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Preface

This manual contains solutions with notes and comments to problems from the
textbook

Partial Differential Equations
with Fourier Series and Boundary Value Problems
Second Edition

Most solutions are supplied with complete details and can be used to supplement

examples from the text. Additional solutions will be posted on my website
www.math.missouri.edu/™ nakhle

as I complete them and will be included in future versions of this manual.

I would like to thank users of the first edition of my book for their valuable com-
ments. Any comments, corrections, or suggestions would be greatly appreciated.
My e-mail address is

nakhle@math.missouri.edu
Nakhlé H. Asmar
Department of Mathematics
University of Missouri
Columbia, Missouri 65211



Errata

The following mistakes appeared in the first printing of the second edition (up-dates
24 March 2005).

Corrections in the text and figures

p- 224, Exercise #13 is better done after Section 4.4.

p. 268, Exercise #8(b), n should be even.

p.387, Exercise#12, use y2 = Ip(x) not yo = Jy(x).

p-420, line 7, the integrals should be from —oo to co.

p. 425 Figures 5 and 6: Relabel the ticks on the z-axis as —m, —7/2, 7/2, 7, instead
of —2m, —m, m, 2m.

467, line (—3): Change reference (22) to (20).

477, line 10: (at) < (z, t).

477, line 19: Change "interval” to ”triangle”

487, line 1: Change "is the equal” to ”is equal”

655, line 13: Change In|In(z? + 3?)| to In(z? + y?).

A38, the last two lines of Example 10 should be:

= (a1 —2a0) + (2az —ap)z + > 0 5. .. = o _[(m+ Dams1 + am(m? — 2)]z™.
Last page on inside back cover: Improper integrals, lines —3, the first integral
should be from 0 to oo and not from —oo to co.

SRR R

°

Corrections to Answers of Odd Exercises
Section 7.2, # 7: Change i to —i.
Section 7.8, # 13: f(z) =3for 1 <z <3 not 1 <z <2.

. e "W —1 .. . .
Section 7.8, # 35: \/g% Z;’?:l] sin(jw). # 37: 4 \/g#, #51: \/% [01 — do].
# 57: The given answer is the derivative of the real answer, which should be

((@+2) (U2 = Uo) +(~2+2)(Uo — Un) + (U — Us) +(—+4) (Us — Us) )

5~
3

# 59: The given answer is the derivative of the real answer, which should be
1

Lo (@ 3) (Uog = Uoz) + (204 5) Uz — Unr) + (0 +4) (U1 — Uo)
w4 4)(Up = Uh) + (=22 +5) (Us = Us) + (2 +3) (Ua — Us))

Section 7.10, # 9: $[tsin(z +1t) + 3 cos(z +t) — § cos(x — t)].

Appendix A.2, # 43: y = ¢ cos3x + co sin 3x — 11—8x cos 3 + Zi:L nt3 n?ignjf?)'
# 49: yp:..l.<—>yp1:3x(....l Yo

# 67 y=—ge” + 55 + (gT + 55)e .

Appendix A3, # 9y =cr1x + o [% In (}f—i) - } .

# 25 In(cosx) <> Injcosz|. # 27Ty =c1(1+ )+ c2e” — 9”2: — 322
Appendix A4, # 13 =1 +4> 7 (=1)"a"™
Appendix A5, # 15 y =1 — 622 + 32* + 220+ - -
Any suggestion or correction would be greatly appreciated. Please send them
to my e-mail address

nakhle@math.missouri.edu
Nakhlé H. Asmar
Department of Mathematics

University of Missouri
Columbia, Missouri 65211



Section 1.1 What Is a Partial Differential Equation? 1

Solutions to Exercises 1.1

Figure for Exercise 9(b).

1. If uy and wg are solutions of (1), then

Ouy  Our Oug = Ouz
o T 0 ad Gt =0

Since taking derivatives is a linear operation, we have

_( + ) + _( + ) — % % + % + %
e 1 TR T G At T et = AT T T T ey T 2y
-0 =0
o 8’&1 8’&1 8’&2 8’&2 o
- a (W*a?) e (WJFJF@_@) -
showing that ¢juy + couse is a solution of (1).
5. Let a = ax + bt, f = cx + dt, then
i oude ouds_ o ou
dr  dadxr IBIxr  Oa op
i oudo ouds_,ou ou
o dadt 9B O 0B

Recalling the equation, we obtain

ou  Ou ou ou

Leta=1,b=2, ¢c=1, d=1. Then

0

=0 = u=f() = ule,t)=f@+1),

where f is an arbitrary differentiable function (of one variable).

9. (a) The general solution in Exercise 5 is u(x, t) = f(x +t). When ¢ = 0, we get
u(x, 0) = f(x) =1/(2? +1). Thus

(¢) As t increases, the wave f(z) = H% moves to the left.

13. To find the characteristic curves, solve g—g = sinx. Hence y = —cosz +
C or y+cosx = C. Thus the solution of the partial differential equation is
u(xz,y) = f(y+cosz). To verify the solution, we use the chain rule and get
uy = —sinzf' (y+cosz) and uy, = f' (y+cosz). Thus u, + sinzu, = 0, as

desired.
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Chapter 1 A Preview of Applications and Techniques

Exercises 1.2

1. We have
O (ou) _ 0 (ov)\ 4 O (%)__09 (ou
ot \ot)~ "ot \ox) M ox\ot)” oz \oz)
So
Ou_ o0 o
o7~ otow 0 Owot | 022
Assuming that % = gjg 2, it follows that %% = ngZ, which is the one dimensional

wave equation with ¢ = 1. A similar argument shows that v is a solution of the one
dimensional wave equation.

5. (a) We have u(x, t) = F(z + ct) + G(x — ct). To determine F' and G, we use
the initial data:

u(z, 0) = 1+1x2 = F(2)+G) = 1—1—1—3:2; (1)
M0 =0 F G'(x) =0
E(x, )= = cF'(z) —cG'(x) =

= Flo)=G'(x) = F@)=Gx)+C, (2

where C' is an arbitrary constant. Plugging this into (1), we find

1 1 1
W+ 0= = G(x>_§[1+x2_c]’
and from (2)
1 1
Flz) =~ |—— .
() 2[1+x2+c]
Hence
(2,8) = Fl+ct) + Gla—ct) = 5 |-~ 1
WE B = e Ty 1+ (z+ct)2 14+ (x—ct)?]’

9. As the hint suggests, we consider two separate problems: The problem in
Exercise 5 and the one in Exercise 7. Let u;(x, t) denote the solution in Exercise 5
and wus(x, t) the solution in Exercise 7. It is straightforward to verify that u =
u1 + ug is the desired solution. Indeed, because of the linearity of derivatives, we
have uy = (ug)e + (u2)er = c2(u1)ze + c2(u2)zs, because u; and ug are solutions
of the wave equation. But c2(u1)ze + ?(U2)ze = c2(us + U2)zx = Uze and so
Uyt = C*Uge, showing that u is a solution of the wave equation. Now u(z, 0) =
uy(x, 0)+ua(x, 0) = 1/(1+22)+0, because uy (z, 0) = 1/(1+22) and ua(z, 0) = 0.

Similarly, u:(z, 0) = —2{E€7I2; thus u is the desired solution. The explicit formula
for u is
1 1 1 1 2 2
, )= = - |: —(z4ct)® _ —(z—ct) )
u(@, t) 2 1+(x+ct)2+1+(x—ct)2]+2c ‘ ‘

13. The function being graphed is
. 1. 1.
u(zx, t) = sinwx cos wt — 5 sin 2mx cos 2wt + 3 sin 3w cos 3rt.

In frames 2, 4,6, and 8, ¢ = 7, where m = 1, 3,5, and 7. Plugging this into
u(zx, t), we find

mim

. mr 1 . mr 1 .
u(z, t) = sin T cos 4~ gsin 2mx cos —— + - sin 3mx cos

2 2 3



Section 1.2  Solving and Interpreting a Partial Differential Equation 3

For m =1, 3, 5, and 7, the second term is 0, because cos %5* = 0. Hence at these
times, we have, for, m =1, 3, 5, and 7,

1
u(z, %) = sinwx cost + 3 sin 37z cos 37t.
To say that the graph of this function is symmetric about = 1/2 is equivalent

to the assertion that, for 0 < = < 1/2, u(1/2 4z, F) = u(1/2 — z, ). Does this
equality hold? Let’s check:

1 3
w(1/2 + =, %) = sinw(x+1/2)cos%+gsin37r(x+1/2)cos T

mr 1 3mm
= COS I COS — — — COS 3T COS ,
4 3 4

where we have used the identities sin(x 4+ 1/2) = cos7ma and sin27(z + 1/2) =
— cos 3rz. Similalry,

1 3
u(1/2 -z, %) = sinm(1/2 — ) cos % + 5 sin3m(1/2 — ) cos mr
mnr 1 mm
= COSTZCOS —— — = COS 37T COS
4 3
Sou(l/2+x, 3) =u(l/2 —x, F), as expected.
17. Same reasoning as in the previous exercise, we find the solution
(@, 1) . T crt n 1 . 3nx 3crt n 2 . Trx Tert
u(zx, t) = = sin — cos — + — sin —— cos — sin — cos .
’ 2 L L 4 L L 5 L L

21. (a) We have to show that u(%, t) is a constant for all £ > 0. With ¢ = L =1,
we have

u(z, t) = sin 27wx cos 2nt = u(1/2, t) =sinmcos2nt =0 for all ¢ > 0.

(b) One way for z = 1/3 not to move is to have u(x, t) = sin 3w cos3wt. This
is the solution that corresponds to the initial condition u(z, 0) = sin3wx and
%(x, 0) = 0. For this solution, we also have that « = 2/3 does not move for

all ¢.
25. The solution (2) is

( t) . Tx mct
u(x, t) = sin — cos —.
’ L L
Its initial conditions at time ty = % are
( 3L> . T wc 3L . T 3 0
-~ )= — CO —_— | = — Ccos — = U;
u(x, e sin 7 S T % sin i7 S 5 ;



4 Chapter 2 Fourier Series

Solutions to Exercises 2.1

1. (a) cosw has period 2r.  (b) cos 7z has period T = 22 = 2. (c) cos 2 has
period T' = 22773 =3m.  (d) cosx has period 27, cos 2z has period m, 27, 37,:. A
common period of cosx and cos 2z is 27. So cos x + cos 2z has period 27.

5. This is the special case p = 7 of Exercise 6(b).

9. (a) Suppose that f and g are T-periodic. Then f(z+T) -g(xz+T) = f(z)-g(x),
and so f - g is T periodic. Similarly,

fla+T) _ flz)

gz +T)  g(x)

3

and so f/g is T periodic.
(b) Suppose that f is T-periodic and let h(x) = f(z/a). Then

h(z +aT) = f(“aT) :f(§+T)

a

= f (E) (because f is T-periodic)
a
= h(x).
Thus h has period aT. Replacing a by 1/a, we find that the function f(az) has
period T'/a.

(c) Suppose that f is T-periodic. Then g(f(z +T)) = g(f(z)), and so g(f(x)) is
also T-periodic.

13.
/M2 fla)dz = /077/2 1dz = /2.

—7/2

17. By Exercise 16, F' is 2 periodic, because f02 f(t)dt = 0 (this is clear from
the graph of f). So it is enough to describe F on any interval of length 2. For
0 <z < 2, we have

2z 2

F(:c)_/ox(l—t)dt_t—%o r

=r——.
2

For all other z, F'(x+2) = F(z). (b) The graph of F over the interval [0, 2] consists
of the arch of a parabola looking down, with zeros at 0 and 2. Since F' is 2-periodic,
the graph is repeated over and over.

21. (a) With p = 1, the function f becomes f(z) = 2—2 [£HL], and its graph is the
first one in the group shown in Exercise 20. The function is 2-periodic and is equal
to x on the interval —1 < < 1. By Exercise 9(c), the function g(z) = h(f(x) is 2-
periodic for any function h; in particular, taking h(z) = 22, we see that g(x) = f(x)?
is 2-periodic. (b) g(z) = 22 on the interval —1 < z < 1, because f(z) = z on that
interval. (c) Here is a graph of g(z) = f(z)* = (z — 2 [IT“])Q, for all .

Plot [(x-2Floor [(x+1)/2])"2, {X, -3,3}]
1




Section 2.1 Periodic Functions 5

25. We have

a+h
x)dx — /0 f(z)dx

0
/aa+h o) da

where M is a bound for | f(z)|, which exists by the previous exercise. (In deriving
the last inequality, we used the following property of integrals:

SMh’a

x| <(b—a) M,

which is clear if you interpret the integral as an area.) As h — 0, M - h — 0 and so
|F(a+h)—F(a)] — 0, showing that F'(a+h) — F(a), showing that F is continuous
at a.

(b) If f is continuous and F(a) = [ f(z) dz, the fundamental theorem of calculus
implies that F’'(a) = f(a). If f is only p1ecew1se continuous and ag is a point of
continuity of f, let (z;_1, z;) denote the subinterval on which f is continuous and
ap isin (z;—1, ;). Recall that f = f; on that subinterval, where fiisa continuous
component of f. For a in (z;_1, z;), cons1der the functlons F(a fo x) dr and
G(a) = [ | fj(x)de. Note that F(a) a)+ [o7 da: = Gla )+c Since
f;j is continuous on (x;_1, z;), the fundamental theorem of calculus implies that
G'(a) = fj(a) = f(a). Hence F'(a) = f(a), since F' differs from G by a constant.
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Solutions to Exercises 2.2

1. The graph of the Fourier series is identical to the graph of the function, except
at the points of discontinuity where the Fourier series is equal to the average of the
function at these points, which is %

Function Fourier series
y y
1 - 1
| X R B
3 — T 21 3m -3n - T 2n 3m

5. We compute the Fourier coefficients using he Euler formulas. Let us first note
that since f(x) = |z| is an even function on the interval —m < x < , the product
f(z)sinnz is an odd function. So

odd function
1 ™ /_/h
by, = — |z sinnz dx =0,
™

—T

because the integral of an odd function over a symmetric interval is 0. For the other
coefficients, we have

ag = / f(z / |z| dx
- - ( r)d +i/ﬁ a
o _27T _ v 2w Jq rvax

1 (7 1
= —/ xdaz——xQ
T Jo 2T

In computing a, (n > 1), we will need the formula

7" ™

5

/xcosaxdaz: cos(gaz) + 2 sin(a ) +C (a#0),
a a

which can be derived using integration by parts. We have, for n > 1,

1 us
/f cosmcda:——/ |z cosnx dx
™

—T

[~
3
!
3=

T cosnx dx

s

sinnx —|— —5 Cos naz]

- ] = -]

n ™2

—
/—\

if n is even

—i if n is odd.

™2

f—Hﬂn\a SIS

Thus, the Fourier series is

T 4SS 1
T 2N cos(2k+1
2 7 kg ok 1z sk e



In[2]:=

In[25]:=

Section 2.2 Fourier Series 7

s[h_,x_1:=Pi/2 -4/PiSum[l/ (2k +1)"2Cos[(2k +1) x], {k,O0,n }]

partialsums =Table [s[n,x ], {n, 1,7 }I;

f
g

[X_1=X - 2PiFloor [(X+Pi)/ (2Pi)]
[x_1 = Abs[f [x]]

Plot [g[x], {X, -3Pi, 3 Pi}]
Plot [Evaluate [{g[x], partialsums }1, {X, -2Pi,2Pi }]

The function g(x) = | x |
and its periodic extension

Partial sums of

the Fourier series. Since we are
summing over the odd integers,
when n =7, we are actually summing
the 15th partial sum.

-2n

2n

9. Just some hints:
(1) f is even, so all the by,’s are zero.

2)
1 (7 2
aoz—/ xde:W—.
™ 0 3

2z coz(ax) N (—2+ a? zz) sin(a x) O (a40),

—~~

(3) Establish the identity

/x2 cos(ax) dx =

a

using integration by parts.

13. You can compute directly as we did in Example 1, or you can use the result
of Example 1 as follows. Rename the function in Example 1 g(x). By comparing
graphs, note that f(x) = —2¢g(z + 7). Now using the Fourier series of g(x) from
Example, we get

n+1

f( :_ZZWZ i sinnx.

n=1

17. Setting x = 7 in the Fourier series expansion in Exercise 9 and using the fact
that the Fourier series converges for all z to f(z), we obtain

7T2:f :3 g

where we have used cosnm = (—1)". Simplifying, we find

=1
Zn—

7T2+4i 1
coSNmw = — —
3 n?’

n=1
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21. (a) Interpreting the integral as an area (see Exercise 16), we have

1 1 1

apg=—+=+-—=—.
T 2 28
To compute a,, we first determine the equation of the function for § < z < =.

From Figure 16, we see that f(z) = 2(7 — z) if 3 < z < 7. Hence, for n > 1,

u ’
v

1 g 2’_’H,_M
an, = = — (7w — x)cosnx dx
T 77/271'
_ E(W_x)sinn:c7T 2 T sinn:cdx
2 noAxz w2 e on
2 |—m . nw 2 ”
B TR =T W
2 [n nr (=)™ 1 nmw
- _c | gy I 1}
w2 |2 2 n? 2 2
Also,
1 (7 ZHH/J\
b, = —/ — (7 — x)sinnx dx
T 77/271'
2 cosnx | 2 [T cosnx
T nodrj2z w s oon

2 | x n7r+ 1 . nr
= — |—cos— + —sin—| .
om P2 T2ty

Thus the Fourier series representation of f is

1 2 & ™ nr (=)™ 1 nmw
flx) = 3 ﬁn, {— [2—31117—1- — ——2003—} cos N
nm .onm| o
+ o cos 5 + —5 sin > sinne .
’ S T g=1(x
1 1
\ N ‘

—T

‘ 0 a2 - Cx ) ‘ 0

(b) Let g(z) = f(—z). By performing a change of variables  «+» —x in the Fourier
series of f, we obtain (see also Exercise 24 for related details) Thus the Fourier
series representation of f is

1 2 & T . nm (=)™ 1 nm
g(.fE) g+ﬁngl{— [%SIHT—F ’)’L2 —ECOST] Cosnx
s nm 4 1 nmw
— | =— cos — + — sin — | sin
2 g Tzt v

25. For (a) and (b), see plots.

(c) We have s,(z) = > p_, 8252 S0 5,(0) = 0 and s,(27) = 0 for all n. Also,
lim, o+ f(xz) = %, so the difference between s, () and f(z) is equal to m/24 at
x = 0. But even we look near z = 0, where the Fourier series converges to f(z), the
difference |s,(z)— f(z)| remains larger than a positive number, that is about .28 and
does not get smaller no matter how large n. In the figure, we plot |f(z) — s150(z)].



Section 2.2 Fourier Series 9

As you can see, this difference is 0 everywhere on the interval (0, 27), except near
the points 0 and 27, where this difference is approximately .28. The precise analysis
of this phenomenon is done in the following exercise.

/2

" sinkx
k

n=5, 10, 15.
k=1

28 L

—T

|f(x) — s150(z)]

-1/2
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Solutions to Exercises 2.3
1. (a) and (b) Since f is odd, all the a,’s are zero and

9 [P
b, = —/ smﬂdx
P Jo p
—2 nw|™ =2 "
nmw plo nrw

0 if n is even,
A if nis odd.
nm

oo

4 1 2k +1
Thus the Fourier series is — Z sin (2k+ D)m
et (2k+1)

tinuity, the Fourier series converges to the average value of the function. In this
case, the average value is 0 (as can be seen from the graph.

2. At the points of discon-

5. (a) and (b) The function is even. It is also continuous for all z. All the b,s are
0. Also, by computing the area between the graph of f and the z-axis, from z =0
to x = p, we see that ap = 0. Now, using integration by parts, we obtain

’
v

2 (P 2¢ P —— nm
a, = -/ —|— (x—p/2)cos—xdx*—— (x — p/2) cos —x dx
P Jo p p
=0
4 P P
= ——g P (x—p/2)smﬂx 2 sin Y de
p? | nw p le=0 nm
4c p? nmw |P 4c
= ——5—55C8—I = —— (1 —cosnm)
p? n?m p le=0 nPm
B 0 if n is even,
3% ifnisodd.

Thus the Fourier series is
8¢ 2, o8 [(21@ + 1)%4

w2k + 1)

flz) =

9. The function is even; so all the b,,’s are 0,

1 [P 1
aoz—/ e “dr=——e" "
0

I
=—;

p cp 0 cp
and with the help of the integral formula from Exercise 15, Section 2.2, for n > 1,
2 P
a, = —/e xoswdx
P Jo p
2 1 nmx nmwx ’P
= —————— |nmpe” “sin — — p“ce” ¥ cos —

prta? 4 et [ p 4 p Jlo

2pc no—c
= Em il [1—(=1)"e"].
Thus the Fourier series is

1 > 1 nmw
(1 —ecP 9 (1 —eP(=1)" e
P 1= 42D 1 ) cos()

13. Take p = 1 in Exercise 1, call the function in Exercise 1 f(x) and the function
in this exercise g(z). By comparing graphs, we see that

o(r) = 5 (14 f()).



Section 2.3  Fourier Series of Functions with Arbitrary Periods

Thus the Fourier series of g is

1

I 1 1 2 1
1 ——sin(2k + 1 =—-+— ———sin(2k + 1
B < + = Z(Qk )bm( + )wx) 2+ﬂ;(2k+1)bm( + )7

f[x_]=Which[x<0,0,0 <x<1, 1, x >1,0]
s[h_,x_1=1/2+2/PiSum[l/ (2k +1) Sin[(2k +1)Pix 1, {k,0,n }1;
Plot [Evaluate [{f [x],s [20,Xx 1}1, {x, -1,1 }]

Which[x<0, 0, 0<x<1, 1, x>1, 0]

1 \/AV V:\V/\\/\

The 41st partial sum of the Fourier series
and the function on theinterval (-1, 1).

Aoy i
_Ul 1

17. (a) Take x = 0 in the Fourier series of Exercise 4 and get
p o0 7 o0
sy Z = 19 Z
(b) Take x = p in the Fourier series of Exercise 4 and get
2 & n 2 &

2 P 1) T 1
= - = — =) —.
b 3 2 Z 6 7;1 n?

Summing over the even and odd integers separately, we get

n 1 nfl

c,o|@

71

But 3% mrr = 1 ke 7 = 15 S0

2 s 1 2 2 2

T Tt C X mrc e nc
= ( 2k+1 24 —(2k+1)2 6 24 8

21. From the graph, we have

() = -l-z if —1<2z<0,
F@ =3 142 ifo<a<l.

So

fl—z) = -2z if —1<2<0,
V=Y -1+ ifo<a<1;

hence

fo() = f(x) + f(—=) _{ —z if —l<z<0,

2 T if0<ax <1,

11
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and
fx) = f(=z) [ -1 if —1<z<0,
o 11 fo<z<l1.

Note that, fe(z) = |z| for =1 < 2 < 1. The Fourier series of f is the sum of the
Fourier series of f. and f,. From Example 1 with p =1,

1 4
felo 25__2 2k

From Exercise 1 with p =1,

cos[(2k + D)mz].

W~

sm [(2k + 1)mx].

[e’e}
=235
k=0

Hence
1 AN cos[(2k + L)wx]  sin[(2k + 1)7z]
f(x)—§+;kz_0[— m(2k +1)2 2k + 1
25. Since f is 2p-periodic and continuous, we have f(—p) = f(—p + 2p) = f(p).
Now
;1 , 1 rp 1 -
th =55 | S @de=gt@|" =5 () = f(-p) =0

Integrating by parts, we get

a, = /f s—dx
brn
p 1 /P
= —f(x)cosw o f(z)sin — dx
p plws popl,
- Iy,
p
Similarly,
1 /P
b, = - f'(z) sin — dx
DJ—p
=0
1
= —f(x)smw —E—/ flz cos—dx
-p
nm
= ——an

29. The function in Exercise 8 is piecewise smooth and continuous, with a piecewise
smooth derivative. We have

g ifo<z<d,
if d < |z| < p,
if —d<z<O.

fix) =

ale @ |

The Fourier series of f is obtained by differentiating term by term the Fourier series
of f (by Exercise 26). Now the function in this exercise is obtained by multiplying
f'(x) by —24. So the desired Fourier series is

dnm

dnrr o)
d 2cp — cos ££& nTt\ . nmw 2 1 —cos <% p . nm
—— = ——— —— | sin—x = — ———sin —u.
f( o gﬁ ( ) ) in ) x 777;,1 " in ) x
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33. The function F(z) is continuous and piecewise smooth with F’(x) = f(z) at all
the points where f is continuous (see Exercise 25, Section 2.1). So, by Exercise 26,
if we differentiate the Fourier series of F', we get the Fourier series of f. Write

F(z)= Ao+ Z (An cos %Tx + B, sin %x)

n=1

and

flz) = Z (an cos g + by, sin Ex) .

el p p

Note that the ag term of the Fourier series of f is 0 because by assumption
02p f(z)dxz = 0. Differentiate the series for F' and equate it to the series for f
and get

o0
Z( A, Tsmﬂx—l-n—B cos—x) ( os—x—l-b smﬂx>.
— p P p — p

Equate the nth Fourier coefficients and get

M

nm
ATy = A= Lo,
P nm
nm
B,—=a, = B,= ian.
P nm

This derives the nth Fourier coefficients of F for n > 1. To get Ap, note that
F(0) = 0 because of the definition of F(z) = [ f(t)dt. So

:Ao—i-ZAn:Ao—l-z—
n=1 n=1

and so Ag = > .~ | £b,. We thus obtained the Fourier series of F in terms of the

n=1 nm
Fourier coefficients of f; more precisely,

oo oo
nm nm
_2 E bn + E (—ibn cos —x + ian sin —x) )
TiAn =\ nm P nmw D

The point of this result is to tell you that, in order to derive the Fourier series of
F, you can integrate the Fourier series of f term by term. Furthermore, the only
assumption on f is that it is piecewise smooth and integrates to 0 over one period
(to guarantee the periodicity of F.) Indeed, if you start with the Fourier series of

/s
> nmw nmw
t) = Z (an cos —t + by, sin —t) ,
n=1 p p

and integrate term by term, you get

o0

! Tooonm T onw
F(zx) = / flt)dt = (an/ cos —tdt + bn/ sin —t¢ dt)
() 0 > ; 5 | sin

n=1

OO xT xT
= 3 (an () s | b, (~ 2 Yoos "))
nm p o nm p 10
n=1
gy > nmw nmw
_ 2yl ye (_ibncos_ﬁ i%sm_x),
T n ot nmw P nmw P

as derived earlier. See the following exercise for an illustration.
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Solutions to Exercises 2.4

1. The even extension is the function that is identically 1. So the cosine Fourier
series is just the constant 1. The odd extension yields the function in Exercise 1,
Section 2.3, with p = 1. So the sine series is

%i sin((2k + l)w:c)'

Pt 2k+1

This is also obtained by evaluating the integral in (4), which gives

! 2 12
by, = 2/ sin(nrx) dr = —— cosnrz| = —(1 - (=1)").
0

nm 0 nm

9. We have

1
by, = 2/ (1 — z)sin(nmx) dr.
0

To evaluate this integral, we will use integration by parts to derive the following
two formulas: for a # 0,

/xsin(ax) dr = _z cos(ax) i Sln(cQL x) )
a a
and
/x2 sin(ax) dz = 2 cos(az) _ a? cos(a ) n 2z sin(a x) ‘e
a? a a2
So

/ 2(1 — z) sin(az) dz

—2 cos cos cos si 2x si
_ (az) w cos(aw) 42 (ax) N in(ar) 2w sin(ax) Lo

a3 a a a? a?

Applying the formula with a = nx, we get

/0 1 2(1 — ) sin(nrz) dz

—2 cos(nmx) x cos(nmx) n 2? cos(nrx) sin(nrx) 2w sin(nwz)|!

(nm)3 nmw nm (nm)? (nm)? 0
2yt -yt Dt 220D 1)
(nm)3 nmw nmw (nm)3
_ { (ni)g if n is odd,
0 if n is even.

Thus

0 if n is even,

{ ﬁ if n is Odd,

Hence the sine series in
8 = sin(2k 4 )7z

w2k + 1)
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brk 1=8/Pi*31 / (2k +1)73;

partialsineseries =Table [ss[n,x ], {n, 1,5 }I;
fIx_]1=x(1-x)

0.25
0.2

0.15

0. 05

ss[n_,X_ 1:= Sum[b[k] Sin[(2k +1) Pix 1, {k,0,n }1;

Plot [Evaluate [ {partialsineseries, f [X1}1, {x,0,1 }]

Perfect!
13. We have

1
sinwx cos mr = — sin 27wx.

This yields the desired 2-periodic sine series expansion.

17. (b) Sine series expansion:

2 [*h 2 (P h
b, = —/ —xsi ﬂdm—i——/ (x—p)sinﬂd:c
pJo a p PJa a—Pp p
2h D nrx|e p [* nmx
= —[—x—cos— — cos—dx]
ap nw p lo nmj, D
2h —p T |P P p
R L
(a—p)p nmw a  J, nw
2h r—ap nwa p? . nma
) I
pal nw P (nm)?
n 2h [ P ( ) nwa p? . mra}
——— | —(a—p)cos — — ——sin —
(a —p)pLnm p  (nm)?  p
2hp . nwa 1 1
_ gl L
nm) plta a-—p
2hp? nwa

nm2p—aja " p

Hence, we obtain the given Fourier series.

15
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Fourier Series

Solutions to Exercises 2.5

1. We have

1 if0<o<l,
f(”“")—{ 1 if —1<z<0;

The Fourier series representation is

A~ 1
flz) = - kZ:O ST sin(2k + 1)7wx.

The mean square error (from (5)) is

e 1Y
In this case, a, = 0 for all n, by =0, bogr1 = m, and

1, I
— fxdx:—/ dr = 1.
2/71 (z) 2 /4

1 8
E1:1—§(b$):1—ﬁx0.189.

So

Since by = 0, it follows that F, = E;. Finally,

1 8 8
El:1—§(b$+b§):1—ﬁ—9?zo.099.
5. We have
1! 1 &
By = 3 [ @ d-g> i
N
1N, 8 1
= 1-3) bthi=1-% > —
n=1 1<n odd<N

With the help of a calculator, we find that F39 = .01013 and F4; = .0096. So take
N = 41.

9. We have f(z) = m%z —2® for —m <z < 7 and, for n > 1, b, = 13(—1)"*1. By
Parseval’s identity

1 /12 1 [7 2
5Z($> - o), e
1

= —/ (7T4{E2 —orst + xﬁ) dx
™ Jo

1 (7x* 3 272 5, z7
= —|—a°—-—x —
T\ 3 5 7

_oae(L_2 1) 8
- 35 7) 105

™

0

Simplifying, we find that

1
) =2 5= (105)(144)" ~ 945"

n=1
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13. For the given function, we have b, = 0 and a,, = # By Parseval’s identity,

we have

1 1o 1 — 1

_ _ . d _ -

27 f (z) dz T2 ; R T g 1=m 90
where we have used the table preceding Exercise 7 to compute ((4).

17. For the given function, we have

1 1
a =1, ap, = —, b, = — forn > 1.
3n n

By Parseval’s identity, we have

1 2 _ 2 100 2 2
ot f ( ) - a0+2;(an+bn)

n
n= n=1
Using a geometric series, we find
= o=
o o 1-3 3
By Exercise 7(a),
i 1
: n B
So ) .
g 1 19 1=« 170«
2 d == 2 - — = _— ) = — —_—
S @de =G5 T8 TG



18 Chapter 2 Fourier Series

Solutions to Exercises 2.6

1. From Example 1, for a # 0, +i, £24, £3i, . . .,

. h o0 _1n )
gar — AT Z (=1) et (= <z <)

™ a—1in

n=—oo

consequently,

sinhma 1" .
e " = — Z C(H_ 2716“”6 (—m <z <m),
=—00

and so, for —m <z < T,

eam _"_ e*(lm

h =
cosh ax 5
sinhma 1 1 -
— _1 n mx
2 n;m( ) (a+in+a—in>e
asinhma = (=1)" .
= . n;OO TL2 + age .
2. From Example 1, for a # 0, +i, 24, 434, . . .,
. h o0 _1 n ]
eor — SMATA Z (=1) et (= <z <)

a—1in
n=—oo

™

consequently,

e

_az  Sinhma i (-1)

n
= —e" (= <z <),
s i a—+n

— 00

and so, for —m <z <,

sinhar =

sinhma " 1 1 ine
N 27 Z (=1) ( B )e

a—1in a+n
n=—oo

isinhma ~— n N ine
_ BT SR g s

T n2 + a? ¢
n=-—o00
5. Use identities (1); then
2ix —2ix 3ix —3ix
cos2u 4 2sin3y = 12 ‘
2 21
) —2ix 621x )
— ie*b’lx 4 2 4 2 _,L-€31x
9. If m = n then
1 (P . mx nm 1

P P
i x —irx . iy — Mg . 1 .
e’ P e e tde e’ P e e Ydr = o dr =

2p Jp S 2p -p D J—p
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If m # n, then

1 (P . mx nr 1 (P nm=

— e’ et dr = — B R

2p J_, 2p J_,
- —1 jm=—n)m P
- 2(m—n)7m —p
_ —i i(m—n)r 7i(mfn)7'r)

2(m —n)m (e c

= Sz (€oslm = n)] = cosl—(m — ) = 0.

13. (a) At points of discontinuity, the Fourier series in Example 1 converges to

the average of the function. Consequently, at x = 7 the Fourier series converges to

% = cosh(ar). Thus, plugging 2 = 7 into the Fourier series, we get
=(-n"

cosham) = ST §5 GO (g G sinbing) 5 (ot in)

a2 + n2 a2 + n2 :
n=—oo n=——oo
The sum Zflozfoo azT > is the limit of the symmetric partial sums
al n
iy =0
2 2
n=—N a*+n
Hence 07 aﬁ# =0 and so
sinh(ma) a - 1
cosh(ar) = ———= ——— = coth(aw) = — —_,
(am) ™ n;OOCLQ—l-nQ (am) wn;OOCLQ—l-nQ

upon dividing both sides by sinh(ar). Setting ¢t = aw, we get

o0 o0

t 1 t
co 2 Z (D)2 n2 Z 2+ (mn)2’

n=—oo n=—oo

which is (b). Note that since a is not an integer, it follows that ¢ is not of the form
ki, where kis an integer.

17. (a) In this exercise, we let a and b denote real numbers such that a? + b* # 0.
Using the linearity of the integral of complex-valued functions, we have

L +ily, = /e“cosbxd:c—l—i/e“sinbxd:c

= / (e cos bx + ie®” sinbx) dx
ibx

€

—_—
= /e‘” (cosbx + isinbz) dx

_ /eaaceibm do — /ex(aJrib) dax

_ 1 ' ex(aJrib) +C,
a+1b
where in the last step we used the formula [ e dz = Le*® 4+ C (with a = a +1b),
which is valid for all complex numbers a # 0 (see Exercise 19 for a proof).
(b) Using properties of the complex exponential function (Euler’s identity and the
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fact that e*T = e*e™), we obtain

1 .
Il + 'LIQ = mex(a+lb) + C
(a + ib)

(a+ib)-(atad)
— b
- ;27_’_11)26‘””(003 bz +isinbx) +C

eam

il

eaxelbm + C

acosbx—i—bsinbx) +i( —bcosbx—l—asinbx)] + C.

(¢) Equating real and imaginary parts in (b), we obtain

ax

I = afi—l-bQ(acos bx + bsin bx)
and ax
I, = a;i—l-bQ( - bcosbx—l—asinbx).
21. By Exercise 19,
21
. ) 1 . 2 |27
/ (e +2e7 %) dt = et e
0 7 —21 0
-1 =1

N
= —ie*™ fie ™ —(—i+i)=0.

Of course, this result follows from the orthogonality relations of the complex expo-
nential system (formula (11), with p = ).
25. First note that

1+it  (1+it)? 71—t2+2it71—t2+,2t
1—it  (1—it)l+it) 1+ 142 '1+

1+t 1—t? 2t
dt = [ — gt | Lt
/1—it /1+t2 +Z/1+t2
2 2%
/( e +Z/1+t2

—t+2tan"tt +iln(1 + %) + C.

Hence
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Solutions to Exercises 2.7

1. (a) General solution of y”’ 4+ 2y’ + y = 0. The characteristic equation is
A2 42X +1=0or (A+1)? = 0. It has one double characteristic root A = —1. Thus
the general solution of the homogeneous equation y” + 2y’ +y = 0 is

Yy = cleft + czteft.

To find a particular solution of " 4+ 2y’ 4+ y = 25 cos 2t, we apply Theorem 1 with
uw =1, ¢=2,and k = 1. The driving force is already given by its Fourier series:
We have b,, = a, = 0 for all n, except as = 25. So «a,, = (B, = 0 for all n,

except oy = % and 3y = %, where A9 = 1 —22 = —3 and By = 4.
Thus as = *2—755 = —3 and [ = 12L50 = 4, and hence a particular solution is
Yp = —3 cos 2t + 4sin 2¢t. Adding the general solution of the homogeneous equation

to the particular solution, we obtain the general solution of the differential equation
Yy 4+ 2y +y = 25cos 2t

Yy = cre b 4 cote™t — 3cos 2t + 4 sin 2t.
(b) Since lim; .o cre™t + cate™ = 0, it follows that the steady-state solution is
Ys = —3cos 2t + 4sin 2¢.
5. (a) To find a particular solution (which is also the steady-state solution) of
y" 44y’ + 5y = sint — 1 sin2¢, we apply Theorem 1 with y =1, ¢ =4, and k = 5.
The driving force is already given by its Fourier series: We have b,, = a,, = 0 for

all n, except by = 1 and by = —1/2. So a,, = 3, = 0 for all n, except, possibly, a7,
a9, 61, and betag. We have Al = 4, A2 = 1, Bl = 4, and B2 =38. So

—B1by —4 1
“T ey BRE T3 W
—Boby 4 4
2T EiBZT 65 65
Albl 4 1
b= ErE TR R
Ak, 1721
e = A2+ B2 65 130

Hence the steady-state solution is

1 1. 4 L.
Yp = —5 cost+ =sint + — cos 2t — — sin 2¢.

8 8 65 130
(b) We have
= lco t—l—l i t—i—ico 2t L in 2¢
yp = g o8 g sint + = cos T30 S 2t
(yp) = lsint—l—lcost—ésin%—icos2t
P 8 8 65 65 ’
1 1 16 2
(yp)" = gcost—gsint—gcos%—l-&sin%,
1 4 5 1 4 5\ .
(yp)//+4(yp)’+5yp = (§+§—§>Cost+<—§+§+§>smt
(2B B G (L1 Y
65 65 130)°" 65 65  65) "
sint + 2 32 0 sin 2t 1s,' 2t
= sin — — = — —|sin2t— =sin
75 65 130 2 ’

which shows that 7, is a solution of the nonhomogeneous differential equation.
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9. (a) Natural frequency of the spring is

k
wo = \/i =v10.1 =~ 3.164.
I

(b) The normal modes have the same frequency as the corresponding components
of driving force, in the following sense. Write the driving force as a Fourier series
F(t) = ao+ >.,—, fa(t) (see (5). The normal mode, y,(t), is the steady-state
response of the system to f,,(¢). The normal mode y,, has the same frequency as
fn- In our case, F is 2m-periodic, and the frequencies of the normal modes are
computed in Example 2. We have wa,,11 = 2m + 1 (the n even, the normal mode
is 0). Hence the frequencies of the first six nonzero normal modes are 1, 3, 5, 7, 9,
and 11. The closest one to the natural frequency of the spring is ws = 3. Hence, it
is expected that y3 will dominate the steady-state motion of the spring.

13. According to the result of Exercise 11, we have to compute ys3(t) and for this
purpose, we apply Theorem 1. Recall that ys is the response to f3 = 5-sin 3¢, the
component of the Fourier series of F'(t) that corresponds to n = 3. We have az =0,
by = 2, =1, c= .05 k=10.01, A3 = 10.01 — 9 = 1.01, By = 3(.05) = .15,

~ —Bsbs  —(15)(4)/(3m) _ _
BT AZE BT 1012+ (152 —0611 and 5 =

As + B2 ~
So

ys = —.0611 cos 3t 4 .4111 sin 3¢.

The amplitude of y3 is /.06112 4 .41112 ~ .4156.

17. (a) In order to eliminate the 3rd normal mode, ys, from the steady-state
solution, we should cancel out the component of F' that is causing it. That is, we
must remove f3(t) = %. Thus subtract % from the input function. The

modified input function is

4 sin 3t
3r

F(t) -

Its Fourier series is he same as the one of F', without the 3rd component, f3(t). So
the Fourier series of the modified input function is

(2 1t
x Sln " L2 Z Sln2mm++1

(b) The modified steady-state solution does not have the ys-component that we
found in Exercise 13. We compute its normal modes by appealing to Theorem 1
and using as an input function F'(t) — f5(t). The first nonzero mode is y;; the sec-
ond nonzero normal mode is y5. We compute them with the help of Mathematica.
Let us first enter the parameters of the problem and compute «,, and /3, using the
definitions from Theorem 1. The input/output from Mathematica is the following
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Clear [a, mu, p, k, alph, bet, capa, capb, b, y ]
mu=1;

c =5/100;

k = 1001 / 100;

p = Pi;

a0 = 0;

a[n_j] =0;

bin_1=27(Pin) (1- Cos[nPi]);

alph0 =a0 /k;

capa[n_] =k -mu(nPi /p)~"2

capb [n_1=cnPi /p

alph [n_] = (capa [n] a[n] - capb [n] b[n]) / (capa [n]1"2 +capb [n]"2)
bet [n_] = (capa [n] b[n] + capb [n] a[n]) / (capa [n]"2 +capb [n]"2)

1001,
100
n
20
~ 1-Cos[n ]
10 (nTzo + (1100001 —n2)2> T

2 (% -n2) (1-Cos[nn])
n (% + (1100001 _nz)z) T

It appears that

— (1 — cos(n)) and f, 2 (45 —n?) (1 —cos(nm))

- 2 1001 2 2 1001 2

10(4%+(W—”2))77 ”(ﬂ)—oJF(W—”Q))W
Note how these formulas yield 0 when n is even. The first two nonzero modes of
the modified solution are

Qn

y1(t) = aq cost + B sint = —.0007842 cost + .14131 sint

and
y5(t) = as cos 5t + (5 sin 5t — .00028 cos 5t — .01698 sin 5¢.

(¢) In what follows, we use 10 nonzero terms of the original steady-state solution
and compare it with 10 nonzero terms of the modified steady-state solution. The
graph of the original steady-state solution looks like this:

steadystate [t ] = Sum[alph [n] Cos[nt ] +bet [n] Sin [nt], {n, 1,20 }1I;
Plot [Evaluate [steadystate [t]], {t,0,4Pi }]

NN
:VVVVVV
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The modified steady-state is obtained by subtracting y3 from the steady-state.
Here is its graph.

modifiedsteadystate [t_ ] = steadystate [t] - (alph [3] Cos[3t] +bet [3] Sin [3t]);
Plot [Evaluate [modifiedsteadystate [t11, {t,0,4Pi }]

0. 05

2 4 8 0 1
-0.05
-0.1

In order to compare, we plot both functions on the same graph.

Plot [Evaluate [{steadystate [t ], modifiedsteadystate [t1}1, {t,0,4Pi }]

It seems like we were able to reduce the amplitude of the steady-state solution
by a factor of 2 or 3 by removing the third normal mode. Can we do better? Let
us analyze the amplitudes of the normal modes. These are equal to \/a2 + 2. We
have the following numerical values:

amplitudes = N[Table [Sqrt [alph [n]”2 +bet [n]*2], {n, 1,20 }]1]

{0. 141312, 0., 0.415652, 0., 0.0169855, 0., 0.00466489, 0., 0.00199279, 0.,
0. 00104287, 0., 0.000616018, 0., 0.000394819, 0., 0.000268454, 0., 0.000190924, 0.}

It is clear from these values that ys has the largest amplitude (which is what
we expect) but y; also has a relatively large amplitude. So, by removing the
first component of F', we remove y;, and this may reduce the oscillations even
further. Let’s see the results. We will plot the steady-state solution ys, ys — ys,
and ys — y1 — ys.
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modifiedfurther [t

Plot [

1 = modifiedsteadystate [t] - (alph [1]1Cos[ t] +bet [1]1Sin[ t]);

Evaluate [ {modifiedfurther [t ], steadystate [t 1, modifiedsteadystate [t13}1, {t,0,4Pi 3]

Steady-state solution

/ Modified steady-state solution
‘-k /Modiﬁed even further steady-state solution

21. (a) The input function F(t) is already given by its Fourier series: F(t) =
2 cos 2t +sin 3t. Since the frequency of the component sin 3t of the input function is
3 and is equal to the natural frequency of the spring, resonance will occur (because
there is no damping in the system). The general solution of y’ 49y = 2 cos 2¢+sin 3¢
is y = yn +yp, where yj, is the general solution of y” +9y = 0 and y, is a particular
solution of the nonhomogeneous equation. We have y, = ¢; sin 3t + c2 cos 3t and,
to find y,, we apply Exercise 20 and get

Ay Ay
where az =2, by =0, Ao =9 —22=5,a,, =0, by, = 1, and

b
Yp = (ﬂcos%—l- —QSin2t> + R(t),

t
R(t) = —g oos 3t.

Hence

2 t
= —cos2t — = cos 3t
yp 5 6
and so the general solution is
2 t
Yy = c1 8in 3t 4 co cos 3t + 5 cos 2t — Ecos3t.

(b) To eliminate the resonance from the system we must remove the component of
F that is causing resonance. Thus add to F'(t) the function —sin 3¢. The modified
input function becomes F,,qified(t) = 2 cos 2t.

25. The general solution is y = ¢ sin 3t + ¢ cos 3t + % cos 2t — % cos 3t. Applying
the initial condition y(0) = 0 we get ¢ + 2 = 0 or ¢; = —2. Thus

2 2 t
Yy = cysin 3t — gcos3t+ gcos2t— Ecos3t.

Applying the initial condition y'(0) = 0, we obtain

1 t
y = 3cycosdt+ gsin3t— gsin%— Ecos3t+ isin3t,
1
y/(o) = 301 - Ea
1

/ —_ [
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Thus 1 5 5 ;
Y= Esin3t— gcos3t+ gcos2t— Ecos3t.
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Solutions to Exercises 2.9

1.
1

sinnx 0
— —0asn — oo.
vno| T n
1

The sequence converges uniformly to 0 for all real z, because NG controls its size

()] =

independently of x.
5. If x = 0 then f,(0) =0 for all n. If x # 0, then applying 'Hospital’s rule, we
find

Jim [fa(@)] = Jo] im = = Jo] lim 2 = 0.

The sequence does not converge uniformly on any interval that contains 0 because
fn(£) = e, which does not tend to 0.

9. ’COE#’ < kiz = My, for all z. Since Y M}, < oo (p-series with p > 1), the series
converges uniformly for all x.

17. l(gl—i),; < kiz = My, for all z. Since > M}, < oo (p-series with p > 1), the

series converges uniformly for all z.




28 Chapter 2 Fourier Series

Solutions to Exercises 2.10

5.  The cosine part converges uniformly for all x, by the Weierstrass M-test. The
sine part converges for all = by Theorem 2(b). Hence the given series converges for
all .

9. (a) If limg_oosinkz = 0, then

klim sinfkr =0 = klim (1—cos’kx)=0 = klim cos’kr =1 (x).
Also, if limg_oosinkz = 0, then limy_.sin(k + 1)z) = 0. But sin(k + 1)z =
sin kx cos x + cos kx sinx, so

—0

—_——
0= lim (sinkzcosx+coskrsinz) = lim coskzsinz =0

k—o0 k—o0
= lim coskx =0or sinaz = 0.
k—o0
By (*), cos kx does not tend to 0, so sinz = 0, implying that x = mx. Consequently,
if  # mm, then limk — cosinkx is not 0 and the series > 7~ sinkx does not
converge by the nth term test, which proves (b).
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Solutions to Exercises 3.1

1. Uzg + Uzy = 2u is a second order, linear, and homogeneous partial differential
equation. u;(0,y) = 0 is linear and homogeneous.

5. Uty + Uy = 2u is second order and nonlinear because of the term ugu,. w(0,t)+
u5(0,¢) = 0 is linear and homogeneous.

9. (a) Let u(z,y) = e*®e?. Then

Uy = ae®®eV
uy = be"™ ey
Upw = a2eam eby
Uyy = b2eam eby
Ugy = abe™™ ey,

So
Atgy + 2Buyy + Cuyy + Dug + Euy + Fu =0
& Aad?e®™e + 2Babe® e 4 Ch%e® e
+Dae® e 4+ Ebe™ e + Fe®@eb =
& e (Aa® +2Bab+ Ch? + Da+ Eb+ F) =0
& Ad® +2Bab+ CV? + Da+ Eb+ F =0,

because e*e?¥ #£ 0 for all x and y.
(b) By (a), in order to solve

Ugg + 2Ugy + Uyy + 2Uy +2uy +u =0,
we can try u(z, y) = e**e?¥, where a and b are solutions of
a® +2ab+b* +2a+2b+1 = 0.

But
a?+2ab+b* +2a+204+1=(a+b+1)%

So a+ b+ 1= 0. Clearly, this equation admits infinitely many pairs of solutions
(a, b). Here are four possible solutions of the partial differential equation:

a=1,b=-2 = u(z,y) =c"e?
a=0,b=-1 = uz,y)=e"
a=-1/2, b=-1/2 = wu(x,y) =e */2eV/?
a=-3/2,b=1/2 = u(z,y) = e 3e/2eu/2

13. We follow the outlined solution in Exercise 12. We have
A(u) =In(u), ¢(z) =", = A(u(x(t)), t)) = A(¢(x(0))) = In(e")) = z(0).

So the characteristic lines are
v =tzx(0)+2(0) = 2(0)=L(xt)= H—Ll
So u(x, t) = f(L(z, t)) = f (Hil) The condition u(x, 0) = e® implies that f(x) =

e” and so

Check: u, :—eti_lﬁ, Ug €ﬁt+%,
« e 1
ug + In(u)u, = —e#™1 a e =
t+1)2  t+1  t+1
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17. We have

Alw) =u®, ¢(z) = Ve, = Alu(z()), 1))

So the characteristic lines are

v =tx(0) +2(0) = 2(0)(t+1)—a=0.

Solving for z(0), we find

2(0) =
and so
u(z, t) = f (H——1>
Now
u(, 0) = f(z) = v/
So
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Solutions to Exercises 3.3

1. The solution is

[ee]
. T nrt « . nmt
u(z, t) =) sin < (bn cosc—— + by, sin CT> ,

n=1
where b, are the Fourier sine coefficients of f and b are % times the
Fourier coefficients of g. In this exercise, b}, = 0, since g = 0, by = 0.05; and
b, = 0 for all n > 1, because f is already given by its Fourier sine series
(period 2). So u(z, t) = 0.05sin7z cost.

5. (a) The solution is

u(z, t) = Z sin(nmz) (by, cos(4nmt) + by sin(4nmnt)),

n=1

where b, is the nth sine Fourier coefficient of f and b} is L/(cn) times the
Fourier coefficient of g, where L = 1 and ¢ = 4. Since g = 0, we have b}, =0
for all n. As for the Fourier coefficients of f, we can get them by using
Exercise 17, Section 2.4, with p =1, h =1, and a = 1/2. We get

8 nw

Thus

u(z,t) = — Y —==sin(nmz)cos(4nnt)

8 = (=D
2 m sin((2k + 1)7wx) cos(4(2k + 1)7t).

2

k=0 (
(b) Here is the initial shape of the string. Note the new Mathematica com-
mand that we used to define piecewise a function. (Previously, we used the
If command.)

Clear [f]

fIx 1:=2x /;0 <x<1/2
fIx1:=2(1-x) /;1/72<x<1
Plot [f [x], {X,0,1 }]

Initial shape of the
string

Because the period of cos(4(2k + 1)7t) is 1/2, the motion is periodic
in ¢ with period 1/2. This is illustrated by the following graphs. We use
two different ways to plot the graphs: The first uses simple Mathematica
commands; the second one is more involved and is intended to display the
graphs in a convenient array.
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Clear [partsum ]
partsum [x_,t ]:=
8 /Pi"2Sum [Sin [(-1) "k (2k +1) Pix ] Cos[4 (2k +1) Pit 1/ (2k +1)72, {k 0,10 }]
Plot [Evaluate [{partsum [x,0 1,f [x]1}], {x,0,1 }]
Approximation of the initial shape
1 of the string by the Fourier series solution
att=20
1
Here is the motion in an array.
tt = Table [
Plot [Evaluate [ partsum [x,t 1], {x,0,1 }, PlotRange - {{0,1 1}, {-1,11}},
Ticks - {{.51}, {-1, -.5,.5,1 1}}, DisplayFunction - ldentity 1, {t,0,1,1 /20}1;
Show[GraphicsArray  [Partition [tt, 4 111
t=0
1 1 1 1
0.5 0.5 0.5 0.5
PN .
-0.5 -0.5 -0.5 -0.5
-1 -1 -1 -1
1 1 1 1
0.5 0.5 0.5 0.5
0.8~ -0.5 -0.5 -0.5
-1 -1 -1 -1
t=.5
1 1 1 1
0.5 0.5 0.5 0. SQ
-0.5 -0.5 -0.5 -0.5
-1 -1 -1 -1
1 1 1 1
0.5 0.5 0.5 0.5
-0.5 -0.5 -0.5 -0.5 < ;
-1 -1 -1 -1
1 1 1 1
0.5 0.5 0.5 0. SQ
-0.5 _ -0.5 -0.5 -0.5
-1 -1 -1 -1
The first frame is the initial shape at t = 0. Subsequent frames occur in icrements of time of size 1/20.

9. The solution is

u(z, t) = Z sin(nmz) (by, cos(nmt) + by, sin(nnt)) ,

n=1
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where bj = 1 and all other b} = 0. The Fourier coefficients of f are

1
by, = 2/ z(1 — x) sin(nrx) dz.
0

To evaluate this integral, we will use integration by parts to derive first the
formula: for a # 0,

x cos(ax) n sin(a x)
a a

(/aﬁhﬂwwdmzz—

and

2 cos(ax) a2 cos(ax) n 2z sin(ax)

2

/:E2 sin(ax) dx = +C,

al a a

thus

/mu—mnmm@dm

—2 cos(ax x cos(ax x2 cos(ax sin(a x 2x sin(ax
_ 2oowlas) s coslas) o cos(as) | sin(ax)  2osinfas) |
a a a a a

Applying the formula with a = n7, we get

1
/ (1 — z)sin(nrz) dr
0
2

—2 cos(nmx) x cos(nmx) g cos(nmx) sin(nrz) 2 sin(nwx) |l

(nm)3 B nmw nmw (nm)2  (nm)? 0
—2(Cy -1 (=)t (D)t 2 (Dt 1)
(nm)3 nm nm (nm)3
B ﬁ if n is odd,
B 0 if n is even.
Thus
b, — ﬁ if n is odd,
0 if n is even,
and so
8 = sin((2k 4 1)7x) cos((2k + 1)wt) 1 . .
= — — t).
3 ,;_: CTESE + - sin(7x) sin(mt)
13. To solve
Puou_ o
otz ot 022’
u(0,t) = u(m, t) =0,
0
u(x,0) =sinz, a—z(:n, 0)=0,
we follow the method of the previous exercise. We have c =1, k = .5,

L=, f(z) =sinz, and g(z) = 0. Thus the real number £& = 5 is not an
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integer and we have n > % for all n. So only Case III from the solution of
FExercise 12 needs to be considered. Thus

Ze : smn:n anCOS/\ t + b, sin A\pt,
where
Setting t = 0, we obtain

sinx = g an, Sinne.
n=1

Hence a1 =1 and a,, = 0 for all n > 1. Now since

kan+ 2
DWW

L
/ g(:n)sinﬂzndzn, n=12 ...,
0 L
it follows that b,, = 0 for all n > 1 and and the solution takes the form

u(x, t) = e Otsin :E( cos A1t + by sin /\175),

where A\ = \/(.5)? —1=+.75= and

b _@_L
1 Al \/g'
So
\/3

2

u(z, t) = e "' sinz(cos(-—t) + s1n(\£g t)).

1
V3
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Solutions to Exercises 3.4

1. We will use (5), since g* = 0. The odd extension of period 2 of f(z) =
sinmz is f*(x) = sinwz. So

u(z, t) = [sin(rz +t) + sin(rz — t)].

N |

[ sin((z + %)) + sin(m(z — %))] =

N |

5. The solution is of the form

ua, t) = S[f@—t)+fla+t)] +

[(f*(@ =) = Gz —1))

S[C@+ 1)~ G 1)
_I_

(f*(z+1t)+ Gz +1)],

NN

where f* is the odd extension of f and G is as in Example 3. In the second
equality, we expressed u as the average of two traveling waves: one wave
traveling to the right and one to the left. Note that the waves are not the
same, because of the G term. We enter the formulas in Mathematica and
illustrate the motion of the string.

The difficult part in illustrating this example is to define periodic functions with Mathematica. This can be done by
appealing to results from Section 2.1. We start by defining the odd extensions of f and G (called big g) on the

interval [-1, 1].

Clear [f, bigg 1

fIx ]1:=2x /;
fIx1:=2(1-x) /;1/2<x<1
fIX_1:=-2(1+x) /; -1<x<-1/2
bigg [x_1=1/2x"2 -1/2

Plot [{f [x], bigg [x1}, {X, -1,1 }]

-1/2<x<1/2

0.5}

0.5 1

Here is a tricky Mathematica construction. (Review Section 2.1.)
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extend [X_]:=X - 2 Floor [(x+1) /2]
periodicf  [x_]:= f [extend [X]]
periodicbigg [X_1]:=bigg [extend [x]]
Plot [ {periodicf [x], periodicbigg [x1}, {x, -3, 31}]
1 L
0.5
- -2
- 0.
-1

Because f* and G are 2-periodic, it follows immediately that f*(x =+ ct)
and G(z £ ct) are 2/c-periodic in ¢t. Since ¢ = 1, u is 2-periodic in t.
The following is an array of snapshots of u. You can also illustrate the
motion of the string using Mathematica (see the Mathematica notebooks).
Note that in this array we have graphed the exact solution and not just
an approximation using a Fourier series. This is a big advantage of the
d’Alembert’s solution over the Fourier series solution.



Section 3.4 D’Alembert’s Method 37

ufx_,t_ 1:=1/2 (periodicf [Xx -t] + periodicf [X+t]) +

1/ 2 (periodicbigg
tt = Table [

Plot [Evaluate [u[x,t ]], {x,0,1 }, PlotRange - {{0,11}, {-1,1}},
{-1, -5,.5,1 13}, DisplayFunction - Identity ], {t,0,23,1 /5}1;
[Partition [tt, 4 111

Ticks - {{.5},
Show[ GraphicsArray

t=0

[x -t ] - periodicbigg [Xx+t])

9. You can use Exercise 11, Section 3.3, which tells us that the time period
of motionis T = % So, in the case of Exercise 1, T' = 27, and in the case of
FExercise 5, T'= 2. You can also obtain these results directly by considering
the formula for u(z, t). In the case of Exercise 1, u(z, t) = 1 [sin(rz + t) +
sin(rz — t)] so u(z, t + 27) = §[sin(rz + t27) + sin(rz — 27)] = u(z, t).
In the case of Exercise 5, use the fact that f* and G are both 2-periodic.

13. We have
1 x+ct
u(e, ) = 5@t et) e+ o [ g
2 2c r—ct
where f* and ¢g* are odd and 2L-periodic. So

L 1 1 x+ct+L
ux,t+—=)==[f"(e4+ct+ L)+ f(r—ct—L)]+ —/ g (s) ds.
¢ 2 2c x—ct—L
Using the fact that f* is odd, 2L-period, and satisfies f*(L — z) = f*(z)

(this property is given for f but it extends to f*), we obtain
ffle+ct+L) = f(r+ct+L—-2L)=f"(r+ct—L)
= —f'(L—x—ct)=—f"(L—(x+ct)) =—f"(z+ct).

Similarly

ffle—ct—L) = —f(L—xz+ct)
= —f(L-atet)=—f(L—(x—ct) =—f(x—ct).
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Also g*(s+L) = —g*(=s— L) = —g"(=s— L+2L) = —g"(L —s5) = —g"(s),
by the given symmetry property of g. So, using a change of variables, we
have

1 z+ct+L 1 z+ct 1 z+ct
/ g (s) ds.

g (s)ds = % g*(s+ L)ds =

2¢ r—ct—L r—ct 2¢c r—ct

Putting these identities together, it follows that u(z, t + £) = —u(z, ¢).

17. (a) To prove that G is even, see Exercise 14(a). That G is 2L-periodic
follows from the fact that g is 2L-periodic and its integral over one period
is 0, because it is odd (see Section 2.1, Exercise 15).

Since G is an antiderivative of ¢g*, to obtain its Fourier series, we apply
Exercise 33, Section 3.3, and get

o0

G(z) = Ay — %Z bnég) oS %:p,

n=1

where by, (g) is the nth Fourier sine coefficient of g*,

9 L
bn(g) = E/o g(z) sin %JE dz

and

Ay = %i bu(g)

n=1 "
In terms of b}, we have
Lb,(9) 2 /L (2) s nr o .
— = — x)sin—axdr =
T n n Jo g L Prns

and so

T n — n L
= n

= Zcbi(l—cos(—@)
n=1

(b) From (a), it follows that

o0

Glx+ct)—Glx—ct) = Zcb; [(1 - COS(%(ZE + ct))> - (1 - cos(nL—W(:E - ct)))}

n=1

= S b’ [COS(%(ZE +ct)) — cos(nL—ﬁ(:E - Ct))}

n=1
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(c) Continuing from (b) and using the notation in the text, we obtain

1 x+ct

5 ), g = (G e - Gla et

> L1 nm nmw
— ;::1 —bn§ [cos(f(:n +ct)) — cos(f(:E —ct))

nm

= ;::lb; sin(nL—W:L") sin(fct)
= Yu; sin(”L—”:g) sin(Ant).
n=1

(d) To derive d’Alembert’s solution from (8), Section 3.3, proceed as follows:

u(z, t) = Z b, sin(nL—W:L") cos(Apt) + Z by, sin(%:p) sin(Apt)

n=1 n=1
= (@) + @ et)) + o (Gl + ef) — Gl — )],

where in the last equality we used Exercise 16 and part (c).

21. Follow the labeling of Figure 8 in Section 3.4. Let P; = (xq, tg) be an
arbitrary point in the region II. Form a characteristic parallelogram with
vertices Py, Py, (Q1, D2, as shown in Figure 8 in Section 3.4. The vertices
P, and Q1 are on the characteristic line z + 2¢t = 1 and the vertex ()2 is on
the boundary line x = 1. From Proposition 1, we have

u(P) = u(Q1) + u(Q2) — u(P2) = u(Q1) — u(P),

because u(@Q2) = 0. We will find u(P,) and u(Q;) by using the formula
u(x, t) = —4t2 + x — 2% + 8tz from Example 4, because P, and @ are in
the region 1.

The point ()1 is the intersection point of the characteristic lines x — 2t =
xo — 2tg and x + 2t = 1. Adding the equations and then solving for z, we
get

_xo+ 1 — 2ty
T = 5 )

The second coordinate of )1 is then

‘— 1 —z9+ 2ty
=

The point ()2 is the intersection point of the characteristic line x + 2t =
xo + 2ty and x = 1. Thus

t_:Eo—l—Qto—l
S

The point P, is the intersection point of the characteristic lines z+2t = 1
and z — 2t = 1 — (zg + 2tp — 1). Solving for z and ¢, we find the coordinates
of P, to be

3—x9— 2ty —1 4 x¢ + 2ty
T = — and = —
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To simplify the notation, replace xg and tg by = and y in the coordinates of
the points Q1 and P and let ¢(x, t) = —4t? + x — 22 + 8tz. We have

u(r, t) = u(Q1) —u(P)
_ ¢<:13—|—1—2t 1—$+2t>_¢<3—$—2t —1—|—:L"—|—2t>

2 4 2 4
= 5—12t— 5z + 12tx,

where the last expression was derived after a few simplifications that we
omit. It is interesting to note that the formula satisfies the wave equation
and the boundary condition u(1, t) = 0 for all ¢ > 0. Its restriction to the
line x + 2t = 1 (part of the boundary of region I) reduces to the formula for
u(z, t) for (z, t) in region I. This is to be expected since v is continuous in

(z, t).
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Solutions to Exercises 3.5

1. Multiply the solution in Example 1 by 1080 to obtain
312 e—(2k+1)
Ea 2k +1

u(z, t) = sin(2k + 1)z.

5. We have
ane "t sin(na),

where

1
b, = 2/ xsin(nmx) dr = 2 [—
0

cosnm _ (—1)n+t

nw n2 2

z cos(n ) Sin(nﬂ':n)] ‘(1]

i nm

So
n+le—(n7r)2t

_ 2 i sin(nmz)
v n '
n=1

9. (a) The steady-state solution is a linear function that passes through the
points (0, 0) and (1, 100). Thus, u(x) = 100z.

(b) The steady-state solution is a linear function that passes through the
points (0, 100) and (1, 100). Thus, u(x) = 100. This is also obvious: If
you keep both ends of the insulated bar at 100 degrees, the steady-state
temperature will be 100 degrees.

13.  We have uj(z) = =2z + 100. We use (13) and the formula from
Exercise 10, and get (recall the Fourier coefficients of f from Exercise 3)

50

u(z,t) = ——ax+100
7T
132sin(nZ 2 (—1)"
-I-Z [ > Sm(zz) — 100 <¥>] e sinna.
ol R nm

17. Fix ty > 0 and consider the solution at time ¢ = #:
u(x, to) Z by, sin —:L"e —Anto

We will show that this series converges uniformly for all z (not just 0 < z <
L) by appealing to the Weierstrass M-test. For this purpose, it suffices to
establish the following two inequalities:

’b sin 2% L :Ee_A%tOI < M, for all z; and

( ) Zn:l M < o0.
To establish (a), note that

2 (L nm 2 [F nm
. -
_L/o f(:E)Sln—L:Ed:E __L/o ‘f(:n)sm—L:E dz

(The absolute value of the integral is

|bn| =

< the integral of the absolute value.)

9 L
—/ |f(z)| de = A (because |sinu| <1 for all u).
0

IN

L



42  Chapter 3 Partial Differential Equations in Rectangular Coordinates

Note that A is a finite number because f is bounded, so its absolute value

is bounded and hence its integral is finite on [0, L]. We have

where r = ¢

Tz < 1.

c27'r2t0 2

nm 2 —
Ae™Mnto = Ae™ T2z "

|bn sin T:Ee_’\%tﬂ <
2 2

n
_cm to
< A(e L2 > = Ar™,

c27'r2t

convergent because it is a geometric series with ratio r» < 1.

Take M,, = Ar™. Then a holds and ) M, is
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Solutions to Exercises 3.6

1. Since the bar is insulated and the temperature inside is constant, there is
no exchange of heat, and so the temperature remains constant for all ¢ > 0.
Thus u(z, t) = 100 for all ¢ > 0. This is also a consequence of (2), since in
this case all the a,,’s are 0 except ag = 100.

5. Apply the separation of variables method as in Example 1; you will
arrive at the following equations in X and 7"

X"—kX =0, X(0)=0, X'(L)=0

T — k*T =0

We now show that the separation constant k£ has to be negative by ruling
out the possibilities £ = 0 and k > 0.

If k=0 then X” =0 = X = ax+b. Use the initial conditions X (0) = 0
implies that b = 0, X’(L) = 0 implies that a = 0. So X =0 if k£ = 0.

If £ > 0, say k = p?, where p > 0, then

X" 12X =0 = X = ¢ coshpx + cosinh pa;
X(0)=0 = 0=c;X = cosinhpz;
X'(L)=0 = 0= coucosh(ul)
= co2 =0,

because p # 0 and cosh(uL) # 0. So X = 0 if £ > 0. This leaves the case
k = —u?, where 1 > 0. In this case

X”—l—sz:O = X = cjcosux + cosin pux;
X(0)=0 = 0=c;X = cysinpux;
X'(L)=0 = 0=copcos(uL)
= c¢g=0or cos(uL) =0.

To avoid the trivial solution, we set cos(uL) = 0, which implies that

™
)

= (2k+1
p=( +)2L

k=0,1,....
Plugging this value of k£ in the equation for 7', we find

T4+ 12T =0 = T()= Bje 7t = Bke_((%"'l)%)%zt.
Forming the product solutions and superposing them, we find that

(o] (o]
T \2
u(z, t) = ZBW—“QC% = ZBke_((%H)E) <t gin [(21@ + 1)%$ )
k=0 k=0

To determine the coefficients By, we use the initial condition and proceed
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as in Example 1:

u(z,0) = f(z) = f(z)=) Bysin [(2k+1)%4;

k=0

= f(x)sin [(271 + 1)%4

= in sin [(Qk‘ + 1)%4 sin [(271 + 1)%4

k=0
= /OL f(x)sin [(271 + 1)%4 dz
L
0

= ki;oBk/ sin [(Qk‘ + 1)%4 sin [(271 + 1)%4 dx

L . Y
= /0 f(x)sin [(271 + 1)E$} dz

Lo -
_B, '[2 1——}d,
/0 sin® | (2n + )2L:E x

where we have integrated the series term by term and used the orthogonality
of the functions sin [(2k‘ + 1)%:@ on the interval [0, L]. The orthogonality
can be checked directly by verifying that

/OL sin [(Qk‘ + 1)%4 sin [(271 + 1)%4 de =0

if n # k. Solving for B,, and using that

L
in? "] de =L
/0 sin [(271—1— 1)2L:E} dzx = 5

(check this using a half-angle formula), we find that

B, = %/OL f(z)sin [(271 + 1)%4 dzx.

9. This is a straightforward application of Exercise 7. For Exercise 1 the
average is 100. For Exercise 2 the average is ag = 0.

13. The solution is given by (8), where ¢, is given by (11). We have

1 1
1
/ sin? pprde = —/ (1 —cos(2upz) dx
0 2 Jo
1 1 1 1
— (e — —sin(2 ‘:— 1— — sin(2u) | .
3 (o g sintzien) ) | = 3 (1 5 sinCzmn) )
Since p, is a solution of tan u = —u, we have sin p, = — iy, COS iy, SO
sin 2, = 2 sin py, cos fhy, = —2uy, cos? L,

and hence

(1 + cos? ,un) .

N

1
/ sin? ppx de =
0
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Also,

1/2 1
. Hn
sin ppxde = — (1 — cos —).
/0 i un( >)

Applying (11), we find

1/2 1
o / 100 sin ppx dx / sin® i dz
0 0

= @(1—005%)/% (1—|-cosz,un)

Hn

200(1 — cos “7”)
fin (1 + cos? i)

Thus the solution is

o

200(1 —cos ) _
t _= _/J'Tbt 1 .
u(x, t) E o (LT cos? 1) e sin pi,x

n=1

17. Part (a) is straightforward as in Example 2. We omit the details that
lead to the separated equations:
T — kT =0,
X"—kX =0, X'(0)=-X(0), X'(1)=-X(1),

where k is a separation constant.
(b) If £ =0 then

X"=0 = X=azr+b,
X'0)=-X(0) = a=-b
X'(1)=-X(1) = a=—(a+b) = 2a=—b;

= a=b=0.
So k = 0 leads to trivial solutions.
(c) If k = a® > 0, then
X" _ N2X =0
X'(0)=-X
X'1)=-X

X = ¢y cosh px + co sinh pa;

e = —C1

peq sinh g+ pes cosh p = —cq cosh g — ¢o sinh p
pey sinh g — ¢ cosh p = —c¢q cosh pp — co sinh

ey sinh g = —cosinh

A

ey sinh g = “ ginh I
I
Since p # 0, sinh p # 0. Take ¢; # 0 and divide by sinh p and get
,uclzc—l = P=1= k=1
I

So X = ¢y coshx + cosinhz. But ¢; = —co, so

X =cjcoshx + cpsinhx = ¢ coshx — ¢y sinhz = c1e™™.
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Solving the equation for T', we find T(t) = e!; thus we have the product
solution

coe %el,

where, for convenience, we have used ¢y as an arbitrary constant.

(d) If k = —a? < 0, then

X”—l—uzX:O = X = cjcos pux + cosin pux;

X'(0)=—-X(0) = pcy=—c

X'(1)=—-X(1) = —pcysinp+ pcy cos = —c1 CoS L — cosin i
= —pucysin g — ¢1Cos ft = —C1Cos [ — Cc2sin
= —pcysinpy = —cgsinp
= a

—pcy sin = — sin p.
“

Since p # 0, take ¢; # 0 (otherwise you will get a trivial solution) and divide
by ¢1 and get

,uzsin,u = —sinpy = sinpy=0 = u=nm,
where n is an integer. So X = ¢j cosnmx + cosinnmx. But ¢ = —cop, so
X=-¢ (mr cosnmwx — sin mr:n).

Call X,, = nmcosnmx — sinnwx.
(e) To establish the orthogonality of the X,,’s, treat the case k = 1 separately.
For k = —p?, we refer to the boundary value problem

X" 42X =0, X(0)=-X'(0), X(1)=-X'(1),

that is satisfied by the X,’s, where u, = nw. We establish orthogonality
using a trick from Sturm-Liouville theory (Chapter 6, Section 6.2). Since

Xy =t X and X} =y X,

multiplying the first equation by X, and the second by X,, and then sub-
tracting the resulting equations, we obtain

X X! = p2, X Xy, and X, X! = 12 X, X,
Xpn Xy, — XX, = (N% - N%n)Xan
(XnX;n - XmX;L)/ = (11, — Hi) XX

where the last equation follows by simply checking the validity of the identity
X X! — X X! = (X, X}, — X X2)'. So

1 1
2 _ 2 X n\x)ar = n\T /$_m$ /:E/:E
(122 um>/oxm< )Xo () d /0(X<>Xm<> X, (2)X!(2)) d

= Xa() X0 (2) — X)X ()]

because the integral of the derivative of a function is the function itself. Now
we use the boundary conditions to conclude that

X)X () = Xon() X ()]
= Xn(l)X;n(l) - Xm(l)X;L(l) - Xn(O)X;n(O) + Xm(O)X;L(O)
_Xn(l)Xm(l) + Xm(l)Xn(l) + Xn(O)Xm(O) - Xm(O)Xn(O)
= 0.
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Thus the functions are orthogonal. We still have to verify the orthogonality
when one of the X,,’s is equal to e™*. This can be done by modifying the
argument that we just gave.

(f) Superposing the product solutions, we find that

[ee]
u(x, t) = coe el + Z enTn(t) X ().
n=1
Using the initial condition, it follows that
[e.e]
u(w, 0) = f(x) = coe™ + Y enXn(2).
n=1

The coefficients in this series expansion are determined by using the orthog-
onality of the X,,’s in the usual way. Let us determine ¢g. Multiplying both
sides by e™* and integrating term by term, it follows from the orthogonality
of the X,, that

1 1 00 T
/ f(x)e ®dx = co/ e 2 dy + Z cn/ Xp(z)e P dx.
0 0 — Jo

Hence

1 1 1— 6_2
/ flz)e ¥ dx = CQ/ e 2dx = ¢ .
0 0 2

262 1 .
_1/0 flx)e ™ dx.

e2

Thus

Co =
In a similar way, we prove that
1 /!
ecn=— [ flx)X,(x)dz
Rn Jo
where

1
/{n:/ X2(z)dx .
0

This integral can be evaluated as we did in Exercise 15 or by straightforward
computations, using the explicit formula for the X,,’s, as follows:

1 1
/ X2(z)dz = / (nm cosnma — sinnwa) ? da
0 0

1
= / (n27r2 cos® nwx 4 sin® nrx — 2nw cos(nx) sin(nrz)) do
0

=(n?n2)/2 :}/2

A

1 1
= / n’m? cos® nrr dr + / sin’ nrz dx
0 0

=0

A

1
—2n7r/ cos(nmx) sin(nmx) dx
0

n’r? +1
5 .
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Solutions to Exercises 3.7

5. We proceed as in Exercise 3. We have

u(x, y, t Z Z mn COS Amnt + By, Sin Ay t) sinmrx sin nmy,

n=1m=1

where A\, = vVm?2 +n?, B,,, =0, and

1
B’ = 7/ / sinmmz sinnmy dx d
i ), ), y da dy
4 1 1
= — sinmmx dx sinnmyd
vm? + n? /0 /0 v
o \/W+WLW lf m and n are bOth Odd,
B 0 otherwise.
Thus
u(z, y, t) =
[ee] o0

16 sin((2k + 1)wzx) sin((20 + 1)7y)
— =V (2k+1)2+ (204 1)2 (2k + 1) (20 + 1)

sin/(2k + 1)2 + (20 + 1)2t
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Solutions to Exercises 3.8

1. The solution is given by

u(z, y) = Z By, sin(nmx) sinh(nmy),

n=1
where
9 1
B, = m/o xsin(nmr) dx
2 x cos(nmx) sin(nwx)]|!
- sinh(2nm) [_ nm n? 72 ]‘0
2 —(=1)" 2 (=1t
- sinh(2nw) n7w :sinh(2mr) nt
Thus,
2o~ (=D .
u(x, y) = - ;_:1 rsinh (27 sin(nmx) sinh(nmy).

5. Start by decomposing the problem into four subproblems as described
by Figure 3. Let u;j(z, y) denote the solution to problem j (j =1, 2, 3, 4).
Each u; consists of only one term of the series solutions, because of the
orthogonality of the sine functions. For example, to compute uq, we have

ui(z, y) = Z Ay sinnme sinh[nr(1 — y)],

n=1

where

2
L=

1
= — sin Tz sinnwx dx.
sinhnm Jy

Since the integral is 0 unless n = 7 and, when n = 7,

2 /1 NI 1
g 11N f— .
"7 Sinh 7w 0 ° T T
Thus
ui(z, y) = o Tmx sinh[7Tm(1 — y)].
In a similar way, appealing to the formulas in the text, we find
. .
ug(z, y) = L sinh(7y)
1 . .
us(z, y) = . sinh[37(1 — z)] sin(37y)
1 . .
ug(z, y) = = sinh 67z sin(67y);
sinh 67
’LL(ZL', y) = ’LL1(ZE, y) +’LL2(ZE, y) + ’LL3(ZE, y) +’LL4(ZE, y)

1
= sin 7Trrx sinh[77 (1 — y)] +

- sin(mz) sinh(my)

sinh 7

sinh[37(1 — z)] sin(37y) +

sinh(67x) sin(67y)

sinh 37 sinh 67
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Solutions to Exercises 3.9
1. We apply (2), witha=b=1:

[e.e] [e.e]
y) = g g Eppn sin mmz sinnmy,
n=1m=1

where
E,, = m / / rsinmmx sinnwy dr dy
_1-(-yn
—4 1 1

= m/o rsinmnx d:n/o sinnmy dy

B —4 (=)™ [ x cos(mmx) n sin(m x) ‘1

— 74(m? 4 n?) n m m2m 0

_ 4 ()" (=)™

— 1d(m? 4 n?) n m
Thus
u(z, y) = I ;:: EZ: T 2kt DOm@E 1) sinmmx sin((2k + 1)7y).
5. We will use an eigenfunction expansion based on the eigenfunctions
¢(x, y) = sinmma sinnwy, where An(z, y) = —n%(m?+n?) sinmmx sinnmy.
So plug

o o
= g g FEn sinmmx sinnmy

n=1m=1

into the equation Au = 3u — 1, proceed formally, and get

A > | Eppsinmaxsinnmy) =3 02, 3 | Epy sinmrzsinnmy — 1
S S EpnA (sinmrasinnry) =33 02 3> Epy sinmax sinnmy — 1
S 1 Sy —Empm?(m? + n?) sinmma sinnwy
=3> 0 > | Empsinmrasinnmy — 1
S i Yoy (34 @2 (m? 4+ n?)) Eppn sinmaz sinnmy = 1.
Thinking of this as the double sine series expansion of the function identically

1, it follows that (3 + 72 (m2 + nz))Emn are double Fourier sine coefficients,
given by (see (8), Section 3.7)

(3 + 72 (m2 + nz))Emn = / / sinmmx sinnmy dx dy
_ )" 11— (=)
N mm nm

if both m and n are even.

{ 0 if either m or n is even,
= 16

m2mn
Thus
0 if either m or n is even,
Ein = 16 if both m and n are even,
7r2mn(3—|—7r2 (m2 +n2))
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and so

e~ sin((2k 4 1)mz) sin((20 + 1)7y)
ule: ) = F;O; 2k+1) I+ DB+ (2k+ 12+ (2 +1)2))
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Solutions to Exercises 3.10

1. We use a combination of solutions from (2) and (3) and try a solution
of the form

u(x, y) = Zsin ma [ Ap, coshm(1 — y) + By, sinhmy].

n=1

(If you have tried a different form of the solution, you can still do the prob-
lem, but your answer may look different from the one derived here. The
reason for our choice is to simplify the computations that follow.) The
boundary conditions on the vertical sides are clearly satisfied. We now
determine A,, and B,, so as to satisfy the conditions on the other sides.
Starting with (1, 0) = 100, we find that

o0
100 = Z A, coshm sin max.

m=1

Thus A,, coshm is the sine Fourier coefficient of the function f(x) = 100.
Hence

200
7m coshm

2 ™
Ay coshm = ;/ 100sinmxdr = A, = [1—(—-1)™].
0

Using the boundary condition u,(z, 1) = 0, we find

0= Z sinma Ay, (—m) sinh[m(1 — y)] + mB,, coshmy| ‘y:l
m=1

Thus -
0= Z mB,, sinmx coshm.

m=1
By the uniqueness of Fourier series, we conclude that mB,, coshm = 0 for
all m. Since m coshm # 0, we conclude that B,, = 0 and hence

u(z, y) = sinmax cosh[m(1 — y)]

200 o= [1 — (—1)™
ES Z [mcf)sh:n]
400 > sin[(2k + 1)x]

T = (2k + 1) cosh(2k + 1) cosh[(2k +1)(1 —y)].

5. We combine solutions of different types from Exercise 4 and try a solution
of the form

u(x, y) = Ag + Boy + Z cos %:E[Am cosh]|

mT
o
m=1

b—1y)]+ Bn sinh[?y]].

Using the boundary conditions on the horizontal sides, starting with u,(z, b) =
0, we find that

o
0= By + Z mBm cos mlE cosh [mb]
— a a a
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Thus By = 0 and B,,, = 0 for all m > 1 and so

Ao+ Z Ay, cos %:p cosh[ "o —y)].
m=1

Now, using u(z, 0) = g(x), we find

mm
A A, h— —_—
g(z) = 0+Z cosh| b]cosazn

m=1

Recognizing this as a cosine series, we conclude that

1 a
Ao = —/ g9(z) dx
aJo
and o o
Am cosh[mb] = —/ g(z) cos T dx;
a a o a
equivalently, for m > 1,
2 “ mm
A, =—— —xdx.
acosh[%b]/o 9(x) cos a '

9. We follow the solution in Example 3. We have

w(@, y) = w(zr, y) +uz(z, y),

where -
ui(z, y) = Z By, sinmz sinh my,
m=1
with
2 T 2
By = ————— i de = —————(1— (=1)™);
mm cosh(mm) /0 S O = 2 cosh(mw)( (=1)")
and -
us(z, y) = Z Ay, sinma coshm(m — y)],
m=1
with
2 T 2
Ap=—— [ sinmazds= —————(1— (-1)™).
7 cosh(mm) /0 S G = cosh(mw)( (=1)")
Hence

u(x, y) = % Z wsinm&: [sinhmy + cosh[m(m — y)]]

—m cosh(m) m

% i sin(2k + 1)z [sinh[(Qk‘ +1)y]

0 (2k + 1) cosh[(2k + 1)7] (2k+1)

+ cosh[(2k + 1) (7 —

53

y)]] :
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Solutions to Exercises 4.1

1. We could use Cartesian coordinates and compute i, ty, Uzz, and gy,
directly from the definition of u. Instead, we will use polar coordinates,
because the expression z2 4+ y? = r2, simplifies the denominator, and thus it
is easier to take derivatives. In polar coordinates,

x rcosf  cosf 1
wz,y)=5—%5=—5—= =r" " cosf.
e+ r r
So
-2 5.3 R R -1
Up = —1 “cosB, U =2r "cosf, ug=—r "sinf, wugg= —r " cosb.

Plugging into (1), we find

1 1 2 cos 0 0
VU =ty + —uyp + —ugp = coSy oSy ST 0 (if r#0).
r r2 r3 r3 r3
If you used Cartesian coordinates, you should get
2z (2% — 3y?) 2z (2% — 3y?)
Uar = 5y And gy = ——r e
(22 +y?) (22 4+ y?)

5. In spherical coordinates:
u(r, 0, ¢) = 1° = up = 67, up = 0,upgg = 0, ugy = 0.

Plugging into (3), we find
Pu 20u 1 /0% ou 9%u

2 — - - 292 = = 12r.

Vu 52 oo, T2<892—|—cot969—|—csc 98(;52) 67 + 67 r

9. (a) If u(r, 6, ¢) depends only on r, then all partial derivatives of u with
respect to 6 and ¢ are 0. So (3) becomes
u  20u 1 0% ou 0%u 0%u  20u
2, _ Y% il Y e el 2p7 " 2 & -7
Vu=g2" 05 7"2(892 ootd 7 +ese 9&1)2) 2 " o
(b) If u(r,0,¢) depends only on r and 6, then all partial derivatives of u
with respect to ¢ are 0. So (3) becomes

VZu — 4 = + cot @ —

_ O 20u 1<@2_u Juy
Cor2  ror  r2\oe? 00/
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Solutions to Exercises 4.2

1. We appeal to the solution (5) with the coefficients (6). Since f(r) = 0, then
A,, = 0 for all n. We have

1 2 anT
B, = ———— Jo(——)rdr
g R
- #/%J() ds (let s = )
= a3J1(an) ols)sds s = 2T
4 an
= @har )
= 1 foralln>1
BEIACS) or all n > 1.
Thus
> Jo(*5%) ant
t)=14 —
) =143 s sn()

5. Since g(r) = 0, we have B,, = 0 for all n. We have

2 1
A, = 72/ Jo(arr)Jo(apr)rdr =0 for n # 1 by orthogonality.
J1 (O‘n) 0
Forn =1,
2

1
— Jo(anr)?rdr =1,
Jl(al)Q/o olear)

where we have used the orthogonality relation (12), Section 4.8, with p = 0. Thus

A =

u(r, t) = Jo(ayr) cos(aqt).

9. (a) Modifying the solution of Exercise 3, we obtain

o0

u(r, t) = Z %Jg(anﬂ sin(apct).

n=1

(b) Under suitable conditions that allow us to interchange the limit and the sum-
mation sign (for example, if the series is absolutely convergent), we have, for a given

(r; 1),

cliglo ’U,(T, t) = Cli,rgo Z OZQICJOi / ))2,]0(0[”7") Sin(anct)
= Di(an/2) ,
- nz:l cli{go a2cdi(ay,)? Jo(anr) sin(anct)
=0

3

because lim._, % = 0 and sin(ay,ct) is bounded. If we let ui(r, t) denote

the solution corresponding to ¢ = 1 and u.(r, t) denote the solution for arbitrary
¢ > 0. Then, it is easy t check that

1
’U,C(T, t) = _ul(ra Ct)'
C

This shows that if ¢ increases, the time scale speeds proportionally to ¢, while the
displacement decreases by a factor of %
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Solutions to Exercises 4.3

1. The condition g(r,d) = 0 implies that af, = 0 = bf,.. Since f(r,0) is
proportional to sin 26, only bs ,, will be nonzero, among all the a,, and b,,. This
is similar to the situation in Example 2. For n =1, 2, ..., we have

2 27
bon = W/ / (1—T2)T2 sin 260.J5 (ag 1) sin 20r d6 dr

=T

) 27 )
= —— in% 20 dO(1 — r?)r3Jy(ag. 1) d
7TJ3(042,n)2/0 /0 sin ( ro)re Jy(ag nr) dr

9 1
= 7J3(a2 )2/0 (1 —r2)r3 Ty (g ) dr
2 2 4J4(an)
= _ —J n) = 77,
J3(azn)? a3, a(azn) a3, J3(azn)?

where the last integral is evaluated with the help of formula (15), Section 4.3. We
can get rid of the expression involving J; by using the identity

T (&) + Ty () = Ly ().

With p = 3 and & = asg ,, we get

=0
—
Ja(on) +Ja(ao ) = J3(azn) = Jalazn) = o J3(2.n).
2.n 2.n
So
L
YA Js(az)
Thus

Ja(va )

a2 n']3 (012 n)

u(r, 0, t) = 243111292

cos(ag pnt).

5. We have a,,, = by, = 0. Also, all a, ~ and b*

*
T mn are zero except b3 . We have

2 21
b;,n = / / (1 —72)r? sin 20.J5 (oo 1) sin20r d dr.
0

oo nJ3(en)? Jo

The integral was computed in Exercise 1. Using the computations of Exercise 1,

we find
o
s O‘%,nl@(aln)'

hus

u(r, 0, t) = 24s1n292 _Ja(02nr) sin(az nt)

a2 n']3 (012 n) e

9. (a) For [l = 0 and all & > 0, the formula follows from (7), Section 4.8, with
p=k:

/TkJrle(r) dr =" T (r) + C.

(b) Assume that the formula is true for I (and all & > 0). Integrate by parts, using
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u=r2 dv=7r*1J11(r)dr, and hence du = 2[r?*1dr and v = r**1.J 1 (r):
/TkJrlJrQZJk(T) dr = /T2l[rk+1Jk(r)] dr
= 2R ) =20 [ PR () dre
R () = 21

Tk+2lz]k+1 (r)dr

Tk+1+2le+1(T) _ 9 T(k+1)+1+2(l*1)Jk+l(T) dr

— T

and so, by the induction hypothesis, we get

nr2n(il—1
/Tk+1+2le (T) dr = k+1+2le -2l Z —l 1= TL ) Tk+2l7an+n+2(T) +C

_ k+1+2le 1( )

n+12n+ll| k+1+2l7(n+1)
+ Z CE) Jetm1)+1(r) +C

l
—1)ma2m]!
_ Tk+1+2le+1(T) + Z (( )_m)' Tk+1+2l7ka+m+1(T) +C

l mz l'
= Z pRAI2l=m g g1 () + C,

m=0
which completes the proof by induction for all integers £ > 0 and all [ > 0.

13. The proper place for this problem is in the next section, since its solution
invovles solving a Dirichlet problem on the unit disk. The initial steps are similar
to the solution of the heat problem on a rectangle with nonzero boundary data
(Exercise 11, Section 3.8). In order to solve the problem, we consider the following
two subproblems: Subproblem #1 (Dirichlet problem)

1 1
(ul)rr + ;(ul)r + T_Q(UI)HH = 0; 0<r< 1; 0 S 0 < 27Ta
ui(1, 0) = sin30, 0<0<2m.

Subproblem #2 (to be solved after finding uy(r, 8) from Subproblem #1)

(u2)e = (u2)pr + L(u2)y + H(us)ps, 0<r<1,0<6<2m, t>0,
us(1,0,t) = 0, 0<6<2m, t>0,
us(r, 0,0) = —uq(r, 0), 0<r<l1, 0<6<2m.

You can check, using linearity (or superposition), that
’LL(T, 95 t) = ’Lbl(T, 9) +’LL2(T, 95 t)

is a solution of the given problem.
The solution of subproblem #1 follows immediately from the method of Sec-
tion 4.5. We have
ua(r, 0) = r®sin 36.
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We now solve subproblem #2, which is a heat problem with 0 boundary data and
initial temperature distribution given by —us(r, ) = —r3sin36. reasoning as in
Exercise 10, we find that the solution is

us(r, 0, t) = Z banJs(as,r) sin(360)e *sn?

n=1

where

_2 27
b3, = 7/ / r3 sin? 30.J. as,r)r dé dr
s mJa(asn)? 0 3(aznr)
—92 1 .
= r*Js3(as,r) dr
)? Jo

J4 (a3n

-2 1 @3n
- m O[T 54']3(5) ds (Where azpl = S)
n 3n J0O

—2 1

Ja(asn)? a3,
—2

a3nJ4 (QBH) '

QA3n

Hence
O[ 3nT

2
aant'

u(r, 0, t) = sin 30 — 2sin(30) Z

a3nJ4 aBn
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Exercises 4.4

1. Since f is already given by its Fourier series, we have from (4)

u(r, 0) =rcosf = x.

5. Let us compute the Fourier coefficients of f. We have

50 [7/4 25

=— do = —;
“w= o 2’
1 /4 1 i 1
anzﬂ cosnb df = Es,ian :Esjnﬂ;
T Jo nmw o nm 4
1 /4 1 ™ 1
A sinnfdd = — 2 cosng| = 21 — cos ™),
T Jo nmw o nm 4
Hence
25 100 o= 1 nm
f(0) = ? — g - (s1n—cosn9+ (1 — cos T) s1nn9)
and
25 100=1/. nrm nw. .
u(r, 0) = 35 + — Z - (sm Tcosn@ + (1 — cos T) s1nn9) r

Il
-

n

9. u(r 0) = 2r?sinfcos§ = 2xy. So u(xy) = T if and only if 22y = T if and only

ify= 2x’ which shows that the isotherms lie on hyperbolas centered at the origin.

13. We follow the steps in Example 4 (with a = 7) and arrive at the same equation
in © and R. The solution in © is

O,(0) =sin(4nd), n=1,2,...,
and the equation in R is
R’ +rR — (4n)*R = 0.
The indicial equation for this Euler equation is
—(4n)?*=0 = p=+in.
Taking the bounded solutions only, we get
Ry (r) = rim.

Thus the product solutions are 4"

of the form

sin 46 and the series solution of the problem is

i " sin4nb.

To determine b,,, we use the boundary cond1t10n:

Uy (7, 9)’7«:1 =sinf = Z bpdnr*™ ! sin4nf ,—q =sind

= Z bpdn sindnf = sin 0

n=1

2 71’/4
= 4nb, = —/ sin @ sin4nf db.
/4 Jo
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Thus
9 /4
b, = —/ sin 6 sin 4n6 do
™ Jo
1 71’/4

= —/ [— cos[(4n + 1)0] + cos[(4n — 1)0]] dO

™ Jo
1 [ sin[(4n+1)0] = sin[(4n —1)0]] |=/4
T i 4n +1 4n —1 0
1 [ sin[(dn+1)F sin[(dn —1)F
o i 4n +1 4n —1
1 [ cos(nm)sing]  cos(nm)sin 7
T __ 4n +1 B 4n —1
GRS 1
o 2 |4n+1 4n—1
B (_1)n+1\/§ 4
N T 16n2 —1°

Hence
42 K (—1)n !
u(r, 0) = :T/_ Z iﬁng — 17"4" sin 4nd.

n=1

17. Since u satsifies Laplace’s equation in the disk, the separation of variables
method and the fact that u is 27-periodic in 6 imply that u is given by the series (4),
where the coefficients are to be determined from the Neumann boundary condition.
From

u(r, 0) = ap + Z (%)n [an cosnf + b, sinnd],
n=1

it follows that

n—1

up(r, 0) = Z (nr ) [an cosnb + b, sin n9] .
n=1

an

Using the boundary condition u,(a, 0) = f(6), we obtain
= n
0) = —|an 0 + b, sinnd|.
10 ;a[a cosnf + by, sinnf|

In this Fourier series expansion, the n = 0 term must be 0. But the n = 0 term is

given by
1 2
— 0) do
5| 1@
thus the compatibility condition
27
f(0)do =0
0

must hold. Once this condition is satsified, we determine the coefficients a,, and b,
by using the Euler formulas, as follows:

1 27
Dan==[ (6 cosnbdo

a ™ Jo
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and ,
1 s

Dby == [ f(6)sinnd db.

a T Jo
Hence

a 2m a 27
ap = — f(@)cosnbdfd and b, =— F(6) sinnd db.
nm 0 nm 0

Note that ag is still arbitray. Indeed, the solution of a Neumann problem is not
unique. It can be determined only up to an additive constant (which does not affect
the value of the normal derivative at the boundary).

21.

Using the fact that the solutions must be bounded as r — oo, we see that

¢1 = 0 in the first of the two equations in (3), and ¢z = 0 in the second of the two
equations in (3). Thus

R(r)=R,(r)=cpr " = (Z)n form=0,1,2,....

a

The general solution becomes

u(r,0) = ag + Z(g)n (an cosn + by sinnb), r > a.

Setting r = a and using the boundary condition, we obtain

f(0) = ao + Z (an cosnb + b, sinnb) ,

n=1

which implies that the a, and b,, are the Fourier coefficients of f and hence are
given by (5).

25.
29.

The hint does it.

(a) Recalling the Euler formulas for the Fourier coefficients, we have

u(r, 0) = ag + Z (g)n [a,, cosnb + by, sinnb]
n=1

1 2m

= o | f@)do

- " m 2w
+nz_:1(§) [% : f(¢)cosn¢d¢cosn9+%/o f(¢)sinn¢d¢sinn0]

1 2m

= f(¢)do

i n 27
+nz_:1(§) [% : f(¢)[cosn¢cosn9+sinn¢sinn0]dqﬁ]

27
f(¢)cosn(0 — ¢)do

27 © L n
b RCLA Y

™ Jo

1

= E f

1+2Z( ) cosn(f — ¢)] do.
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(b) Continuing from (a) and using Exercise 28, we obtain

L 1)
A - a
ulr. 9) 27 Jo f(¢)1—2(£) cosf + (%)2
1 (%7 a? —r?
T o o (@) a? — 2ar cos(f — @) + r? do
1 27

= F(@)P(r/a, 0 — ¢) do.

27 Jo
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Solutions to Exercises 4.5

1. Using (2) and (3), we have that

ulp, 2) = 3 Ando(Anp) sinh(An2), A= 2,
n=1 a
where a,, = gy, is the nth positive zero of Jy, and
A = & [ o1apd
" SR atdy (an)2 f, PO AePIPap

200 1
sinh(2a,) J1 (o) 2 /0 olanp)p dp

200 an
- J, ds (let s = ay,
Sinh(2an)a%J1(an)2/0 o(s)sds (let s = app)
200 an
- J
sinh(2an)aglj1(an)2[ 1(s)s] .
. 200
- Sinh(2an)an¢]1(an)'

So

Jo(app) sinh(ay, 2)
= 200
Z sinh(2a,)an J1 (o)

5. (a) We proceed exactly as in the text and arrive at the condition Z(h) = 0
which leads us to the solutions
Qi

Z(z) = Zy(2) = sinh(\,(h — 2)), where A\, = -

So the solution of the problem is

u(p, z) = Z CnJo(Anp) sinh(A,(h — 2)),
n=1

where
2

a2 J; ()2 sinh( M) /0 f(p)Jo(Anp)p dp.

(b) The problem can be decomposed into the sum of two subproblems, one
treated in the text and one treated in part (a). The solution of the problem
is the sum of the solutions of the subproblems:

Cp =

Z (A Jo(Anp) sinh(A,2) + Cy Jo(App) sinh(\,(h — z))),

where 2 a
A, = . ) |
“2J1(Ozn)2smh(Anh)/0 f2(p)Jo(Anp)p dp

and 2 a
C, = az‘]l(an)zsinh(/\nh) /0 fl(p)Jo(/\np)p dp.
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9. We use the solution in Exercise 8 with a =1, h =2, f(z) = 10z. Then

1 2 nmz
B, = 7/ Ozsin — dz
! Io (%) Jo 2

40
- " (1 n—l—l'
wlo ()

Thus

40 N (—1)m !
u(p, z) = — LIO (mrp) sin 2%

T =l () 2 2
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Solutions to Exercises 4.6

1. Write (1) in polar coordinates:

¢rr + %(br + %2(2599 - —k¢ (b(CL, 9) =0.

Consider a product solution ¢(r, ) = R(r)0(6). Since 6 is a polar angle, it follows
that
O(0 + 2m) = O(8);

in other words, © is 2m-periodic. Plugging the product solution into the equation
and simplifying, we find

R'"© + LR'© + 5 RO" = —kRO;

(R + LR + kR) © = — 5RO

TQR——l-T + kr? ——%;
hence
R// !
T2§+TE+I€T2:)\,
and
@//
_6_)\ = 0'+X0=0,

where A is a separation constant. Our knowledge of solutions of second order linear
ode’s tells us that the last equation has 27-periodic solutions if and only if

A=m?, m=0, %1, £2,....

This leads to the equations
0" +m?e =0,

and
1 !

TQ%—‘,-TE—FICTQ:WL

These are equations (3) and (4). Note that the condition R(a) = 0 follows from
¢(a,0) =0 = R(a)O(0) =0 = R(a) = 0 in order to avoid the constant 0 solution.

2 = PR+ 7R+ (kr* —m*)R=0.

5. We proceed as in Example 1 and try

u(r, 0) = > T Amn) (Amn cosmb + By sinmb) = >~ dyun(r, ),
m=0n=1 m=0n=1

where ¢un(r, 0) = (M) (Amn cosml + By, sinmf). We plug this solution
into the equation, use the fact that V(¢ ) = —A2,,, dmn, and get

2 (Z Z(bmn(ra 9)) = 1= Z Z(bmn(ra 0)

m=0n=1 m=0n=1
= iiv“‘ (Grmn (T, 0)) ZZQﬁmnr@
m=0n=1 m=0n=1
= ZZ -2, (bmnrﬂ—l—ZZ(bmnrﬁ
m=0n=1 m=0n=1

= iil—a Voumn (1, ) = 1.
m=0n=1

We recognize this expansion as the expansion of the function 1 in terms of the
functions ¢,,,. Because the right side is independent of 6, it follows that all A,,,
and B, are zero, except Ag . So

o0

> (1—a2,,)Aondo(con)r) =1,

n=1
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which shows that (1 — a2, )Ag,, = ao, is the nth Bessel coefficient of the Bessel
series expansion of order 0 of the function 1. This series is computed in Example 1,
Section 4.8. We have

> 2
1= Z ai)Jo(aoynr) 0<r<l1.

n—1 Onjl(aOn
Hence
2 2
( L Ao O = A= aZ)aondi(@on)
and so
r )= 2 Jolawo.nr)
H 0= 2 a7 Jan i (ao ) 0
9. Let

[ r if0<r<1/2,
h(’")_{o if1/2<r<1.

Then the equation becomes V?u = f(r, ), where f(r, ) = h(r)sinf. We proceed
as in the previous exercise and try

= i i Amn® ) (Amn cosmb + By, sinmb) = i i Omn(r, 0),

m=0n=1

where Gun(r, 0) = (M) (Amn cosml + By, sinmf). We plug this solution
into the equation, use the fact that V?(¢yun) = =2, dmn = —2,, dmn, and get

2(2 > bumnlr, 9)) = h(r)sinf

m=0n=1
= i i V2 (¢pmn(r, 0)) = h(r)sin®
m=0n=1
= Z Z 2 Gmn(r, 0) = h(r)sinf.
m=0n=1

We recognize this expansion as the expansion of the function h(r)sinf in terms of
the functions ¢,,,. Because the right side is proportional to sinf, it follows that
all A,,,, and B,,,, are zero, except By ,. So

sin 6 Z —a3,Bi.nJi(a1,r) = h(r)sin,
n=1

which shows that —a?, By ,, is the nth Bessel coefficient of the Bessel series expan-
sion of order 1 of the function h(r):

2 2 1/2 2
_OélnBl,n = 7!]2(0[17")2‘/0 T Jl(al,nr) dr

2 Otl,n/2 9
= = J d
O[inz]2(0[1,n)2 /0 s s)ds

2 2 Otl,n/2
= —— - &
ai’yng(al,nys 2(5)0
JQ(OZLH/Z)

201 pJo(ar p)?
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Thus

o0

JQ Oq n/2)
u(r, 6) —smﬁz 503 nJ2 PONE Jl(alynr).
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Chapter 4

Partial Differential Equations in Polar and Cylindrical Coordinates

Solutions to Exercises 4.7

1. Bessel equation of order 3. Using (7), the first series solution is
2k+3 1 23 1 2 L
O = T
k'k+3 1-6 8 1-24 32 2120 128

5. Bessel equation of order % The general solution is

y(x) = ClJ%"‘CQJ?%

- (i @ -y @)
o (e (5)7%‘1 w6 )
nd (1

wlw

So

2 12 =
(- (—=2Z2 -2 _ e
2 7TCC( ) ( 2x 2 )
2 (22 2t i n 2 /1 n T
— e = o] — (=42 ...
W U3 30 Nrz\z " 2
9. Divide the equation through by z? and put it in the form

1 29
y+y+

y=0 foraxz>0.

Now refer to Appendix A.6 for terminology and for the method of Frobenius that
we are about to use in this exercise. Let
z?2 -9

pa) =1 for qlr) ="

The point = 0 is a singular point of the equation. But since xp(z) = 1 and
22 q(x) = 22 — 9 have power series expansions about 0 (in fact, they are already
given by their power series expansions), it follows that = 0 is a regular singular
point. Hence we may apply the Frobenius method. We have already found one
series solution in Exercise 1. To determine the second series solution, we consider
the indicial equation
r(r —1) +por +qo = 0,

where po = 1 and ¢ = —9 (respectively, these are the constant terms in the series
expansions of zp(z) and z%¢(z)). Thus the indicial equation is

r—9=0 = r; =3, ro=-3.

The indicial roots differ by an integer. So, according to Theorem 2, Appendix A.6,
the second solution y» may or may not contain a logarithmic term. We have, for
x>0,

yo =ky lnz + 273 Z bz™ = kyy Inx + Z bx™ 3,

m=0 m=0
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where a9 # 0 and by # 0, and k£ may or may not be 0. Plugging this into the
differential equation
3:2y” —|—33y/ 4 ($2 _ g)y =0

and using the fact that y; is a solution, we have

y2 = kyilnz+ > bya™
m=0

= kY lnz+ kL — 3™,
vh yh Inw + x—!-mzzo(m 3)bmx ;

R T = m—
v = kyi’lnﬁkj+k}72+n;(m—3)(m—4)bmx i

/ o0

= ky/Inx+ 2/€ﬂ — ky—; + Z(m— 3)(m —4)bm$m75§
T T m—0

Yy + b + (2% — 9y

= ka*yInx + 2kxy) — ky; + Z (m —3)(m — 4)bpa™?

m=0

+kzy) Inx + kyy + Z (m — 3)byz™ 3

m=0
+(2% = 9) [kysInz + Z byx™ 3
m=0

=0

= klnz[2%y] +zy] + (#* — 91 |

+2kxy] + i [(m —3)(m — 4)by, + (m — 3)bp, — by |22

m=0

[eS)
—|—$2 E bmxmfl%
m=0

= 2kay, + Z (m — 6)mbz™ 3 + Z bnz™t

m=0 m=0
To combine the last two series, we use reindexing as follows

(m — 6)mbyz™ 3 + Z bpz™ !

m=0 m=0

= —5biz ?+ Z (m — 6)mby,z™ 3 + Z by_ox™ 3

m=2 m=2

= —5biz ?+ Z [(m — 6)mby, + bm,g] ™3,

m=2

Thus the equation

22yl 4+ zyh + (22 — 9)y2 = 0

implies that

2kxy) — Bbjz~? + Z [(m — 6)mby, + bm,g]xmfg =0.

m=2
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This equation determines the coefficients by, (m > 1) in terms of the coefficients of

y1. Furthermore, it will become apparent that k cannot be 0. Also, by is arbitrary

but by assumption by # 0. Let’s take by = 1 and determine the the first five b,,’s.
Recall from Exercise 1

_t# 12 1 g
N=1768 1-24 32 2-120 128

So
y1_1-68 1-24 32 2-120 128
and hence (taking k = 1)

o 6k a3 10k x° n 14k 27 n
T [ JR— JR— e
NTT68 1.2432 " 2.120 128

The lowest exponent of x in

2kxyy — bbyx ™% + Z [(m — 6)mby, + bm,g] M3

m=2

is 272, Since its coefficient is —5b;, we get b; = 0 and the equation becomes

2y + Z [(m — 6)mby, + by—o]z™ 5.

m=2

Next, we consider the coefficient of 271, Tt is (—4)2by + by. Setting it equal to 0,
we find

b 1
by = —2

8 8
Next, we consider the constant term, which is the m = 3 term in the series. Setting
its coefficient equal to 0, we obtain

(—3)3()3 +b1=0 = b3=0

because by = 0. Next, we consider the term in x, which is the m = 4 term in the
series. Setting its coefficient equal to 0, we obtain
(=2)4by+by=0 = b*lb*1
4+ b2 = 4= gh2 = e

Next, we consider the term in x2, which is the m = 5 term in the series. Setting its
coefficient equal to 0, we obtain b5 = 0. Next, we consider the term in x3, which
is the m = 6 term in the series plus the first term in 2kzy]. Setting its coefficient
equal to 0, we obtain

k 1
b - = k=—-8by=—-=.
0+ 4+8 0 = 8b4 3

Next, we consider the term in z*, which is the m = 7 term in the series. Setting
its coefficient equal to 0, we find that b7 = 0. It is clear that bs,,11 = 0 and that

Lpmet v Ly Loy
~——yme+—+—+—ax+--
g 8z 64
Any nonzero constant multiple of 32 is also a second linearly independent solution
of y1. In particular, 384 ys is an alternative answer (which is the answer given in
the text).

13. The equation is of the form given in Exercise 10 with p = 3/2. Thus its general
solution is
y = 122 T3 () + e/ Y3 5 ().
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Using Exercise 22 and (1), you can also write this general solution in the form

cosT .
—sinx

sinx
y = Cx " — CcosSx| + Ccox | —

= ¢ [sinz —xcosx] + ca[—cosx — xsing].

In particular, two linearly independent solution are
y1 =sinx —xcosx and Yy, =cosx + rsinz.

This can be verified directly by using the differential equation (try it!).

17. We have
y = x Pu,
y = —pr P lut o,
y' = pp+1)a P u+2(=p)a TP + 2P
oy + (1 +2p)y +ay = fE[p(p + 1)x7p—2u —opr P+ x*pu”]

+(1+2p)[—pr P lu+ 2P| 2z Pu

= o P o + [—2px + (14 2p)a]u/

+p(p+1) — (14 2p)p + 2°]u]

= o PP + o’ + (2 — pPhul.

Thus, by letting y = x7Pu, we transform the equation
zy’ + (14 2p)y + 2y =0

into the equation

e P 2P + zu + (2% - pPu] =0,

which, for x > 0, is equivalent to
2?2+ au’ + (22— p*)u =0,
a Bessel equation of ordr p > 0 in u. The general solution of the last equation is
u=c1Jp(x) + c2Yp ().

Thus the general solution of the original equation is

Y =ciz7PJp(x) + coxTPY, ().

R S G VA
J,%(ﬂi) = %m(g)

PR S VA

= \ﬁimz_

k 92k 2k
- \/72 k' (2k l\/_zzk (by Exercise 44(a))
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22. (a) Using (7),

I S G Ol T\ 2+
T@) = kzzok!F(k—l-%—i-l) (2)
2k+2

B \/Ei (-DF 2
Va4~ k+2+l)22k+2
\/7 9 92k+1L| p2k+2
- Z k' (2k + 3)(2k + 1)! 22k+2
1 1
(T(k+2+ 2) k+1+ ) (k+1+ 2) then use Exercise 44 (b))

— F2k+2) oni0 . .
= \/72 2k 1 3)! T (multiply and divide by (2k + 2))

)1
= ,/ Z 2k+12k x?*  (change k to k — 1)
_ (DM H@E+1) 1] ,
- \/_Z (2k+1) o
_ 2 & (D,
-~ Vrz Z _\/E;(zkﬂ)!xk
= E(—cosx—l—%).

25.  (a) Let u= 2200 V(u) = y(t),e "+ = "4—2u2; then

dy dYdu _, o—3(at=d) d*y d ( / —L(at—b) ) _ v —at+b 18— L(at—b)
a = e Y 0T g =g (Ve ) =Y e Y e e
So

Y//efater + Y/gefé(atfb) + YefaiH»b — O = Y// + gy/efé(atfb) + Y — O,

upon multiplying by e, Using u = %efé(at*b), we get

1
Y'+-Y'+Y =0 = Y +uY’ +4*Y =0,
u

which is Bessel’s equation of order 0.
(b) The general solution of u?Y” + uY’ + u?Y = 0 is Y (u) = c1Jo(u) + c2Yo(u).
But Y (u) = y(t) and u = ¢~ z(at=b) g

2 2
y(t) - ClJO( e z(at b)) _"_02}/0( (atfb))'

(¢) (1) If e =0 and c2 # 0, then

2
y(t) = ca¥o(Se 2070,
a

Ast — o0, u — 0, and Yy(u) — —oo. In this case, y(t) could approach either +oo
or —oo depending on the sign of ¢o. y(t) would approach infinity linearly as near

0, Yo(x) = Inz so y(t) ~ 111(2 —z(at= b)) ~ At.
(ii) If ¢1 # 0 and ¢o = 0, then

2
y(t) = e Jo(Ze~z(at=0),
a
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Ast — oo, u(t) — 0, Jo(u) — 1, and y(t) — c¢;. In this case the solution is
bounded.

(ii) If 1 # 0 and c2 # 0, as t — oo, u(t) — 0, Jo(u) — 1, Yo(u) — —o0. Since Yj
will dominate, the solution will behave like case (i).

It makes sense to have unbounded solutions because eventually the spring wears
out and does not affect the motion. Newton’s laws tell us the mass will continue
with unperturbed momentum, i.e., as t — oo, ¥’ = 0 and so y(t) = c1t + ¢2, a
linear function, which is unbounded if ¢; # 0.

33. (a) In (13), let u? = t, 2udu = dt, then

F(x):/ tr et dt:/ u2(x71)67“2(2u)du:2/ w2 Le=" dy,
0 0 0

(b) Using (a)

M(@)(y) = 2 / W21 gy / V1= gy

= 4/ / e~ (W) 201 2y=1 0 iy,
o Jo

(c) Switching to polar coordinates: u = rcosf, v = rsiné, u? + v? = r?, dudv =
rdrdd; for (u, v) varying in the first quadrant (0 < u < oo and 0 < v < ), we
have 0 <6 < 7, and 0 <r < oo, and the double integral in (b) becomes

Fx)'(y) = / / — (rcos 0)2*~(rsin 0)%Y~trdrdd
=I'(z+y)
b3 o0
- 2 / (cos 0)2*(sin 0)2~d0 2 / P2ty =1e=r® gy
0 0

(use (a) with x + y in place of x)

™

= 2F(x+y)/2(0039)2x*1(sin9)2y*1d9,
0

implying (c).
41. Let I = foﬂ/Q sin?**1 9 dg. Applying Exercise 33, we take 2z — 1 = 0 and
2y —1=2k+1,s02=3and y =k + 1. Then

L3 Ck+1) VTk! B 2./7 k!

2= Th+1+32) (k+3T(E+3)  @Ck+1I(k+3)

As in (a), we now use I'(k + 3) = 535,1, 7, simplify, and get

22k(k1)2
C(2k+ 1)
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Solutions to Exercises 4.8

1. (a) Using the series definition of the Bessel function, (7), Section 4.7, we have

d. _, d — (—1)k z\ 2k

@ @) Ekzzozpk!r(mpﬂ) (5)
L« (—1)k d [o\%h & (—1)*2k 1 sx\2k-1
- Z2Pk!F(l€+p+1)E(§) _I§2Pk!F(k+p+1)§(§)

i )k 2k—1
- —1)! ( )
k:02p 1 Wh(k+p+1) \2

2m—+1
) (set m=Fk—1)

_Z 2pm'F m+p+2) (2

_ (=)™ 2\ 2mtptl _
— _gP = (* _ D
* nlz:()m!F(m+p+2) (2) T pa (@),

To prove (7), use (1):
dci" [P Jp(z)] = 2P Jp_1(z) = /prp,l(x) dx = 2P J,(x) + C.
Now replace p by p+ 1 and get
/prrlJp(x) dx = 2P Jyq(2) + O,

which is (7). Similarly, starting with (2),

%[xprp(x)] =—aPlp(zr) = -— / P (z)de =27 PJ,(x) +C

= /xprerl (x)de = —x7PJ,(x) + C.
Now replace p by p — 1 and get
/xprrlJp(x) dr = —x P, 4(z) +C,

which is (8).
(b) To prove (4), carry out the differentiation in (2) to obtain

eI ()~ pr P (0) =~ Phpa(e) = ed)(@) - ply(@) = —adp (),

upon multiplying through by 2. To prove (5), add (3) and (4) and then divide
by « to obtain

Jpr() = Jyia(w) = 2J3(2).
To prove (6), subtract (4) from (3) then divide by .

5. /Jl(x) dx = —Jo(z) + C, by (8) with p = 1.

9.

/Jg(x) dr = /xQ[x72J3(x)] dz
22 =u, 2% J3(x) de = dv, 2z dr = du,v = —x 2Jo(x)

= —Jo(x) + Z/xfng(x) de = —Jo(z) — 22~ 'y () + C
— Do) — %Jl(x) - %Jl(x) + C(use (6) with p = 1)

— Jo(a) — %Jl(x) el
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13. Use (6) with p =4. Then

Js(z) = §J4(x) = J3(z)
- % [gjg(x) - Jz(x)] —Js(z) (by (6) with p=3)
— (i—S - 1) J3(z) — §J2($)
= (5-1) (520 - 5@) - Sh@) by 6 vithp=2)
_ (g _ 13:_2> Jo(z) — (i—S - 1) Jy (@)
_ 13:_2 (g _ 1) [%Jl(x) - Jo(x)] - (g _ 1) Ji(x)
(by (6) with p = 1)
- _% (i—g - 1) Jo(x) + (33% - ;—z + 1) Ji(x)-

17. (a) From (17),

2 2 ¢
A, = / VJo(ox)x de = / Jo(osiz)x do
J O[J f 0 J ) Jl(aj)2 0 0( J )
2 COL]‘
= J d let ;o =
R APRE / o(s)sds (let ajz =s)
2 T 2eh(ay)
= 7J s)s = —.
a2 Jy(a;)? (=) a1 (ay)?
Thus, for 0 < x < 1,
> 2¢Jq(a
Jl( Jo(eyjz).
j=1 aJ l(aJ

(b) The function f is piecewise smooth, so by Theorem 2 the series in (a) converges

to f(x) for all 0 < 2 < 1, except at x = ¢, where the series converges to the average

value 71"(”)?'(67) =1

21. (a) Take m = 1/2 in the series expansion of Exercise 20 and you’ll get

- J1/2 ;T
=2 for 0 1
Z ‘o J3/2 aJ or <z <1,

where «; is the jth positive zero of J; /5(x). By Example 1, Section 4.7, we have

[ 2 .
Jijo(x) = —sinz.

aj=gn forj=1,2,....

So

(b) We recall from Exercise 11 that

5 /s
J32(x) =) — (sn;x —cosx) .

T
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So the coefficients are
2 B 2

A = = - :
! aj J3sp(ay)  gm J3/a(jim)

and the Bessel series expansion becomes, or 0 < z < 1,

Vi = Z \/7571/2(% )-

(c) Writing J; /2(x) in terms of sin 2 and simplifying, this expansion becomes

Voo = i_o: \/7571/2(%)

> . 2 | 2
- S 2 e,
N ] 7TO[j

<
—

o0

2 —1)77 sin(jrx)

(it j VT

Upon multiplying both sides by /z, we obtain
2 = (—1)7t _
== ———si for 0 1
x WZ 7 sin(jmz) for 0 < a < 1,
Jj=1
which is the familiar Fourier sine series (half-range expansion) of the function

flz) ==
25. By Theorem 2 with p = 1, we have

2 1
4 = 72(&1,]-)2/% o) ds
2 oL
= W/%T] Ji(s)ds (let a1 jz =)
2 o1
= 2 [ his)| by () withp=1)
a1, d2(a1,5)? oL

—2[Jo(a1 ;) — Jo(%52)]
1,2 (0, 5)?
—2[Jo(a1 ;) — Jo(%52)]
o jJo(an,5)?

3

where in the last equality we used (6) with p = L at x = aq ; (so Jo(au ;) +J2(aq ;) =
0 or Jo(alyj) = —JQ(O[LJ')). Thus, for0 <z < 1,

)

:_2i 2 JO Oélj Jo(

J ).
aqjJo(an ;)2 i(a15@)
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29. By Theorem 2 with p = 1, we have

1

2
A, = 7/ Ji(os ix/2)x dx
J 2J2(a17j)2 0 1( 2,5 /)

2

(eI
= —— J ds (let oy jz/2 = s).
o2 T(ar )2 /0 1(s)sds (let a1 ;2/2 =)

Since we cannot evaluate the definite integral in a simpler form, just leave it as it
is and write the Bessel series expansion as

2

0o ai,;
1= N B S / Ji(s)s ds] Ji(ag jx/2) for 0 <z < 2.
; af jJa(0n,5)? [ 0 !

33. p=1,y= c1J1(Az) + Y1 (Az). For y to be bounded near 0, we must

take co = 0. For y(m) = 0, we must take A = \; = i’j =4,7=1,2 ... (see
Exercises 21); and so

L 2 .
y =1y =c1;Ji( - T)=c1 gsm(ﬂ)

(see Example 1, Section 4.7).

One more formula. To complement the integral formulas from this section,
consider the following interesting formula. Let a, b, ¢, and p be positive real numbers
with a # b. Then

/0 ‘ Jp(azx) J,(br)x dz = ﬁ [a],(be) T, 1 (ac) — bJy(ac)J,_1 (be)].

To prove this formula, we note that y; = Jp(ax) satisfies

2y + xy) + (®2® — p*)y1 =0

and yo = Jp(bx) satisfies
2,11

22y + ayh 4+ (b22% — pHye = 0.

Write these equations in the form

2,2 2
/ a*z® —p
(zy}) +y’1+7y1 =0
and - )
/ b x® —p
(3:3/2) + y’2 + Tyl =0.

Multiply the first by y2 and the second by y — 1, subtract, simplify, and get
va(wyh) = yi (29)" = yage(v* — a®)ar
Note that
ya (wt) =y () = % [y2(zy1) — ya (23]
So
AR CA
and, after integrating,

C

0 = x[yQy/l - yly’Q]

C

(b* —a?) /0 ) yi(x)y2(z)z dz = [y2(zy) — y1(z1h)]

0.



78  Chapter 4 Partial Differential Equations in Polar and Cylindrical Coordinates

On the left, we have the desired integral times (b?> — a?) and, on the right, we have
c[Jp(be)ad) (ac) — bJy(ac)J, (be)| — cady(0)J,(0) — bJ,(0).J,(0)].
Since Jp(0) = 0 if p > 0 and Jj(x) = —Ji(z), it follows that J,(0)J,(0) —
Jp(0)J (O) 0 for all p > 0. Hence the integral is equal to

1= /0 Jp(ax) Jp(bz)x dx = ] [aJp(bc)J;(ac) - bJp(ac)J;(bc)] .

Now using the formula

we obtain

C

1= g gy [0 00) (T2 (a€) = Ty (a6)) = bIy(ac) (pr (b) = Ty (b))

Simplify with the help of the formula

T (@) = L) — Jya (2)

and you get
I = s (b0 (Ui (00) = (0, (a0) = Tya(ac)
b, (ac) (T2 (b) — (LT (be) — Ty (b))
- ﬁ [aJy(be)Jp—1(ac) — bJy(ac)J,_1 (be)],
as claimed.

Note that this formula implies the orthogonality of Bessel functions. In fact its
proof mirrors the proof of orthogonality from Section 4.8.
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Solutions to Exercises 4.9

1. We have
I . I .
Jo(x) = —/ cos (—xsinf) df = —/ cos (zsin6) do.
T Jo T Jo
So Lo
=— do =1
Jo(0) 77/0
For n # 0,
1 iy
In(z) = —/ cos (nf — z sin6) db;
T Jo
SO

1 ™
Jn(0) = —/ cosnf df = 0.
0

™

5. All the terms in the series
L= Jo(@) +2> Ju(x)?
n=1

are nonnegative. Since they all add-up to 1, each must be less than or equal to 1.
Hence
Jo(z)? < 1= |Jo(z)| <1

and, for n > 2,

2J,(2)* <1 = |J,(2)] < %
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Solutions to Exercises 5.1
1. Start with Laplace’s equation in spherical coordinates

9%u  20u 1 (82u

ou 5, 0%u
(1) w—i—;g—kﬁ + cot 0— + csc 9—):(),

002 o0 2

where 0 < r < a,0< ¢ <27, and 0 < 6 < 7. To separate variable, take a product
solution of the form

u(r, 8, ¢) = R(r)0(0)®(¢) = ROD,

and plug it into (1). We get
2 1
R'6® + ZR'OP + — (RO"D + cot YRO'® + csc? § ROD" ) = 0,
T T

Divide by RO® and multiply by r2:
/! !/ 11 !/ @//
r2%+2r% + % +cot9% +csc219E =0.

Now proceed to separate the variables:

1! !/ 1 / @//
T2%+2T% =— (%—l—cot@%—l—csc%??) .

Since the left side is a function of r and the right side is a function of ¢ and 6, each
side must be constant and the constants must be equal. So

R// R/

2
— 4 Qr— —
"®RTTRTH
and
11 @/ 1!
o +cot96 +c3029$ = —U.
The equation in R is equivalent to (3). Write the second equation in the form
11 @/ @//
6 +C0t96 +/L: —CSCQQK;
@// @/ @//
.2
0 — 60— =——.
sin (@—l—co @—l—u) >

This separates the variables # and ¢, so each side must be constant and the constant
must be equal. Hence

11 /
sin? 0 (6——1-00“99 +,u> =v

© ©
and
@//
V=g = &' +vd=0.

We expect 27-periodic solutions in @, because ¢ is and azimuthal angle. The only
way for the last equation to have 27-periodic solutions that are essentially different
is to set v = m?, where m = 0, 1, 2, .... This gives the two equations

" +m*® =0
(equation (5)) and

11 /
sin? (% + cot 9% + ,u> =m?,

which is equivalent to (6).



Section 5.2 Dirichlet Problems with Symmetry 81

Solutions to Exercises 5.2
1. This problem is similar to Example 2. Note that f is its own Legendre series:
f(0) =20 (Pi(cos ) + Py(cosb)).

So really there is no need to compute the Legendre coefficients using integrals. We
simply have Ay = 20 and A; = 20, and the solution is

u(r, 0) =20+ 207 cos 6.

3. We have -
u(r, 0) =Y Apr™Py(cosb),
n=0
with
2 1 /7
A, — ”; / F(6) P (cos6) sin6 do
0

m+1 (2 o+l [T
= ”;‘ / 100 P,,(cos ) sin 6 db + ”2"‘ / 20 P, (cos 0) sin @ df.
0 x

Let © = cosf, dv = —sinfdf. Then

A, = 50(2n+1) /1 P, (z)dx+10(2n+1) /0 P, (z)dz.
0

—1
The case n = 0 is immediate by using Py(z) = 1,
1 0
A0:50/ dx—l—lO/ dx = 60.
0 ~1

For n > 0, the integrals are not straightforward and you need to refer to Exercise 10,
Section 5.6, where they are evaluated. Quoting from this exercise, we have

1
/ Py, (x)dx =0, n=1,2 ...,
0

and L
_ (=) (@2n)! _
/0 P2"+1(x)dx_22"+1(n!)2(n+1)’ n=0,1,2,....

Since Py, (z) is an even function, then, for n > 0,

/0 Pon(z)dz = /01 Pon(z)dz = 0.

—1

Hence for n > 0,
Ay, = 0.

Now Ps,+1(2) is an odd function, so

0 1 —1)"*(2n)!
/1 Poyi1(x) da = —/0 Ponyi(z) de = _22n4(rl(73!)g(n)+ 1)’

Hence forn =20, 1, 2, ..,

1 0
A2n+1 = 50(47’L + 3) / P2n+1($) dx + 10 (47’1, + 3) / P2n+1($) dx
0

(—1)"(2n)! (1))
22n+l(p)2(n+ 1) 22n+l(ph2(n+ 1)
(—1)" @n)!
21 ()2 (n + 1)
(—1)" 2n)!
P (2 (n+ 1)

= 50(4n +3)

—10(4n +3)

= 40(4n+3)

= 20(4n+3)
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So

u(r, 6) = 60 + 20 Z dn + 3)%@“&“1@% 0).

5. Solution We have

ZA r" P, (cosf),

with
2 1
A, = ”+ /f . (cos 0) sind df
= 2”;1/ cos 6 P, (cos ) sinf do
0

on+1 [t
_oont / z Py(z) dx,
2 0

where, as in Exercise 3, we made the change of variables x = cosf. At this point,
we have to appeal to Exercise 11, Section 5.6, for the evaluation of this integral.
(The cases n = 0 and 1 can be done by referring to the explicit formulas for the
P, but we may as well at this point use the full result of Exercise 11, Section 5.6.)

We have
1 1 1
2Py(x)de = =; | zPi(z)dx = =;
0 2 0 3
1
—1)"t1(2n — 2)!
/xPQn(l“)dl“: 2( ) (;1 ) con=1,2...;
0 22n((n — D)NH)2n(n+1)
and
1
/xP2n+1(x)dx:O; n=1,2,....
0
Thus,
11 1 31 1
Ay==-=-=-; Ai==-===; Ao11=0, =1,2,3,..;
0729 Ty TtT 3T el "
and for n =1, 2,

22n)+1  (=1)""(2n —2)!
2 227((n—1))2n(n + 1)

(—=1)"*1(2n — 2)!
92n+1((n — 1))2n(n+ 1)

So
1) (4n 4+ 1)(2n — 2)!

22n+1((n — 1)1)2n(n + 1) 12" Py (cos f).

1 1
u(r, 0) = 1 + 51"0039—1—2
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Solutions to Exercises 5.3
1. (c) Starting with (4) with n = 2, we have

5 (2—m)! ,
Yom(0,0) =] ——F PJ" 6)em?
2,m (0, ¢) mErmyt? (cos 0)e"™?,
where m = —2, —1, 0, 1, 2. To compute the spherical harmonics explicitely, we will

need the explicit formula for the associated Legendre functions from Example 1,
Section 5.7. We have

Pya)= L1 —2%); Pyl(z)=lavI—a% PY(z) = Py(x) = 3271,
Pl(z) = —3zv1 — 22; P3(x) = 3(1 — 2?).
So

YQ,fl(oa (b) -

531 ’ 57 it
= EF§COS€\/1—COS Oe

151 ; / j
g 3 cos @ sin Pe 1P = g 6% cos 0 sin fe ™%,

Note that since 0 < § < 7, we have sinf > 0, and so the equality v/1 — cos? § = sin 6
that we used above does hold. Continuing the list of spherical harmonics, we have

Ya0(0,0) = % g i_ 8;: Py(cos f)e ™

i300329—1 1

5 2
5 Z\/;(3cos 0—1).

The other spherical harmonics are computed similarly; or you can use the identity
in Exercise 4. We have

- —— 3 /5 —
Yoo = (1Y 2=Ys o= Ver sin? fe—2i¢

= §\/131112962“15.
4V 61

In the preceding computation, we used two basic properties of the operation of
complex conjugation:

=~
3

az = az if a is a real number;

and
—1ia

et =¢ if a is a real number.
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Finally,

N [ 3 5 —
Yo = (-D)'Ye 1 =-Yy ;= —5\/ e cos 0 sin e—i¢

3 /5 ;
_ hd v : i
= — B 6 cosfsine'?.

5. (a) If m =0, the integral becomes

2m

27rd712
/0¢¢—5¢0

Now suppose that m # 0. Using integration by parts, with u = ¢, du = d¢, dv =

= 272

e=imé gy — ﬁe*im‘ﬁ, we obtain:
_ =d
2r & r—:_\v 1 sl Lo
/ ¢ e imeo d¢ _ ¢ _ e imeo + — e 1m¢d¢
0 —11m 0 mJo
We have
ime B . _
e im ’¢:2ﬂ — [Cos(m¢) — zsln(m¢)’¢:2ﬂ = 1;
and

27 ] 27
/ e My = / (cosme — isinmae) do
0 0

0 ifm#£0,
27 iftm=0
So if m # 0,
2m
- 2 2
pe M dy= - = =T;
0 —m  m

Putting both results together, we obtain

2m 2m

—imé B =i if m # 0,
| geTTde = {27r2 if m = 0.
(b) Using n =0 and m = 0 in (9), we get

2

=27
—
Ago = iqﬂig/%¢w/mpwom'ow
00 = orViazor ), , | oaoesgsim

1 1
= T——= —sin6df
Zﬁ/o 2
2

1 us
= Wﬁ/@ sinfdf = /7

Using n =1 and m = 0 in (9), we get

1 3 1 2w us .
Aig = —\/—= ¢ dp | Pi(cos@)sinf db
’ 2 471 0 0
=0

1
_ 1 /3.5
- 7T(27r )/71 Py (x)dx
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where we used fil Py(z)dx = 0, because Pi(x) = z is odd. Using n = 1 and
m = —11in (9), and appealing to the formulas for the associated Legendre functions
from Section 5.7, we get

27
71

1 2' 271’
Ay = — %O' 1) “bdqﬁ/ (cos ) sin 0 dO

1 T 1
= —i@/%§/0 sin? 0 do (Pfl(cosﬁ):§sin9)
- 1 /37
- AV

Using n = 1 and m = 1 in (9), and appealing to the formulas for the associated
Legendre functions from Section 5.7, we get

A, = & 30 2ﬂ¢ ’wdqﬁ/ P} (cos 0) sin 0 df
1,1 = o \V 17 21 1cos sin

.
2

3 71’

= i,/—/ —sin?6df (P} (cosf) = —sinb)
87T 0

B i |37

= 4,/ 5

(¢c) The formula for A, o contains the integral [, P2(cos0)sin6df. But P) = P,,
the nth Legendre polynomial; so

/ PY(cosf)sinfdf = / P, (cos @) sin 6 db
0 0

where the last equality follows from the orthogonality of Legendre polynomials (take
m = 0 in Theorem 1, Section 5.6, and note that Py(z) =1, so fil(l)Pn(x) dx =0,
as desired.)

9. We apply (11). Since f is its own spherical harmonics series, we have

u(r, 0, ¢) = Yo,0(0, (b):ﬁ' L
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Solutions to Exercises 5.4

5. We apply Theorem 3 and note that since f depends only on 7 and not on 6
or ¢, the series expansion should also not depend on 6 or ¢. So all the coefficients
in the series are 0 except for the coeflicients A; ¢ o, which we will write as A; for
simplicity. Using (16) withm =n=0,a =1, f(r, 0, ¢) =1, and Yy 0(0, ¢) = ﬁ,
we get

2 1 27 T 1
A = 7// /j()\y-r)—TQSinﬁde(bdr
! ]%(O‘%,j) o Jo Jo W
=27 —2

2 1
1 ™ ™ . )
= W‘/O d¢‘/0 Sln@d@A ]0()\07j T)TQ dr
35J
4 1
= i/ jo(Xo, jr)r?dr,
0

j%@‘%,j)

where Ao j = a1 ;, the jth zero of the Bessel function of order 1. Now

[ 2 .
Jijo(x) = —sinz

(see Example 1, Section 4.7), so the zeros of J; /o are precisely the zeros of sinz,
which are jm. Hence

Also, recall that

(Exercises 38, Section 4.8), so

1 1 1 . .
/ jo(Xo,jr)r¥dr = / Jo(jmr)rtdr = / 75111(]#1") r2dr
0 0 0

Jmr
_(cnpitt
=0T
—_—
1t
= — [ sin(jrr)rdr
JT Jo
(_1)j+1
(Gm)*
where the last integral follows by integration by parts. So,

_ Avm ()7

I j3Gm) (m)E

This can be simplified by using a formula for j;. Recall from Exercise 38, Sec-

tion 4.7,
. sinx — x cosx
]1(@:7.
Hence
2(jm) SmUﬂ—jwcos(jw)r [—cosow)r [<—1>j+1]2 |
11UT) = - = - = : = _ ,
1 ()7 I in G
and

AJ - 4(_1)J+lﬁa



Section 5.4 The Helmholtz, Poisson, Heat, and Wave Equations 87

and so the series expansion becomes: for 0 < r < 1,

sin ]m"

1= ) 4-1yta 0.0(0, ¢)

]7TT

> 1
_ A(—1)iH sin j7r
2; (VR

_ i2(_1>j+lsinj7rr'

Jmr

It is interesting to note that this series is in fact a half range sine series expansion.
Indeed, multiplying both sides by r, we get

:—Z J“Slnjm (0<r<1),

which is a familiar sines series expansion (compare with Example 1, Section 2.4).H
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Solutions to Exercises 5.5
1. Putting n =0 in (9), we obtain

1 o (0 — 2m)! Com
(@ =52 (- 10— m)'(o_zm)!‘CO '

m=0
The sum contains only one term corresponding to m = 0. Thus

0!
Py(x) = (—1)0m$0 =1

because 0! = 1. For n = 1, formula (9) becomes

1 (2 —2m)! 1—9
P - _1 m m
1(#) = 51 mz::O( V.
where M = ; = 0. Thus the sum contains only one term corresponding to m = 0

and so ) N
_ 0 : 1 _
Pi(z) = 7 (DG =

For n = 2, we have M = 2 =1 and (9) becomes

_ 1 - m (4 — 2m)| 2—2m
= 5 Z (1)

—m)(2—2m)!”
m=0 m=1
! o A 51 La—2)
= 5 g e OV g *
1., 1 3, 1
= = 12 = 242 - =
00+ (2=52" -5
For n = 3, we have M = 351 =1 and (9) becomes
1« (6 — 2m)!
P — - -1 m : 3—2m
3(@) 237;)( BB —am) "
1, o 6 4 1. 4
= D geE® el
_ 5.3 3.
T2 2"
For n =4, we have M = 5 = 2 and (9) becomes
1< (8 — 2m)!
P _ 1 m : 4—2m
1(7) 247;)( T o e

18, 16 , 1 4
S TS TR TE TR T oI T

1
§(35~’”4 —302% + 3)

5. Using the explicit formulas for the Legendre polynomials, we find

/ Piy(x)dx = / (a3 — Zx)dx
1 —1 2 2
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Another faster way to see the answer is to simply note that Ps is an odd function, so
its integral over any symmetric interval is 0. There is yet another more important
reason for this integral to equal 0. In fact,

1
/ P,(z)dx =0 foralln #0.
-1
This is a consequence of orthogonality that you will study in Section 5.6.

9. This is Legendre’s equation with n(n + 1) = 30 so n = 5. Its general solution
is of the form

c1Ps(x) + c2Qs(x)
1
01§(63$5 — 7023 4 15x) + ¢2 (1 — 1522 + 30zt + - - )

Y

= ¢1(632° — 702" + 152) + 2 (1 — 152% + 302" 4 - - )

In finding Ps(x), we used the given formulas in the text. In finding the first few
terms of Q5(x), we used (3) with n = 5. (If you are comparing with the answers in
your textbook, just remember that ¢; and c¢o are arbitrary constants.)

13. This is Legendre’s equation with n(n + 1) = 6 or n = 2. Its general solution
is y = c1Pa(z) + c2Q2(z). The solution will be bounded on [—1, 1] if and only
if ¢ = 0; that’s because P is bounded in [—1, 1] but @2 is not. Now, using
Py(z) = (32 — 1), we find

¢
y(0) = c1P2(0) + 2Q2(0) = —5 + ¢2Qx(0)

If ¢ = 0, then ¢; = 0 and we obtain the zero solution, which is not possible (since

we are given y'(0) = 1, the solution is not identically 0). Hence c2 # 0 and the

solutions is not bounded.

17. (To do this problem we can use the recurrence relation for the coefficients,
as we have done below in the solution of Exercise 19. Instead, we offer a different
solution based on an interesting observation.) This is Legendre’s equation with

1

n(n+1) =2 orn = 1. Its general solution is still given by (3) and (4), with n = £:

Yy = c1y1 + c2y2,

where
y(z) = 1_%(%"'1) 2+(% 2)3(z+D(E+3) 4,
2! 4!
_ 3 2 21 4
7 1t T
and
I-1)($+2 13y 21yt 42)(tig
y2(x) _ x—(2 )3(|z+ )x3+(2 )(2 )5(|2+ )(24- )x5+
= x+ix3+£x5+
N 24 128

Since y1(0) = 1 and y2(0) = 0, 7 (0) = 0 and y5(0) = 1 (differentiate the series term
by term, then evaluate at x = 0), it follows that the solution is y = y1(z) + y2(z),
where y; and y» are as describe above.

29. (a) Since

’(x—l—i\/l —x200s9)"’ = ’x—i—i\/l—chosH’ ,
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it suffices to prove the inequality

’x—i—i\/l—chosH’ <1,

which in turn will follow from

2
’x—i—i\/l—chosH’ < 1.

For any complex number « + i3, we have |a +i3]? = o + $%. So

2
’x—l—i\/l—chosH’ = 2?2+ (V1 —22cosf)?

which proves the desired inequality.
(b) Using Laplace’s formula, we have, for —1 <z < 1,

[P ()]

IN

IN

1 / (x + 1V 1 —a2cosh)"” d@’
T 1Jo

l/ (x + iV 1 —a2cosh)"”

™ Jo

1 us

— [ di  (by (a)

T Jo

1

do
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Solutions to Exercises 5.6

1. Bonnet’s relation says: Forn =1, 2, ...,

(n+ 1)P,11(x) + nPyr_1(x) = (2n + 1)aP,(x).

We have Py(z) =1 and Pj(x) = . Take n = 1, then

2P2({E)

Py(x)
Take n = 2 in Bonnet’s relation, then

= 3aPi(x),

= 3z-xz-—1,
1

S5xPs(x),

1
3P3(z) = 533(5(33;2 —1)) — 2,
Piy(x) = gx?’ — gx
Take n = 3 in Bonnet’s relation, then
4Py(z) + 3Py(x) = TxPs(x),
5 3 3
4Py(z) = 7x(§x3 - ix) - 5(332 -1),
135 4 9, 3
Py(x) = 1 23:—153: +2 .

5. By Bonnet’s relation with n =

TxPs(x)

4Py(x) 4+ 3P>(x),

4 3

xPs(x)

So

3

= 0 —

*7

where we have used Theorem 1(i) (
9. (a) Write (4) in the form

(2n+ 1) P(t) = Py (t) —

Integrate from x to 1,

(2n + 1)/1Pn(t) dt

1
/
/ PnJrl
T

PnJrl(t)

and (i

1

x

?P4($) + ?PQ(.I)

%P4($) + %Pg(&:)) Py(x) dx

Py(x) Py(x) dx—i——/il[PQ(x)de
2 6
5 35

i) to evaluate the last two integrals.

Py (t).

(t)dt — /1 Pl (t)dt

x

—P,1(t) '

x

(Pnfl(x) - Pn+1(x)) + (PnJrl(l) - Pnfl(l))-

91
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By Example 1, we have P,41(1) — P,—1(1) =0. Soforn=1, 2, ...

/ Po(t)dt = JT[Pn,l(x) — Poyi(2)].

(b) First let us note that because P, is even when is even and odd when is odd, it
follows that P,(—1) = (—=1)"P,(1) = (—=1)". Taking x = —1 in (a), we get

‘/71 Pn(t) dt = ﬁ[Pnfl(_1> - PnJrl(_l)] - O’

because n—1 and n+1 are either both even or both odd, so P,_1(—1) = Pp41(—1).
(¢c) We have

o_/1 Pn(t)dt:/x Pn(t)dt—l-/l Pa(t) dt.

—1 1 x

So

- _2711T[Pn71($) = Ppi1(2)]
= ﬁ[ﬂzﬂ(@ = Pua(@)]

13. We will use D" f to denote the nth derivative of f. Using Exercise 12,

1 C 13 pl
/71(1 — 2?) Pi3(z) dx = % /71 DB[(1 - 23] (2* —1)B¥dz =0

because D*[(1 — 2?)] = 0.

17. Using Exercise 12,

111n(1_x)P2(x)dx = (2_212)! 11D2[1n(1_x)](x2_1)2dx

Lt -1 2 2
_ g/ (r— 1)@+ 1)2da

4 (1—2)
— %/l(x+1)2dx:;—i(x+l)3 11: %1
21. For n > 0, we have
o = —(n —1)!
D1 )] = 5T
. S0
/11n(1—x)Pn(x)dx = (;}73:1 /AD"[ln(l—x)] (22 —1)"dx
G Ve VL R S VR O
N 2mn) /71 (I —ax)» de
Ly de e @1
2np, 71(3:—1— )" de = 2"n(n+1)(x+ ) -1
-2

n(n+1)
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For n = 0, we use integration by parts. The integral is a convergent improper
integral (the integrand has a problem at 1)

/1 In(1 — z) Py(a)dz = /1 In(1 — z) dz

—1 —1

1
= —1l-2)ln(l—2)—2| =-24+2In2.

To evaluate the integral at = 1, we used limg_,1(1 — z)In(1 — z) = 0.
29. Call the function in Exercise 28 g(z). Then

9(x) = 5 (|z[ + 2) = 5 (Je[ + Pr(2)).

N =
| =

Let By denote the Legendre coefficient of g and Ay denote the Legendre coefficient
of f(x) = |z|, for —1 < & < 1. Then, because P;(z) is its own Legendre series, we

have
L[ i1
Tl LA+ 1) ifk=1

Using Exercise 27 to compute Ay, we find
By ==-Ay = B*1+1A* +0=—-,B =0,n=1,2
0—20— 1—2 21—2 = on+1 = U, n=1,24,...,

and

_1)ntl — NI
By Lla, _ D@02 (4n+1>'

272 T 2 (n — )20 \ n+ 1
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Solutions to Exercises 6.1

1. Let fj(x) = cos(jmzx), j =0, 1, 2, 3, and gj(z) = sin(jrz), j = 1, 2, 3. We
have to show that f02 fj(@)gr(x) dx = 0 for all possible choices of j and k. If j = 0,
then

2 2
-1 2

/ fi(@)gr(x)dr = / sin krx doe = — cos(kwz)| = 0.

0 0 km 0

If j #0, and j = k, then using the identity sin «cosa = %sin 2a,
2 2
/ fi(x)gj(x)dx = / cos(jmz) sin(jma) da
0 0
1 2
= —/ sin(2jmx) dz
2 Jo

-1
= ——cos(2jmx)

2
45m ’

=0.
0
If j #0, and j # k, then using the identity

sin cos f =

(sin(a + B) + sin(a — B)),

N~

we obtain

[ fom@ar =
0

2
sin(kmz) cos(jmx) dz

wl»—tC\

/ sin(k + j)mx + sin(k — j)mz) da

2

-1 1 1
= 2_(k - cos(k + j)mx + - cos(k —j)w:c) ’0 =0.

5. Let f(x) =1, g(x) = 2z, and h(z) = —1 + 4. We have to show that

/71 f@)g(x)w(z)dx =0, /71 f@)h(z)w(z)dx =0, /71 g(x)h(x)w(x)dr = 0.

Let’s compute:
/ f(z dx—/ 2z\/1 —2%2dx =0,

because we are integrating an odd function over a symmetric interval. For the
second integral, we have

[ sometoras = [ 1y R

= /(—1+4c0329)sin29d9
0
(x =cos0, dv = —sinfdf,sinf >0 for 0 <0 < m.)

/ sin 9d9+4/ (cos fsin 0)* d
0 0

T cos20 [T 1
/ S 1044 / (3 sin(26))” df
0 0

_ —E—l-/ 1_COS(49)d9:O
0 2
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For the third integral, we have

/71 g(@)h(x)w(x)de = /71 22(—1 4 42%)\/1 — 22dx = 0,

because we are integrating an odd function over a symmetric interval.

9. In order for the functions 1 and a + bx + 22 to be orthogonal, we must have

1
/ 1-(a+br+2*)dr=0

—1

Evaluating the integral, we find

2
= 2a+-=0

b 1
axr + — g2 + Zg3
-1 3

1
2 3 ’

1
a = —-.
3
In order for the functions x and % +bx + 22 to be orthogonal, we must have
|
/ 1-(z+bzx+a¥)zde=0

] 3

Evaluating the integral, we find

12 b3 141 _
R S I
b:

S wlo

13. Using Theorem 1, Section 5.6, we find the norm of P, (x) to be

- (] e - () -

Thus the orthonormal set of functions obtained from the Legendre polynomials is

V2
— Y _P(2), n=0,2 ...
T (@)

17. For Legendre series expansions, the inner product is defined in terms of
integration against the Legendre polynomials. That is,

1
P)= [ s@P @ = 2a,

where A; is the Legendre coefficient of f (see (7), Section 5.6). According to the
generalized Parseval’s identity, we have

o0

[ e Z \PHQ

)
]+1 27 +1

2

I
Yo

(The norm || P;|| is computed in Exercise 13.)
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Solutions to Exercises 6.2

1. Sturm-Liouville form: (xy’)/ + Ay =0, p(x) ==z, g(x) =0, r(x) = 1. Singular
problem because p(z) =0 at x = 0.

5. Divide the equation through by x2? and get y?// - g—; + A% = 0. Sturm-Liouville
form: (%y’)/ + AL =0, p(z) = L, q(x) =0, r(z) = 1. Singular problem because
p(z) and r(z) are not continuous at z = 0.

9. Sturm-Liouville form: ((1—x?) y’)/—i-)\y =0,p(x)=1-22% q(x) =0, r(z) = 1.
Singular problem because p(£1) = 0.

13. Before we proceed with the solution, we can use our knowledge of Fourier
series to guess a family of orthogonal functions that satisfy the Sturm-Liouville
problem: yi(z) = sin L;lx, k=0,1,2,.... It is straightforward to check the
validity of our guess. Let us instead proceed to derive these solutions. We organize
our solution after Example 2. The differential equation fits the form of (1) with
p(z) =1, ¢(x) =0, and r(x) = 1. In the boundary conditions, a = 0 and b = T,
with ¢; =ds = 1 and ¢2 = d; = 0, so this is a regular Sturm-Liouville problem.
We consider three cases.

CASE 1: A < 0. Let us write A\ = —a?, where a > 0. Then the equation becomes
y" — a?y = 0, and its general solution is y = c¢; sinh ax + ¢z coshax.  We need
y(0) = 0, so substituting into the general solution gives co = 0. Now using the
condition 3/ (7) = 0, we get 0 = ¢jcosh amr, and since cosh x # 0 for all x, we infer
that ¢; = 0. Thus there are no nonzero solutions in this case.

CASE 2: )\ = 0. Here the general solution of the differential equation is y =
c1x + c2, and as in Case 1 the boundary conditions force ¢; and c2 to be 0. Thus

again there is no nonzero solution.

CASE 3: ) > 0. In this case we can write A = a? with « > 0, and so the
equation becomes y” 4+ a?y = 0. The general solution is y = ¢; cos ax + co sin a.
From y(0) = 0 we get 0 = ¢1 cos0 + c2sin0 or 0 = ¢;. Thus y = casinax. Now
we substitute the other boundary condition to get 0 = caarcosam. Since we are
seeking nonzero solutions, we take c¢o # 0. Thus we must have cosar = 0, and
LQH. Since A = a2, the problem has eigenvalues

NEELER 2
k — 2 )
and corresponding eigenfunctions

2k+1
2

hence a =

Y = sin z, k=0,1,2,....
17. Case IIf A = 0, the general solution of the differential equation is X = ax +0.
As in Exercise 13, check that the only way to satisfy the boundary conditions is to
take a = b= 0. Thus A =0 is not an eigenvalue since no nontrivial solutions exist.
Case II If A = —a? < 0, then the general solution of the differential equation
is X = c¢1 cosh ax + co sinh axz. We have X’ = ciasinh o + coar cosh avx. In order to
have nonzero solutions, we suppose throughout the solution that ¢; or ¢z is nonzero.
The first boundary condition implies

c1+ace =0 ¢ =—acs.
Hence both ¢; and ¢y are nonzero. The second boundary condition implies that
c1(cosh a + asinh o) + eo(sinh o + avcosh o) = 0.
Using ¢; = —aca, we obtain
—acg(cosh o + asinh ) + ca(sinha + acosha) = 0 (divide byes # 0)
sinha(l—a?) = 0
0

sinha =0 or 1 —a?
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Since a # 0, it follows that sinh v # 0 and this implies that 1 —a? = 0 or a = +1.
We take o = 1, because the value —1 does not yield any new eigenfunctions. For
«a = 1, the corresponding solution is

X =cycoshz + cosinhx = —cy cosh @ + ¢ sinh x,
because ¢; = —ace = —cg. So in this case we have one negative eigenvalue \ =
—a? = —1 with corresponding eigenfunction X = cosh z — sinh x.

Case III If A = o? > 0, then the general solution of the differential equation is
X =cicosax + cosinax.

We have X’ = —cjasin ax + coa cos ax. In order to have nonzero solutions, one of
the coefficients ¢ or ¢o must be # 0. Using the boundary conditions, we obtain

c1 + aco

ci(cosa — asina) + ca(sina + acosa) =

The first equation implies that ¢; = —ace and so both ¢; and cs are neq0. From
the second equation, we obtain

—acy(cosa — asina) + ca(sina + acosa) =

—a(cosa — asina) + (sina + a cos a)
sina(a? +1)

Since a? + 1 # 0, then sina = 0, and so a = n7w, where n = 1, 2, .... Thus the
eigenvalues are
A = (nm)?
with corresponding eigenfunctions
Yn = —NT COSNTT + sin nmwx, n=12,....

21. If A = o2, then the solutions are of the form c¢; cosh az + ¢ sinh ax. Using
the boundary conditions, we find

y0)=0 = =0
y(1)=0 = cosinha=0.

But a # 0, hence sinh o # 0, and so ¢ = 0. There are no nonzero solutions if A > 0
and so the problem as no positive eigenvalues. This does not contradict Theorem 1
because if we consider the equation y” — Ay = 0 as being in the form (1), then
r(z) = —1 < 0 and so the problem is a singular Sturm-Liouville problem to which
Theorem 1 does not apply.

25. The eigenfunctions in Example 2 are y;(z) = sinjz, j =1, 2, .... Since f is
one of these eigenfunctions, it is equal to its own eigenfunction expansion.

29. You can verify the orthogonality directly by checking that
27
/ sin % sin % dx =0 if m #n (m, n integers).
0

You can also quote Theorem 2(a) because the problem is a regular Sturm-Liouville
problem.

33. (a) From Exercise 36(b), Section 4.8, with y = Jy(Ar) and p = 0, we have

2\? / ()P dr = [y (@) + Xa?[y(a))”
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But y satisfies the boundary condition y'(a) = —ky(a), so

2)‘2/()a[y(T)]2r dr = @&’ [y(a)]* + Na?[y(a))%;
¢ 2 _ a® [ o[Jo(Mwa))? 2
Jwerrar = 5 |22 v
- % [[Jo(Awa)]® + [J1(Aea)]?]

because, by (7), [Jo(Ara)]? = [%Jl()\ka)f.
(b) Reproduce the sketch of proof of Theorem 1. The given formula for the coeffi-
cients is precisely formula (5) in this case.
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Solutions to Exercises 6.3

1. (a) The initial shape of the chain is given by the function
flz) = —-.01(x—.5), 0<uz<.5

and the initial velocity of the chain is zero. So the solution is given by (10), with
L = .5and B; =0 for all j. Thus

e, ) = 2 Ao (o, V2 cos (/29 % 1).

To compute A;, we use (11), and get

A, = 2 /0'5(—.01)(33—.5)570(@]-\/%) dz

J7 (0)
.5
- J%Z;/o (2= 5)Jo (0522 da

Make the change of variables s = a;Vv2z, or s* = 2ajz, so 2sds = 2ajdx or
dr = 25 ds. Thus

02 (5, .
4; = 2—)/0 (—?S 5)Jo(s)

where we have used the integral formula (15), Section 4.3, with a = a = «;. We
can give our answer in terms of J; by using formula (6), Section 4.8, with p = 1,
and x = o . Since a; is a zero of Jy, we obtain

%Jlmj) = Jo(a) + Ja(a) = Ja(a).

So

Thus the solution is

u(zx, t) =

where g ~ 9.8 m/sec?.
Going back to the questions, to answer (a), we have the normal modes

uj(z, t) = LJO (aj\/%) cos (@%t) .

a?Jl(aj) 2

The frequency of the jth normal mode is
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A six-term approximation of the solution is

0 04

)Jo (aj\/ﬁ) cos (@%t) .

At this point, we use Mathematica (or your favorite computer system) to approxi-
mate the numerical values of the coefficients. Here is a table of relevant numerical

data.
J 1 2 3 4 5 6
aj | 2.40483 | 5.52008 | 8.65373 | 11.7915 | 14.9309 | 18.0711
v; | 847231 | 1.94475 | 3.04875 | 4.15421 | 5.26023 | 6.36652
Aj | .005540 | —.000699 | .000227 | —.000105 | .000058 | —.000036
Table 1 Numerical data for Exercise 1.
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Exercises 6.4

1. This is a special case of Example 1 with L = 2 and A = o*. The values of o
are the positive roots of the equation

1
cosh 2a”

cos2a =

There are infinitely many roots, «,, (n =1, 2, ...), that can be approximated with
the help of a computer (see Figure 1). To each «,, corresponds one eigenfunction

cosh 2a, — cos 2ar,

X, (x) = cosh az — cos ax — (sinh v, — sin )

sinh 2¢v,, — sin 2ay,

5. There are infinitely many eigenvalues A = a*, where « is a positive root of the
equation

1
cosha’

CcCos ¥ =

As in Example 1, the roots of this equation, a,, (n = 1,2, ...), can be approxi-
mated with the help of a computer (see Figure 1). To each «,, corresponds one
eigenfunction

cosh a,, — cos ay,

X, (x) = cosh ax — cos ax — (sinh cv, @ — sin )

sinh o, — sin «v,

The eigenfunction expansion of f(z) =z(1 —z), 0 <z < 1, s

f(x) = Z Aan(x),

where

fol z(1 —2)X,(x)dx '
) X2(z) d

After computing several of these coefficients, it was observed that:

An ==

1
/ X2(z)dr =1 foralln=1,2,...,
0

Ay, =0 foralln=1,2,....
The first three nonzero coefficients are
Ay =.1788, A3 =.0331, As;=.0134.

So
F(z) ~ 1788 X1 (z) + .0331 X5(z) + .0134 X5(),

where X, described explicitely in Example 1. We have

Xi(z) = cosh(4.7300x) — cos(4.7300 x) + .9825 (sin(4.7300 ) — sinh(4.7300 z)),
Xa(z) = cosh(1.0008 ) — cos(1.0008 z) + 1.0008 (sin(1.0008 x) — sinh(1.0008 x)),
Xs(z) = cosh(10.9956 ) — cos(10.9956 =) + sin(10.9956 x) — sinh(10.9956 z),
Xi(z) = cosh(14.13722) — cos(14.13722) + sin(14.1372 z') — sinh(14.1372 ),

X5 () cosh(17.2788 x) — cos(17.2788 x) 4 sin(17.2788 ) — sinh(17.2788 ).

9. Assume that p and X are an eigenvalue and a corresponding eigenfunction of
the Sturm-Liouville problem

X"+ puX =0, X(0)=0, X(L)=0.
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Differentiate twice to see that X also satisfies the fourth order Sturm-Liouville
problem

XMW —AX =0,
X(0) =0, X”(0)=0, X(L) =0, X"(L)=0.

If o and X are an eigenvalue and a corresponding eigenfunction of
X"+puX =0, X(0)=0, X(L)=0,
then differentiating twice the equation, we find
XW 4 X" =0, X(0)=0, X(L)=0.
But X” = —pX, so X — 12X = 0 and hence X satisfies the equation X —\X =

0 with A = p2. Also, from X(0) = 0, X(L) = 0 and the fact that X" = —uX, it
follows that X”(0) =0 and X" (L) = 0.
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Exercises 6.6
1. Upryy = 0, Upgae = 4!, Uyyyy = —4!, V4 = 0.
5. Express v in Cartesian coordinates as follows:

v = 7r%cos(20)(1 —r?)
= 7?[cos? 0 — sin? 0](1 — r?)

= @ -1 - @*+97).

Let u = 22 — y?. Then u is harmonic and so v is biharmonic by Example 1, with
A=1,D=1,B=C=0.

7. Write v = r? - 7" cosnf and let u = r" cosnf. Then u is harmonic (use the
Laplacian in polar coordinates to check this last assertion) and so v is biharmonic,
by Example 1 with A=1and B=C =D =0.

9. Write v = ar?Inr + br? + clnr +d = ¢ + 1, where ¢ = [ar? + c]Inr and
1 = br?+d. From Example 1, it follows that 1 is biharmonic. Also, Inr is harmonic
(check the Laplacian in polar coordinates) and so, by Example 1, ¢ is biharmonic.
Consequently, v is biharmonic, being the sum of two biharmonic functions.

13. We follow the method of Theorem 1, as illustrated by Example 2. First, solve
the Dirichlet problem V2w = 0, w(1, 0) = cos26, for 0 < r < 1,0 < § < 27.
The solution in this case is w(r, ) = r?cos20. (This is a simple application of
the method of Section 4.4, since the boundary function is already given by its
Fourier series.) We now consider a second Dirichlet problem on the unit disk with
boundary values v(1, 8) = %(wr(1,60) — g(f)). Since g(f) = 0 and w,(r, 0) =
2r cos 20, it follows that v(1, 6) = cos 20. The solution of th Dirichlet problem in v
is v(r, @) = 72 cos 20. Thus the solution of biharmonic problem is

u(r, 0) = (1 — r?)r? cos 20 + 12 cos 20 = 2r? cos 20 — r* cos 26.

This can be verified directly by plugging into the biharmonic equation and the
boundary conditions.

17. u(1, 0) = 0 implies that w = 0 and so v(1, §) = =22 S0
v(r, 0) = ! [ao + i " (cos nf + by sinnb)]
3 2 — 3
where a,, and b,, are the Fourier coeflicients of g. Finally,

u(r,0) = (1 —r*)v(r,0) = —%(1 —r?) [ao + Z r"(cos nf + by, sin nﬁ)] .
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Exercises 6.7
12. Correction to the suggested proof: yo = Iy and not J;.

17. Let uq(r, t) denote the solution of the problem in Example 3 and let ua(r, ¢
denote the solution in Example 3. Then, by linearity or superposition, u(r, t) =
uy(r, t) + uz(r, t) is the desired solution.
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Solutions to Exercises 7.1
1. We have

|1 if—a<zx<a, (a>0)
fl@) = { 0 otherwise,

This problem is very similar to Example 1. From (3), if w # 0, then

1 [ 1 [® inwt® 2 si
= —/ f(t) coswt dt = —/ cos wt dt = [smw ] = smaw'
T ) T W

—a Tw Tw

:l/ f(t)dt:l/ dt =22
T ) o T ), m

Since f(x) is even, B(w) = 0. For |z| # a the function is continuous and Theorem

1 gives
flz) = 2_a/°° sin aw cos wx i
T Jo w

If w =0, then

For x = +4a, points of discontinuity of f, Theorem 1 yields the value 1/2 for the
last integral. Thus we have the Fourier integral representation of f

. 1 if 2] <a
2a [ sin aw cos wzx || ’

dw =< 1/2 if |z =a,
T Jo “ 0 if || > a.
|
5. since f(x) = 1%l is even, B(w) = 0 for all w, and
2 [~ _,
Alw) = — e " coswtdt
T Jo
2 et . >~
= —+—— [~ coswt + wsinwt]
Tl4+w 0
2
om 1l w?’

where we have used the result of Exercise 17, Sec. 2.6, to evaluate the integral.
Applying the Fourier integral representation, we obtain:

—|z| 2/00 1
(& = —
mJo 1+w?

T if —l<z<1l,
2—x ifl<ax <2,
—2—z if 2<x<-—1,
0 otherwise,

coswz dw.

9. The function

is odd, as can be seen from its graph. Hence A(w) = 0 and

2 o0
B(w) = ;/ f(t)sinwt dt
0
2 (1 2 [?
= —/ tsmwtdt—i——/ (2 —t)sinwtdt
™ Jo ™ J1
2 l—t ! /1 cos wt ]
= — | —coswt| + dt
T | w o w
2 /coswt ]
+— | - coswt
s
2



106 Chapter 7 The Fourier Transform and its Applications

Since f is continuous, we obtain the Fourier integral representation of

2 [ 1
flz) = —/ —5 [2sinw — sin 2w] sin wz, dw.
TJo w

13. (a) Take z =1 in the Fourier integral representation of Example 1:

2 [ sinw cosw 1 > sin w cos w T
z T P dw == = — dw = —.
T Jo w 2 0 w 4
(b) Integrate by parts: u = sin® w, du = 2sinw cosw dw, dv = ﬁdw, v = —%:
=0
oo
* sin?w sin? w > sin w cos w T
5 dw = +2 ——dw =5,
0 w w 0 0 w 2
by (a)
17. )
* cos zw + wsin xw 0 }fx<0,
1 5 dw=< 7/2 ifz=0,
0 Tw e~ if x> 0.

Solution. Define
0 if z <0,

flx)=< =n/2 ifz=0,
me ® ifx>0.

Let us find the Fourier integral representation of f:

1 o0
A(w) = — / me ¥ coswx dr =
0

T 14 w?
(see Exercise 5);
1 />~ .. w
B(w) = — me” “sinwr dr = —,
T Jo 14+ w?

(see Exercise 17, Sec. 2.6). So

*° coswx + w sinwzx
fla) = [ SRR g,
which yields the desired formula.
25. We have
o= [ s [
So

S VO
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1. In computing f, the integral depends on the values of f on the interval (—1, 1).
Since on this interval f is odd, it follows that f(z)coswz is odd and f(x)sinwa is

even on the interval (—1,1). Thus
f) = —= [ st
w = xX)e X
V2T ) oo

=0

1 1
E/lf(x)coswxdx—ﬁ/l f(z)sinwz dx

27 / ! . d
— sin wx dx
vV 2 0
21 coswz ’ 1

Ver

,\/Ecosw—l
W ——.
s w

5. Use integration by parts to evaluate the integrals:

\/% / " f@)eive da

(1 = |z|)(cos wz — isinwx) dz

w 0

51

=0

/ 1 —|z|) sinwz dx

= =)

7=/ =

dv

———
(1 — ) coswz dx

=T

2 sinwx ! 2 ! .
—((1 —x) ) + sinwx dx
V2 w 0 2mw Jo

1

\/Ecos wr
T w?
0
21— cosw
—

T w
9. In Exercise 1,

x (area between graph of f(x) and the zaxis) = 0.

In Exercise 7,

—~ 1 100
0) = —— X (area between graph of f(x) and the zraxis) = —.
fo) ( graph of /(z) )= o

Ver

13. We argue as in Exercise 11. Consider g(z) = Sinaz

For the case a < 0, use sin(—ax)
Let f(z) = 1if |z| < a and 0 otherwise. Recall from Example 1 that

2 sin aw
_,/W o=

where we assume a > 0.
—sinax and linearity of the Fourier transform.
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Multiplying both sides by \/g and using the linearity of the Fourier transform, it

follows that
f<\/§f<x>><w> — g(w).

#o- 57 (\[310) = |31

by the reciprocity relation. Using the symbol w as a variable, we get
sin ax T \/§ if |w| < a,
F — /5w = |
x 2 0 otherwise.

17. (a) Consider first the case a > 0. Using the definition of the Fourier transform
and a change of variables

So

F(f(az))(w) = % / " Haw)e " da

11 e w 1
= ——/ f(x)e " a®da (ax = X, dx = —dX)
21 J 0o a

= LA,

If a < 0, then

F(f(az))(w) = ﬁ /  Faz)e du

1 1 - Cw
— _— *139”6[
P /Oo f(z)e T

= —2Fn®).
Hence for all a # 0, we can write
=70 (%)
(b) We have
Fle ) = 2
By (a),

ol 1 /2 1 22
P = 3\ e — Ve

(c) Let f(z) denote the function in Example 2. Then g(z) = f(—x). So
-~ 1 +iw

o) =10 = ey
Let h(z) = e~1®I. Then h(z) = f(z) + g(x). So

B g lviw 21
M) = I+ 9 = e T Ve ) Vi

21. We have }'(e*ﬁ) = %e*“ﬁ/‘l, by Theorem 5. Using Exercise 20, we have

CcosT
(=

) = f(cosxe*xz)

1 ( Jw;a)z n 7<w+4a)2)
= —F\ € &
2V/2
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25 Let
1 if |2 < 1,
g(m)—{ 2

0 otherwise,

and note that f(z) = cos(z) g(z). Now F(g(x)) = \/gm Using Exercise 20, we

w
have

F(f(x)) = Fleoszg(x))
1 J2/sin(w—1)  sin(w+1)
T2 ?( w—1 w+ 1 )

29. Take a = 0 and relabel b = a in Exercise 27, you will get the function f(x) =h
if 0 < < a. Its Fourier transform is

f(w) 2h67i%w81n (T)

™ w

Let g(z) denote the function in the figure. Then g(z) = 1z f(z) and so, by Theo-
rem 3,

1.d -

g(w) = Elﬂf(w)

_ i\/@i [ei%wsin(%)]
7T adw w

B ,\/?ﬁei%w cos(%)—isin(%) sin(%)
- ! Ta w “ 2 B w

2h sy —2sin (“2) +awe "2
2uw?2 '

33. Let g(x) denote the function in this exercise. By the reciprocity relation, since
the function is even, we have F(F(g)) = g(—z) = g(x). Taking inverse Fourier
transforms, we obtain F~!(g) = F(g). Hence it is enough to compute the Fourier
transform. We use the notation and the result of Exercise 34. We have

9(x) = 2f2a(x) = fa(z).

Verify this identity by drawing the graphs of fo, and f, and then drawing the graph
of fou(x) — fa(x). With the help of this identity and the result of Exercise 34, we
have

Gw) = 2fea(w) — fa(w)

B 8a sin? (aw) 4a sin® ()
n V2T 4(&’(0)2 V2T (CL’LU)Q
. 02 (aw
4 sin? (aw) _ sin (o)
av2m w? w?

37. By Exercise 27,
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By Theorem 3(i)

f(xeiﬁ) = zi (Lef

=)

—w? /4

dw

1
(&
2V/2

41. We have F(t5) = /Ze 1"l Soif w >0
f(ﬁ)(w):i g%e*wz_i T,
Ifw<0
]:(1—1-3:2 \/7dw _i\/gew'
If w=0,
0= 7 | =

(odd integrand). We can combine these answers into one formula

x

Z(

1+ 22

YNw) = —i\/gsgn (w)e™ .

45. Theorem 3 (i) and Exercise 19:

f(xef%(xfl)z) =

d 1 2
. —2(z—1)
Z_dw (.7:(6 2 ))
. d
—
dw

w

(eiiw}'(e*%x

i(—w — i)ef%w -

(1 —iw)e” wi—iw,

49.
~ w2 1 1 2274 [T .
Hence
1 > 1 -2 |
h(z) = xg(x) = — —e 1 “eItlat
@ = reo = [5G

1 o0
= — e
2\/5/00

=ze /2 and g(z) = e .
2

53. Let f(z)

w

(a) F(f)(w) = —iwe™ "=, and F(g)(w)

(b)
{*}

_@-n?
e It

LW w2 w2
= —7]—€ 4 e 2
V2
w 2
3 T,
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(c) With the help of Theorem 3

fxg = fﬁl(—i%e%”%)

xe
3v3

57. Recall that f is integrable means that

[ @i <.

— 00

If f and ¢ are integrable, then

f gl r/ f(@ — t)g(t) dt.

So, using properties of the integral:

/Zlf*g(x)ldx - /Oo ’\/%/Oo Fo - t)g(t) di de

< (x —t)g(t)| dx dt
e
(Interchange order of integration.
=/ | (@)|d

< t) dx|g(t)| dt

e I

(Change variables in the inner integral X =z —t.)
<

\/—/ |d$/o:o|g(t)|dt<oo;

thus f x g is integrable.

111
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Solutions to Exercises 7.3

1.
P _ o
oz ox2’
1 Ju
u(z,0) = 722 E(xao) = 0.

Follow the solution of Example 1. Fix ¢ and Fourier transform the problem with
respect to the variable x:

2

p7e] t(w, t) = —w?u(w, t),
1 m d
u(w, 0) .F(l mn x2) 7€ dtu(w, 0)=0.

Solve the second order differential equation in u(w, t):
u(w, t) = A(w) coswt + B(w) sin wt.

Using 47(w, 0) = 0, we get

—A(w)w sinwt + B(w)w cos wt

=0 = B(w)w=0 = B(w)=0.

t=0

Hence
u(w, t) = A(w) cos wt.

Using u(w, 0) = \/ge*“”', we see that A(w) = \/ge*“”' and so

u(w, t) = \/gelwl cos wt.

Taking inverse Fourier transforms, we get

o0
u(z, t) = / eI cos wt €™ duw.

— 00

Pu_ it

EZRe

2sinx ou

Fix t and Fourier transform the problem with respect to the variable z:

d2

wﬂ(w, t) = —w?u(w, t),

N B sin x ooy 1 i<l
iw, 0) = F(yf =) (w) = (U’)_{ 0 if fw| > 1,
d

Eﬂ(w, 0)=0.

Solve the second order differential equation in u(w, t):
u(w, t) = A(w) cos cwt + B(w) sin cwt.
Using 4%(w, 0) = 0, we get

u(w, t) = A(w) cos cwt.
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~

Using u(w, 0) = f(w), we see that
U(w, t) = f(w) coswt.
Taking inverse Fourier transforms, we get

1 RPN . 1 1 .
u@, ) = = / flw) coscwt ™ dw = ——= / cos cwt e dw.
e o ),

17.
Pu_ o'
o2 Ozt
(100 if|e] <2,
u(z,0) = { 0 otherwise.

Fourier transform the problem with respect to the variable z:
2

@ﬂ(w, t) = w'i(w, t),

-~ 2sin2
(w, 0) = flw) = 1004/ = 2222
™ w

Solve the second order differential equation in u(w, t):

A(w, t) = A(w)e "t + Blw)e® .

Because a Fourier transform is expected to tend to 0 as w — +oo, if we fix t > 0
and let w — oo or w — —o0, we see that one way to make u(w, t) — 0 is to take
B(w) = 0. Then u(w, t) = A(w)e*wzt, and from the initial condition we obtain

B(w) = f(w). So

_ 2 sin 2
(w, t) = flw)e ™" = 100\/jsm Ye—wt,

™ w

Taking inverse Fourier transforms, we get

1 > 2 sin 2 ’
— / 100 \/jsm wefwzt e dw
V2T J o T w

100 [*° sin2w
— ——

™

u(x, t)

—w? 1
W GITW
w

— 00

21. (a) To verify that

x+ct
u(w,t) = 3lfle o)+ S+ et + 50 [ gls)ds
2 2¢ x—ct

is a solution of the boundary value problem of Example 1 is straightforward. You
just have to plug the solution into the equation and the initial and boundary con-
ditions and see that the equations are verified. The details are sketched in Section
3.4, following Example 1 of that section.

(b) In Example 1, we derived the solution as an inverse Fourier transform:

1 RN 1 ,
u(z, t) = o / [f(w) coscwt + a’g\(w) sin cwt]e™” dz.

=

Using properties of the Fourier transform, we will show that

(1) \/% /Z f(w) coscwte™dw = =[f(z —ct)+ f(x + ct)];

x+ct
/ g(s) ds.
xr—ct

N = N =

1 > 1 )
2 — —g(w) sincwt ™ dw =
@ o= Law)



114  Chapter 7 The Fourier Transform and its Applications

To prove (1), note that
tcwt + e*icwt
coscwt = ————,

SO

1 RPN .
— w) cos cwte’™” dw
/T

rcwt + e*’LCU}t

1 ® o € Twx
- o= [ Fo e
_ l 1 < eiw(@+tet) 1 <2 eiw(z—ct)
~ 5| [ Fw do— [~ Fw du

_ %[f(x+ct) + f@—ct));

because the first integral is simply the inverse Fourier transform of Zevaluated at
x + ct, and the second integral is the inverse Fourier transform of f evaluated at
a — ct. This proves (1). To prove (2), we note that the left side of (2) is an inverse
Fourier transform. So (2) will follow if we can show that

3) ]-'{ /m ) ds} = 25(w) sincwt.

—ct w

Let G denote an antiderivative of g. Then (3) is equivalent to
2~ .
F(G(z+ct) — Gz — ct)) (w) = EG’(w) sin cwt.

Since G’ = iwG , the last equation is equivalent to
(4) F(G(x+ct)) (w) — F(G(z — ct)) (w) = 21@(10) sin cwt.
Using Exercise 19, Sec. 7.2, we have
F(Gla+ct) (w) = F(G(z = ct) (w) = “"F(G)(w) — e " F(G)(w)
= F(O)(w) (6 — )

= 21@(10) sin cwt,

where we have applied the formula

elctw _ e*’LCtU}

sin ctw = %
This proves (4) and completes the solution.
25. Using the Fourier transform, we obtain
2
Eﬂ(w, t) = Fw'i(w,t),
iw,0) = fw),  S(w, 0)=gw).
Thus
i(w, t) = A(w)e "t + B(w)e™™™.

Using the initial conditions:

~ ~ ~

i(w, 0) = flw) = A(w)+B(w) = fw) = A@w) = f(w) - Bw);
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and
%u(w, 0)=g(w) = —cw?*A(w)+ cw?B(w) = g(w)
= —Aw) + Bw) = L)
= —F(w)+2B( ):i(w“’;
= Bw) = (Fwr+ 29
- o - (- )
Hence
Qw, t) = %(f( )_%)) cwzt+%(f( )+§C<wu;2>> s
g (e e Gw) (e — e
= Jw) 2 + cw? 2

Taking inverse Fourier transforms, we get

u(z, t) = \/% 1 Z (f(w) cosh(cw?t) + i&‘;) smh(cw%)) e dw.
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Solutions to Exercises 7.4

1. Rez)peat the solution of Example 1 making some adjustments: ¢ = %, gi(z) =
.

™)

3

o~

u(z, t) [ gi(x)

I )
= m/mﬂs)ﬁ d

20 ! (z—)2 Tr— s 1
= [ 7Td = ,d :——d
NCI s W= dv=—Trds)

5. Apply (4) with f(s) = s?:

u(@, t) = [xgi(x)

Y
\/ﬂ 27 J —so '

You can evaluate this integral by using integration by parts twice and then appealing
to Theorem 5, Section 7.2. However, we will use a different technique based on the
operational properties of the Fourier transform that enables us to evaluate a much
more general integral. Let m be a nonnegative integer and suppose that f and
s™ f(s) are integrable and tend to 0 at +0o. Then

% 1 Z 5 f(s)ds = (i) [ dcf:n F (f)(w>]

This formula is immediate if we recall Theorem 3(ii), Section 7.2, and that

o~

o0 == " ols)ds.

We will apply this formula with

We have

1 (z—5)2 . 1 s2
Fl—=e 7 |(w) = e"™*F|—=e 7 | (w) (by Exercise 19, Sec. 7.2
() (%)@ o !

= eriwTemwlt = o (iwrtw?h) (See the proof of Th. 1.)
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So

u(x, t

)= mw L

[ d? 1 (z—9)?
= — —f e Tt
| du? (m ) (w)]w_o

_ -d_2€(iwx+w2t):|
_dw2 w=0

" d .
- _ | = _e(zmerw?t)(ix_,’_zwt)]
| dw

w=0

= et (g 4 2ut)? 4 ate ety

w=0
= 2242t

You can check the validity of this answer by plugging it back into the heat equation.
The initial condition is also obviously met: u(z, 0) = z2.

The approach that we took can be used to solve the boundary value problem
with f(z)a™ as initial temperature distribution. See the end of this section for

interesting applications.

9. Fourier transform the problem:

=)
S

Eu(w t) = —e "wi(w, t), u(w,0) =

Solve for u(w, t):
A(w, t) = fw)e ™ (0=,

Inverse Fourier transform and note that
u(z, t) = fxrF! (67“’2(178%)) )
With the help of Theorem 5, Sec. 7.2 (take a = 1 —e™*), we find

22
]_-71 (efw (1— eft)) T S
\/_\/l—e t
Thus

_ _(z—s)2
s)e 40-e7H (ds.

u(zx, t) =

13. If in Exercise 9 we take

f(x)_{ (1)00 if || <1

otherwise,

W%/Zﬂ

then the solution becomes

(z, t) o0 / =l
u(r, t) = ———— e 40-e7% (s,
ﬁ\/ 1—et 1
o Tr—s o —ds
Letz—ﬁ, dZ—ﬁ Then
z41
Vi—e— .2
u(r, t) = ———=2V1—e" t/2 “dz
/1 — p—1
\/_ 1 ¢ 2y/1—e—t
100 [

_ .2
= — ezdz

Nz
2y/1—e—t

x+1 x—1
= 50 f{ —— | —erf | ————— .
[er (2 1—et> . (2\/1—et>]
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As t increases, the expression erf ( 5 \/ﬁtl?) —erf ( 5 \/%) approaches very quickly

erf (Z£L) — erf (2=1), which tells us that the temperature approaches the limitin
2 5 ) P PP g

distribution
1 -1
oo (221) it (551

You can verify this assertion using graphs.

17. (a) If
| Ty ifa<ax<d,
fl@) = { 0  otherwise,

then

 (z=9)2

Ty b
u(z, t)_Zc—\/ﬁ/ e it ds.

(b) Let z = 296;/5{’ dz = 27;1/52 Then

r—a

To eVt 2
u(z, t) = 20—\/520\5/1% e * dz

- 7))

25. Let us(z, t) denote the solution of the heat problem with initial temperature
distribution f(z) = e~@=1". Let u(z, t) denote the solution of the problem with
initial distribution e=**. Then, by Exercise 23, ug(x, t) =ulx — 1, t)

By (4), we have

1
u(x, t) — C\/ﬂefﬂ/@c?t) % 679”2_

We will apply Exercise 24 with a = ﬁ and b = 1. We have

ab B 1 1
atb At ) 4c12t +1
- 1
14+ 4c%t
1 B 1
2(a+0b) 2oy +1)

V2t
VARt +1°

So
u(z, t) = L(57962/(46%) xe ™
’ V2t
= 1 . C\/ﬂ 67 1+a4f:§t
V2t VARt +1
— ;67 14:12(:% ,
Vac?t +1
and hence
1 _ (@=1)?
us(x, t) = e 1+4c%t
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29. Parts (a)-(c) are obvious from the definition of g;(x).
(d) The total area under the graph of ¢;(x) and above the x-axis is

o0 1 o0 2 2
) dx A
~/—oo gt( ) cV/ 2t w/foo

20\/% > .2

x
= — e % dz (2= ——, dz=2cVtdz
i ) “= e )
\/5/ e dz =V 2,
by (4), Sec. 7.2.
(e) To find the Fourier transform of g.(z), apply (5), Sec. 7.2, with

5),
1 1 1
- =2l — =t
“Taer v2a VEL g T

We get

1 2 2
g (w) = f(e*x /(4e t)) dx
gt( ) C\/ﬂ
1 2 2
= —— x2cV2e W
cV/2t
—c?tw?
= e .
(f) If f is an integrable and piecewise smooth function, then at its points of conti-
nuity, we have

lim g« /() = ().

This is a true fact that can be proved by using properties of Gauss’s kernel. If we
interpret f(z) as an initial temperature distribution in a heat problem, then the
solution of this heat problem is given by

u(z, t) = g x f(x).

If t — 0, the temperature u(z, t) should approach the initial temperature distribu-
tion f(x). Thus lim;_0g: * f(z) = f(x).
Alternatively, we can use part (e) and argue as follows. Since

}ir%]:(gt) (w) =lime

So
lim F(g; + f) = lim F (g:) F () = F (f)-

You would expect that the limit of the Fourier transform be the transform of the
limit function. So taking inverse Fourier transforms, we get lim; g g * f(x) = f(x).
(Neither one of the arguments that we gave is rigorous.)

A generalization of Exercise 5 Suppose that you want to solve the heat equation
Ut = Uy, subject to the initial condition u(x, 0) = 2™ where n is a nonnegative
integer. We have already done the case n = 0 (in Exercise 19) and n = 2 (in
Exercise 5). For the general case, proceed as in Exercise 5 and apply (4) with

f(s) =s™:
u(@, t) = [xgi(x)

_(@=9)?
t

1 1 /°° " d
_— s"e s.
V2t V2T ) oo

Use the formula

%/Z " f(s)ds = (i)" [ - f(f)(w)] :
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with

and
—(iwz+w?t)

i
46 S CE

(see the solution of Exercise 5). So

-\ d" —(iwz+w?
u(;p, t) = (’L) |:dwne ( + t):|
w=0

To compute this last derivative, recall the Taylor series formula

£(n)(q
)ZZfTL'( )(x_a)n'
n=0 ’

So knowledge of the Taylor series gives immediately the values of the derivatives at

a. Since -
(aw)"
aw __
=2 T
n=0
we get _
[d—J.eaw] =al.
dwl w=0
Similarly,

o 0 if k is odd,
[d—w’“ ]wo YE ip = g5,

Returning to u(z, t), we compute the nth derivative of e~ (1w +©”) yging the Leibniz
rule and use the what we just found and get

dmn ,
u(z, t) = (z)"[ newzte“’m]
dw w=0
— A\ S n dj —w3t dn / —itwx
= (1) ;(] ) dwi dwn—J w0
[%] 29 n—2
n n d* 2 At
= 0 2j ) duw¥®  qur
=0 w=0
o ey
= ()" ( ) ) - (—ix)" 2
=\ 7t

For example, if n = 2,

tJ ! .
= 3 ( g )T =
2j

1l
—0 J:

<.

which agrees with the result of Exercise 5. If n = 3,

1
(2 )
Z ( ) 7)! c237% = 23 4 6ta.
2j

1l
= J-:
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You can easily check that this solution verifies the heat equation and u(z, 0) = z3.

If n =4,

2 ; .
9 (25)! ,
u(z, t) = Z( 24]' ) (jij) T =gt 4 122 + 1207,

Jj=0

Here too, you can check that this solution verifies the heat equation and u(z, 0) =
4
.

We now derive a recurrence relation that relates the solutions corresponding to

n—1,n, and n+ 1. Let u,, = u,(z, t) denote the solution with initial temperature

distribution u, (z, 0) = ™. We have the following recurrence relation
Upt1 = TUp + 20Uy 1.

The proof of this formula is very much like the proof of Bonnet’s recurrence formula
for the Legendre polynomials (Section 5.6). Before we give the proof, let us verify
the formula with n = 3. The formula states that uys = 4usg + 6tus. Sine uy =
a4+ 12t2? + 1262, ug = 23 + 6tx, and uy = 2% + 2t, we see that the formula is true
for n = 3. We now prove the formula using Leibniz rule of differentiation. As in
Section 5.6, let us use the symbol D™ to denote the nth derivative, We have

r dnJrl

dwnJrl

unta(z, t) = ()"

e(iwm+w2t):|
w=0
_ (,L-)nJrl —Dn+1€7(iwm+w2t)}

w=0

_ (i)nJrl :Dn (De—(iwm+w2t))}

w=0

= (i)nJrl :D" (—(i:c—|—2wt)ef(mm+w2t))}

w=0

= ()" :D" (—(i:c + 2wt)e*(mm+w2t))]

w=0

= ()" —Dr (ef(mmﬂu%)) (iz + 2wt) — 2ntD™ ! (e*(“’“”“”%))]

w=0

= z(i)" D" (e*(iwwrwzt)) ’ +2nt (i)" 1D (e—(iwm+w2t)) ’
w=0 w=0

= Tupy + 2ntu,_1.
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Solutions to Exercises 7.5

1. To solve the Dirichlet problem in the upper half-plane with the given boundary
function, we use formula (5). The solution is given by

y [~ f(s)
u(zx, y) ;/700 (z —5)2 + 12 ds
sy [0 ds
Pl N s

C D et (B2 (125,
m ) )

where we have used Example 1 to evaluate the definite integral.

5. Appealing to (4) in Section 7.5, with y = y1, y2,y1 + y2, we find
F(Py)(w) =0, F(P)w) = P, F (P ) (w) = el
Hence
F(Py)(w) - F(Py)(w) = emlvlemvlvl = e~ tntwlvl = F(py 1) (w).

But
F(Py)(w) - F(Py,)(w) = F(Py, x Py, )(w),
Hence
F(Pyitya)(w) = F(Py, x Py, )(w);

and so Py, 1y, = Py, * Py,.

9. Modify the solution of Example 1(a) to obtain that, in the present case, the

solution is T
u(z, y) = = [tanl (a—i—_x) +tan~! (a —x)] .
m ) )

To find the isotherms, we must determine the points (z, y) such that u(z, y) = T.
As in the solution of Example 1(b), these points satisfy

z? + (y - acot(%)>2 = (acsc(%)>2 .

Hence the points belong to the arc in the upper half-plane of the circle with center

(0, acot(%)) and radius acsc(%). The isotherm corresponding to 7' = L2 is the

2
arc of the circle

2 2
%+ (y — acot(z)) = (acsc(z)) ,
2 2
or
Iy ——
Thus the isotherm in this case is the upper semi-circle of radius a and center at the
origin.

13. Parts (a)-(c) are clear. Part (e) fellows from a table. For (d), you can use (e)
and the fact that the total area under the graph of P,(z) and above the z-axis is
\/?E(O) =2me 0 = /27
(f) If f is an integrable function and piecewise smooth, consider the Dirichlet prob-
lem with boundary values f(z). Then we know that the solution is u(zx, y) =
P, f(z). In particular, the solution tends to the boundary function as y — 0. But
this means that lim, .o P, * f(z) = f(z).

The proof of this fact is beyond the level of the text. Another way to justify
the convergence is to take Fourier transforms. We have

F(Pyx f)(w) = F(Py)(w) - F(f)(w) = e F(f)(w).
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Since limy_.g e~vlwl = 1, it follows that

lim F(P, « f)(w) = lim e 7 () (w) = F(f)(w).
y— y—
Taking inverse Fourier transforms, we see that lim, .o P, * f(z) = f(z).

The argument that we gave is not rigorous, since we did not justify that the
inverse Fourier transform of a limit of functions is the limit of the inverse Fourier
transforms.
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Solutions to Exercises 7.6
1. The even extension of f(x) is

1 if-1l<x<l,
0 otherwise.

(o) ={

The Fourier transform of f.(z) is computed in Example 1, Sec. 7.2 (with a = 1).
We have, for w > 0,

2 sinw

Fe(Hw) = F(fe)(w) =/ =

™ w

To write f as an inverse Fourier cosine transform, we appeal to (6). We have, for

x>0,
\/7/ Fe(f)(w) cos wz dw,
or
9 [ sinw 1 if0o<a<l,
—/ coswrdw=<¢ 0 ifzx>1,
TJo W Ioifa=1

Note that at the point * = 1, a point of discontinuity of f, the inverse Fourier
transform is equal to (f(z+) + f(z—))/2.

5. The even extension of f(z) is

fulz) = cosr if =27 <=z < 2m,
Y10 otherwise.

Let’s compute the Fourier cosine transform using definition (5), Sec. 7.6:

Fw) = =2 [ coszcosur
= \/7/27T [cos(w + 1)z + cos(w — 1)x] dx

2 [sin(w+ Dz sin(w— 1)z
= 24/= +
2V w+1 -1 o

1 /2 [sin2(w+ 1) sin2(w — )7

_ - /= 1
2\/;[ w+ 1 * w—1 (w#1)
1 /2 |sin27mw = sin27w

= —1\/— 1
2\/;[ w+1 N w—1 ] (w#1)

2 w
= — sl 2 —_— 1 .
\/;sm ™o (w#1)

Also, by I’'Hospital’s rule, we have

2
lim 4/ — sin 277w L V2,
w—0 s w? — 1
which is the value of the cosine transform at w = 1.
To write f as an inverse Fourier cosine transform, we appeal to (6). We have,
for z > 0,

2 [ w cosr if0 <z < 2m,
— —— sin 27w cos wx dw = .
T Jo w*—1 0 if @ > 2.

For x = 27, the integral converges to 1/2. So

2 [ 1
—/ —— sin 27w cos 2rw dw = —.
T Jo w*—1 2
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9. Applying the definition of the transform and using Exercise 17, Sec. 2.6 to

evaluate the integral,
2 o0
\/ —/ e 2% sinwaz dx
™ Jo
2 e

2x 0

= /= —— [~wcoswz — 2sinwz]
T 4+ w? 0

e
- T4+ w?’

The inverse sine transform becomes

Fo(e™?)(w)

13. We have f.(z) = +15. So

1422

1 1 T
fc(1+x2>_f(1+x2>_\/;€ (> 0),

by Exercise 11, Sec. 7.2.
17. We have f.(z) = {225. So

cosz | _ CosT \ T (1] (wt)
]:C<—1+$2> f<—1+x2> \/;(e +e ) (w>0),

by Exercises 11 and 20(b), Sec. 7.2.

21. From the definition of the inverse transform, we have F.f = F. ! f. So F.F.f =
F.F-Lf = f. Similarly, FoFof = FF 1 f = f.
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Solutions to Exercises 7.7

1. Fourier sine transform with respect to x:

=0
d -~ 2+ 2, '
Sus(w, t) = —wus(w, t) + 4/ Zw u(0, t)

Lig(w, t) = —w?is(w, t).

Solve the first-order differential equation in us(w, t) and get
s(w, t) = A(w)e ",
Fourier sine transform the initial condition

1 — cosbw

us(w, 0) = A(w) = Fs(f(2))(w) = TO\/%

w

Hence
. 21 —cosbw _, 2
Us(w, t) = | =—————e L,
™ w
Taking inverse Fourier sine transform:

2 [ 1—cosbw
u(z, t) = —/ O e  sin wa dw.
T Jo w

5. If you Fourier cosine the equations (1) and (2), using the Neumann type

condition 5
U
Z(0.t) =
8‘r (O, ) 0,
you will get
=0
d
Lae(w, 1) = [~ w?huw, 1) = /2 Tu(0, 1)]
dx
%ﬂc(w, t) = —c2w?u.(w, t).

Solve the first-order differential equation in u.(w, t) and get

2,2

Ue(w, t) = A(w)e <L
Fourier cosine transform the initial condition
Uc(w, 0) = A(w) = Fe(f)(w).

Hence
2,2

Us(w, t) = F.(f)(w)e ™

Taking inverse Fourier cosine transform:

u(z, t) = \/?/Oo fc(f)(w)efc2w2tcos wz dw.
™ Jo

9. (a) Taking the sine transform of the heat equation (1) and using u(0,t) = Tp
for t > 0, we get

d 2 2~ \/5 .
p us(w,t) =c¢ [— w s (w, t) + ;wu(O, t)},
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or
d 2 9~ _ 2 /2

Us(w, t) + c“wus(w, t) = ¢ wTy.
dt ™

Taking the Fourier sine transform of the boundary condition u(z,0) = 0 for 2 > 0,
we get us(w,0) = 0.
(b) A particular solution of the differential equation can be guessed easily: us(w, t) =

% Lo The general solution of the homogeneous differential equation:

d
T Us(w,t) + wls(w, t) =0

is us(w, t) = A(w)e*g“ﬁt. So the general solution of the nonhomogeneous differ-

ential equation is
~ 2 T
us(w, t) = A(w)efczwth /222
™ w

Using 7, (w, 0) = A(w)\/g% =0, we find A(w) = _\/g%. So

Us(wt) = \/zﬁ - \/zﬁeg“ﬁt.
T w T w

Taking inverse sine transforms, we find

2 [ [T T
u(z,t) = —/ (—0 — —Oec2w2t> sin wz dw
™ 0 w w
=sgn(z)=1
—_——~
2 [ sinwz 2Ty [°° sinwzx
= Ty —/ dw -2 e~ gy
T Jo w T Jo w
_ o7 2Ty [ Sinwxefc%”ztdw

T Jo w

13. Proceed as in Exercise 11 using the Fourier sine transform instead of the cosine
transform and the condition u(x 0) = 0 instead of u,(x, 0) = 0. This yields
=0

o \ 2/—/H
T s (x, w) — ws(z, w) + \/;u(x, 0)=0

2 o~ o~
dd?us(x, w) = wis(z, w).

The general solution is

Us(x, w) = A(w) cosh wz + B(w) sinh wa.

Using
2w
AS Oa =0 d AS 1; :-7:5 V)= —T T 9>
us(0, w) and  Us(1, w) (e™) ”7T1+’LU2
we get
2w 1
A = d B — .
(w)=0 an (w) \/;1—1-102 sinh w
Hence

i ) 2 w sinhwz
Us(x, w) = ——————.
71+ w? sinhw

Taking inverse sine transforms:

( ) 2/°° w sinhwz . J
nes == — —  sinwydw.
K o 14+ w? sinhw 4
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Solutions to Exercises 7.8

1. As we move from left to right at a point xg, if the graph jumps by ¢ units, then
we must add the scaled Dirac delta function by ¢d,, (). If the jump is upward, c is
positive; and if the jump is downward, c¢ is negative. With this in mind, by looking
at the graph, we see that

(6-2(x) +6-1(x) — 61 (z) — d2(z)) -

N~

F(@) = 3 6-2(@)+g 51(2) 3 br(a)—3 Bo(x) =

13. We do this problem by reversing the steps in the solutions of the previous
exercises. Since f(x) has zero derivative for x < —2 or & > 3, it is therefore
constant on these intervals. But since f(z) tends to zero as © — +oo, we conclude
that f(x) = 0forz < —2 or > 3. At x = —2, we have a jump upward by one unit,
then the function stays constant for —2 < x < —1. At x = —1, we have another
jump upward by one unit, then the function stays constant for —1 < z < —1. At
x = 1, we have another jump upward by one unit, then the function stays constant
for 1 < x < 3. At z = 3, we have a jump downward by three units, then the
function stays constant for x > 3. Summing up, we have

0 ifx< -2,

1 if —2<2<—1,
flz) = 2 if —l<z<l,

3 ifl<ax <3,

0 if3<ux.

17. We use the definition (7) of the derivative of a generalized function and the
fact that the integral against a delta function 4, picks up the value of the function
at a. Thus

(d(x), =f'(2)) = —(d(), f'(x))
—(0o(x) = d1(x), f'(z)) = —f(0) + f'(1).

(@ (), f(x))

21. From Exercise 7, we have ¢/(z) = 2 (U_2q(2) — U_o(2)) — 2 (Ua(z) — U2a(2)).
Using (9) (or arguing using jumps on the graph), we find

() =~ (3-20(2) 0 ()~ (30 (2)F2a(2)) = —(32a() 0 _a(2)—Bu () +620(2)).

a

25. Using the definition of ¢ and the definition of a derivative of a generalized
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function, and integrating by parts, we find

(@ (), f(x))

Thus

(@ (), f(x))

Thus

-/ O; b()f () d

0 1
—/71 2(3:—|—1)f/(3:)d3:—/0 —2(x = 1) f (z) dw

129

—2(z + 1) f(x) +2/ fla)de +2(z — 1)f ’—Z/f

—2f(0)—|—2/71f(3:)d33—|—2f(0)—2/0 f(z)dx

(2(U-1(2) = Uo()), f(2)) = (2(Uo(z) = Ur(x)), f(2)).

(2(U-1(2) = Uo(w)) = 2(Uo(z) — Us(2)), f()).

¢'(z) =2(U_1(z) — Uo(2)) — 2(Uo(z) — Ur(2)).

Reasoning similarly, we find

-/ Z #'@)f (@) d
—2/01 () dx+2/01 £ (z) da

=2(f(0) = f(=1)) +2(f(1) = f(0)) = 2f(=1) — 4f(0) + 2f(1)

<2571 - 450 + 251, f($)>

(;5”(33) = 25,1 - 450 + 251

29. We use (13) and the linearity of the Fourier transform:

.7:(350 - 2572) == %(3 - 262“”).

33. Using the operational property in Theorem 3(i), Section 7.2, we find

Flz (U1 —Uy)) = iif(u,l — Uy)

dw

d i - i -
— 7/_ _ elu} + e*lﬂ)
dw [ V2T w V2T w ]

el
1 d [2Zisinw
Al

[ w Cosw — smw]

mﬁ

[w cosw — smw]

] (Recall ™ — e™™ = 2jsinu)
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The formula is good at w = 0 if we take the limit as w — 0. You will get

2 _ i 2 —uwsi
Flz(U-y - Uy)) = hmi\/j [—w o Smw] _i\/j lim 2 S )
w—0 T w T w—0 2w

(Use 'Hospital’s rue.) Unlike the Fourier transform in Exercise 31, the transform
here is a nice continuous function. There is a major difference between the trans-
forms of the two exercises. In Exercise 31, the function is not integrable and its
Fourier transform exists only as a generalized function. In Exercise 33, the function
is integrable and its Fourier transform exists in the usual sense of Section 7.2. In
fact, look at the transform in Exercise 31, it is not even defined at w = 0.

An alternative way to do this problem is to realize that

(b/(x) =—0_1—01+U_1— U;.

So
F(d(x) = F(=01—6+U_1—U)

_ 1 ( eiw efiw ieiw + ieiw>

N E o T w w )
But

f((b’(x)) = zwf(¢(x))
So
F(o) = %f(e“” +emiv +z’€:u - ie:w)

7 7
= 2cosw + —(2¢sinw
V2T w [ w( )]

/2 [wcosw—sinw]
= 1 —_ -_— .
2

™ w

37. Write 72(x) = 22Uo(x), then use the operational properties
.7-'(7'2(33)) = f(xQZ/{O(x))

= L (Uole)

e
- Vo dw? | w
27 1 /21
= ——-— =i/ ——.
Vor w3 T w3
41. We have

f(@)=—U_2(z)+2U_1(x) — U1(z) + 6_1(x) — 2 02(x).

F(f'(x) = F(~U_ax)+2U_1(x) — Ui(z) +I_1(z) — 252(x))

. 27w . 1w . —iw
—1 e —1 e —1 e n 1 i _ 2 2w

Var w  \2r w2 Vor




Hence
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1 621'10 eiw —iw

— 36" 4 272w

45. You may want to draw a graph to help you visualize the derivatives. For
f(z) = sinx if |z| < m and 0 otherwise, we have f”(z) = cosz if |z| < © and
0 otherwise. Note that since f is continuous, we do not add delta functions at
the endpoints = £+ when computing f’. For f”, the graph is discontinuous at

x = +7 and we have

/' (x)=—0_n + 6 —sinz

if |#] < 7 and 0 otherwise. Thus

f"(x) = =6_r + 05 — f(z) for all z.

Taking the Fourier transform, we obtain

F(f"(x))
~wF (f(x))

= -7:(_5771' + 05 — f(x)) ;

1 TTWw 1 —iTw .
- _Ee + \/%e —f(f(x)),

=2 cos(mw)
(eiﬂ'w 4 e*iﬂ'w)

49. From Example 9, we have

So from

we have

d
E(f*f) =

Fl=0_1—6.

d _df
Fef) =0 f

%*f:(5,1—51)*f;

R %(f(xﬂ)—f(x—l))-

Using the explicit formula for f, we find

L if —2<2<0,

d Var
E(f*f): _ﬁ ifo<z<2,
0 otherwise,

as can be verified directly from the graph of f * f in Figure 18.

53. Using (20), we have

oy =

(571 + 252) * (571 + 252)

O_1%0_17+20_1 %02 + 200 x 0_1 + 499 * b2

1
E [0_2 + 401 + 404] .
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57. Following the method of Example 9, we have

d
E((b*w =

i

dx*

(571 —51) * (Z/{fl — u1 + Z/{Q — Z/lg)

¢

O 1% U1 —0_1xU1 +0_1xUy—0_1% U3 — 5 x U_1
+51*U1—51*U2+51*U3

1
E(ufz—uOﬁ-ul—UQ—UQ+Z/{2—U3+Z/{4)

ﬁ (Uos — Uo) — (Up — Us) — (Us — Us)).

Integrating % (¢ *x 1) and using the fact that ¢ x ¢ equal 0 for large |z| and that
there are no discontinuities on the graph, we find

px(z) =

1
:E(

1 .
—(z+2) if —2<2<0
(—x+2) if0<z<1

fl<z<3

53k

—(—z+4) if3<z<4

(a=)
ﬁ
3

otherwise

—~

x4+ 2)(U_z — Up) + (—z +2) (U — U1)

+(Us = Us) + (—z +4) (Us — Us) ).
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Solutions to Exercises 7.9

1. Proceed as in Example 1 with ¢ = 1/2. Equation (3) becomes in this case

2
u(z, t) = E(fﬁ/t*(ﬁ(m)
1
= e @Dt
i

133

since the effect of convolution by ¢; is to shift the function by 1 unit to the right

and multiply by \/%—ﬂ

5. We use the superposition principle (see the discussion preceeding Example 4). If
¢ is the solution of u; = %um + 9o, u(x, 0) = 0 and ¥ is the solution of u; = %um,
u(z, 0) = Uo(z), then you can check that ¢ + 1 is the solution of u; = Yug, + do,

u(z, 0) = Up(z). By Examples 1,

24/ 2 1 z2
ie*xz/t _ ﬂr (_ x_)

Pz, t) = ﬁ \/7_'( 97 ¢

and by Exercise 20, Section 7.4,

Wz, t) = %erf (%) .

9. Apply Theorem 2 with ¢ =1 and f(z, t) = cos ax; then

u(z, t) = e~ (@=)*/(4(i=9)) cos(ay) dyds

[ ]

eV /(4lt=9)) cos(a(r — y)) dyds

I =

(Change variables z — y < y)

e ¥/ (4t=s) cos(ay) dyds

cos(ax)/ot \/127/(: \/2(27—5)

(Integral of odd function is 0.

t
= cos(ax)/ e=0"(t=5) g (Fourier transform of a Guaussian.)
0

= % cos(ax) (1 — e*azt).
a
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Solutions to Exercises 7.10

1. Apply Proposition 1 with f(z, s) = e~ (@+9*  then

dUu

0
E - f(.I,CC)—F 0 8_56 ({E, S)dS

= e*4x2 o / Q(x + s)ef(gchS)2 ds
0

2x
= e _ / 20e™" dv (v=a+s)

2x

2 2

= e M pev =2 4 _ 7,

x

5. Following Theorem 1, we first solve ¢y = ¢yz, ¢(, 0, s) = e *z2, where s > 0
is fixed. The solution is ¢(z, t, s) = e~*(2t + 22) (see the solution of Exercise 5,
Section 7.4). The the desired solution is given by

t
u(z, t) = /0 o(x, t —s, s)ds
t

_ / et — 5) + a?)ds

0

t
= e 425 %+ 2% — e
0

= 24242 +e (2 -2?).

9. Following Theorem 2, we first solve ¢y = ¢us, ¢(x,0,8) = 0, ¢d¢(x, 0, 5) =
cos(s + x) where s > 0 is fixed. By d’Alembert’s method, the solution is

[sin(s +z +t) —sin(s + = — t)].

N~

1 x+t
oo tos) =5 [ cosls+y)dy =
x—t

The the desired solution is given by
t
u(z, t) = / o(x, t —s, s)ds

0
L[ ,
= /0 [sin(z + t) — sin(z — t + 2s)]ds

DO |

1 1 t
= 3 [ssin(z +1t) + 3 cos(z —t + 2s)]

0

1 1 1
= 3 [tsin(z +t) + 3 cos(z +t) — 3 cos(z —t)].

13. start by solving ¢y = ¢ue, d(x, 0, 8) = 0, ¢(x, 0, s) = do(x) where s > 0 is
fixed. By d’Alembert’s method, the solution is

[Uo(z +t) — Uo(z —t)].

| =

1 x+t
ot =5 [ wwdy =

By Theorem 2, the solution of ws = gy + do(x), u(z, 0) =0, ¢(x, 0) = 0 is given
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bz, 1) = /O b, 1 — 5, 5)ds

= %A [Z/{O(x+t—s)—u0(x—t+5)]ds

[—T(x+t—s)—7(x—t+s)];

| =

= —7(z)+ % [T(z+1t)+7(z—t)],

where 7 = 79 is the antiderivative of Uy described in Example 2, Section 7.8,
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Solutions to Exercises 8.1

1. |11 cos3t| < 11, so (2) holds if you take M = 11 and a any positive number, say
a = 1. Note that (2) also holds with a = 0.

5. |sinh3t| = |(e3' — e73) /2] < (% + €3')/2 = €3'. So (2) holds with M =1 and
a=3.

9. Using linearity of the Laplace transform and results from Examples 1 and 2, we
have

1 1/2 —1/2
z(\/%+%)(s) = LYY+ L

0(3/2) T(1/2)
$3/2 s1/2

Now T'(1/2) = /7, so I'(3/2) = (1/2)['(1/2) = \//2. Thus

1 N3 T

13. Use Example 3 and Theorem 4:

, d . . __d_ 4
L(t sindt)(s) = —Eﬁ(sm(élt)) T T dss? +42
B 8s
(s2 +42)2
17. We have
3 3

L(e* sin3t)(s) = L(sin3t)(s — 2) =

(522132 (s-2219

21. We have
L((t+2)%cost)(s) = L((t* + 4t + 4)cost)(s)
= L(t*cost)(s) +4L(tcost)(s) + 4L(cost)(s)
= Lleost)(s) — 4L [£(cost)(#)] + 4L (cos)(5)
= TaL(cost)(s 7 [L(cost)(s cost)(s
B d_2 s i s n 4s
T ds?s2+1 ds | s2 41 s2+1
B i—sQ—i-l —52+1+ 4s
T ods(s2+1)2 (2412 241
_ 2s(s* —3) s2—1 n 4s
(s2+1)3 (s2+1)2  s2+1
25. Since )
L(t) = 2
then
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29. Using
|
at n n:
t = —
L (e ) (s —a)ntl’
r eMm _ 1 ,
n! (s —a)ntt
at B s—a
E (6 COS bt) = m,
we find that
3tt4
f(t) = €4| + e% cost.
33. Partial fractions:
2s — 1 - 2s —1
s2—5—-2  (s—=2)(s+1)
J— A + B .
T os—2 s+1’
2s—1 = A(s+1)+ B(s—2)

Take particular values of s:

s=-1 = -3=-3B = B=1

s=2 = 3=34 = A=1

So
1 1
F = = _—
(s) s—2 + s+1’
fly = e
37. Partial fractions:
1 B A n B
$24+3s+2)  s+2 s+1’
1 = A(s+1)+B(s+2)
-1 1
F = —_
(5) s+2 * s+1’
f(t) — —672t +€7t

41. The change of variables 7 = ¢ — 7 transforms the initial value problem 3" +y =
cost, y(m) =0, y/(r) =0, into

y' +y=cos(t+m)=—cost, y(0)=0, y(0)=0
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Laplace transformt the equation and use the given initial conditions:

L")+ L(y) = L(—cosT)
9 s
FY 0 -y O+ = -5
9 _ s
Y(is*+1) = = 21
v - S o 1ld 1
N (s24+1)2  2dss?+1
B r 1 " i
y = —27'51117'——2( —m)sin(t — )

1
= §(t—7r)sint

45. Laplace transform the equation y” — 4y’ — 6y = el cost and use the initial
conditions y(0) =0, y'(0) = 1:

s2Y — sy(0) — ¢/ (0) — sY +4(0) — 6Y = ﬁ;
9 - s—1 '
Y(s*—s—6) = 1+7(S_1)2+15
So
v 1 . 1 s—1
T -3064+2 (-3 -1+l
v -1 1 1 s—1
T 542  5(-3)  (5-3)(5+2) 2 —25+2
-1 1 1 2
T 5642 56-3) 12212 -3t 2512

We now find the partial frctions decomposition of the last term on the right. Write

1 B A 4 Bs+C
(s4+2)(s2—25+2)  s+2 §2 — 25+ 2’
1 = A(s*—2s+2)+ (Bs+O)(s+2);

s=-2 = 1=104A = A=1/10

1
constant term = 1= R +2C = C=2/5

1
coefficient of s = 0=-—+B = B=-1/10;

10
1 B L, —sid
(s+2)(s2—2s+2)  10(s+2) 10(s?2 — 25 +2)



Also

2
(s—=3)(s+2)(s? —25+2)

2
§=—-2
s= -3

constant term

coefficient of s*

2
(s—=3)(s+2)(s? —25+2)
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A B CS+ D '
s—3 s+2 (s=3)(s+2)(s?—25+2)

A(s +2)(s*> =25 +2) + B(s — 3)(s* — 25+ 2)

+(CS 4+ D)(s —3)(s + 2);

B=-1/25
A=2/25
8 6
2—% %—GD = D =-6/25;
C =-1/25;
2 1 —s5—06

25(s —3) 25(s+2) * 25(s% — 25+ 2)
Ya;

Now
P S S
T B(s+2) B(s—3) 77
7 7 7 1
Yy = —567215 =+ %6315 — %et cost + %et Sint-



140  Chapter 8 The Laplace and Hankel Transforms with Applications

Solutions to Exercises 8.2

1. To compute the Laplace transform of f(t) =Up(t — 1) — ¢t + 1, use

e*llS

L[Uo(t —a)] (s) = ;

S

SO

LUt —1) —t+1](s) LlUo(t—1)] = LI[t]+ L]

e * 1 1

2

S S S

5. Use the identity sint = —sin(¢ — 7). Then

LsintUp(t —m)](s) = —Lsin(t —m)Uo(t — )] ()
— _e*’TS,C[smt](s):;Jr :
9.
y = 2(Uo(t—2)— Uo(t—3));
6725 6735
y=2 s s
Y
2 -
I e
13.
y = (Uo(t—1)— Uo(t —4))+ (t—=5) (Uo(t —4) — Uo(t —5))
e 6745 6745 6755
Y= s -2 s + 2 82
A
1L

~

1 4 /5
_1__

The following is a variation on Exercise 13.

13 bis. Find the Laplace transform of the function in the picture

y
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y = (Uot—1)— Uo(t—4)+ (5—1)(Uo(t —4) — Uo(t —5))

= Uo(t—1) — Uo(t —4) + (t —5)Uo(t — 5) — (t — 5) Uo(t — 4)

= Up(t—1) — Uo(t—4) + (t — B)Uo(t — 5) — (t — D) Uo(t — 4) + Uo(t — 4);

e—s 6745 6755 6745 6745
Yy = ——t -+
S S S S S
—s
e 1, _
— —2(6 5s e 45)
S S

17. Let y(t) = sint, then Y (s) = ﬁ; so if

f@t) = Uo(t = 1)sin(t — 1),

675

then F(S) = m

21. Let y(t) = V7, then Y (s) = R82) where I'(3/2) = 1T(1/2) = 2. If

$3/2

Blt) = Vi = B(s) = 7y

$3/27

and so if
675

$3/2°

ft) = %\/t— 1Uo(t — 1) then F(s) =

25. We will compute ¢ * t in two different ways. First method: We have

£ s%;

t £ s%;
tet L SLQSLQ:S%
i 5 ﬁ:t>»<t.
s4 6

Alternatively,

t
txt = /(t—T)TdT
0

1 1 .t 1
e . | e B B L.
2" 73" o 3
29. We have F(s) = m = % : ﬁ, and
l 5 1;
s
1 -1
£—> sint.

5241

So .
f(t) =1xsint :/ sinTdr =1 — cost.
0
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33. Passing the equations v +y = do(t — 1),y(0) = 0, ¥/ (0) = 0, through the
Laplace transform, we get:

%Y —sy(0) =/ (0)+Y = e°*
(s +1)Y = ¢°*
675
Y =
s2+1

Thus the solution is

_ e e
y==£ <52+1>'

To compute this inverse transform, we observe

. L
sint —

Uop(t — 1)sin(t — 1) —

soy = Uo(t —1)sin(t — 1).

37. Take the Laplace transform on both sides of ¥/ + 4y = Uo(t — 1)e!~! and use
the initial conditions y(0) = 1, 3/(0) = 0, and you will get

Ly +4y) = E(Z/{O(t—l)etfl)
LY +LMAy) = L(Uo(t—1)e"1);
1
s2Y —sy(0) —y/(0) +4Y = e°* . (s>1)
P
LY 44y = &
s—1
Y(a+s?) = ——;
s—1
Yy = ¢’

(s —1)(s2+4)’

where we have used Theorem 1, Sec. 8.2. Thus the solution is the inverse Laplace

transform of
67 S

(s—1)(*+4)
Use partial fractions
1 A Bs+C
(s—1)(s>+4) -1 244

A2 +4)+ (s —1)(Bs+ C)
(s — 1)(s2 +4)

1 = A(s®+4)+ (s—1)(Bs+O);

Set s=1 = 1=5A4, A=

)

(S

Set s =2 = 1= (2i—1)(B(2i)+C);

Set s = —-2i = 1= (-2:—1)(B(-2i)+ C);

1
= B=— C=——.
5’ )
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Hence
1 1 1 s+1
(s—1)(s2+4) 5| s—1 s2+4
and so
e * e’ 1 s+1
(s—1)(s2+4) 5 |s—1 s2+4
You can use the Table of Laplace transforms at the end of the book to verify the
following computations:

. c 2
2t ;
Sln( ) I 52 +47
1 . r 1
B sin(2t) — 4_"_—52;
C s
2t) — =
cos(2t) oY

GV

o]

Uo(t —a)f(t —a) — e **F(s);

é[et1—%sin(2(t—1))—608(2@—1))] Up(t—1) [ S Hl]

From this we derive the solution

! (655 [ Lo_s+l D - é [etl - %sin(2(t— 1)) — cos(2(t — 1))] Up(t—1).

s—1 s2+44

41. Taking the Laplace transform of the equations y” + 4y = cost, y(0) =
0, ¥'(0) = 0, we obtain

2
Y +4Y =
st s2+1

1 s 2

y = -_° .2
28241 52422

So )
y=5 cost * sin(2t).

45. T =2, for 0 <t < 1, f(t) =t and for 1 < t < 2, f(t) = 2 — t; so, by the
previous exercise,

1 e —s ! —s
F(s) = = /Ote tdt—i-/o(Q—t)e tdt]

1 (1 e e et 2 1 2 L
S Tsem | e s (2—0’ —g/le dt]

s s s s 1
1 [1 e s e %
S Tsewm |2 et —]
2s
€ —s —2s
T (e 1) [1—2e7" 47
(es —1)2 ef—1
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49. We have
oo t2k+l

CL k
smt—;(—l) 2h 1) for all ¢.
So for t # 0, we divide by ¢ both sides and get

Slnt 12k
fi 11¢ .
Z 2k arr1y  erallt#0

As t — 0, the left side approaches 1. The right side is continuous, and so as t — 0,
it approaches the value at 0, which is 1. Hence both sides of the equality approach
1 as t — 0, and so we may take the expansion to be valid for all t. Apply the result
of the previous exercise, then

> 2k
LUO)s) = £<Z<—1>km> (s

k=0
- 1 - 1
— kzzo(_l)k(%)!m = kzzo(_mkm.

Recall the expansion of the inverse tangent:

. > i w2k
tan” " u = —1 1.
an” ' u Z( >2k+1 lu| <
k=0
So
R S
s = s2kH1(2k 4+ 1)
Comparing series, we find that, for s > 1,
int 1
z(s‘%) = tan~!(<).
The formula is in fact valid valid for all s > 0. See Exercise 56.

53. We have

1 2
E(aﬂew)(s)—a\/_/ e4adt

2a—%as —Fa s dt

a\f

— A+as t

a\f

t 1
(Let T = % +as, dT' = %dt.)

1 o0
= —eazsz/ e T’24dT

\/;; s
2.2 > 2
= ' — et dt
\/;F as
a?s?

= " erfc(as).

54. Note that, for a > 0,
L(f(at) (s) = / e f(at) dt

= o[ esrma=cevo (2).

a
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Using this and Exercise 52, we find

11 2 1 .2
L (erf(at)) (s) = ——ewZerfc (i) = —e1Zerfe (i) .
a s 2a S 2a
57. Bessel’s equation of order 0 is
zy' +y +zy=0.
Applying the Laplace transform, we obtain
Lxy")+LY) +Lxy) = 0
d d
L")+ L) - —Ly) = 0
ds ds
d
P [SQY —sy(0) — y/(O)} +sY —y(0)—=Y" = 0
s
[ —2sY —s*Y' + sy(O)] +sY —y(0)-Y" = 0
Y'(1+s)—-sY = 0
Y4+ ——Y = o
+ 1+ 52

An integating factor for this first order linear differential equation is

of T s _ 3?11 g2

After multiplyig by the integrating factor, the equation becmes

d

—[V1+s2Y]=0.
T V1+s%Y]

Integrating both sides, we get

V1I+s2Y =K

or

where K is a constant.
From Exercise 50, y = K Jy(t).

145
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Solutions to Exercises 8.3

1. The solution is the same as Example 2. Simply take Ty = 70 in that example.

5. Using the formula from Example 3, we get

u(x, t)

= /0 (t—"1)1—({t—2)Up(T — x)]dr

- /Ot(t —P)rdr— /Ot(t )7 — @) (Uo(r — ) dr

t o 1 gt !
= 57 —37T O—/O(t—T)(T—x)Z/{o(T—x)dT
t3

= 5 |- —au -z

Note that Uo(T —x) =1if 7 > x and 0 if 7 < z. So the integral is 0 if ¢ < x (since
in this case 7 <t < ). If # <7 <, then

/ (t—7)(1—x)Uo(T —x)dT
0

Hence

or

/:(t —7)(r —a)dr

t
/(t7—t:c—7'2+7'3:)d7'

1 1 1, |t
§t7-2 —tat — 57'3 + 57'2$ )
Si° = Pr— o' 4 SPe — St 1?4 Sa® - 2
1 1 1 1
“8 P+ —ta? — —a®
6 2 2 6
1
E(t — .I)B
u(z, t) = 13 (¢t —a)3 ift >,

u(z, t) = %tg - %(t —2)3Up(t — ).
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9. Transforming the problem, we find (see Exercise 7 for similar details)

s2U(x, s) — su(z, 0) — ug(x, 0) = Ugs(z, 0);
s2U(x,5) =1 = Ugp(x, 0);
Umx(xa 0) - S2U($, S) - _1a
—sx 1 .
U(x,s) = A(s)e + =
. 1
U0,s) = L(sint) = ol
1 1
A —_— =
= (s) + s2 1452
1 1
= A(s) T2 2
1 1] . 1
u(z, t) = t—(t—a)Uo(t —x)+sin(t — x)Up(t — x).

13. Verify that
u(x, t) = ’U,l(.f, t) + UQ(I, t)a

where 17 is a solution of

U = Ugy;
u(0,t) = 70;
u(z, 0) = 70;
and wus is a solution of
Ut =  Ugg;
u(0,t) = 30;
u(z, 0) = 0.

It is immediate that the solution of the first problem is u; = 70. The solution of
the second problem is similar to Example 2:

us(, t) = 30 erfe (%) .
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Solutions to Exercises 8.4
1. (a) Let 22 =z, (2, t) = u(2?%, t) = u(z, t). Then

dz dz 1
22’@—1 or E—g
So
2( t) — 2~( t)f@%f@i
&Cux, - &Cuz, T 9z dr 0z 2z
Similarly,
o _ o001
or2 Oz |0z 2z

(1Yo, 10 (o
T odx \2z) 9z 220z \ 9z
—ldz0a  10%d-
222dx 0z 2z 022 dx
—loa 1 9%

423 0z 422 022

(b) Substituting what we found in (a) into (6) and using w in place of @ to simplify
notation, we get

Uy =

S

NI P
4377 427 2z ¢

Uzz + —Uy
z

5. Using Exercise 9 of Section 4.3, we find

S

Ho(x*N Ug(a — 2))(s) = /000 22N Uo(a — z)Jo(sz)x d

/ Jo(sx)z* Nt da
0

(change variables sz < )

1 as
= 52N—+2/0 22N o (z) do

1 N N! as
o nolN . 2N+1—n
= v 270:(—1) 2 T Jna ()]

1 N N!
- g2N+2 Z (_1)H2NM(QS)QN+17HJ71+1 (as)
n=0 :

N' a2N+1fn
_ nolN
= Z(—l) 2 (N —n)l st Jn+1(as)
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9. (a) The chain starts to move from rest with an initial velocity of v(x) = /.
(b) We have A = 0 and

2 2
B(s) = ﬁHo(l/Z)(S) = W

u(x, t) = % /OOO sin (gso Jo (Vs) éds.

13. Similar to Example 1.
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Solutions to Exercises 12.1
1. We have M(z, y) = zy, N(z, y) =y, My(x,y) = =, Ny(x, y) = y. The right

side of (4) is equal to
1ol 1
/ / —xdrdy = —=.
o Jo 2

Starting with the side of the square on the z-axis and moving counterclockwise,
label the sides of the square by 1, 2, 3, and 4. We have

4
/C(M(x, y)dx + Nz, y)dy) _g/s

On side 1, y = 0, hence M = N =0 and so I; = 0. On side 2, x = 1 and y varies
from 0 to 1; hence M =y, N =y, and dx = 0, and so

! 1
Igz/ydy:—.
0 2

On side 3, y = 1 and « varies form 1 to 0; hence M =z, N = 1, and dy = 0, and

SO
0 1
Ig:/ rdr=—=.
1 2

On side 4, z = 0 and y varies form 1 to 0; hence M = 0, N =y, and dx = 0, and

SO
0 1
Iy = dy = ——.
4 /1yy B

1 1 1
M dxr + N dy) =04+ — = — = = —=
~/C( (v, y)dx (7, y) y) 0 27973 57

4
(M(z, y)dz + N(z, y)dy) = ZIJ"

ide j =

Consequently,

which verifies Green’s theorem in this case.

5. We have M (z, y) =0, N(z, y) =z, My(z, y) =0, Ny(x, y) = 1. The right side
of (6) is equal to

// dx dy = (area of annular region) = 7 — T 3—7T
D 4 4
We have

/(M(x,y)dx—i—]\](x,y)dy):/ +/ (M(z, y)dz + N(z, y)dy) = I + L.
r Ca 1

Parametrize C; by x = cost, y = sint, 0 < t < 27, doe = —sintdt, dy = cost.
Hence
2m
I :/ cos®tdt = .
0
Parametrize C by = = %cos t,y = %sin t, t varies from 27 to 0, dx = —% sint dt,

dy = %cos t. Hence

Consequently,

™
(M(x’ y)dx—l—N(x, y)dy) :W_Z:Z’
r

which verifies Green’s theorem in this case.
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9. Take u(x, y) = y and v(x, y) = . Then VZv = 0, Vu = (0, 1), Vv = (1, 0), so
Vu - Vv =0 and, by (9),

Ox ov
/Cya—nds— Cua—nds—/r()ds—().

13. Same solution as in Example 1. Use Theorem 2 instead of Theorem 1.

17. We use the 2nd integral in Example 1. Let us parametrize the ellipse by
x(t) = a cost, y(t) = bsint, dy = beostdt, 0 <t < 2.

27
Area = /xdy:/ a costb sintdt
c 0

2 2m
1 ot
- ab/ cos2tdt:ab/ L4 cos(2) o
0 0 2

= Tab.
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Solutions to Exercises 12.2

1. The function u(z, y) = e®cosy is harmonic for all (z, y) (check that Vu = 0
for all (x, y)). Applying (1) at (xo, yo) = (0, 0) with r = 1, we obtain

1 27
1 =wu(0,0) = %/0 €St cos(sin t) dt.

5. u(z, y) = 2% — Y2, Upy = 2, Uyy = —2, Uy + Uyy = 0 for all (x, y). Since u is
harmonic for all (z, y) it is harmonic on the given square region and continuus on
its boundary. Since the region is bounded, u attains its maximum and minimum
values on the boundary, by Corollary 1. Starting with the side of the square on the
z-axis and moving counterclockwise, label the sides of the square by 1, 2, 3, and 4.

Onside 1,0 <z < 1,y = 0, and u(r, y) = u(x, 0) = 2. On this side, the
maximum value is 1 and is attained at the point (1, 0), and the minimum value is
0 and is attained at the point (0, 0).

Onside2, 0<y <1, z=1,and u(z,y) =u(l,y) =1+y—y* = f(y). On
this side, f'(y) = =2y + 1, f'(y) =0 = y = 1/2. Minimum value f(0) = f(1) =1,
attained at the points (1, 0) and (1, 1). Maximum value f(1/2) =1—-1/4+1/2 =
5/4, attained at the point (1, 1/2).

Onside 3,0<z<1,y=1,and u(x, y) = u(zr,1) =22 +2 -1 = f(z). On
this side, f'(z) =2z 4+ 1, f'(x) =0 = z = —1/2. Extremum values occur at the
endpoints: f(0) = —1, f(1) = 1. Thus the minimum value is —1 and is attained at
the point (0, 1). Maximum value is 1 and is attained at the point (1, 1).

Onside 4,0 <y < 1,2 =0, and u(x, y) = u(0, y) = —y*. On this side, the
maximum value is 0 and is attained at the point (0, 0), and the minimum value is
-1 and is attained at the point (0, 1).

Consequently, the maximum value of u on the square is 5/4 and is attained at
the point (1, 1/2); and the minimum value of u on the square is —1 and is attained
at the point (0, 1) (see figure).

Minimum value —1
attained at

0
o, 1) — 54

Plot3D [x"2 -y”2 +XxYy, {X,0,1 3}, {y,0,1 3}, ViewPoint - {-2, -2,11}]

Maximum value 5/4
attained at ( 1, 1/2)
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Solutions to Exercises 12.3

1. We have
/ G(CC, Y, To, yo) ds = Oa
T

because G(z, y, xo, yo) = 0 for all (x, y) on I' (Theorem 3(ii)).

5. Let u(x, y) = x, then u is harmonic for all (z, y) and so, by Theorem 2,
0 11 1
—G =, =)ds=2w= =T.

9. By Theorem 4, with f(z, y) = 2%y?,

v? (// 2?y® G(z, y, 2o, yo) dz dy) = 2magy; .-
Q

153
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Solutions to Exercises 12.4

1. The function u(r, #) = 1 is harmonic in the unit disk and has boundary values
f(0) = 1. Use (10) with f(#) =1 and you get, for all 0 < r < 1,

1 172
2w )y 1472 —2rcos(f — ¢

)dt?.

5. For n = 1, 2, ..., the function u(r, §) = r"™ cosnf is harmonic in the disk of
radius R > 0 and has boundary values (when r» = R) f(0) = R™cosnf. Use (10)
with f(0) = R™cosnf and you get, for all 0 < r < R,

R™(R% —r?) /27T cosnbf 20
27 o R?*4+r?2—2rRcos(6 —¢)

r" cosnf =
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Solutions to Exercises 12.5
1. (a) (3+20)(2—1i) =6 —3i+4i — 22 =8 +1.
Eb)) B-)2 1) =B-i)2+i) =T+i.

1—i 1—4 1—35 12412

1+i 144 T—i (1+i)(1+4)

[SE]

5. (a) Arg(i) = Z. (b) Jil = 1. (c) i = i,
9. (a) Arg(L+d) = 5. (b) |1+ = VIP+ 2= V2 (¢) L+i= V25,

In computing the values of Argz, just remember that Arg z takes
its values in the interval (—m, 7]. Consequently, Argz is not al-
ways equal to tan—'(y/z) (see Section 12.5, (8), for the formula
that relates Argz to tan=!(y/x)). You can use Mathematica to
evaluate Argz and the absolute value of z. This is illustrated by
the following exercises.

17. (a) Apply Euler’s identity, e?* = cos2 + i sin2.
(b) Use Example 1(d): for z =z + iy,

sin z = sinx cosh y + ¢ cos x sinh y.

So
e—e!
sini =sinOcosh 1+ 4 cosOsinh1 =4 sinh1 =1 >
(¢) Use Example 1(e): for z =z + iy,
cos z = cosx coshy — i sinx sinh y.
So

e—i—eil

cos? =cos0coshl — 4 sin0sinh1 = cosh 1

(Tt is reall)
(d) Use Example 1(f): for z =z + iy,

Logz = In(|z]) + i Arg 2.

For z =i, |i| =1 and Argi = 5. So Logi =1Inl+i% =%, because In1 = 0.

Remember that there are many branches of the logarithm, log z,
and Log z is one of them. All other values of log z differ from Log z
by an integer multiple of 27i. This is because the imaginary part
of the logarithm is defined by using a branch of argz, and the
branches of argz differ by integer multiples of 27. (See Applied
Complex Analysis and PDE for more details on the logarithm.) In
particular, the imaginary part of Log z, which is Argz, is in the
interval (—, 7.

You can use Mathematica to evaluate Logz and e*. This is illus-
trated by the following exercises.

21. We have (—1) - (—1) =1 but
0= Log1l # Log(—1)+ Log(—1) = im + im = 2im.

25. (a) By definition of the cosine, we have

e’L(’LI) + e*i(ix) e 4

2

cos(iz) = = coshz.

155
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(b) By definition of the since, we have

e’L(’LI) _ e*i(im) e~ _ % T —e % o
- = - =1 = ¢ sinh x.
21 21 2

sin(ixz) =

29. (a) Note that, for z =z + iy # 0,

xH+iy oz

224y 2%

Wl |~

We claim that this function is not analytic at any z. We have

d )

T2t v_x2—|—y2;
)

y? — z? —2xy . —2xy x? —q?

Ug = (3:2—|—y2)2’ Uy = (3:2—|—y2)2’ Vo = (3:2—|—y2)2’ Uy = (3:2—|—y2)2'

Since the euqality u, = v, and u, = —v, imply that (z, y) = (0, 0). Hence f is
not analytic at any z =z + i y.
(b) Note that, for z = +iy # 0,

2249y 2z

T—1y z 1
Z,

and ths function is anaytic for all z # 0. Using the Cauchy-Riemann equations, we

have
_ r -y

Tty T
SO

y? — a2 —2xy 2xy y? — a2

Uy = ~5—55, Uy="5535, Us="5 535, Uy=-"—5—55-

T (@2 +2)2 VT (22 4 42)2 T (@2 + )2 VT (@2 +42)2
We have u, = vy and that u, = —v;. Hence the Cauchy-Riemann equations hold.
Also, all the partial derivatives are continuous functions of (z, y) # (0, 0). Hence

by Theorem 1, f(z) = 1 is analytic for all z # 0 and
y? — a2 2xy

+i
(2 +92)% (2 +92)?

FE) = g tiv =

(y+ir)®  (y+iz)®
(2 +y?)? (22 +y?)?
[i(z — iy)]? B i2 -1

(@ +iy)(@—iy)2  (@+iy? 22

33. We leave the verification that u is harmonic as a simple exercise. The function
u(z, y) = €” cosy
is the real part of the entire function
e =e%cosy +ie”siny.
So a harmonic conjugate of e* cosy is e*siny. (By the same token, a harmonic
conjugate of e” siny is —e* cos y.)

Let us now find the harmonic conjugate using the technique of Example 6.

Write
u(z, y) = e cosy uz(z,y) =€ cosy wuy(x,y) =—e"siny.
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The first equation of the Cauchy-Riemann equations tells us that u, = v,. So
vy(z, y) = e* cosy.
Integrating with respect to y (treating x as a constant), we find
v(z, y) = e"siny + ¢(x),

where the constant of integration ¢(z) is a function of x. The second equation of

the Cauchy-Riemann equations tells us that u, = —v,. So
ve(x,y) = e siny+c(x);
e’ siny +d(x) = €siny;
dz) = 0
clxz) = C.

Hence,
v(z, y) = e"siny + C,

which matches the previous formula up to a additive constant.

37. (a) The level curves are given by

Y 1

’LL(SC, y) = x2+y2 = %7

where, for convenience, we have used 1/(2C') instead of the usual C' for our arbitrary
constant. The equation becomes

22 4+9? —2Cy=0 or 2°+(y—C)*=C>

Thus the level curves are circles centered at (0, C') with radius C.
(b) By Exercise 35, a harmonic conjugate of u(x, y) is

€T

v(z, y) = m

Thus the orthogonal curves to the family of curves in (a) are given by the level
curves of v, or

x

m:% or (Z—C)2+y202

vz, y) =
Thus the level curves are circles centered at (C, 0) with radius C'.
The curves in (a) and (b) are shown in the figure. Note how we defined the
parametric equation of a circle centered at (xg, yo) with radius r > 0: xz(t)
xo +rcost, y(t) = yo + rsint, 0 <t < 2.

ttl =Table [{Abs[r] Cos[t], r + Abs[r]Sin [t]}, {r, -3,3 }]
tt2 =Table [{r + Abs[r] Cos[t], Abs [r]Sin [t]1}, {r, -3,3 }]
ParametricPlot [Evaluate [tt1 ], {t,0,2Pi }, AspectRatio - Automatic ]
ParametricPlot [Evaluate [tt2 1, {t,0,2Pi }, AspectRatio - Automatic ]

Show[ {%, %% ]

{{3Cos[t], -3+3Sin[t]}, {2Cos[t], -2+2Sin[t]}, {Cos[t], -1+Sin[t]},
{0, 0}, {Cos[t], 1+Sin[t]}, {2Cos[t], 2+2Sin[t]}, {3Cos[t], 3+3Sin[t]}}

{{-3+3Cos[t], 3Sin[t]}, {-2+2Cos[t], 2Sin[t]}, {-1+Cos[t], Sin[t]},
{0, 0}, {1+Cos[t], Sinft]}, {2+2Cos[t], 2Sin[t]}, {3+3Cos[t], 3Sin[t]}}
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The curves intersect at right angle.

-3

The two families of curves are superposed to show how
orthogonal families of curves intersect at right angle.

41. If u(x, y) does not depend on y, then w is a function of = alone. We have
uy = 0 and so uyy = 0. If v is also harmonic, then g, + uyy = 0. But uy, =0, so
Uz = 0. Integrating with respect to = twice, we find u(z, y) = ax + b.

45. We reason as in Example 4 and try for a solution a function of the form

u(r, ) =a Arg z + b,

where z =2 + iy and a and b are constant to be determined. Using the boundary
conditions in Figure 18, we find

97 97
u(rl—o)—GO = a1—0+b—60,
3T 37

u(r, —)=0 = a?—kb:();

5
9 67 200
= 01(1—0—1—0)—6001'&—7,

= b=-120;

2
= u(r, )= gArgz — 120.

In terms of (z, y), we can use (10) and conclude that, for y > 0,

49. As in Exercise 47, we think of the given problem as the sum of two simpler
subproblems. Let u; be harmonic in the upper half-plane and equal to 100 on the
z-axis for 0 < x < 1 and 0 for all other values of x. Let us be harmonic in the
upper half-plane and equal to 20 on the z-axis for —1 < x < 0 and 0 for all other
values of x. Let u = uj +ug. Then w is harmonic in the upper half-plane and equal
to 20 on the z-axis for —1 < 2 < 0; 100 for 0 < z < 1; and 0 otherwise. (Just add
the boundary values of u; and ug.) Thus w; + us is the solution to our problem.
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Both u; and ug are given by Example 5. We have

ws,y) = ﬂrﬂ[cml (f”;)_cotl (g)]
we) = 2o (2) —eort (2ZE)]:

1 -1 2 1
u(z,y) = —@cot’1 (E> + Ecot*1 (x ) - —Ocot’1 (i> .
T Y T Y T Y

159
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Solutions to Exercises 12.6

1. (a) f(z) = 1/z is analytic for all z # 0, by Theorem 2, Section 12.5, since it is
the quotient of two analytic functions. U(u, v) = wv is harmonic since U,, = 0,
Uyy =0, 80 Uyy + Uyy = 0.

(b) We have (this was done several times before)

o= e Y

T2 T 22 ity

So " y
Re (f) = u(z, y):m and  Im(f) = v(z, y>:__x2+y2'

(¢) We have

$x,y) = Uof(z) =U(u(z, y), v(z, y))

T Y
= U
(x2+y2’ x2+y2)

—zy
(22 + )2

You can verify directly that ¢(x, y) is harmonic for all (z, y) # (0, 0) or, better
yet, you can apply Theorem 1.

5. (a) If z is in S, then z = a + i,y where b <y < ¢. So
f(2) =€ = e¥TY = %Y,

The complex number w = e®e’¥ has modulus e® and argument y. As y varies from
b to ¢, the point w = e%e’Y traces a circular arc of radius e?, bounded by the two
rays at angles b and c.
(b) According to (a), the image of {z =1+4iy: 0 <y < x/2} by the mapping e*
is the circular arc with radius e, bounded by the two rays at angles 0 and 7 /2. It
is thus a quarter of a circle of radius e (see figure).

Similarly, the image of {z = 1+ iy : 0 <y < w} by the mapping e* is the
circular arc with radius e, bounded by the two rays at angles 0 and 7. It is thus a
semi-circle of radius e, centered at the origin (see figure).

The most basic step is to define the complex variable z=x+iy, wherex and y real. Thisis done asfollows:

Clear [x,y,2z, f ]
<< Algebra‘’Relm’

X /: Im [x]=0
y/: Im[y]=0
z=X+ly

Y ou can now define any function of z and take itsreal and imaginary. For example:

flz_]1=E"z
Re[f [z]1]
Im[f [z]]
exniy

e* Cos[y]

e*Sinly]
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fl[t ]=Re[f[z]]/ {Xx-> 1,y >t}
2t 1=Im[f[z]]1/ {Xx-1,y >t}
ParametricPlot [Evaluate [{fl [t],f2 [t]1}], {t O, Pi /2}, AspectRatio - Automatic ]

ParametricPlot [Evaluate [{fL [t],f2 [t]1}], {t O, Pi 1}, AspectRatio - Automatic ]
e Cos [t ]

eSin[t]
e
e
) 2
1
1
2 1 1 2 e

9. We map the region onto the upper half-plane using the mapping f(z) = 22 (see

Example 1). The transformed problem in the uv-plane is V2U = 0 with boundary
values on the w-axis given by U(u, 0) = 100 if 0 < v < 1 and 0 otherwise. The
solution in the uv-plane follows from Example 5, Section 12.5. We have

Ulu, v) = ? [cotl (u; 1) —cot™! (%)] .

The solution in the zy-plane is ¢(x, y) = U o f(z). To find the formula in terms of
(z, y), we write z = x +iy, f(2) = 2? = 2% — y? + 2ixy = (u, v). Thus u = 2% — y?

and v = 2zy and so

— _ 2 2 7100 1 x2—y2_1 1 $2—y2
P(z, y) =Uof(z) =U(z"~y", 2zy) = — [cot (7> — cot ( T2y )] '

13. We map the region onto the upper half-plane using the mapping f(z) = e*
(see Example 2). The points on the z-axis, z = z, are mapped onto the positive
u-axis, since €* > 0 for all z, as follows: f(z) > 1ifx > 0and 0 < f(z) < 1if
x < 0. The points on the horizontal line z = x + 4w are mapped onto the negative
u-axis, since €™ = —e* < 0, as follows: f(x +im) = —e* < —1if x > 0 and
—1 < flz+im) = —e* < 0 if < 0. With these observations, we see that the
transformed problem in the wv-plane is V2U = 0 with boundary values on the
u-axis given by U(u, 0) = 100 if —1 < v < 1 and 0 otherwise. The solution in the
uv-plane follows from Example 5, Section 12.5. We have

o= 2 oot (#51) et (52)],

The solution in the zy-plane is ¢(x, y) = U o f(z). To find the formula in terms of
(z,y), we write z =z + iy,

(u, v) = f(z) =€* =e€®cosy +ie”siny.
Thus u = e” cosy and v = e® siny and so

¢(z,y) = Uo f(z) =U(e" cosy, e” siny)

_ 100 [cotl (ex cosy — 1) ot (ex cos.y—i- 1)] '
™ e’ sy e’ sy
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17. We map the region onto the upper half-plane using the mapping f(z) = 22 (see
Example 1). The transformed problem in the uv-plane is V2U = 0 with boundary
values on the u-axis given by U(u, 0) = uif 0 < u < 1 and 0 otherwise. To solve the
problem in the wv-plane, we apply the Poisson integral formula ((5), Section 7.5).
We have

v [ U(s, 0) v [ s
S G P
Ulu, v) w‘/foo(u—s)Q—i-vQ 5 7T/0 (u— )2 4 02 5

Now use your calculus skills to compute this integral. We have

1 1 1
v s v (s —u) v u
- ———ds = — | ——F—ds+— | ———d
7T/0 (u— 5)2 + 02 8 7T/0 (s —u)? + 02 S+7T/0 (s —u)? 4 02 8
v [l 9 ot ru oy,
1— 2 2 t 1—u
v e e (2
27 u? + v? ™ v) l—u

v, (1—u?+v? wu
= —ln—Fx>——+—
2T u2 + v? T

|: v v
1— 2 2 1—
= L 7( w” +o + 2 [tanl (_u) +tan~! (E)] .
™ v v

27 u? 4+ 1?2

The solution in the zy-plane is ¢(x, y) = U o f(2). To find the formula in terms of

(z,y), we write z = x +iy, f(z) =22 = 2% — y? + 2ixy = (u, v). Thus u = 2% — y?

and v = 22y and so
¢, y) = Ul® -y 2ay)

zy (1= (@2 = y?))” + (2ay)”
m (22 — y?)? + (22y)?

2 _ .2 1 — 2242 2_ .2
+I =Y [tanl (733 hatl >+tan1 (x Y )]
T 2xy 2xy

zy (=@ =) + (2wy)”
T ($2 +y2>2

2 _ 2 1 — 2242 2_ .2
+I =Y [tanl (733 Y >+tan1 (x Y )] .
T 2xy 2xy

(T verified this solution on Mathematica and it works! It is harmonic and has the
right boundary values.)

21. The mapping f(z) = Logz maps the given annular region onto the 1 x 7-
rectangle in the wv-plane with vertices at (0, 0), (1, 0), (1, 7), and (0, 7). With the
help of the discussion in Example 4, you can verify that the transformed Dirichlet
problem on the rectangle has the following boundary conditions: U(u, 0) = 0
and U(u, ) = 0 for 0 < w < 1 (boundary values on the horizontal sides), and
U(0, v) = 100 and U(1, v) = 100 for 0 < v < 7 (boundary values on the vertical
sides). To simplify the notation, we rename the variables z and y instead of u
and v. Consider Figure 3, Section 3.8, and take a = 1, b =m, fi = fo =0, and
f3 = fa = 100. The desired solution is the sum of two functions us(z, y) and
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ug(z, y), where

ug(x, y) = Z D,, sinh nz sin ny;
n=1
2 i )
D, = - / 100 sinny dy
msinhn /g
—200 200 "
N 77,7Tsinhn(cosmT -b= n7rsinhn(1 - =0
us(x, y) = Z Cp sinh[n(1 — )] sinny;
n=1
2 i )
c, = - / 100 sinny dy
msinhn /g
200
= ——(1—-(=1)"™).
nm sinhn( (=1)%)
Thus (back to the variables u and v)
U(u, v) = wug+us
— 200 ny :
= ngl m(l — (=1)") sinh nu sin nv
— 200
+nz::1 — (1= (=1)")sinh[n(1 — w)] sinnw

_ @ > sinnwv (1— (_1)")[sinhHU+Sinh[n(1_u)]]

T nsinhn
n=1

~ 400 e sinh[(2n 4+ 1)u] + sinh[(2n + 1)(1 —u)] .
- 7n:0 (2n + 1) sinh(2n + 1) sin[(2n + 1)v].

To get the solution in the y-plane, substitute u =  In(z?+y?) and v = cot ™! (£).
The solution takes on a neater form if we use polar coordinates and substitute
2?4+ y? =r? and 0 = cot ' (£). Then

o(z, y)

U(% In(z2 + y?), cot ™! (%)) = U(lnr, )

400 = sinh[(2n 4 1) In7] 4 sinh[(2n + 1)(1 — In7)]
I (2n + 1) sinh(2n + 1) sin((2n + 1)6)

n=0

= o(r, 0).

It is interesting to verify the boundary conditions for the solution. For example,
when r = 1, we have

400 ¢~ sinh[(2n + 1)(1)]

™ = (2n + 1) sinh(2n + 1)

o(1, 0) sin[(2n + 1)6]

400 <= sin[(2n + 1)6]
- TZ (2n+1)

This last Fourier sine series is equal to 100 if 0 < 6 < w. (see, for example,
Exercise 1, Section 2.3). Thus the solution equals to 100 on the inner semi-circular
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boundary. On the outer circular boundary, » = e, and we have

400 sinh(2n + 1) ,
o, 6) = T; @n+ Dsinh(zn + 1) S nl@n+ 1)6]
400 = sin[(2n + 1)6]
B TZ @2n+1)

which is the same series as we found previously; and thus it equals 100 for 0 < 6 < 7.
Now if # = 0 or m (which corresponds to the points on the z-axis), then clearly
¢ = 0. Hence ¢ satisfies the boundary conditions, as expected.

25 We have f(z) =z+z20=xz+iy+ao+iyo =2+ xo+i(y+yo). Thus f maps
a point (z, y) to the point (x + o, y + yo). Thus f is a translation by (xo, yo).

37 We have .

—
pt+ih=Uof+iVof=(U+iV)of.

Since V' is a harmonic conjugate of U, U + ¢V is analytic. Thus g o f is analytic,
being the composition of two analytic functions. Hence ¢ + ¢4 is analytic and so
1 is a harmonic conjugate of ¢.
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Solutions to Exercises 12.6

1. The function ¢(z) = z — 1 is a conformal mapping of €, one-to-one, onto the
unit disk. Apply Theorem 3; then for z = x + iy and zg = 29 + i yp in 2, we have

G(.I, Y, To, yO) =

r4+iy—1—z9—1yo+1
1—(xo+iyo—1)(z+iy—1)

In

In

(x —20) +i(y —yo) ’
1—(xo—1—iy)(x—1+iy)|

In (@~ 20)? + (y — 0)?] — g [1 = (o~ 1~ igo) (& — 1 +iy)].

In [(35 —x0)* + (y — yo)Q]

1
-3 In [(—zoz + 20 + = — yoy)* + (yoz + yzo — Yo — ¥)*)] .

N = N

5. The function ¢(z) = ¢* maps (2, one-to-one, onto the upper half-plane. Apply
Theorem 4; then for z = x + 7y and 2y = g + iyo in €2, we have

G(.I, Y, To, yo)

e* —e* - —
= In|———| (Note that e = ¢*°.)
e? — e*o
1 e’ cosy + e’ siny — e*° cosypg — 1”0 sinyp
= In
e cosy + e siny — e*° cos Yo + 1e%0 sinyy
1 ! (ex cosy — e*° cos y0)2 + (ex siny — e*0 sin y0)2
= —In
(ex cosy — e%0 cos y0)2 + (ex siny + e*o sin y0)2
_ L €% + %0 — 2120 (cos y cos Yo + sinysinyp)

n
2 e2r 4 e2m0 — 2evtTo ( COS Y COS Yo — siny sin yo)

1. e 4 20 — 27720 cog(y — yp)
n :
2 e2% 4 270 — 2erHT0 cos(y + o)

9. We use the result of Exercise 5 and apply Theorem 2, Section 12.3. Accordingly,

1 [ oG
(oo, ) = 5= [ a0 G| _da.
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We have

G _ Ly R4 e — 2670 cos(y — yo)
(.I, Y, To, yO) - 5 n e2x + €2x0 — Qex+x0 Cos(y —+ yo)

1
= 3 In (** + €*™ — 2™ cos(y — yo))

1
—3 In (e** + €*™ — 2170 cos(y + yo))

oG 1 2”10 sin(y — yo) ’
Y ly=n 2 e2® + 270 — 2e%+%0 cos(y — yo) ly=n

1 22720 cos(y + o) ’
2 €27 4 e2%0 — 2er+w0 sin(y 4 yg) ly=r

€0 sin g
€T 4 e2%0 — 2e+T0 cog g

sin yo
eTTT0 4 T0—T — D COSYg

Thus the Poisson integral formula in this case is

sin yo / > 9(x)

2m oo EXTT0 4 eP0TT — D oS Yo

u(xo, Yo) =

Let us test this formula in a case where we know the solution. Take g(x) = 1 for
all x. Then, we know that the solution is a linear function of y (see Exercise ,
Section 12.); in fact, it is easy to verify that the solution is

Yo
u(xo, yo) = P

Take g(x) = 1 in the Poisson formula and ask: Do we have

si o 1
% _ 2 / da?

T 27 oo €XTT0 4 e¥o—T — 2 cosyp

Change variables in the integral: z <= x — 9. Then the last equation becomes

Yo _ sin yo /°° 1 Iz
m 2 J_ o €5+ e —2cosyo

Evaluate the right side in the case yo = 5. The answer should be 1/2. Then try
yo = w/4. The answer should be 1/4. (I tried it on Mathematica. It works.) Out
of this exercise, you can get the interesting integral formula

2y0 o 1
- :/ - — dr (0 <y <m).
sin yo Lo €Y+ 7% —2cosyp
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Solutions to Exercises A.1

1. We solve the equation ' +y = 1 in two different ways. The first method basically
rederives formula (2) instead of just appealing to it.
Using an integrating factor. In the notation of Theorem 1, we have p(x) = 1
and ¢(z) = 1. An antiderivative of p(z) is thus [1-dz = z. The integrating factor
is

ILL({E) _ ef p(z)de _ v
Multiplying both sides of the equation by the integrating factor, we obtain the
equivalent equation

ey +y] = e
d
dz

where we have used the product rule for differentiation to set -L[e"y] = e*[y’ + y].
Integrating both sides of the equation gets rid of the derivative on the left side, and
on the right side we obtain [ e® dz = e® + C. Thus,

—[e"y] =

Ey=e"+C = y=14Ce "

where the last equality follows by multiplying by e~ the previous equality. This
gives the solution y = 1+ C'e™™ up to one arbitrary constant, as expected from the
solution of a first order differential equation

Using formula (2). We have, with p(z) = 1, [p(z)dz = = (note how we took
the constant of integration equal 0):

y=e [C+/1~exdx] =e P[C+e’]=1+Ce™®

y=ce" [C+/Sinxexdx] .

To evaluate the integral, use integration by parts twice

5. According to (2),

/sin ze *dr = —sinze *+ / e *cosxdx
= —sinze * +cosx(—e ") — / e Tsinxdx;
/sm ze Ydx = —e*x(sinx + cos x)

1
/smxe = —§efx(sinx+cosx).

So
y=e" [C— %e*x(sinx—l-cosx) =(Ce” — %(sinx—l—cosx).

9. We use an integrating factor

_ 1
ef p(z)de _ ef tanzde _ e In(cosz) _ — sec .
CcosT
Then
secwy —secxrtanTy = SecT cosT;
e [y secx] = 1
ysecx = z+C=

y = zcosx+ Ccosx.
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Appendix A Ordinary Differential Equations: Review of Concepts and Methods

22
13. An integrating factor is e=, so

z_
2

22 22 2 d 22 22
ey +xe? y=uzxe = — [eTy} =ezx

We now use the initial condition:
y0)=0 = 0=1+C
= C=-1

2

= y=1-—e 7.

17. An integrating factor is sec z (see Exercise 9), so

secxy’ +ytanxsecw = tanxsecr = e [y sec ] = sec x tan
x

= ysecx:/tanxsecxdx:secx—kc

= y=1+Ccosuz.
We now use the initial condition:
y0)=1 = 1=1+4+C
= C=0
= y=1

21. (a) Clear.

(b) e as a linear combination of the functions cosh z, sinha: e” = coshz+sinhz.
(¢) Let a, b, ¢d be any real numbers such that ad—bc # 0. Let y1 = ae® +be™* and
yo = ce® +de~*. Then y; and yo are solutions, since they are linear combinations
of two solutions. We now check that y; and ys are linearly independent:

Y1 Y2
W(yla y2) = , ,
hn Ya

ae® + be™* ce® +de™*

B ae® — be™* cet —de™®

= —ad+ bc— (ad — be) = —2(ad — be) # 0.
Hence y; and yy are linearly independent by Theorem 7.
25. The general solution is
y = c1e” + cpe*® 4 2z + 3.

Let’s use the initial conditions:

y(0) =0

y'(0) =0

Subtract (*) from (**)

Substitute into (*)

01+02+3:0 (*)
c1+2c+2=0 (k)

co—1=0; co=1

R

c1+4=0; ¢ =—4.
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Thus, y = —4e” + ** 4 2z + 3.

29. As in the previous exercise, here it is easier to start with the general solution
y=c1e” 2 + @72 42 4 3.
From the initial conditions,
y(2) =0
y'(1) =1
Subtract (*) from (**)
Substitute into (*)

ci+ec+7=0 ()
c1+2c2+2=1 (k)
co—5=1; co =56

cp+13=0; ¢c; = —13.

L

Thus, y = —13e*2 4+ 6e2(*=2) 4+ 22 + 3.
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Using Mathematica to solve ODE

Let us start with the simplest command that you can use to solve an ode. It isthe DSolve command. Weiillustrate by
examplesthe different applications of this command. The simplest caseisto solvey' =y

DSolve [y’ [x] =YyI[x],y [X], X ]
{{y[x] »e*C[1]}}

The answer isy= C €* asyou expect. Note how Mathematica denoted the constant by C[1]. The enxt exampleisa2nd
order ode

DSolve [y” [Xx] =Yy[x],y [X],x]
{{y[x] »e*C[1] +e*C[2]}}

Here we need two arbitrary constants C[1] and C[2]. Let'sdo an intial value problem.

Solving an Initial Value Problem

Hereis how you would solve y" =y, y(0)=0, y'(0)= 1
DSolve [{y” [X] = yI[x],y [0]=0,y" [0] =1}, y [X],X]

{{yx1 - % e* (-1+e**)}}

Asyou see, the initial value problem has a unique solution (there are no arbitrary constants in the answer.
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Plotting the Solution

First we need to learn to extract the solution from the output. Hereishow it isdone. First, solve the problem and call the
output solution:

solution ~ =DSolve [{y” [X] = y[x],y [0] =0,y [0] =1}, y [X],X ]

{{y[x] - %—e'x(—l-rezx)}}

Extract the solution y(x) as follows:

Y[X_]1 =y[x] /. solution [[11]

1

2X
5 )

e*(-1l+e

Now you can plot the solution:

Plot [y[x], {X,0,2 }]

3.5
3 The solution y(x) goes through the point
2.5 (0, 0). This confirms the initial condition
; ¥(0) =0.
1.5
1
0.5

0.5 1 1.5 2

Note theintial conditions on the graph: y(0)=0 and y'(0)=1. To confirmthat y'(0)=1 (the slope of the graph at x=0is 1),
plot the tangent line (line with slope 1)

Plot [{y[x], x}, {X,0,2 }]

3.5 The tangent to the solution y(x) at x =0
3 is the line y = x, whose slope is 1.

2.5 Thus y'(0) = 1, because the derivative

1 525 is equal to the slope of the tangent line.
1

0.5

0.5 1 1.5 2
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The Wronskian

The Wronskian is a determinat, so we can compute it using the Det command. Hereisan illustration.

Clear [y]
soll =DSolve [y"” [X] +Yy[X] =0,y [X], X ]

{{y[x] »C[1] Cos [x] +C[2] Sin[x]}}

Two solutions of the differential equation are obtained different values to the constants c1 and c2. For

Clear [yl,y2 ]
yl[x_1 = clCos [X];
y2 [X_] =¢2Sin [X];

Their Wronskian is

wx_1 = Det [{{yl[x],y2 [X1}, {yl' [X],y2" [x]}}]
clc2Cos[x]?+clc2Sin[x]?

Let'ssimplify using the trig identity cos®2 x + sin*2 x =1
Simplify  [w[x]]
clc2

The Wronskian is nonzero if c1\=0and c2\=0. Let ustry adifferent problem with a nonhomogeneous

Clear [y]
sol2 =DSolve [y’ [X]+VY[X] =1V [X], X ]

{{y[x] >1+C[1l] Cos[x] +C[2] Sin[x]}}

Two solutions of the differential equation are obtained different values to the constantscl and c2. For

Clear [yl,y2 ]
yl[x_]1=1+ Cos[x];
y2[x_]1 =14+ Sin [X];
These solutions are clearly linearly independent (one is not a multiple of the other). Their Wronskian is
Clear [w]
wix_] =Det [{{y1[x],y2 [X]}, {yl' [x],y2" [X1}}]
Cos [x] + Cos [x]%2+Sin[x] +Sin[x]?
Let'ssimplify using the trig identity cos*2 x + sin"2 x =1
Simplify  [w[x]]
1+Cos[x] +Sin[x]

Let's plot w(x):
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Plot [w[x], {X,0, 2 Pi}]

=
a B a N

The Wronskian does vanish at some values of x without being identically 0. Does this contradict Theorem 7 of Appendix
A.1?
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Solutions to Exercises A.2

1.

13.

17.

21.

Equation:
Characteristic equation:
Characteristic roots:

)\1:1; )\2:3

General solution: = c16% + cye’
Y 2

Equation: yv' 42y +y =
Characteristic equation: A2 42041 =
A+1)? =

Characteristic roots: A1 = —1 (double root)

x

General solution: =cie ¥ +cre
Y 2

Equation: y' 4y =
Characteristic equation: A+l =
Characteristic roots: A =1 A= —i;
Case III: a=0, pg=1,

General solution: Y =C1CoST + cosin

Equation: y' +4y +5y

Characteristic equation: A2 +4)X45
—4 4416 -2

Characteristic roots: A= # = -2+

Al=-2+414 A=-2—73;

Case III: a=-2, [=1;

General solution: Yy =cre 2% cosx + coe ¥ sinx

Equation: Y =2y +y
Characteristic equation: A3 —2)2 4+ )\
AA—1)2

Characteristic roots: A1 =0; A2 =1 (double root)

General solution: y=c1+coe®+c3xe”

Equation: Yy =3y"+3y —y
A —3A24+3)0 -1

(- 1)’

A1 = 1 (multiplicity 3);

)

Characteristic equation:

Characteristic roots:

General solution: y=-cie® +coxe +c3ale”

y' -4y +3y = 0
N —4X+3 = 0
A=DA=3) = 0

e 2
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25.
Equation: Y —4y +3y = €22
Homogeneous equation: y' —4y +3y = 0
Characteristic equation: A2 —4X+3 = 0
A-DA-3) = 0
Characteristic roots: AL =1, Ao =3;

Solution of homogeneous equation: 1y, = ¢ €% + ¢z €37.

To find a particular solution, we apply the method of undetermined coefficients.
Accordingly, we try

y;D - AQQI’
y; = 24e%%,
y;/ = 44>

Plug into the equation 3 — 41y + 3y = €2*:
4Ae*" — 4(2Ae*) + 34 = *
—Ae? = 2
A = -1
Hence y, = —e** and so the general solution
Yg =cre” +c2 e — 2%,
29.
Equation: y' =4y +3y = ze™¥
Homogeneous equation: y' =4y +3y = 0
Characteristic equation: A2—4X+3 = 0
A-1DA=3) = 0
Characteristic roots: AL =1, Ao =3;

Solution of homogeneous equation: 1y = ¢ €* + co €3%.
q Y

To find a particular solution, we apply the method of undetermined coefficients.
Accordingly, we try

Yp = (Az+Be™™;
y, = € “(Az— B+ A);
y, = e “(Ax— B —-2A).

Plug into the equation y"" — 4y +3y =e™*:
e "(Ar — B—2A)—4e "(Az — B+ A)+3(Ax+ B)e™® = e *
8A = 1;

—6A+8B = 0.
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Hence
A=1/8, B=3/32 y,= (§+ ;’—2)6*%
and so the general solution
Y, =c1e” + e + (g + 33—2)6730.
33.
Equation: yv'+y = 3+ 3cos2z;
Homogeneous equation: yV'+y = 0;
Characteristic equation: A+1 = 0
Characteristic roots: A1 = —1i, Ao =1

Solution of homogeneous equation: 1y, = ¢ cosx + ¢ sinz.

To find a particular solution, we apply the method of undetermined coefficients.
We also use our experience and simplify the solution by trying

1
o= 5 + Acos 2x;
y; = —2Asin2x;
y, = —4Acos2z.

Plug into the equation y” +y = 3 + 3 cos 2z:
—3Acos2z + % = % + %cos2x;
-34 = %;
A=—z.

Hence

1 1
Yp = —Ecos2x—|— >

and so the general solution

1 1
Yg = €1 COS 2T + co sin 2z — Ecos2x—|— —.

2
37.
Equation: ' —y —2y = a%—4;
Homogeneous equation: y' —y -2y = 0
Characteristic equation: AX—-A-2 =0
Characteristic roots: A =1, A=2;

Solution of homogeneous equation: gy, = ¢y e~ % + ¢ €27,
For a particular solution, try
Yp = Az?+ Ba + C;
y; = 2Axz+ B;

y;/ = 2A.
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Plug into the equation 3"’ — ¢/ — 2y = 22 — 4:

24 —2Ax— B —-2A2? —2Bxz—2C = a?—4;
24 = 1;
1
A=——;
2

B:l;
2
1 1
2 —-2C-B=4 = ——-——-—=--20=4
2 2
5
C_Z'
Hence
*——x2+lx+§'
Ip= Tt T T

and so the general solution
or 1 o 1 5

yg=cie “+coe — 3% +§x+1
41. 2y —y = %7,
Equation: 2y —y = e
Homogeneous equation: 2y —y = 0
Characteristic equation: 2X -1 =0
Characteristic root: A = %;
Solution of homogeneous equation: 1y, = ¢; €*/2.

For a particular solution, try
Yp = Ae?®:

y; = 24e%T,

Plug into the equation 2y’ — y = 2*:

4Ae%T — Ae®* = 27,
1
3A=1 = A=_-.
3
Hence
1 2x
= —€ N
y;D 3 )
and so the general solution
1
Yy = Clex/2 + _€2x'
45. Write the equation in the form
' —4y +3y = e sinhzx
1
— e2x§(ex _ 671‘)
1 3z T
= L)

A177
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From Exercise 25, yp, = c1e® + c2e3*. For a particular solution try

yp = Are®® + Bre®.

49. y" — 3y + 2y = 3z%e® + x e~ ?* cos 3z. Characteristic equation
M_3A+2=0 = A\ =1, \y=2.
So yp, = c1e” + coe®®. For a particular solution, try

yp = v(Az* +Bx® + C2?+ Da+ E)e” + (Gr+H) e > cos 3z + (Kx + L) e~ ** sin 3.

53. y" — 2y +y = 6z — e”. Characteristic equation
M —2X+1=0 = A\ = 1(double root).
So yn, = c1€” + coxe”. For a particular solution, try
yp = Ar + B + Cx?e”.
57. ¢y + 4y = coswx. We have
Yp = €1 COS 22 + co sin 2.
If w # 42, a particular solution of

Yy’ + 4y = coswz

is yp = Acoswz. So y, = —Aw? coswz. Plugging into the equation, we find
Acoswr(4—w?) = coswz;
A4 —-w?) = 1
1
A = .
4 —w?

Note that 4 — w? # 0, because w # 42. So the general solution in this case is of

the form
COS WX

4 —w?’
If w = %2, then we modify the particular solution and use y, = x(A coswz +
Bsinw:c). Then

Yg = €1 €08 2x + cosin 2x +

/

Yp = (Acosw:c + B sinw:c) + xw( — Asinwz + Bcosw:c),
y;’ = wa( — Acoswzx — Bsinw:c) + 2w( — Asinwz + B cosw:c).
Plug into the left side of the equation
wa(—Acosw:c - Bsinw:c) —|—2w(—Asinw:c—|—Bcosw:c) —|—43:(Acosw:c—|—Bsinw:c).
Using w? = 4, this becomes
2w( — Asinwz + Bcosw:c).

This should equal coswz. So A =0 and 2wB =1 or B =1/(2w).
1
Yg = €1 €COS 2T + co8in 2z + % sinwz  (w = £2).
w
Note that if w = 2 or w = —2, the solution is

1
Yg = €1 €COS2x + co sin 2x + Zaz sin 2.
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61. To solve y/ —4y =0, y(0) =0, y/'(0) = 3, start with the general solution
y(x) = ¢y cosh 2z + ¢ sinh 2.
Then

y(0) =0 = ¢1cosh0+ ¢cosinh0 =0

4

c1 = 0; so y(z) = cysinh 2.

y'(0)=3 = 2cycosh0=3

= y(z)= g sinh 2.
65. To solve 3/ — 5y +6y =€, y(0) =0, y'(0) = 0, use the general solution
from Exercise 27 (modify it slightly):

1
y=c1e*® 4 cye 4 569”.

Then

1
y(0)=0 = cl—|—02:—§;

1
y(0)=0 = 201+302:—§

69. Because of the initial conditions, it is more convenient to take

y = ¢ cos[2(z — g)] + cosin[2(z — g)]

as a general solution of ¢/ + 4y = 0. For a particular solution of y"" + 4y = cos 2z,
we try

y = Axsin2z, y = Asin2x + 2Ax cos 2z, y’ = 4A cos2x — 4 Ax sin 2z.
Plug into the equation,
1
4Acos2xr =cos2x = A= 1

So the general solution is

1
y = ¢y cos[2(x — g)] + cosin[2(x — g)] + i sin 2.

Using the initial conditions
y(r/2)=1 = ¢ =1

y(r/2)=0 = 202+gcosw:0

s
= @:g;
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and so

1
y = cos[2(x — g)] + gsin[2(az - g)] +7° sin 2z

using the addition formulas for the cosine and sine, we can write
s . i .
cos[2(x — 5)] =—cos2r and sin[2(z — 5)] = —sin 2z,
and so

1 1
Yy = —Cos2x — gsin2x—|— szian: —cos 2z + (—g—k Zaz) sin 2.

73. An antiderivative of g(z) = e®* cos bx is a solution of the differential equation

y = e®" cos ba.

We assume throughout this exercise that a # 0 and b # 0. For these special
cases the integral is clear. To solve the differential equation we used the method of
undetermined coefficients. The solution of homogeneous equation y' =0 is y = C.
To find a particular solution of y’ = e%* cosbx we try

y = e (Acosbr + Bsinbx)
Yy = ae®(Acosbxr + Bsinbzx) + e**(—bAsinbx + bB cos bx)

= e"(Aa+bB)cosbr + e (aB — bA) sin bz.

Plugging into the equation, we find

e (Aa + bB) cosbx + e**(aB — bA)sinbz = €* cosbx
a b
ACL-'—bB:l, CLB—bA:O = A:m,B:m,

SO
axr

acosT + bsinbx) +C.
a

/eamcosbxd:c: W(
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Solutions to Exercises A.3

1. We apply the reduction of order formula and take all constants of integration
equal to 0.

y' +2y —3y=0, Y =€’

p(x) = 2; /p(x) dx = 2$, e f p(x) dx — 6721‘;

e~ J p(z) dz . e—2z
yQ_yl/de = ¢ / i

Thus the general solution is

y = cre” + cpe 3%,
5.y 4+4y=0, y = cos2z.
y' +4y =0, Y1 = COS 2x;
p(x) =0, /p(x) dz =0, e~ @) de 1;
o [ p(x)de 1
yz—yl/de = cos2x/mdx
= cos 2x/3602 2z dx

1 1
= cos2x [5 tan 23:] = 3 sin 2.

Thus the general solution is

Y = ¢1 COs 2x + co sin 2.

9. Put the equation in standard form:

(1 —2%)y" —2zy +2y =0, Y1 = ;
2x 2 2x
/! / — _ —_——
V1T mY Ty =0 p(2) = —7——;
2x
/p(x)dx = /_1—x2 dr = In(1 — 2?)
e~ [p(@)dz _ e~ In(1—22) _ 1 .
1— 22’

| =
= €T Z.
b2 (1 —a?)a?
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To evaluate the last integral, we use the partial fractions decomposition

1 B 1
(1—22)22 (1 —2)(1+2)22
A B C D
S o itttz

A(l+2)2? + B(1 —2)2? + C(1 — 2?)x + D(1 — 2?)
(I —2)(1+x)a?

1 = A(l+2)2*> + B —2)2*> +C(1 —2¥)z + D(1 — 2?).
Takex =0 = D=1

Takex =1 = 1=2A4

Takez =—-1 = 1=2B

Checking the coefficient of 23, we find C' = 0. Thus

(1—22)22  2(1—-xz) 2(1+2) x?
1 1 1 1
————dr = —-In(1- —In(1 - =
/ (1 —a?)a? * 2 n(l—a)+ 2 a(l +2) x

1 1+ 1
= —In - —.
2 1—=x T

Hence the general solution

—erte|tm ()
y=cx C2 211 1— = .

13. Put the equation in standard form:

2%y +ay +y =0, y1 = cos(Inx);
1 1 1
'+ =y + 5y =0, p(z) = —;
x x x
1
/p(x)dx = /—dx:lnx
x
effp(x)dx = e —Inz _ l
z’
Y2 = COS 1nx/ 5 dx
T CoS hm:
cos(1 )/—1 du 1 d ld)
= nzx v (v=Inz, du==dzx
cos? u ’ x

= cosu tanu =sinu = sin(Inu).
Hence the general solution

y = ¢y cos(lnx) + cosin(Inu).
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Hence the general solution

21,y — 4y + 3y =e"".

M —4\+3=0 =

vy’ +2(1-2)y +(x-2)y=0, y1 = e”;
21—z T —2 2
Y+ ( )’+ y =0, plx)=—-—-2
T T T
/p(x) dev = 2lnz-— 2z
e~ [p(@)dz _ 6721nm+2m _ ﬁ’
2
2x
" e
Y2 = € /de

- 1 e

X

y=cre’ +cog—.
T

A—1)(A—3)=0

= A=1lor\=3.

Linearly independent solutions of the homogeneous equation:

Wronskian:

y1=¢€* and gy = e,
et eBm
— x xr __ x
= 3% — % = 2¢%
er 33

We now apply the variation of parameters formula with

g(z) =

Yp =

Thus the general solution is

25. y" +y =secux.

e 3
y29(2) y19(2)
dx + d
)W TR W)
m/_QBmemd_Fgm/ememd
(&) 2e4m X e 2e4m X
x 3x
_C [ ey +— [ e dx
2
x 3x —x —x
e o € 4" "
4 8 4 8
e %
8

—X

y = c1e” + cpe3® + %.

Two linearly independent solutions of the homogeneous equation are:

y1 =cosz and Yy =sinz.

Al183
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Wronskian:
cosr sinz

W(zx) = =1.

—sinx  cosx

We now apply the variation of parameters formula with

1
g(x) = secx = pt
—y29(x) y19(z)
= ——=d d
yp 1 W(.I) T + Y2 W(.I)

sinx .
= —cosx dr +sinz [ dz
CcoS ¥

= cosz-In(]cosz|) + x sinz.
Thus the general solution is

Yy =c1co8x + casinx + cosx - In (| cosz|) + = sinz.

29. 22y” + 32y +y = /7. The homogeneous equation is an Euler equation. The
indicial equation is
P4+2r+1=0 = (r+1>=0.

We have one double indicial root 7 = —1. Hence the solutions of the homogenous
equation
y1=2"' and 3, =2 'lnz.

Wronskian: ) )
W(z) Tz 1—Inz Inz 1
T) = = —_— = —.
=1 1-lna 3 3 3
2 2

We now apply the variation of parameters formula with

VT s

g(r) = 2 =T 23
—y29(x) y19(z)
= ——d d
yp yl W(.I) €T + y2 W(.I)
= —l / hl—xxgx*% dr + hl—x lx?’x*% dx
T T T T

u dv
PN
= —l/lnxﬁdx+hl—x/x%dx
T T

1 23;3/21113;_/23;3/21613; L2 5
z |3 3 T r 3

4
_ 3/2 _ 2,1/2

x

[SVR )
[V )

1
x
Thus the general solution is

4
Y= iz 4 cox M nx + §x1/2.

33. 22y” + 32y’ + y = 0. See Exercise 29.

37. 2%y + 7xy’ + 13y = 0. Euler equation with o = 7, 3 = 13, indicial equation
r? 4+ 67+ 13 = 0; indicial roots:

r= -3+ v—4; ri=-3—-2i, 7r9=—-3+ 2i.
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Hence the general solution

y=a"2[c;cos(2Inx) 4 cosin(2Inx)].

41. We have
e~ J p(z) de
Yo = / —s——dx.
Y1

Using the product rule for differentiation

——dr Yy

, / e~ J p(x) dx e~ J p(z) de
Yo =Y
? ! Y1 Y1

, / e~ Jp(@)dz e— J p(@)dz
= 5 dx + .
Y1 Y1

So
— [ p(z) d
Y1 ylf er:E

Wy, y2) =
’ — [ p(x) da — [ p(z) dz
y/l y/l f < y% d.I + : Y1

— [ p(z) dx — [ p(z) dx
e e
= yly/l/Td.TE—Feifp(m)dm—y/lyl/7261

1 Y1

= ¢ Jr@de 5

This also follows from Abel’s formula, (4), Section A.1.
45. (a) From Abel’s formula (Theorem 2, Section A.1), the Wronskian is
Y1Yh — Yiys = Ce [P 4,

where y; and yo are any two solution of (2).
(b) Given y1, set C =1 1in (a)

Y1 — Yiys = e I P@

This is a first-order differential equation in yo that we rewrite as

/
gy — Dy = o= IP@)do
n

The integrating factor is

’
N
ef wdt _ o—Iny

v
Multiply by the integrating factor:
Yo %, _ 1 ipede
yiooui hn
or -
4 [9_2 _ L @
de lvi] wn
Integrating both sides, we get

v _ /ie/pmdm] d:
n LY1

1
Y2 = yl/[—efp(m)dm] dzx,
Y1

A185
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which implies (3).

49. 3y 4+ 13y + 10y =sinz, y; =e *.
As in the previous exercise, let

yy=e % y=ve " y =ve T —ve ®, Yy =v"e ™ —20e " +ve ",
Then
3y + 13y + 10y =sinz = 3@'e " -2 +ve ")
+13(v'e™™ —ve™ ) + 10ve™™ = sinx
= '+ 7 =e"sinx
= '+ gv’ = %em sin 2.

We now solve the first order o.d.e. in v':

e7m/30//+ge7m/30/ _ €7m/316msinx
d 1
— [679”/31/} _ ge109c/3 sin
eTE /3y = l/16109”/3 sinx dx
3) 3
el0z/3 10

1
- (—si — +C
3(13_0)2+1( 7 Sinz cos)

9
o= %.9(1031113: -3 cos) + C.

(We used the table of integrals to evaluate the preceding integral. We will use it
again below.) Integrating once more,

10 . 9
v = — [ e¥sinwxdr— — [ e“coszdx
109 327
10 e* 5
= %%(sinx—cosx)—%%(cosx+sinx)+0
= v *ﬂ(sinx—cosx)—i(cosx+sinx)+067m
Yoo T O 654
13

cos T + ! sinz 4+ Ce™™
= ———cosr+ ——sinz e "
218 218
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Solutions to Exercises A.4

1. Using the ratio test, we have that the series
> o
om+1

m=0

converges whenever the limit

xmtl x™ I S5m+1 2| = ||
= |1m Xr| = |T
5(m+1)+1 5m+1 m—oo \ Dm + 6

is less than 1. That is, |z| < 1. Thus, the interval of convergence is |z| < 1 or
(=1, 1). Since the series is centered at 0, the radius of convergence is 1.

lim
m—0o0

5. Using the ratio test, we have that the series

o0
PR
m!

m=1

converges whenever the following limit is < 1:

(m+ 1)t gmtt fgmgm 5 (m+1)™(m+1) m!
— 1m . . |:E|

m—o0 (m+1)! mm gm

. m+ 1\
|| lim [ —— ) =e|x|.
m

lim
m—0o0

(m+1)! m!

m— 00

We have used the limit

™ 1\™
lim (ﬂ> = lim (1 + —) =e
m— oo m m— o0 m

(see the remark at the end of the solution). From |z|e < 1 we get |z| < 1/e. Hence
the interval of convergence is (—1/e, 1/e). It is centered at 0 and has radius 1/e.

One way to show
lim | —— =e
m— 00 m

is to show that the natural logarithm of the limit is 1:

h{ﬂigm—mmctﬂ>—mhm+n—mﬂ.

m m

By the mean value theorem (applied to the function f(x) = Inz on the interval
[m, m + 1]), there is a real number ¢, in [m, m + 1] such that

In(m+1)—Inm = f'(cy) = =

Cm
Note that
1 1 1
< — < —.
m+1~"¢,  m
So
o <m[ln(m+1) —lnm] < 1.
As m — oo, =2~ — 1, and so by the sandwich theorem,

m—+1
m[ln(m+ 1) —Inm] — 1.

Taking the exponential, we derive the desired limit.
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9. Using the ratio test, we have that the series

=L [10( +1]
Zl ZE

converges whenever the following limit is < 1:

(0@ + )PS0+ DP 2 (m!)?
N A (CCESIE / (ml)? = 10 I G e
_ 2 2 1. (m!)Q
= 10z mlgléo (m+1)2(m!
2 2 1

Thus the series converges for all z, R = oo.

13. We use the geometric series. For |z| < 1,

3—xz 1+x+ 4
1+x 1+ 1+
4

1—(—x)
= -1 +4§:(—
n=0

17. Use the Taylor series

e’ = Z Z—' —o0 < x < 00.
n=0
Then
0 2n
w2 o u
n=0
Hence, for all z,
€3x2+1 = e- e(\/gx)2
B 0 ( 3x)2n
0 3nx2n
- enzzo n!
21.We have
1 1 - 1
243z 2(1—(-3%2) 2(1-u)’
where u = —3Z. So

n=0 n=0

The series converges if [u| < 1; that is |z| < 2.

1 Ies , Ion/ 32\" . 3"
233 x () - Rra
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25. Let a be any real number # 0, then

I 1
r  a—a+z
1 1
a1 (%)
- 1%(&—3:)"
a a
n=0
1 G n(x_a)n
= =3y
a a
n=0
The series converges if
a—x

<1 or |a—z|<]al

29. Recall that changing m to m — 1 in the terms of the series requires shifting
the index of summation up by 1. This is what we will do in the second series:

i %—2§:mxm+l = i %—2§:(m—1)$m
o’ 0 el -
_ f: m [%—Z(m—l)]
—
_ mi’j:l —2m2—:an+1 m
33. Let
=0 —
Then
v 4y = i mamz™ " + i amz™
m=1 m=0
S e S
m=0 m=0
_ f: [(m + D)ami1 + am] 2™
m=0
37. Let

o0 o0 o0
Y= Z ™ Yy = Z mamx™ ! Yy = Z m(m — Da,z™ 2.
m=0
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I
8

2 i m(m — 1)a,z™ % + i ama™

=2 m=0

m(m — Danpz™ + Z ama™

m=0

M 1M

o0
m(m — Dapz™ + ag + a1z + Z amx™

m=2 m=2
o0
= aptarz+ Z [m(m — 1)am + am) 2™
m=2
o0
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Solutions to Exercises A.5

1. For the differential equation 3y’ + 2zy = 0, p(z) = 1 is its own power series
expansion about a = 0. So a = 0 is an ordinary point. To solve, let Let

oo oo
Y= Z amx™ Yy = Z ma,r™ "
m=0 m=1
Then
o0 o0
Yy +2xy = Z map,z™ "+ 2z Z amx™
— oo

= a + Z [(m~+ Dams1 + 2am—1] ™

m=1
So 3/ + 2zy = 0 implies that
o0
ar+ Y [(m+ Damir +2am1]2™ = 0;
m=1
ay = 0
(m+ Dams1 +2am-—1 = 0
2
a = — .
m—+1 m+ 1 Am—1
From the recurrence relation,
ap =az=as ="+ =dagg+1 = = 0;
ag is arbitrary;
2
Qa = _—— = —
2 2&0 ag,
B 2 1
ay = _ZQQ - EQOa
B 2 1
ag = —6&4 = —gaoa
B 2 1
as = —g%‘ = Jao,
—1)k
agp = %ao.

So
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5. For the differential equation y"” —y = 0, p(z) = 0 is its own power series expansion
about a = 0. So a = 0 is an ordinary point. To solve, let

Yy = Z ™ Yy = Z mamxr™ ! Yy = m(m — Da,z™ 2.
m=0 m=1 m=2
Then
y' -y = Z m(m — Dapz™ % — Z A @

m=2 m=0

= Z (m+2)(m + Dapyp2z™ — Z ama™
m=0 m=0

= Y [(m+2)(m+ Damgz — an]z™

So ¢y —y = 0 implies that

(m+2)(m+ Damiz —am =0 = apyo = 0 m for all m > 0.

m+2)(m+1)

So ag and a; are arbitrary;

ao
az = ?a
o az Qg
“oT 3T
a4 ag
@ = 5.5 6
ao
sy = .
2 (2n)!
Similarly,
a2n4+1 = (27’L I 1)|a
and so

S S 1 2n+1 ;
y:CLOHZ:O@n)!x +Cb1nzzomx = ag cosh x + a sinh z.

9. For the differential equation " +2 2y’ +y = 0, p(z) = 2z is its own power series
expansion about a = 0. So a = 0 is an ordinary point. To solve, let

o0 o0 o0
Y= Z ™ Yy = Z mamx™ ! Yy = m(m — Da,z™ 2
m=0 m=1 m=2
Then
o0 o0
y' +2zy +y = m(m — 1)a,z™ % + Z 2mamr™ + Z amx™

m=1 m=0

(m+2)(m + 1)ay,po22™ + Z 2mapa”™ + Z ama™
m=0 m=0

Il
Mo i P

[(m+2)(m 4+ Damsa + (2m+ Day,] ™.

3
I
o
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So y" +2xy + y =0 implies that

(m+2)(m + Dams2 + 2m + Da, =0

(2m+1)

— Gy f 11 m > 0.
(m+2)(m+1)a or all m >

= Qm42 = —

So ag and a; are arbitrary;

B 1
az = 2a’Oa
- 5 5
“o= Ty T e
- 5 7—9~5
ag — —mzao— 6! ao,
_ 3
az = 3.26L1
- 7 77~3
% = T BT M
B 11-7-3
a7 = _Tal

So

3 73 11-7-
+a1<x—§x3+—!x5— 7l x7+~~~>.

13. To solve (1 — z2)y” — 2zy’ +2y =0, y(0) =0, 3 (0) = 3, follow the steps in
Example 5 and you will arrive at the recurrence relation

m(m+1)—2 (m+2)(m—1) m—1
Am42 = Ay, = Ay, = Am, m>0.
(m+2)(m+1) (m+2)(m+1) m+1
The initial conditions give you ag = 0 and a; = 3. So az = a4 = --- = 0 and, from

the recurrence relation with m = 1,

(1-1
= =0.
as 1 n 1 aq
So a5 = a7 = --- =0 and hence y = 3x is the solution.

17. Put the equation (1 — 22)y” — 22y + 2y = 0 in the form

2z 2
/!
-+ ———y =0.
1—x2+1—x2y
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Apply the reduction of order formula with y; = 2 and p(x) = — 139; 5. Then
e~ Sp@yde  _ ) 2mde
_ —In(1—2?) _ 1
c 1— 22
e~ J p(z) dx
Y2 = U1 / —s—dx
Y1
1
= ——d
x/ 22(1 — x?) *
Use a partial fractions decomposition
1 _A,B O D
22(1—22) 22 1-z 14z
1 1 1

=R G R S G

So
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The following notebook illustrates how we can use Mathematica to solve a
differential equations with poser series.

The solution isy and we will solve for the first 10 coefficients.
Let'sdefine apartial sum of the Taylor series solution (degree 3) and set y[0]=1:
In[82:= Seriessol = Series [y[x], {X,0,3 }1/.y [0]-1

ougzl= 1 +y’[0] X + %y”[O] X2 + %y@ [0] x3+0[x]*

Next we set equations based on the given differential equation y'+y=0.

in[g3= leftside = D[seriessol, X ] + seriessol
rightside =0
equat = LogicalExpand [leftside = rightside ]
y”[0] 1

ougsl= (L +y’[0]) + (y'[0] +y”[0]) x + > t 5
outjg4l= 0O

ouss= 1 +y’[0] =0&&y’'[0] +y”[0] ::o&&@ + %y“) [0] =

This givesyou a set of equations in the coefficients that Mathematica can solve
in[gel:= seriescoeff = Solve [equat ]

oussl= {{y’[0] » -1, y"[0] -1, y® [0] »-1}}

Next, we substitute these coefficientsin the series solution. This can be done as follows

In[871:= Seriessol /. seriescoeff [[11]
x2 X3 4
oug7]= 1 - X + > "5 +O[x]

To get a partia sum without the Big O, use

ingg:= Normal [seriessol /. seriescoeff [[111]

x2  x3
out[ggl= 1 - X + > "5
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With the previous example in hand, we can solve Exercises 19-22 using Math-
ematica by repeating and modifying the commands. Here is an illustration with
Exercise 19. We suppress some outcomes to save space.

19. v —y +2y=¢€", y(0) =0, y'(0)=1.

inf7op= Clear [y, seriessol, n, partsol ]
n =10
seriessol = Series [y[x], {X,0,n }] /. {y[0] >0,y [0] -1}
leftside = D[seriessal, {X, 2 }] - D[seriessoal, {x,13}] + 2seriessal,
rightside = Series [E™X, {X,0,n }I;
equat = LogicalExpand [leftside = rightside  1;
seriescoeff = Solve [equat ];
partsol = Normal [seriessol /. seriescoeff [[1111;
out71]= 10
out72l= X + % y”[0] x2 + % y @ (0] x3+ %‘7 y @ [0] x4+ #1;0 y®) 0] x5+
1 e 6, YO [0]x" y®[0]x® y®[0)x? y*9[0]x!0 11
y [0] xX° + 5040 + 20390 + + +O[x]

720 362880 3628800

The eguation can be solved using analytical methods (undetermined coefficients). The exact solution is

sol =DSolve [{y” [X] - Y [X]+2y[x]=E"X,y [0]=0,y [0]=1}, vy [X],X1;

In6l:= SSS =sol [[1, 1,2 ]]
2
11—4ex/2 _7ms[qx]+7eX/2ms[qx] +3\/78in[\/zx]+7<e"/28in[@]

Let's compare with the partial sum that we found earlier

inje7]:= Plot [{sss, partsol }, {X, -2,2}]

1.5¢

0.5¢

-2 -1 1 2

oufe7]= = Graphi cs -

We have a nice match on the interval [-2, 2]
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Solutions to Exercises A.6

1. For the equation v/ + (1 — 2?)y’ + 2y =0, p(z) = 1 — 2% and ¢(x) = x are both
analytic at a = 0. So a = 0 is a ordinary point.

5. For the equation z%y” + (1 — e®)y’ + 2y = 0,

71—696 l—ex'

p(z) and ¢(z) are not analytic at 0. So a = 0 is a singular point. Since zp(x) and
22q(x) are analytic at a = 0, the point a = 0 is a regular singular point. To see
that xp(x) is analytic at 0, derive its Taylor series as follows: for all z,

- z2 28
e’ = 1+x+—+—+
3!
- z2 28
1—6 = - g—g‘i‘
x  x2
1—e" - 1 T 2
T - 21 3!

Since % has a Taylor series expansion about 0 (valid for all z), it is analytic at
0.

9. For the equation 422 y"” — 142y’ + (20 — z)y = 0,

7 7 7

p(x):—% xp(x):—§, po——§;
20— x 9 T

Q( ) 4$2 3 &€ Q(x)ZS_Za QO:5

p(z) and ¢(z) are not analytic at 0. So a = 0 is a singular point. Since zp(x) and
22q(x) are analytic at a = 0, the point a = 0 is a regular singular point. Indicial
equation

7
T(T—l)—§r+5:() = 22 -9r4+10=0, (r—2)(2r—5)=0
5
= T1:§ T2:2.

Since r; —rg = % is not an integer, we are in Case I. The solutions are of the form

o0 o0
Y1 = E ama™ ™ and  yp = E byx™t2
m=0 m=0

with ap # 0 and by # 0. Let us determine y;. We use y instead of y to simplify the
notation. We have

oo
y= g amz™t?
m=0

Z m+ 2)apz™ oy = Z(m—i— 2)(m + 1)ama™

m=0 m=0
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Then
4%y —1dzy + (20 — 2)y

4(m+2)(m + Dape™? — 14 Z (m + 2)amz™? + (20 — z) Z U™ T2

m=1

[4(m +1) = 14](m + 2)ama™ 2 + 20 > apa™ ™ = > apa™

m=0

[(4m — 10)(m + 2) + 20]ama™ Z ama™

M B B M

g 3
o

= Z [4m? — 2m]an, — ap_1]z™ 2

m=1
This gives the recurrence relation: For all m > 0,

o Gm—1 o Gm—1

C 4m2 —2m 2m(2m — 1)

am

Since ag is arbitrary, take ag = 1. Then

_ L
a1 = 2,
1 1
a = J—
2 2(12)  4r
1 1 1
a f —_—— = —
? 46-5 6
B T 1
n = CLOfE +§$+I$ +6 Sy ...

We now turn to the second solution:

PR m_o(m+§>bmxm+%; y' = n;(m g)(m+g>bmxm+%.
So
4oy —1dxy + (20— 2)y
- i Am 4+ 2)m + 2) — 14(m + 2)| ba™F 1 (20 - 2) i bzt
m=0 2 2 2 =
= i 4(m+§)(m+§)_14(m+§)+20 b mer%_ ib 2t
m=0 ? 2 2 " m=0 "

5

[(4m® + 2m)bp, — bpp—1] 2™ F3

M 10

3
Il
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This gives by arbitrary and the recurrence relation: For all m > 1,

bmfl
by = ————.
2m(2m + 1)

Since by is arbitrary, take by = 1. Then

1
bl = 5,

1 1 1
b = _ = —
2 314.5 5

1 1 1
b = _ = —
? 516-7 70

1 1 1
Y2 — b0$5/2 1+§$+§$2+ﬁ$3+
13. For the equation zy” + (1 —x)y +y =0,

1—x

pl)=—— wpl@)=1l-z, p=1
1 2
Q(x): Ea €T Q(x)_'ra QO—O

p(z) and ¢(z) are not analytic at 0. So a = 0 is a singular point. Since zp(x) and
22q(x) are analytic at a = 0, the point a = 0 is a regular singular point. Indicial

equation

r(r—1)+7r=0 = r =0 (double root).

We are in Case II. The solutions are of the form

o0 o0
Y1 = Z amz™ and Yo =y lnz + Z bnx™,
m=0

m=0

with ag # 0. Let us determine y;. We use y instead of y to simplify the notation.
We have

o0 o0 o0
Y= g amx™; Yy = g mamz™ Yy = g m(m — Dapz™ 2
m=0 m=0
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Plug into zy" + (1 —z)y +y=0:

im —lamxml—i-Zmamx

m=1 m=1
o0 o0
—E mamxm—i-g amx™ = 0
m=1 m=0

oo
Z (m+ D)mapp12™ + Z m+ Dappra™
m=0

m=0
o0 o0
—E mamxm—i-g amz™ = 0
m=1 m=0

oo
Z m+ mame12™ + a1 + Z (m+ Dagyrz™
m=1

m=1
o0 o0
—Zmamxm—i-ao—i-Zamx =0
m=1 m=1
o0
aop + ar + Z [(m 4+ 1)mams1 + (m+ Damer — may, + ap)z™ = 0
m=1
oo
ap + a1 + Z [(m+1)2ami1 + (1 —m)an] 2™ = 0

m=1

This gives ag + a3 = 0 and the recurrence relation: For all m > 1,

1—-m
a = m-
T 2
Take ag = 1. Then a; = —1 and as =az =---=0. Soy; =1 — 2. We now turn
to the second solution: (use y1 =1—xz, y; = -1, yf =0)
o0
y = wyilnz+ Z bz™
m=0
y o0
y = yilnz+ Zl 4 Zombmxmfl;
P

2 1 >
"o /1 / —2
Yy = y lnx+ Eyl — Fyl +mz m(m — 1)by,x™ .
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Plug into zy” + (1 —x)y' +y = 0:

1 o0
zy! Inz + 2y, — —y+ > m(m = Dbpa™

m=0

+(1 —2)yyInx + yx—l(l —x)+ (1 —x) Z Mmbma™ ' +y1 Inx + Z ba™ = 0

m=0 m=0

-2 — l(1 —x)+ i m(m — 1)bpa™ !

v m=1 "

—i—ﬂ—kimb xmfl—imb xm—l—ib 2™ =0
T m m m

m=0 m=0 m=0

—3+z+ Z [((m + )mbyy1 + (m 4 1)bpmyr — mby, + bpJz™ = 0
m=0

=34 x+ Y [(m+1)%bmis + (L —m)by]z™ = 0

m=0

For the constant term, we get by + by — 3 = 0. Take by = 0. Then b; = 3. For the
term in x, we get

1
L4242 —bi+bi =0 = b=—7.
For all m > 3,
b B m—1
m—+1 — (m+1)2 m -
Then
1 1 1
b == —\— ) =
’ 5071 = 36
2 1 1
b = —_— ) =
! 16736~ “2s8
Y = —3$——$2—ix3+...
? 14" 7 36
17. For the equation 2y +4xy' + (2 —2%)y = 0,
4
p(.I) = Ea :cp(x) - 45 Po = 43
2 —x?
g(z) = ——, 2Pqx) =2-2,  qo=2

p(z) and ¢(z) are not analytic at 0. So a = 0 is a singular point. Since zp(x) and
22q(x) are analytic at a = 0, the point a = 0 is a regular singular point. Indicial
equation

rr—1)+4r4+2=0 = P 4+3r+2=0

= T1:—2 T2:—1.
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We are in Case III. The solutions are of the form
o0 o0
Y1 = Z ama™ t and yo =kyilnz + Z bx™ 2,
= m=0

with ag # 0, by # 0. Let us determine ;. We use y instead of y to simplify the
notation. We have

o0 o0 o0
y = Z U™ Z —Da,z™ 2, o = Z (m —1)(m — 2)amz™ 3.
m=0 m=0 m=0

m=0 m=0
Z 2a,x" T — Z amz™™ = 0
m=0 m=0
(—=1)(=2)agz™" + Z (m — 2)amaz™
+4(—1agz~ Ly Z m— 1apz™ m—1
2a0x " + 2a1 + Z Qama™ !t — Z Am_or™ 1 = 0
m=2
2a1 + Z [(m —1)(m = 2)am + 4(m — 1)am2am — am_o]z™ ' = 0
2a1 + Z [(M? 4+ M) am — am_o]z™ ' = 0
m=2

This gives the recurrence relation: For all m > 1,

1
m ==z f 42
Take ag = 1 and a; = 0. Then a3 =a5 =--- =0 and
11
“2 = 75T T3
_ 1 _11_ 1
“WoT TR T 206 5
11 11 1
a, = = —=—-—— =
6 62 + 6 5! 7-65 7

1 1 1
y1 = apx ! (1—§x2+—x4——x6+~~>
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We now turn to the second solution:

y = kyllnx—i-mexm*%

m=0

"= kyina+ k2 — b,
yilnz+ k=4 (m = 2)bma"™

y =
m=0
2k k -
"o 1" / m—4
y' = kyilnz+ ?yl—ﬁyl—i- Z(m—2)(m—3)bmx .

m=0

Plug into zy” + (1 —x)y' +y = 0:

2kxyy 4+ kyi 2 Inx — kyy + Z (m — 2)(m — 3)bpa™ 2+
m=0

Aky o Inw + dky; + Z 4(m — 2)byz™ 2

m=0
+(2 —2Hky, Inz + (2 — 2?) Z bpz™™ 2 = 0
m=0
2kxy, + 3kyr + > [(m+2)2 = (m +2)bmia + bplz™ = 0
m=0
(m+2)* = (m+2)bpmia+bn = 0
Take k = 0 and for all m > 0,
b = b
T it 2)(m+ 1)

Take by = 1 and b; = 0. (Note that by setting b; = 1 and by = 0, you will get y;.)
Then

b2 = — =

by =

1 1
Yo = bOxQ(l——x2+5x4—~~>.



