shown in equations (10) of Panel A. The size variable is insignificant
when all the variables are used in the cross-sectional regression. However, the s, variable is

again significant at a 1% level.

When idiosyncratic volatilities are estimated from the Fama and French three-factor model,
results are again very similar as shown in Panel B of Table 7. Therefore, we conclude that the
usefulness of idiosyncratic volatility variables is also robust when the sample includes only large
stocks. At the same time, the even stronger results for the idiosyncratic volatility measure,
sp, versus sp;—1 used in Fama and MacBeth (1973) study, suggests that it is undiversified
idiosyncratic risk that is more relevant in explaining the cross-sectional return difference of

individual stocks.

31



Therefore, additional tests continue to support our hypothesis that undiversified idiosyn-
cratic volatility helps to explain the cross-sectional variability in average returns in an impor-
tant way. It is also reasonable to conclude that the idiosyncratic risk factor is more robust
than the size variable in explaining the cross-sectional difference of asset returns over the

different sample periods considered here.

3.5 The Liquidity Effect

Liquidity may also play an important role in affecting asset prices. Although different re-
searchers have offered different definitions, it is generally believed that “liquidity” should
measure how easy it is to trade a large number of shares without altering the share prices.
There are many theoretical papers including Amihud and Mendelson (1986), Constantinides
(1986), Heaton and Lucas (1996), and Huang (2002), that tie liquidity to asset prices. Intu-
itively, assets that are “difficult to trade” should have lower prices, other things being equal, in
order to compensate investors for the inability to trade them quickly or for the increased cost
of trading. Indeed, many empirical studies, such as Amihud and Mendelson (1986), Brennan,
Chordia, and Subrahmanyam (1998), and Datar, Naik, and Radcliffe (1998) have generally
found a negative relationship between liquidity and expected stock returns. Alternatively,
using market wide liquidity as a state variable (or factor), Pastor and Stambaugh (2003) and
Jones (2002) find stocks with high covariance with the market liquidity generally offers high
expected return. This is reasonable since those stocks will face severe liquidity problems when

the market liquidity is low.

If liquidity is indeed priced, residuals from any asset pricing model that excludes liquidity
factor will reflect it. However, since idiosyncratic volatility is a second moment, it can only

indirectly capture some of the liquidity effect. Nevertheless, in this section, we will attempt
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to control for liquidity. The bid-ask spread is often used in the literature as a measure
of liquidity. We will use trading volume in this study as the liquidity measure since it is
the most important determinant of the bid-ask spread (see Stoll, 1978) and because data
are readily available. Unlike Brennan, Chordia, and Subrahmanyam (1998), we use relative
volume defined as the ratio between share volume and shares outstanding instead of log dollar
volume. When both log size and log dollar volume are used in the cross-sectional regressions,
they share log price as the common component. Therefore, we believe it is better to use a
relative volume variable here. In particular, we use last month’s relative volume in the cross-
sectional regression of current month.?? In this part of the study, we use the sp constructed
from the CAPM residuals as the idiosyncratic risk measure. The results are reported in Table

8.

Insert Table &8

For all stocks, the volume variable is statistically significant at a 1% level when used
alone. Surprisingly, however, the sign is “wrong”.? Potentially, the size variable could be
correlated with the volume variable. One could argue that large stocks are more actively
traded than small stocks. Therefore, the positive sign on the relative volume variable could
simply due to the size effect. This is confirmed in the multiple regression with the size
variable as shown in the fifth equation of Panel A of Table 8. The size variable virtually
takes away all the explanatory power of the volume variable. When idiosyncratic volatility

and the volume variable are use simultaneously, the significance of the idiosyncratic volatility

23 Alternatively, one can use Pastor and Stambaugh’s (2003) indirect measure of liquidity. However, this
measure essentially is a slope coefficient estimate from regressing an individual stock’s return on past volume,
which will subject to large “errors-in-variable” problem in our context since we are dealing with individual
stocks.

24We obtain similar results when the log dollar volume is used instead. Since Brennan, Chordia, and Sub-
rahmanyam (1998) did not report univariate regression result, we do not know if similar results would occur
in their framework.
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is unchanged. This suggests that our idiosyncratic volatility measure does not represent the
liquidity effect. More importantly, the volume variable now has the “correct” sign although
it is still insignificant. From our previous results, This could be due to the fact that the
idiosyncratic volatility variable has taken away some of the “size effect” in the volume variable.
Equation 7 is similar to Brennan, Chordia, and Subrahmanyam’s (1998) specification except
for the lagged return variables. The liquidity proxy is again statistically insignificant with the
“right” sign. When all the variables are used in the cross-sectional regression as shown in the
last equation, both the magnitude and the significance of the idiosyncratic volatility variable
is virtually unchanged. Very similar results continue to hold when only the NYSE/AMEX
stocks are used in the cross-sectional regression shown in the Panel B of Table 9. Therefore,
we conclude that controlling for liquidity will not have much impact on the significance of the

idiosyncratic volatility variable.

3.6 Idiosyncratic Risk in a Different Market

Considerable recent attention has been paid to data snooping problems in empirical studies.
Since CAPM studies have mostly been based on the same data source, i.e., the CRSP tape
for U.S. stock data, such a problem is inevitable at least conceptually. In order to obtain a
different perspective, we also study Japanese stock returns. The available data set runs from
1975 to 1999, and we use the first five years of data to do the pre-sorting in constructing our
portfolios. Therefore, the actual sample used in the study runs from 1980 to 1999. During
this particular period, the Japanese stock market went through dramatic changes—from the
pre bubble period (1980-1984) to the bubble period (1985-1989), and followed by a decade of
post-crash market slump (1990-1999). Therefore, we also study the two subsample periods:
1980-1989 and 1990-1999. The average numbers of stocks in each sub-period are 1321 and

1564, respectively. We followed the exact procedures employed with U.S. data to construct
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portfolios and to perform cross-sectional regressions. The results are shown in Table 9.

Insert Table 9

First, we find that the beta variable is insignificant no matter whether it is used alone
or with other variables in the cross-sectional regressions. The same results hold for different
subsample periods. This reconfirms our results from the U.S. data. In contrast to the U.S.
experience, however, the size variable is insignificant in all of the cross-sectional regressions.
The book-to-market variable is significant for the whole sample period both when used alone
and together with other variables. It is interesting to note, however, that the significance arises
mainly from the effect in the post crash period. As for the idiosyncratic volatility variable, it
is significant at a 6% level for the whole sample period when used alone. It is very significant
during the first subsample period but not in the second subsample period when used alone.
What is most interesting is that the idiosyncratic volatility variable is always very significant
when used with the size measure, as shown in the last equation of all the three blocks of Table
9. Apparently, the size variable helps to reduce the measurement error in the idiosyncratic
volatility variable. Japanese stock market data again provide evidence that the idiosyncratic
volatility variable is much stronger than the size variable, and support the role of idiosyncratic

volatility in explaining cross-sectional returns.

While beta measures do appear to play some role in explaining the cross-sectional pattern
of returns in accordance with the CAPM in the early sample period, the general conclusion is
that book value/market value and especially idiosyncratic volatility are the only variables that
show a consistently strong relationship with returns in the recent sample period. Of course,
it is possible to interpret our measures of idiosyncratic volatility as simply an approximation

for some omitted systematic risk factor(s). However, this does not seem to be the case after
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controlling for size, book-to-market, and liquidity. At the very least, our model seems to offer
a consistent and empirically supported explanation for some of the deficiencies of popular

asset pricing models.
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4 Preliminary Time Series Evidence on Idiosyncratic Risk

Generally speaking, two approaches have been applied in testing the CAPM. Cross-sectional
studies of the return and risk implications of the CAPM have received the most attention. This
is what we have undertaken in the previous section by showing that idiosyncratic volatility
appears to be an independent pricing factor. It is also important to examine an alterna-
tive time-series approach that utilizes the constraint on the intercept of a market model as
our model predicts. Here we present some preliminary results on the explanatory power of

idiosyncratic volatility from an ex post perspective.

We study the time series behavior for the same 100 portfolios constructed in the cross-
sectional studies. In order to perform time series tests on equation (12), we need a proxy for
the market wide undiversified idiosyncratic risk factor. The proxy R;; that we propose to
use here is the idiosyncratic risk hedging portfolio. In order to motivate it, we rewrite the

time-series CAPM and our model (equation (12)) as the following two equations:

It Rig—Rpy = Bi(Rme— Rpg) + 6, and

15
IT: Riy—Ryy = Bi(Rmye— Rye)+ BriRie+ &y, (15)

where R;, Ry, and Ry are the returns for security i, the risk-free rate, and the market
portfolio respectively. If model /I is indeed true, the part of 57 ;Rr: + &+ will be specified
as €;; in the CAPM specification of model I. Therefore, firms that are more sensitive to Ry,
will be likely to have large o(€;+). Since Rjps¢ and Ry, are independent, the two portfolios
constructed by sorting stocks according to their o(¢; ;) will have similar beta sensitivities to

Ry and very different beta sensitivities to Ry .

In our implementation, we follow the logic of Fama and French (1993) by constructing
six size-idiosyncratic volatility sorted portfolios. We split the sample into two size groups.

Within each size group, stocks are sorted again by their idiosyncratic volatilities into three
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groups of equal numbers of securities.?> The idiosyncratic volatility measure for each stock is
estimated using the mean squared residuals from the CAPM model over the previous 24 to
60 month period. We denote B as big size, S as small size, H as high idiosyncratic volatility,
M as median idiosyncratic volatility, and L as low idiosyncratic volatility. The six portfolios
can be characterized as the B/L portfolio, the B/M portfolio, the B/H portfolio, the S/L
portfolio, the S/M portfolio, and the S/H portfolio. The return proxy for the market wide
idiosyncratic risk factor is then calculated as the difference between the average returns for
portfolios B/L and S/L and the average returns for portfolios B/H and S/H. Therefore, our
method of constructing the idiosyncratic risk hedging portfolio is consistent with the model

presented in the first section.

Our empirical results in this section are based on the portfolio returns of the 100 size-
beta sorted portfolios obtained by equally weighting each security’s returns in the portfolio.
As a first step, we report the average and the standard deviation of coefficient estimates for
individual portfolios in Table 10. For comparison, we report estimates for both the Fama and
MacBeth sample period (1935.1-1968.6) and the extended Fama and French sample period
(1963.7-2000.6). Although the average R2s across all the portfolios are relatively high with
69.9% and 67.10% for each of the sample periods respectively, the CAPM fails to hold because
most of the individual regressions have significant intercepts, «. In general, adding additional
variables to the CAPM specification does not reduce either the magnitude or the significance
of alpha. However, the idiosyncratic risk factor is very significant in both sample periods.
In particular, the distribution of the beta estimates on R;; is on the positive side and far
from zero. On average, each percentage increase in the idiosyncratic hedging proxy Ry, is
associated with .57% increase in return, over the early sample period and .31% in the recent

sample period. For individual portfolios, the idiosyncratic hedging proxy is significant at a

25The actual breakdowns are based on NYSE stocks only for the same reason discussed previously.
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5% level for more than 80% of these portfolios in both sample periods. At the same time, the
average adjusted R? across all the portfolios jumps to 77.1% for the early sample period and
73.3% for the recent sample period. Therefore, these preliminary results support our model

in equation (12).

Insert Table 10

Fama and French (1993) have argued that a size proxy and a book-to-market proxy are
also very important in explaining return fluctuations over time. Their three-factor model is
reconfirmed in the third equation of Table 10. As expected, the average adjusted R? has been
improved to 79.5% and 81.1% for the previous and recent sample periods, respectively. At
the same time, as we suggested in discussing the cross-sectional evidence, the size factor may
very well be measuring idiosyncratic risk. In this case, the idiosyncratic risk factor will be
more appropriate, which is what we represent in the fourth equations of Table 10. For both
sample periods, we see that the corresponding coefficient estimates of both the idiosyncratic
hedging factor and the book-to-market factor are distributed far from zero. The number of
individual portfolios showing statistical significant estimates on the two factors at a 5% level
also resembles that of the three-factor model in the recent sample period. Similar results hold
for the early sample period. Therefore, idiosyncratic volatility appears to capture the size

effect in the time series as well as the cross-sectional framework.

One might argue that our idiosyncratic risk proxies simply capture the size and book-to-
market factors. Thus, it is important to examine idiosyncratic risk after controlling for both
the size and book-to-market effect. It is evident that, for the Fama-MacBeth sample period,
the majority of the portfolios have statistically significant estimates on the idiosyncratic risk

factor. For example, after controlling for the size and the book-to-market factors, there are
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still 54% of the portfolios showing statistically significant estimates at the 5% level on the
idiosyncratic risk factor. In other words, there is a strong connection between idiosyncratic
risk and individual portfolio returns, even after taking account of size and book-to-market
effects. For the Fama and French sample period, the percentage of portfolios with statistically

significant estimates on the idiosyncratic risk factor increases to 77%.

While a more detailed time series analysis is required for conclusive results, the prelimi-
nary evidence from individual portfolios supports our theoretical prediction that idiosyncratic
volatility appears to be important in explaining asset return fluctuations over time. Note also
that the significant beta estimates from the time series regressions do not contradict the Fama

and French’s (1992) findings that were discussed in our cross-sectional study.

One may argue that the role we ascribe to idiosyncratic volatility may result from our
inability to define the market portfolio. Perhaps idiosyncratic risk is just an artifact of ap-
proximation error. If so, we view our argument here as deepening the critique of Roll. We
have argued, however, that even if investors are shortsighted and pay attention to only trad-
able financial assets, in which case Roll’s critique is irrelevant, we may still find an imperfect
CAPM from an econometrician’s point of view. Such an imperfection can be ameliorated by

including an idiosyncratic risk measure.
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5 Concluding comments

In this paper, we have made some progress in understanding the role of idiosyncratic risk
in asset pricing. Other things being equal, idiosyncratic risk will affect asset returns when
not every investor is able to hold the market portfolio. Even after controlling for factors
such as size, book-to-market, and liquidity, evidence from both individual U.S. stocks and a
sample of Japanese equities supports the predictions of our model. Most importantly, the
cross-sectional results demonstrate that idiosyncratic volatility is more powerful than either
beta or size measures in explaining the cross section of returns. At the very least, our results
provide a unique perspective in understanding the possible role of idiosyncratic risk in asset

pricing.
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Table 1: Size-Beta Portfolio Characteristics (Sample Period: January 1935-June
1968)

This table reports the average return, beta, log size, and residual standard deviation for the 50 size-beta sorted
portfolios over the Fama and MacBeth (1973) sample period of January 1935 to June 1968. Stocks from the
NYSE/AMEX are first sorted into five size groups according their market capitalization in December of the
last year of the estimation period. Each group of stocks is then sorted again into decile portfolios according
to the selection period betas. Detailed information on portfolio selection, estimation, and testing periods are
available in Fama and MacBeth (1973). Both the reported betas and the idiosyncratic volatilities, as well as
betas used in sorting, are estimated from a market model with a value-weighted index.

Low-B8 B2 B3 Ba Bs Bs B Bs By Highp
Average Monthly Returns (in Percent)

Small-ME 1.08 1.89 1.83 2,00 182 196 203 238 250 1.89

ME-2 2.14 1.18 1.23 155 1.69 1.52 187 1.72 1.81 1.87
ME-3 1.73 1.30 1.39 122 127 146 141 151 1.36 1.52
ME-4 1.32 889 1.08 1.04 124 1.34 1.27 125 1.21 1.22

Large-ME 1.44 806 .896 1.03 1.01 1.16 1.27 1.16 1.02 1.12
Average portfolio beta
Small-ME 1990 1.11 1.24 141 1.31 131 145 1.53 1.71 1.72

ME-2 .806 901 1.07 1.22 131 1.39 149 150 1.59 1.68
ME-3 719 909 1.06 1.17 1.26 1.35 1.35 144 1.54 1.69
ME-4 .644 841 991 1.10 111 1.20 1.27 1.31 1.52 1.57

Large-ME .643 723 .845 0911 1.00 1.11 1.15 1.19 1.28 1.41
Average portfolio log size
Small-ME 1.66 1.68 1.61 1.67 1.61 1.61 164 1.62 1.61 1.63

ME-2 2.59 249 251 256 252 260 258 2.58 2.56 2.54
ME-3 3.40 336 333 331 338 339 337 334 3.34 3.28
ME-4 4.28 4.28 4.26 432 4.26 4.27 424 421 4.25 4.25

Large-ME 5.85 5.82 582 6.00 580 596 57 583 5.60 5.58
Average portfolio idiosyncratic volatility (in Percent)
Small-ME 12.2 11.8 13.2 13.1 12.3 132 14.2 13.7 15.0 14.7

ME-2 7.76 812 913 952 9.80 103 10.5 10.2 10.6 11.8
ME-3 6.77 7.09 764 811 7.86 824 846 810 8.80 9.36
ME-4 5.64 6.29 646 7.02 7.06 7.0r 733 731 897 8.43

Large-ME 4.70 478 517 504 536 573 6.05 573 6.39 6.53
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Table 2: Size-Beta Portfolio Characteristics (Sample Period: 1963-2000)

This table reports the average return, beta, log size, and residual standard deviation for the 50 size-beta
sorted portfolios over the extended Fama and French (1992) sample period of 1963-2000. Stocks from the
NYSE/AMEX are first sorted into five size groups according their market capitalization in December of the
last year of the estimation period. Each group of stocks is then sorted again into decile portfolios according
to the selection period betas. Detailed information on portfolio selection, estimation, and testing periods are
available in Fama and MacBeth (1973). Both the reported betas and the idiosyncratic volatilities, as well as,
betas used in sorting are estimated from a market model with a value-weighted index.

Low-8 B2 B3  Bs Bs  Bs  PBr Bs  Bo Highp
Average Monthly Returns (in Percent)

Small-ME 1.04 152 1.31 145 1.58 1.22 1.63 1.69 1.75 1.67
ME-2 1.78 1.15 1.16 135 133 148 144 1.25 1.32 1.30
ME-3 1.43 1.04 1.12 128 1.16 143 126 1.27 1.19 1.29
ME-4 1.43 1.01 113 109 1.15 1.17 1.36 1.17 1.20 1.20

Large-ME 1.09 1.03 1.09 109 1.13 122 1.03 1.10 1.10 .969

Average portfolio beta

Small-ME 783 932 939 1.04 1.05 1.10 1.19 1.18 1.28 1.37
ME-2 576 798 928 1.00 1.10 1.19 1.21 1.26 1.37 1.44
ME-3 .635 805 945 1.02 1.10 1.15 1.20 1.28 1.36 1.51
ME-4 .628 735 934 1.00 1.056 1.09 1.14 1.18 1.30 1.45

Large-ME .643 786 .860 .908 999 1.03 1.06 1.07 1.16 1.25

Average portfolio log size

Small-ME 2.63 275 278 270 280 281 273 280 2.67 2.77
ME-2 4.10 4.08 4.11 414 4.13 417 417 422 4.8 4.10
ME-3 5.19 5.25 525 5.23 528 522 521 517 5.23 5.27
ME-4 6.27 6.33 6.32 6.38 6.35 6.34 6.41 6.32 6.35 6.32

Large-ME 7.65 794 788 806 7.82 7.8 783 790 7.64 7.55

Average portfolio idiosyncratic volatility (in Percent)

Small-ME 10.2 11.5 11.3 121 119 124 13.1 128 14.2 14.6
ME-2 6.41 7.54 851 899 9.11 993 10.2 10.2 10.8 11.6
ME-3 6.32 6.58 7.38 T7.64 8.00 814 860 889 9.73 10.1
ME-4 5.38 5.80 6.50 6.56 692 7.01 717 774 8.10 8.94

Large-ME 5.11 526 5.71 571 584 593 6.09 6.18 6.63 7.31

47



Table 3: Replicating Fama-MacBeth Cross-sectional Regression on Portfolios
This table is intended to replicate the cross-sectional regression results reported in Fama-MacBeth (1973) Table
3. In general, stocks from the NYSE are selected into one of 20 portfolios according to the selection period
(seven years) with betas estimated from a market model. Details are available in Fama-MacBeth (1973). Both
the beta estimates and idiosyncratic volatility estimates used in cross-sectional regressions of the testing periods
are from the estimation period (next five years). In particular, the independent variables Bp,t_l, Bi’t_l, and
Sp,t—1(€) are equal-weighted averages of individual stock’s beta, beta squared, and residual standard deviation,
respectively, estimated using a market model with an equal-weighted index.

Replicating Results Fama-MacBeth Table 3
Const. Bp,t—l 5127,15—1 §p,t_1(e) R2 Const. /Bp,t—l 5127,15—1 Sp,t—1 (E) R2
1935-6/68 | .0061 .0087 .30 | .0061 .0085 .29
t Ratio 3.26 2.69 3.24 2.57
1935-40 .0012 .0125 .22 .0024 .0109 .23
t Ratio 155 .950 .320 .790
1941-45 .0071 .0212 .36 .0056 .0229 .37
t Ratio 1.72 2.46 1.27 2.55
1946-50 .0048 .0031 .39 | .0050 .0029 .39
t Ratio 1.22 511 1.27 .480
1951-55 .0122 .0026 .24 .0123 .0024 .24
t Ratio 4.98 0.576 5.06 .530
1956-60 .0148  -.0058 .23 | .0148  -.0059 .22
t Ratio 5.62 -1.34 5.68 -1.37
1961-6/68 | .0013 .0141 .33 | .0001 .0143 .32
t Ratio .351 2.73 .030 2.81
1935-6/68 | .0027 .0165  -.0037 .33 | .0049 .0105  -.0008 .32
t Ratio 1.04 2.72 -1.46 1.92 1.79 -.290
1935-40 -.0056  .0302 -.0091 .23 | .0013 .0141  -.0017 .24
t Ratio -.669 1.44 -1.21 .160 .75 .190
1941-45 .0094 .0166  .0018 .38 | .0148 .0004  .0108 .39
t Ratio 1.63 1.72 277 2.28 .030 1.15
1946-50 -.0004 .0143 -.0047 45 | -.0008 .0152 -.0051 .44
t Ratio -.092 1.09 -1.14 -.180 1.14 -1.24
1951-55 .0004 .0280 -.0120 .28 | .0004 .0281 -.0122 .28
t Ratio .089 2.53 -2.63 .100 2.55 -2.72
1956-60 .0124  -.0003 -.0025 .26 | .0128 -.0015 -.0020 .25
t Ratio 3.18 -.028 -.676 3.38 -.160  -.540
1961-6/68 | .0030 .0101  .0021 .35 | .0029 .0077  .0034 .34
t Ratio 429 .665 .299 420 .530 .510
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Table 3—Continued

Replicating Results

Fama-MacBeth Table 3

Const. Bp,t—l 5127,15—1 §p,t_1(e) R? Const. Bp,t—l 5127,15—1 Sp,t—1 (E) R?
1935—6/68 .0058 .0083 .0037 .33 .0054 .0072 .0198 .32
t Ratio 2.45 2.36 .085 2.10 2.20 .460
1935-40 .0027 .0152 -.0450 .25 .0036 .0119 -.0170 .25
t Ratio .324 1.09 -.653 .370 970 -.190
1941-45 .0021 .0102 .1610 .39 | -.0006 .0085 .2053 41
t Ratio .309 1.65 1.29 -.080 1.25 1.46
1946-50 .0076 .0095 -.1230 .44 .0069 .0081 -.0920 42
t Ratio 1.46 1.07 -1.33 1.56 .950 -1.41
1951-55 .0149 .0072 -.1230 .28 .0150 .0069 -.1185 27
t Ratio 3.95 1.29 -1.33 4.05 1.24 -1.31
1956-60 .0122 -.0086 .0925 .26 .0127 -.0081 .0728 .26
t Ratio 2.54 -1.41 .569 2.68 -1.40 .480
1961—6/68 .0000 .0123 .0483 .34 | -.0014 .0122 .0570 .33
t Ratio .001 1.97 523 -.320 2.12 .640
1935—6/68 -.0011 0175  -.0061 .0630 .34 .0020 .0114  -.0026 .0516 .34
t Ratio -.315 2.85 -2.21 1.32 -.550 1.85 -.860 1.11
1935-40 -.0083 .0320 -.0117 .0224 .26 .0009 .0156  -.0029 .0025 .26
t Ratio -.760 1.51 -1.35 .300 .070 .780 -.290 .030
1941-45 -.0076 .0235 -.009 12370 .40 .0015 .0073 .014 1767 43
t Ratio -.684 2.46 -1.43 1.63 .120 .520 .150 1.16
1946-50 .0032 .0136  -.0029 -.0719 44 .0011 .0141 -.0040 -.0313 44
t Ratio 576 1.05 -.749 -.984 .180 1.03 -.730 -.410
1951-55 .0034 0275  -.0104 -.0773 .30 .0023 0277 -.0112 -.0443 .29
t Ratio .691 2.50 -2.33 -.860 .480 2.53 -2.54 -.530
1956-60 .0087 -.0042 -.0028 1370 .28 .0103 -.0047 -.0020 .0979 .28
t Ratio 1.21 -.430 -.649 Nave 1.63 -.470 -.490 .590
1961—6/68 -.0025 .0120  -.0008 1130 37 | -.0017 .0088 .0013 .0957 .35
t Ratio -.310 767 -.110 1.12 -.210 .580 .190 1.02
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Table 4: Fama-MacBeth Cross-sectional Regressions on Portfolios
This table reports the cross-sectional regression results for portfolios over both the Fama-MacBeth (1973)

sample period of January 1935 to June 1968 and the extended Fama-French (1992) sample period of January
1963 to December 2000. In general, stocks from the NYSE/AMEX are selected into one of 20 portfolios
according to the selection period (seven years) betas estimated from a market model. Details are available

in Fama-MacBeth (1973). Both the beta estimates and idiosyncratic volatility estimates used in the cross-

sectional regressions of the testing periods are from the estimation period (next five years). In particular, the
independent variables Bp.¢—1, 5127,15—17 and 3p :—1(€) are equal-weighted averages of individual stock’s beta, beta
squared, and residual standard deviation, respectively, estimated using a market model.

With 20 Portfolios With 50 Portfolios
Eq. # Const. 6p,t—1 6;:2;,t—1 §p’t_1(€) Const. 6p,t—1 6;:2;,t—1 §p’t_1(€)
Panel A: 1935-1968/6
1 ~ .0073  .0057 .0076  .0054
t(¥y) 3.12 1.91 3.41 1.86
2 ~ .0106 .0020 .0110 .0018
t(¥y) 4.26 1.73 4.33 1.64
3 ~ -.0022 .0574 -.0019 .0560
t(y) | -0.34 1.77 -0.34 1.93
4 ~ .0014 .0187 -.0056  -.0070 -.0084 .0136 -.0049 .0475
t(¥y) 0.21 2.85 -2.52 -0.26 -1.55 2.74 -2.94 2.17
Panel B: 1963-2000
1 ~ .0079  .0043 .0082  .0040
t(¥y) 3.51 1.43 3.73 1.37
2 ~ .0101 .0018 .0104 .0016
t(¥y) 5.08 1.32 5.15 1.24
3 ~ .0018 .0387 .0028 .0348
t(¥y) 0.32 1.47 0.53 1.44
4 ~ -.0100 .0107 -.0069 .0666 -.0043 .0057 -.0035 .0529
t(y) | -1.41 1.36 -1.97 2.48 =791 0.96 -1.36 2.59
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Table 5: Cross-sectional Regressions for Size-Beta Portfolios

This table reports the cross-sectional regression results on the 50 size-beta sorted portfolios over both the
Fama-MacBeth (1973) sample period of January 1935 to June 1968 and the extended Fama-French (1992)
sample period of January 1963 to December 2000. Stocks from the NYSE/AMEX are first sorted into five size
groups according their market capitalization in December of the last year of the estimation period. Each group
of stocks is then sorted again into decile portfolios according to the selection period betas. Detailed information
on the portfolio selection, estimation, and testing periods are available in Fama and MacBeth (1973). Under
the column “Based on CAPM”, both the reported betas and the idiosyncratic volatilities as well as betas used
in sorting are estimated from a market model with a value-weighted index. Similarly, under the column ‘Based
on FF3 Model’, the idiosyncratic volatilities are estimated from the Fama and French (1993) three-factor model
instead. Both the beta estimates and idiosyncratic volatility estimates used in cross-sectional regressions of
the testing periods are from the estimation period. In particular, the independent variables Bp,t_l, BAfm_l,
MEp,:—1, and 5p:—1(€) are equal-weighted averages of individual stock’s beta, beta squared, log size, and
residual standard deviation, respectively.

Eq. Based on CAPM Based on FF3 Model
# Boi-1 Bpii MEpi1 8pia(e) | Bor1 Bpion MEpi1 Spi_i(e)
Panel A: For sample period of 1935-1968/6
1 ~ .0077 .0077
t7) | 224 2024
2 | 5 .0027 .0027
t(¥) 2.13 2.13
3 ~ -.0022 -.0022
t(¥) -2.74 -2.74
4 ~ 0.070 0.077
t(¥) 2.61 2.61
5 ¥ .0141  -.0045 -.0018 .0141  -.0045 -.0018
t(¥) 2.46 -2.29 -2.73 2.46 2.29 -2.73
6 ~ .0134  -.0055 0.073 .0124  -.0049 0.077
t(¥) | 2.55 -3.10 2.69 2.36 -2.76 2.70
7 ~ -.0004 0.062 -.0004 0.067
t(¥) -0.77 2.03 -0.76 2.03
8 ~ .0163  -.0063 -.0004 0.053 .0157  -.0058 -.0005 0.051
t(¥) 2.95 -3.36 -0.96 2.16 2.83 -3.12 -1.13 2.09
Panel B: For sample period of 1963-2000
1 ¥ .0044 .0044
t(¥) 1.57 1.57
2 | 5 .0018 .0018
t(¥) 1.48 1.48
3 5 -.0009 -.0009
t(¥) -1.94 -1.94
4 | 5 0.043 0.048
t(¥) 1.81 1.88
5 ~ .0089  -.0029 -.0009 .0089  -.0029 -.0009
t(¥) 1.30 -1.13 -2.05 1.30 -1.13 -2.05
6 5 .0059  -.0033 0.054 .0055 -.0031 0.059
t(¥) | 097  -1.33 2.16 0.92  -1.26 2.19
7 ~ -.0003 0.034 -.0003 0.036
t(¥) -0.69 1.36 -0.83 1.36
8 ~ .0072  -.0036 -.0003 0.041 .0071  -.0035 -.0003 0.040
t(¥) 1.08 -1.39 -0.69 1.86 1.06 -1.37 -0.82 1.76
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Table 6: Cross-sectional Fama and French Regressions for Individual

NYSE/AMEX/NASDAQ Stocks (1963-2000)

This table reports the cross-sectional regression results for all NYSE/AMEX/NASDAQ individual stocks over
the extended Fama-French (1992) sample period of July 1963 to June 2000. The beta estimates (3p) used
in the cross-sectional regressions are estimated from the 100 size-beta sorted portfolios and then assigned to
individual stocks. Portfolio breakdowns in each year are determined by first sorting the NYSE stocks only
into 10 size groups according their market capitalization in June of each year. Each group of the NYSE stocks
is then sorted again into decile portfolios according to their beta estimates computed using the sum of the
betas from a market model (with lagged market returns) of the previous 24 to 60 monthly returns. Similarly,
the idiosyncratic volatility measure s,(€) is the root mean square error of either the market model or the
Fama-French (1993) three-factor model for each of the 20(size) x 10(beta) portfolios and then assigned to
individual stocks. M E; ;—1 and B/M;.—1 are log market capitalization as of June and the last fiscal year’s log
book to market measure, respectively. In Panel A, both idiosyncratic volatility measures are estimated from
the market model. While in Panel B, both idiosyncratic volatility measures are estimated from the Fama and
French (1993) three-factor model.

Panel A: Based on CAPM Panel B: Based on FF3 Model
Eq# Bp  B/Mii—1  MEi;—1  sp(e) Bp  B/Mii—1  MEi;—1  sp(e)
1 y | .0047 0047
t(y) 1.37 1.37
2 ¥ .0042 .0042
t(y) 5.43 5.43
3 ~ -.0019 -.0019
t(y) -3.50 -3.50
4 5 0.315 0.318
t(y) 4.75 3.59
5 ~ .0056 .0041 .0056 .0041
t(y) 1.66 5.53 1.66 5.53
6 ~ -.0003 -.0020 -.0003 -.0020
t(¥) | -0.11 -4.34 -0.11 -4.34
7 ~ .0054 0.327 | -.0090 0.460
t(y) 1.54 4.83 -3.06 5.16
8 ~ -.0007 0.234 -.0005 0.265
t(y) -1.09 3.62 -1.46 3.00
9 ~ .0016 .0030 -.0016 .0016 .0030 -.0016
t(y) 0.58 4.08 -3.23 0.58 4.08 -3.23
10 ~ .0061 .0030 0.280 | -.0066 .0030 0.405
t(y) 1.77 4.15 4.05 -2.51 4.22 4.51
11 ~ .0081 .0031 .0006 0.360 | -.0070 .0030 .0003 0.446
t(y) 2.44 4.16 1.65 4.87 -2.62 4.09 0.74 5.43
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Table 7: Cross-sectional Fama and French Regressions for Individual

NYSE/AMEX Stocks (1963-2000)

This table reports the cross-sectional regression results for NYSE/AMEX individual stocks only over the
extended Fama-French (1992) sample period of July 1963 to June 2000. The beta estimates (8p) used in the
cross-sectional regressions are estimated from the 100 size-beta sorted portfolios and then assigned to individual
stocks. Portfolio breakdowns in each year are determined by first sorting NYSE stocks only into 10 size groups
according their market capitalization in June of each year. Each group of NYSE stocks is then sorted again into
decile portfolios according to their beta estimates computed using the sum of the betas from a market model
(with lagged market returns) of the previous 24 to 60 monthly returns. Similarly, the idiosyncratic volatility
measure Sp(€) is the root mean square error of either the market model or the Fama-French (1993) three-
factor model for each of the 20(size) x 10(beta) portfolios and then assigned to individual stocks. MFE;:—1
and B/M;_1 are log market capitalization as of June and the last fiscal year’s log book to market measure,
respectively. In Panel A, both idiosyncratic volatility measures are estimated from the market model. While
in Panel B, both idiosyncratic volatility measures are estimated from the Fama and French (1993) three-factor
model.

Panel A: Based on CAPM Panel B: Based on FF3 Model
Eq# Bp  B/Mii—1  MEi;—1  sp(e) Bp  B/Mii—1  MEij;—1  sp(e)
1 ~ .0039 .0039
t(¥) | 1.19 1.19
2 ~ .0039 .0039
t(¥) 5.22 5.22
3 ~ -.0013 -.0013
t(¥) -2.47 -2.47
4 ¥ 0.199 0.244
t(y) 3.53 2.89
5 ~ .0035 .0036 .0035 .0036
t(¥) | 1.10 5.10 1.10 5.10
6 ~ -.0002 -.0014 -.0002 -.0014
t(¥) | -0.09 -3.19 -0.09 -3.19
7 ~ .0043 0.213 | -.0030 0.293
t(¥) | 1.29 3.61 | -1.13 3.99
8 ~ -.0007 0.119 .0003 0.299
t(y) -1.11 1.95 0.88 3.59
9 ~ .0010 .0028 -.0009 .0010 .0028 -.0009
t(y) 0.38 4.35 -2.01 0.38 4.35 -2.01
10 ~ .0040 .0028 0.156 | -.0017 .0027 0.227
t(y) 1.19 4.49 2.73 -0.66 4.26 3.18
11 ~ .0050 .0028 .0003 0.195 | -.0021 .0028 .0008 0.342
t(y) 1.72 4.36 0.73 3.85 -0.83 4.30 1.94 4.83
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Table 8: Investigating the Liquidity Effect for Individual Stocks (1963-2000)
This table reports the cross-sectional regression results for individual stocks over the extended Fama-French
(1992) sample period of July 1963 to June 2000. The beta estimates () used in the cross-sectional regressions
are estimated from the 100 size-beta sorted portfolios and then assigned to individual stocks. Portfolio break-
downs in each year are determined by first sorting NYSE stocks only into 10 size groups according their market
capitalization in June of each year. Each group of NYSE stocks are then sorted again into decile portfolios
according to their beta estimates computed using the sum of the betas from a market model (with lagged
market returns) of the previous 24 to 60 monthly returns. Similarly, the idiosyncratic volatility measure sp(€)
is the root mean square error of the market model for each of the 20(size) x 10(beta) portfolios and then
assigned to individual stocks. Vim;¢_1 is the relative volume of the previous month. ME; ;1 and B/M; ;1
are log market capitalization as of June and the last fiscal year’s log book to market measure, respectively. In
Panel A, all the NYSE/AMEX/NASDAQ individual stocks are used in the cross-sectional regression. In Panel
B, only NYSE/AMEX stocks are used in estimation.

Eq. Panel A: NYSE/AMEX/NASDAQ Stocks Panel B: NYSE/AMEX Stocks
No. ﬁp B/Mi,t_l MEi,t_l Sp(e) Vlmi,t_l ﬁp B/Mi,t_l MEi,t_l Sp(e) Vlmi,t_l
1 | 5 0.315 0.199
t(¥) 4.75 3.53
2 5 .0065 .0066
t(¥) 2.68 2.80
3 5 .0048 .0068 .0037 .0066
() | 1.39 2.92 1.16 3.04
4 5 .0042 .0039 .0038 .0031
t(3) 5.37 1.72 5.16 1.48
5 5 -.0019 .0001 -.0012 .0013
t(¥) -3.40 0.04 -2.31 0.78
6 5 0.317 -.0015 0.194 -.0011
t(¥) 4.79 -0.85 3.57 -0.79
7 5 .0013 .0030 -.0016 -.0018 .0009 .0028 -.0009 -.0007
t(y) | 0.49 4.08 -3.32 -1.35 0.33 4.36 -2.04 -0.69
8 5 .0060 .0030 0.284 -.0016 .0039 .0028 0.157 -.0004
t(¥) 1.72 4.16 4.15 -1.14 1.18 4.49 2.81 -0.37
9 5 .0057 .0008 0.352 -.0021 .0036 -.0002 0.199 -.0005
t(y) | 1.60 0.21 4.76 -1.59 1.23 -0.60 3.93 -0.50
10 5 .0078 .0031 .0006 0.360 -.0015 .0048 .0028 .0003 0.195 -.0011
t(y) | 2.37 4.16 1.55 4.86 -1.19 1.67 4.37 0.67 3.87 -1.03
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Table 9: Cross-sectional Regressions for Individual Japanese Stocks (Jan. 1980-

Dec. 1999)

Both the beta estimates and idiosyncratic volatility estimates used in cross-sectional regressions are estimated
from 100 size-beta sorted portfolios and then assigned to individual stocks. In each year, stocks are first sorted
into 10 size groups according their market capitalization in December of the previous year. Each group of
stocks are then sorted again into decile portfolios according to their beta estimates computed using the sum of
the betas from a market model of previous 24 to 60 monthly returns. We use all the listed stocks that also have
book-to-market information over the whole sample period. The idiosyncratic volatilities are estimated from
the Fama and French (1993) three-factor model. In particular, By 1, MEi ¢ 1, B/M; 1 and 5,1 (€) are the
independent variables of beta, log size, book-to-market equity, and residual standard deviation, respectively.

Const. Bp B/Mi,t_l MEi,t_l Sp(e) COnSt. B;D B/Mi,t_l MEi,t_l Sp(e)
Panel A: The Whole Sample
~ -.00367  .0121
t(¥) | -0.555 1.362
¥ 0.00523 .0081
t(¥) 1.163 2.569
o 0.02518 -.0016
t(¥) 1.651 -1.470
¥ 0.00332 1.358
t(¥) 0.935 1.867
o 0.01445  .0052 .0070 -.0013
t(¥) 0.991 0.707 2.375 -1.285
¥ 0.00076  .0003 .0071 1.306
t(¥) 0.123 0.037 2.312 1.871
¥ -.00632  -.0003 .0073 .0006 1.686
t(¥) | -0.457  -0.041 2.466 0.701 3.354
Panel B: The First Subsample Panel C: The Second Subsample
¥ 0.00843 .0132 -.01580 .0110
t(¥) 0.893 1.206 -1.697  0.773
o 0.01922 .0077 -.00877 .0085
t(¥) 3.268 1.614 -1.273 2.028
o 0.04748 -.0024 0.00289 -.0007
t(¥) 2.499 -1.773 0.124 -0.455
¥ 0.01470 1.835 | -.00805 0.881
t(¥) 3.083 1.990 | -1.501 0.801
¥ 0.04366  .0020 .0060 -.0024 -.01476  .0084 .0080 -.0002
t(¥) 1.861 0.186 1.343 -1.647 -0.891  0.782 2.017 -0.131
¥ 0.01603 -.0038 .0065 2.031 | -.01451 .0043 .0078 0.581
t(¥) 1.673 -0.344 1.386 1.937 | -1.847 0.419 1.891 0.654
¥ 0.02501 -.0034 .0062 -.0006 1.625 | -.03765 .0028 .0085 .0019 1.747
t(¥) 1.152 -0.329 1.389 -0.510 2.435 | -2.262  0.270 2.100 1.600 2.322
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Table 10: Summary Statistics for Individual Times Series Regressions of 100 Port-

folios

This table reports the average and standard deviation of regression coefficients of the 100 size-beta sorted
portfolios using different time-series models. Ry w,: and R;: denote returns from a value-weighted index and the
i—th portfolio respectively; Ry denotes the return proxies for idiosyncratic volatility from a hedging portfolio;
Rsy .t and Rgarr,: denote proxies for the size and book-to-market factors respectively. The dependent variable
is Rit. “Ind.” counts the percentage of individual regressions for each portfolio with significant coefficients at

5% level.

a Rvws Rsmri Rumipe Rig | R2(%)
Panel A: 1935.1-1968.6
Mean 0.105 1.279 69.94
St.D | (.195)  (.088) (13.48)
Ind.(%) | 26.00  100.0
Mean 0.166 0.957 0.574 77.09
St.D | (.166)  (.082) (.141) | (7.66)
Ind.(%) 39.00 97.00 82.00
Mean -0.002 1.021 0.679 0.347 79.46
St.D | (.147)  (.061)  (.116)  (.123) (7.10)
Ind.(%) 34.00 100.0 87.00 71.00
Mean 0.106 0.961 0.225 0.462 77.62
(.163)  (.080) (110)  (.132) | (7.47)
Ind.(%) 30.00 98.00 56.00 73.00
Mean 0.021 0.997 0.609 0.303 0.094 80.20
St.D | (.155) (.079)  (.125)  (.105)  (.160) | (6.52)
Ind.(%) 27.00 99.00 91.00 77.00 54.00
Panel B: 1963.7-2000.6
Mean 0.079 1.057 67.10
St.D | (.161)  (.051) (11.96)
Ind.(%) | 14.00  100.0
Mean 0.087 0.889 0.314 73.25
St.D | (.137)  (.052) (.073) | (9.76)
Ind.(%) | 16.00  100.0 80.00
Mean -0.091 1.019 0.577 0.311 81.13
St.D | (.117) (.037)  (.055)  (.066) (7.08)
Ind.(%) 35.00 100.0 91.00 85.00
Mean -0.064 0.920 0.369 0.439 77.26
St.D | (.130)  (.049) (.076)  (.055) | (7.45)
Ind.(%) 27.00 100.0 88.00 87.00
Mean -0.091 1.019 0.576 0.311 0.000 82.19
St.D | (.111)  (.044)  (.081)  (.064)  (.073) | (6.46)
Ind.(%) 37.00 100.0 92.00 88.00 77.00
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Figure 1

The Relationship between Average Return and ldiosyncratic Valatility
(1963-2000]
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