Practical Programmable Packets

Jonathan T. Moore Michael Hicks Scott Nettles

*Computer and Information SciencéElectrical and Computer Engineering
University of Pennsylvania The University of Texas at Austin

Abstract—We present SNAP (Safe and Nimble Active Packets), a new SNAP focuses on three dimensions of the active packet design
lsch?me fli)l' plrogrammablel (koractive packets centired aroundha new low- Space:safety and Securitwhere existing Systems have made
evel packet language. Unlike previous active packet approaches, SNAP is s
practical: namely, adding significantflexibility over IP without compromis- gOO.d progre;s on preserving node _mtegrlty and prowdlng pro-
ing safety and securitgr efficiency In this paper we show how to compile tection but fail to cope adequately with resource allocatilenx;
from the well-known active packet language PLAN [7] to SNAP, showing bility, where existing systems excel; apdrformance where
that SNAP retains PLAN s. flexibility; give proqf sketches of its npvel ap- existing systems have key limitations, especially for data trans-
proach to resource control; and present experimental data showing SNAP . L L
attains performance very close to that of a software IP router. port. By _demonstra_n_n_g tha_t SNAP adds S'Q_n]flcam flexibility

Keywords—Active networks, active packets, capsules, resource control. OVer IP without sacrificing either safety or efficiency, we estab-

lish SNAP as the firgbractical active packet system.

I. INTRODUCTION
II. OUR APPROACH

The explosive growth of the Internet has placed new and in- .) . .
creased demands on the network infrastructure. ApplicationsS€fore proceeding with the body of the paper, which consists

now have varied service requirements such as high bandwidthSNAP'S design, implementation, and performance character-
low delay, low jitter, etc. The one-sizefits-all, single-serviclStics, we examine more closely the design-space axsafety
model of IP [19], which has certainly contributed to its succesdnd securityflexibility, andefficiency and explain how SNAP's
often no longer fits user or application needs. approach improves on prior approaches.

To meet these new demands, the network infrastructure muyst .
evolve to encompass new service models and protocols. _Safety and Security
fortunately, IP is difficult to change, due to its centralized, Most active packet systems [7], [21], [25] have provided good
committee-controlled natureef{ 1Pv6 [3]). Active networks protection against packets damaging nodes or other packets. The
seek to avoid the committee bottleneck by making the netwagkneral strategy is to use type-checking and/or dynamic moni-
programmable and thus easier to change on the fly. Perhapsithilig. With minor variations discussed in Section VI, SNAP
most radical way to make the network programmable is to makses the same techniques with the same benefits.
packets carry (or be) programs. In suattive packetga.k.a. Where existing systems generally fail is in controlling the re-
capsuleq25]), the traditional packet header is replaced with gource utilization of active packets. Several systems use time-to-
program that is executed to determine its handling and effectlive (TTL) counters to limit packet proliferation [7], [17], [25]

Previous research efforts on active packets, such as PLAN &fld watchdog timers and allocation limits to terminate packets
and ANTS [25] have demonstrated that the flexibility providedsing too many local resources [21], [25]. These approaches
by active packets can be used to improve application perfeacrifice safety because forced termination can be unsafe [5].
mance and functionality. Examples of active packet applicatiopg AN [7] limits packet execution by restricting its expressibil-
include application-specific routing [9], transparent redirectidty so that all programs must terminate. However, bounding this
of web requests to nearby caches [12], distributed on-line atwgrmination time is problematic as packets may run into time
tions [13], reliable multicast [14], mobile code firewalls [8]exponential to their length. In general, we would prefer that
and reduced network management traffic [21]. Unfortunatelyacket resource usage be predictable, so that the network can
most of the active packet platforms have either restricted thegecide how to process packets most effectively.
selves to the control plane [21], had unacceptably low perfor-SNAP takes a rather dramatic approach to these problems.
mance [25], [9], or have achieved reasonable performance omlye language is designed with limited expressibility so that a
by sacrificing safety and security [17]. None has done an &NAP program uses bandwidth, CPU, and memory resources in
fective job of providing safe resource control. This has led {fhear proportion to the packet's length. Furthermore, the con-
a widespread belief that active network processing in the datant of proportionality is known and small. This means that a
plane is fundamentally impractical. node can trivially predict a strict upper bound on the resources

In this paper we show that, to the contrary, active packets ogyat will be used by a packet. Furthermore SNAP also uses
be of general use. To support this claim, we drew from our oWNTTL-like mechanism drawn from PLAN called thesource
extensive experience with PLAN [7], and from the successes afslind Taken together, these two mechanisms place a bound on
failures of first-generation active packet languages in generalyégource utilization that can be computed when the packet first
design SNAP (Safe and Nimble Active Packets). The design@fters the network. This strict resource control is SNAP’s most

This work was supported by DARPA under Contract #N66001-06-C-852 aﬁ‘t?vel aqva.'nce' . . L
by the NSF under Contracts ANI 00-82386 and ANI 98-13875. How is linear resource use achieved? Bandwidth use is inher-

ently linear in packet length, but linear CPU and memory use practical if they impose only a small penalty or no penalty
is achieved by restricting the bytecodes of the SNAP language.all for IP-like service. In addition, we show that SNAP is
Only forward branches are allowed, so that each bytecodecansiderably faster than its predecessor system, PLAN.
executed at most once. Also, bytecodes (with a few key excep-

tions, see Section Ill) must execute in constant time. These tWoihe remainder of the paper, we expand on the themes intro-
restrictions imply that execution time is linear in the number @f,,ced in this section by presenting the details of the SNAP lan-
bytecodes. Bounding memory works similarly: each instructicgrhage and its implementation. We begin with an overview of the
can push at most one item on the stack and add at most @figap pytecode language, and in the following four sections we
element to the heap. Since a linear number of bytecodes gignonstrate its practicality: in Section IV, we sketch network
executed, only a linear amount of additional space may be usggfetyproofs which are made possible by SNAP’s design; in
B. Flexibility Section_ V, we show that SNAP ach_ie_ves frexibility of previ-
' ous active packet systems by describing a PLAN-to-SNAP com-
The principal feature active networks add to existing networksler; and in Sections VI and VII, we show that SNAP can have
is flexibility. Existing active packet systems are perhaps the begt efficientimplementation compared to a software IP router.
example of this, allowing custom protocols, flows, and packeBefore concluding, we discuss previous active packet systems
These systems clearly meet the initial flexibility goals of activig Section VIII.
networking, especially when coupled with extensible routers, as
in PLANet [9]. However, even these systems somewhat com- I1l. SNAP
promise flexibility by limiting expressibility to aid in achieving . . .
safety; for example, with PLAN we designed the language to en-We how presept an overview of SNAP, introducing the fea-
sure that all packet programs terminate. Experience has shdWigs tha_t will be important through the rest of the paper. SNAP
this to be a good compromise. was designed as the successor to our first packet language,

With SNAP, we take this compromise further, restricting erﬁLAN’ and shares much of PLAN's design philosophy; we
ake comparisons between the two throughout the paper. As

ibility so as to achieve even greater safety: namely, linear pgp. o X .
packet bounds on resource usage. The question is “Have PLAN, SNAP has been specifically designed to permit for-

gone too far?” We argue in Section V that the answer is “No” al proofs, particularly about the safety of its programs. Read-
presenting a compiler that translates PLAN to SNAP. Althou s seeking a detailed formal description of the language are di-
it cannot (and should not, for safety reasons) effectively tra g_cted 10 [15]. _ _

late all PLAN programs to SNAP, it does translate a large useful>NAP €xecutes on a stack-based bytecode virtual machine,

subset. Therefore, since PLAN is one of the more flexible exidRuch like other such VMs except that it supports SNAP's com-
ing systems, SNAP also achieves high flexibility. munication primitives and safety approach. A SNAP program

consists of a sequence of bytecode instructions, a stack, and a

C. Efficiency heap. Stack values are “small” data, like integers or addresses,
With one exception, existing systems achieve only medioc""fPiIe heap values are “large” data, such as byte arrays or tu-

; ’ ed, which can be pointed to from small values. Each SNAP

performance, being unable to saturate a 100 Mb/s Ethernet.}5 P

ing relatively fast CPUs. The exception, PAN [17], achieves i@%t;:itt'on consists of an opcode and an optional immediate ar-

performqnge in two key ways. first, itis implemented ”.*ke”‘e '’ SNAP’s network semantics are that a packet program is ex-
thus avoiding the overheads imposed by user-space |mplemeen—ted by every SNAP-enabled node and simolv forwarded b
tations; second, its packet language is unrestricted x86 mac e y y Py y

code—thus abandoning any guarantees of node safety. Weeﬁquacy IP routers. We describe in Section VI how this is accom-

not believe that high performance without security is an accept- hed. In addition, each SNAP packet hamgource bound
. gnp y leld similar to the IPv4 time-to-live (TTL) field: this field is
able design alternative.

decremented at each hop, and a packet must donate some of its

SNAP is designed for good performance; it provides basic OPésource bound to any child packets that are sent.

erators and control flow, thus enabling a lightweight interpreter.SNAP_ ructi fall int | listed in Table I. |
SNAP’s linear safety properties make it possible to compute a InS ruc_ lons a' INto séven classes, listed In fable 1. In
neral, SNAP instructions:

maximum size for a packet buffer, thus avoiding high memo))
management costs during execution. Furthermore, a compacgXecute in constant time, and
wire representation improves throughput by leaving more roofn llocate a constant amount of stack and heap space.
for payload data. This wire representation makes possible “jhibese points are crucial to our safety claims, as discussed in
place” execution of packet programs, in many cases avoidiﬁgction IV. As discussed below, a few exceptions to these points
expensive marshalling and unmarshalling. Finally, our in-kern@Xist.
implementation avoids unnecessary domain crossings.

In this paper, we compare SNAP’s performance relative to fle Example: Ping

implemented in a similar environment. Our experiments show\we jljustrate SNAP’s basic features concretely by using a ver-
that active processing imposes negligible overhead above ngg, ofpingcoded in SNAP, shown in Figure 1. We ysiegbe-

mal IP processing. In other words, with SNAP a user only hasse it allows for a simple example (only 7 SNAP instructions)
to pay for the amount of “activeness” used. We feel that such

a result is important because active packets will only be viewedA tuplecan be thought of as an array of small values.

Instruction class | Examples | argument to the program counter. In our example Otlo@ top

network control forw, forwto, send demux of the stack is popped, and since the test fails, the branch falls
flow control bne, beq, ji, paj through to the next instruction.
stack manipulation| push, pop, pull In addition tobne, we provide a variety of branch types,
environment query| getsrc getrb, here, ishere including conditional branchesbg¢g, bne), unconditional
simple computatior] add, addi, xor, eq branchesj(, “jump immediate”), and branches whose targets
tuple manipulation | mktup, nth are carried on the staclpdj, “pop and jump”). All branches
service access calls must “go forward” (offsets must be positive), implying that stan-
dard loops and function calls cannot be straightforwardly en-
TABLE | coded. Despite this seemingly draconian restriction, we will see
SNAP INSTRUCTION CLASSES in Section V that special compilation techniques still allow use-

ful programs.
The next bytecode executedpsish, which pushes a onto
the stack, signifying that the packet is now on the return trip.

forw ; move on if not at dest (Now the stack ig1 :: port :: payload].) SNAP supports the
bne 5 ;jump5instrs if nonzero on top usual “stack manipulation” operationgush, pop, pull (copy a
push 1 ;1 means “on return trip” value from within the stack), etc.

getsrc ; get source field Next, getsrc pushes a copy of the source address onto the
forwto ; send return packet _ stack. In general, SNAP provides several “environment query”
pop » pop the 1 for local ping instructions, which allow a packet to read the contents of its
demux ; deliver payload header fields €.g, getrb for the remaining resource bound,

getepfor the current entry point) or to query the node itself for
information €.g, here, which pushes the current node’s address
on the stack).
with which the reader should be familiar. Furthermore, this is Next, forwto causes the packet to be sent back towatds
the program we use for our benchmarks in Section VII. Forwto is like forw, but it reads a destination argument from
Let us assume that we have two neighboring nodba,nd the stack (ln our case, the addreBpUShed b)getsrC). Thus the
B, and that we want to pindg3 from A. In this case, we cre- return packet is effectively sent with its source and destination
ate a packet containing the ping code and an initial stack figflds swapped, carrying a stack[af:: port :: payload].
[0 :: port :: payload]. TheO on top of the stack indicates the When the packet arrives at, execution again begins at the
packet is moving from source to destinati(prt isa port num- fOfW, which falls thrOUgh, since the return paCket'S destination
ber corresponding to the ping application on the sending no@éldress isA. Thebne consumes the on top of the stack, takes
andpayload is a byte array carried along with the packet. the branch and jumps instructions to thedemux instruction.
The packet is injected into the network Atand executes Demuxtakes two arguments from the stack: a port number and
there first. The first bytecode executedfisw (“forward”), @ value to deliver to the port. By design, this is exactly what
which compares the packet’s destination header field to the cigmains on the stackport :: payload].
rent host's address. If they do not match, a copy of the packet! he sixth instructionpop, is only executed when the destina-
is forwarded towards the destination, and the currently runnifign and source are the same host. In that case, when the packet
packet terminates; this is what happens@mma”y When the is “at the destination," théorwto will fall ’[hrough, so before
packet reaches its destinatidarw simply drops through to the demuxing we must pop the 1 we just pushed.

next instruction; this is what happens when the packet reaches)
B B. Other Instructions

Fig. 1. SNAP code for ping.

Forw is a special-case of a more general “network control” The instruction classes from Table | not appearing in the ping
instruction,send used to spawn new packetSends,n,r,d) program are “simple computation,” “heap manipulation,” and
creates a new packet with: a copy of the current code; a stdskrvice access.” The “simple computation” instructions pop
consisting of the sender’s tapstack values; an entry point, one or more arguments from the stack, perform a computation
the index of the first instruction to executeresource bound; (optionally with an immediate argument) and push the result.
and a destination field @f. Executingsendresults in- resource We provide standard integer and floating point arithmetic oper-
bound being given to the child packet and thus deducted frators, relational operators, as well as some special-purpose in-
the packet that executes the sefdrw is just shorthand for a structions on addresses.§, subnet masks).
sendkeeping the same destination and entry point as the currenThe “tuple manipulation” instructions allow the program to
packet while taking the whole current stack and all of the curresifocate length: tuples on the heap (aypktup n) as well as to
packet’s resource bound. Network control operations are exceplect theith field from existing tuplesnth 7). We require that
tional in that they operate in time linearly related to the packegschmktup n instruction be followed by: — 1 non-mktup in-
length. structions (usingo-opsas needed). This allows us to amortize

On B, the next bytecode executediise (“branch if not equal then allocated small values overinstructions.
to zero”). Bne consumes the top stack value as an argument,Finally, the instructiorcalls s allows a packet to invoke ser-
and if it is nonzero takes the branch by adding the immediateee named by the string. Services are node-resident, general-

purpose routines that augment the limited functionality of tHeounded by the product of the size of the packet and the TTL
packets. For example, we might have a service that allows packntained in its headér
ets to store soft-state on the routers they traverse. Services diSNAP has these properties and it is possible to prove so for-
fer from normal instruction implementations, in that the serviaaally. Here, we outline the basic ideas of such proofs; the reader
namespace is extensible, meaning that we can upload new geerested in the formal details is referred to the technical re-
vice routines at runtime to add new functionality. This is essepert [15].
tially the same model of services supported in PLAN [7].

A.1 CPU safety

IV. SAFETY . . .
Because all branches in SNAP go forward, each instruction

Safety and security are important issues in a shared interngtthe program is executed at most once. Furthermore, with the
working infrastructure—it should not be possible for users, axception of the network control instructions, all SNAP instruc-
ther maliciously or accidentally, to crash the network or othions execute in constant time. Thus, aside from the network
erwise make it unusable to others. In particular, the followingbntrol instructions, a SNAP program runs in time linear in its
properties should hold @ny packet scheme, let alone an activgength (and therefore in the length of the containing packet).
one: However, sending a packet tak@g|p|) time, as does deliver-

« Node integrity: It should be impossible for the processing ofng data withdemux. In the pathological case of a program

a packet to result in a node crash or subversion. consisting only ofsend instructions, the total time would be

« Packet isolation It should be impossible for an active packefp| x O(|p|) = O(|p?|). To gain the desired linear bound, we
to affect other packets without permission. restrict the number of network operations allowed per packet to
« Resource safety It should be possible to predict and strictlysome constant, resulting inn x O(|p|) = O(|p|). The most
bound the amount of local or network resources consumed dinservative case would be to set= 1, allowing only a sin-

an active packet. gle send or delivery per packet, matching unicast semantics but

At a high-level, SNAP follows the basic design philosophprohibiting multicast-style programs, and even reasonable im-
of PLAN: namely, that with a limited-expressibility domain-plementations of traceroute [6], [20]. A more flexible bound,
specific language, we can know that a program is safe to exsed in our current implementation, is the leasuch that mul-
cutewithout even examining.itWe accomplish this by languageticast may be programmed: varies per node to be the number
design, safe interpretation techniques, and formal proof. of network interfaces on that node. Fgmux, we permit only

To ensure node integrity and packet isolation, our first linene delivery per packet, and force the packet to exit following
of-defense is that SNAP simply does not contain any primitivéde delivery. As we gain more experience with SNAP, we expect
to exert control over the local node or other packets; SNAP piig-develop more insight into reasonable policies.
grams may query the node for information but may otherwise Note that if we know the most expensive constant-time in-
only affect themselves. We complete our guarantee by emplsgruction, the maximum number of sends, and the maximum
ing a form of dynamically-enforced software fault isolation [22]packet size, we can precisely compute an upper bound on a pro-
This essentially prevents an attacker from using an ill-formegam’s runtime.
packet €.g. by exploiting buffer overruns) to gain control of the
node itself or to tamper with another user’s packets. For exafh2 Memory safety
ple, pointer dereferences are verified to be within the packet’sT

i : . . 0 prove memory safety, we show that for each instruction
2§;Z'm;—h's approach is much like that of other active paCk@tsing amortized analysis) at most one small value may be allo-

cated, on each of the heap and the stack. For all of the SNAP in-
structions except thektup instruction, zero or more arguments
are consumed from the stack, and at most one result value is

SNAP’s novel contribution is how it achieves resource safetydded, while the heap is not affected. Furthermore, the require-
The limited expressibility of SNAP makes it possible to comput@ent thamktup n must be followed by at least—1 instructions
a priori bounds on the running time and memory usage ofthat are nomktup means that each instruction allocates at most
program, giving significant leverage over controlling resourcesne amortized small value on the heap.

Consider the following resource safety requirements: Given that each instruction of a SNAP program executes at
1. CPU safety on any one node, processing a pagkshould most once, we see that the maximum number of small val-
takeO(|p|) time, wherép| is the length of. ues allocated by a program is twice its length. As a result,
2. Memory safety. on any one node, processing a packet the SNAP VM need only allocate a buffer of constant size for
should require)(|p|) memory. each packet; in our current implementation thistis MTU
3. Bandwidth safety. the overall network bandwidth con-due to additional per-heap-object overheads. This buffer can
sumed by a packet should beO(n|p|) wheren is some re- be immediately recycled upon program termination, thus avoid-
source bound associated wiilat its creation. ing memory-management overheads, such as garbage collection
These requirements were derived from properties of unic&9sts, which have plagued previous systems [9], [23], [17].

IPv4 packets: examining the header (including any options) ang,vIuIticast Pva packets d W with thi "
forwarding the packet také(|p|) time and space. Similarly, packets do not comply with this standard, but as multicast

. resource usage is an open problem, our “bandwidth safety” property is a conser-
the amount of network bandwidth consumed by the packetvisive goal.

A. Resource safety

A.3 Bandwidth safety common to functional programming, like lists and the list it-
4 o)
Finally, we can prove bandwidth safety by observing thate(,irator]_”olc{ . _A .notable restriction is that functions may not be
) ; recursive; this is part of a guarantee that all PLAN programs ter-
SNAP packet’s resource bound is decremented upon receptiot :]
. . . inate. Like SNAP, PLAN programs are packet-resident, and
and that any child packets must be given some of their parenrps ; . ;
) : may call general-purposervice routineshat are node-resident.
resource bound.g., conservation of resource bound). Thus a , :
SNAP would be a fairly straightforward target language for

packetp with initial resource bound of. can cause at most))
transmissions ofy|, whether directly or through its offspring. PLAN if not for its lack of backward branches. Backward
branches are typically used by compilers in three ways:

B. Services and safety 1. in returning to the caller after completing a function call

_ 2. in calling a (mutually) recursive function

The above safety guarantees do not necessarily apply |§ an returrﬂng(to the h)é)ad of a loop body
SNAP program invokes a node-resident servicecells. Ser- . _ . T)
vices have general-purpose functionality, so we cannot make figed€al with the first two points, we eliminate function calls
samea priori guarantees about their resource usage. NonetlfgPLAN functions through inlining; this is straightforward be-
less, as services are node-resident, the same review proce%%%%e PLAN prohlblts recursive functions (service function calls
currently used for protocol deployment may be used. The prdd€ translated directly to use tioalls opcode). In PLAN, the
sketches above do, however, provide a guideline for «gNABDIY looping construct is the list iteratgold. In this case, we
safe” services: they must execute in constant time and Spé&r_oll thefold, and inline each call to the iterator function. Be-
Naturally, more complex services are feasible (and probably §&use the number of times the iterator is called depends on the

sirable), but they are not covered by our existing safety frami€ngth of the list, we cannot, generally speaking, know how
work. many times to unroll thgold. Therefore, the user provides a

conservative upper bound to the compiler. We do not expect this
V. FLEXIBILITY to be a problem in practice, as most usegaifl are on short

o o lists of addresses.g, for the multicast program in [6] or the
We have seen how restrictions to SNAP’s flexibility impl¥iow-pased routing program in [9].

several important safety properties. To demonstrate that SNAPF,LAN differs slightly from SNAP in its execution model
still retains enough expressibility to be useful, we developedA 5N programs do not evaluate on every active router they tra-
compiler that translates PLAN into SNAP. PLAN's flexibility, o <o ‘a5 SNAP programs do, but on the destination only. On
is well-documented in the literature [6], [7], [8], [9]; our cOM+yp e intervening PLAN nodes, a packet-specified “routing func-
plle_r thus ensures that S_NAP remains useful. _Indeed, of the fih” is evaluated instead, which determines the next hop and
active applications mentioned in the introduction, two are CUsyards the packet there. This routing function is specified as
rently implemented in PLAN, while at least three others cou argument to the PLAN packet transmission func@Re-

be? Perhaps PLAN's most imporFant applicati_on Is its i_memthote . To translate this model to SNAP, we add a piece of SNAP
work, PLANet [9]. In PLANet.all internetworking functional- o 4e 14 pe evaluated on every hop: it checks if the packet has
ity is implemented using PLAN packets and router services, 'Feached its destination, and if not looks up the next hop using

cluding address resolution, dynamic routing, encapsulation 33t siecified function and forwards the packet. If the packet

fragmentation, error reportingfc. Thus, our compiler demon- Etas arrived at its destination, the code jumps to the entry point,

strates that we could likewise perform all of these internetwor fored on the top of the stack. For the spedifaultRoute
ing functions with SNAP. routing function, this bit of code is simply tHerw instruction,

Since SNAP provides stronger safety guarantees through Ig)owed by apaj (“pop and jump”).
guage restrictions, it is not feasible to translatiePLAN pro-
grams into SNAP. However, the PLAN programs that are ruleéj C
out are the ones with problematic resource usage, so we do not
see this as an obstacle in practice. Indeed, all of the sample profo illustrate PLAN compilation, we present a simple exam-
grams shipped with the current release of PLANet [9] may kge. The top of Figure 2 shows a PLAN version of ping. This
encoded in SNAP. program is sent into the network, and first evaluatespthenc-

In this section, we present the compilation techniques whitibn on the destination it wishes to ping. This function calls
make it possible to use SNAP as a compilation target. We alSmRemote to send a packet that will evaluate the function
provide an example of the compiler’s output for a PLANg back on the sender. This packet will use tlefaultRoute
program, for comparison against the hand-coded SNAP shomiting function to get it back to the source (the routing function

ompilation example: ping

in Figure 1 in Section III. used to get t@ is specified at send-time). Wheris executed, it
delivers some data (in the varialslto the application listening
A. Compiling PLAN to SNAP on port numbered.

PLAN is a purely functional programming language aug- 1he translation of this program by our compiler is shown in
mented with primitives for remote evaluation. It supports staH!€ lower portion of Figure 2. ThdefaultRoute routing
dard features, such as functions and arithmetic, and featuftgction appears first, followed by code sequences fandp.

3These applications are implemented in ANTS, which could easily be imple#Intuitively, fold executes a given functiofifor each element of a given list,
mented as a set of PLAN services, and vice versa. accumulating a result as it goes.

] 32 hits
fun r(w:blob,n:int) =

deliverUDP(w,n) IPv4 destination address
. (w:blob.ning IPv4 source address
un p(w:blob,n:int) =
OnRemote(|r|(w,n),getSrc(), | resource bound port

getRB(),defaultRoute) entry point (#instrs) code size (octets)

defaultRoute heap size (octets) stack size (octets)
forw ; forward to dest N code P
paj -1 ; jump totop stack T~ T~

; value- 1 N heap N

r: pul 0 ; get port num T ™~
pull 2 ; get data stack A
demux ; deliver data & exit i

p: pull 0 ; pkt stack: port ;
pull 2 ; pkt stack: data endian flag
push r ; pkt stack: paj offset
push defaultRoute ; entry point .
push 3 " how much stack Fig. 3. SNAP packet format
getrb ; how much rb
getsrc ; return to src)]
send ; send return packet a shim layer between layers three and four, using the IP Router
Pop. - pop SePd fettUT val Alert option [11] to flag the packets as active ones.
o Fob exira stac We followed three implementation principles:

1. make execution as fast as possible

Fig. 2. Pingin PLAN and as compiled into SNAP 2. minimize the size of SNAP program representations

3. trade large initial fixed costs for incremental ones

In total, our intention was to reduce the overhead of SNAP, es-
pecially for common case programs like data delivery and di-
agnostics. In the remainder of this section, we discuss how we
o achieved these goals, covering the SNAP packet format, SNAP
structs the stack for the call toconsisting of argumenisand - ,,1am representations, the structure of the interpreter, and the

n. Then it pushes the offset, used bypaj in the default- implementation of key operations, such as sending packets and
Route function. The remaining opcodes push the argumergﬁecking well-formedness.

to send defaultRoute is the entry point, 3 specifies the
amount of stack to takgetrb pushes all of the current packet'sa. packet Format
resource bound, angetsrc pushes the current packet's source

address. Following theend we pop the three arguments used Our packet format is shown in Figure 3. The first portion of
in the sent packet's stackdpi 3), as well as the return value Ofthe header contains some standard header fields such as source,

send destination, and port, as well as the resource bound field that is

In general, our compiler does a decent job of translatirlrﬁed for bandwidth safety as described earlier.

PLAN to SNAP, and as shown in Section VII, the compiled code 1€ second portion of the header describes the SNAP pro-
performs well. In fact, the program in Figure 2, while |0ngegram. Preceding the resource bound field is a flag to indicate

than the hand-coded 7 instruction version presented in Figurd'¢ €ndianness of values in the packet program (all header fields

in Section 111, achieves about the same performance, as we st " network byte order), so that they may be converted if need

experimentally in Section VII. The compiled code is not fullye: I_hﬁ next header field is the “entry point’, v;/]hichhindiigtles
optimized, especially for space; for example, all of the instrufll Which instruction execution is to begin. We then have fields
tions following thesendabove could be eliminated. For the neajat delineate the three main portions of the program: the code,

term, we expect to use the compiler to achieve initial translatioj§@P: and stack. The program is laid out in this order to permit
which we can then tune by hand as necessary. executionin place without additional copying, as we describe

below. As a result, packet execution can begin almost immedi-
ately upon arrival, following a few structural checlesd, that

the entry point is within the code, that the various lengths do not
We have implemented a SNAP VM in C, with both kernelexceed the buffer size, etc.). This is in contrast to systems like

space and user-space versions. For the user-space implementan [9] and ANTS [23] that require extensive unmarshalling
tion we have a daemorsnapd that communicates with otherpefore execution.

daemons and user applications via UDP. The kernel version has

been implemented for Linux kernel version 2.2.12 as part Bf Program Representation

RedHat Linux 6.1, and is a.LcceSS'ble to user applications by 4rhe SNAP program is generally represented as follows. The
special socket type. SNAP is currently positioned as a transp%

. _ . _ He section consists of an array of uniformly-sized instructions.
layer protocol, although we ultimately intend for it to reside 8Stack values are also uniformly-sized, consisting of a tag and a

5This is not strictly necessary since the stack is already properly arranged%?‘ta field. The tag indicates the type, and the d?'ta contains the
the call todemux, however our compiler does not yet do this optimization. actual value. For values that are too large to fit on the stack

r simply copies the top two stack values usjmgl® and calls
demux (which exits immediately after delivering its datap.
constructs a packet to evaluateon the source. It first con-

VI. IMPLEMENTATION

(like tuples or byte arrays), the data resides in the heap anddth issues by employing a scheme similar to copying garbage
pointed to by the stack value. This pointer is implemented asllection [26]. This process ensures only the portions of the
an offset relative to the base of the heap, allowing the packeb parent heaps that areachablefrom the child’s stack will

to be arbitrarily relocated in memory (but at a cost of an exttze copied into the child heap, and it adjusts any heap offsets
calculation during interpretation). This feature eliminates th@hether in the code, stack, or heap) to point to the correct loca-
large fixed cost of adjusting pointers in the code and stack befdians in the child heap. We currently copy all of the code into the
execution. Heap objects each contain a header with length aetv packet; we could similarly employ a control-flow analysis
type information. to prunethe code, as occurs in PLANet [9].

We implemented this scheme to require as little space as poswhile this approach is general, it is both computationally and
sible. All instructions and stack values are one word, and heayemory intensive. Fortunately, we can take more optimal ap-
objects have a one word header. Stack values are divided intgya®aches in certain common cases. First, if we have not per-
n-bit tag, and &32 — n)-bit data part. Integer precision is reformed any heap allocation, we can copy the parent heap and
duced as aresult, and addresses and floating point values haggtdok subset directly to the new packet, without requiring heap
be allocated in the heap. We believe this is a minor limitation, affset fix-ups, since the position of heap objects will not have
floats and addresses are used infrequently, and integers alrshahged. The result is faster packet creation times but poten-
never require high precision in the context of simple packet priwally larger packets, since any objects that are unreachable will
grams. Instructions are similarly anbit opcode and 82 — n- not have been removed.
bit immediate corresponding to the data part of a stack value gven better, if the stack required by the new packet consists
We have 100 distinct instructions in our final encoding; theref the entire stack of the current packet, we meysethe cur-
fore we set: to be 7 bits for tags and opcodes, meaning that ofint packet buffer, requiring only modifications to its header,
integer precision is 25 bits. but only if transmission will occur before further modifications

. take place. Since a program terminates after exectibirvg or
C. SNAP interpreter forwto, simple routing of active packets may occur without any

The interpretation of most of the instructions is extremelsignificant marshalling or unmarshalling costs.
straightforward, with the exception sendand the other net-
work operations, as explained below. The interpreter is co- Well-formedness checking
structed as a loop around a larg@itch statement, with one

case for each opcode. Most instructions extract arguments fr n?efore a program may be executed, the interpreter must ver-

. ity It is well-formed. Many systems that dynamically load code,
:Zgjia(:k or heap, perform some computation, and then puShno ably Java [4] and proof-carrying code [16], verify that the
If the initial packet buffer is sufficiently large, packet execySNtIre code body is well-formed before allowing it to be exe-
tion may occur “in place.” That is, with the packet at the fro qted. Depenc!mg on the size and complexny of the program,
of the buffer, the stack is allowed to grow towards the end is may result in a large up-front cost, which we prefer to avoid.
' stead, we intermix dynamic checks with interpretation, result-

the buffer during execution. Heap allocation takes place withii>" d
ug% in a performance improvement when the packet only exe-

a second heap, situated at the end of the buffer, growing towal es a fraction of its instructions. This is often the case: most
the stack. In our user-space implementation, we allocate a sir;@) '

buffer of size4 x MTU, the maximum possible size require ackgts require frequent rputing (implemgnted byftre in- :
(as per Section V), and receive all incoming packets into th Eructlon), but only .opcaslonal computation; the programs in
Igures 1 and 2 exhibit this property.

buffer. In our kernel implementation, the buffer we receive fro q h ber of i check i
the kernel is not much bigger than the packet itself. Rather thanT0 reduce the number ot dynamic checks, we are willing to

immediately copy the packet into a maximally sized buffer, wierify as little as pos;ible while still ensuring node integrity. As
do so only if needed. Execution proceeds in the given buff@Fesult we can gvmd many of th? checks that W(,)UId normally
until either a heap allocation takes place, or the current staciPf} associated witlype-safety For Instance, most interpreters
about to overrun, at which point the copy is done. This perml‘f\éo”Id check that the afg‘%me”t [t IS an integer and \.NOUId
simple executions to avoid the copg:g, when the ping pro- signal a type error otherwise. However, we can omit this check,

gram in Figure 1 is forwarded, no copy is needed, but when"j\‘t1d as_sumethat _'t is. This may result in *incorrect program
executes at the destination, thetsrcinstruction causes an ad_behawor but it will not compromise any of the safety properties.

dress to be allocated on the heap, resulting in a copy when the

return packet is sent. VII. EFFICIENCY

Having seen that the SNAP implementation is tailored for ef-
ficient execution, we now present experimental evidence that

Sendcreates a new packet containing subsets of its parer8IAP is efficient enough to be practical in many settings. To do
code, stack, and heap, and some of the parent’s resource bosadwe examine SNAP’s performance in two areas. First, using
Creating this new packet presents two difficulties. First, if amgur in-kernel SNAP implementation, we compare SNAP to IP in
allocation has taken place, then the parent packet has two heagsftware router setting, both for bandwidth and latency. Sec-
that must be consolidated into a single heap in the child packatd, using the user-space implementation of SNAP and PLAN,
Second, we would prefer to include only the portions of the pase compare the latency of SNAP to that of PLAN, as well as
ent packet that will be needed by the child packet. We addreseamine the cost of using the SNAP to PLAN compiler.

D. Implementingend

—— SNAP, 1412 B
—o— SNAP, 12B
154 -o-- ICMP,1472B
1 -o- IcMP,72B

IP | SNAP
Per-packetys) 71 95
Per-byte [is) | 0.134| 0.135

TABLE Il

g PER-NODE SWITCHING COSTS
; 1.0+
o
g
« 100
0.5
80
o
0.0 2
VT T T 1 = _
0 1 2 3 S
Number of Hops g
5 -
Fig. 4. Ping latencies %
20 - — - ttcp-UDP
SNAP is competitive with IP and shows greatly reduced eval- 1/ —— SNAP
uation overheads compared to PLAN. SNAP latencies aate no 0—"+—"—7T—"+—"————7T———+——
more 10% slower than IP’s, depending on payload size and 500 1000 1500
hop count. SNAP can saturate a 100 Mb/s Ethernet link us- Pavload size (bvtes)
ing roughly 900 byte or greater sized packets, and can switch as
many as 16,800 packets per second. These measurements com- Fig. 5. Throughput measurements.

pare favorably with IP on the same platform, which can switch

as many as 17,300 packets per second, and saturate with roughly))]

800 byte packets. SNABIngis between 2 and 3 times faster and0re than 40%, implying that the cost of SNAP execution for
60% smaller than the comparable PLAN program. Thus, SNARE Ping program is cheaper than the kernel's ICMP code.

can be considered practical in domains where software routerd® make a more detailed comparison, we calculated per-byte
are already practictl and per-packet switching costs for traversing a router for both IP

All experiments were run on dual-CPU 300-MHz Pentium ﬁmd SNAP. We calculated these costs by first using linear regres-

systems with 256 MB of RAM. These machines have 16 KBON to find the per-hop cost for each given packet size and then

split first-level caches and unified 512 KB second level cach@8ing & further regression with packet size as the independent
and rate 11.7 on SPECInt95. The machines run Linux kerf@riable to find the per-byte and per-packet costs. The results
2.2.12 and are connected by 100 Mb/s Ethernet links. Due@f Shown in Table Il. We see that the fixed cost per packet are

slightly skewed distributions, we report the medians of 21 trial@P0Ut 24us (27%) higher for SNAP, while the per-byte costs
as per Jain [10]. The times are measured on a clock witps 427€ 0nly 0.001us (< 1%) higher. We believe the higher per-
granularity. packet costs include the fact that IP must demultiplex the packet

to SNAP, as well as the overheads of actual SNAP evaluation.
A. Comparing SNAP to IP We ifntﬁnd to instrument our kernel to measure these costs more
carefully.

To compare SNAP Iatenc_y to that of IP, we _measured_theFor gandwidth, we compared SNAP's equivalent of UDP
round-trip times of SNAP ping, as shown in Figure 1, witheony followed bydemux) to thettcp [1] load generator send-
the standard IP-based ICMP ECHO-REPLY [18]. The prograjy ypp packets. SNAP UDP has an overhead of 44 bytes as
overhead—namely, the size of the packet minus the IP headgt, o red to 8 bytes for UDP. We performed a series of measure-
and payload—for using the SNAP-based ping was 68 bytegents on a three-machine configuration, varying the payload to
while for ICMP it is 8 bytes. We adjusted the payloads for eaqq it in Ethernet frame sizes of 100 byte increments, calculat-
program so that we had 100 byte (essentially minimal) and 150 the throughput for 5000 packets. The intermediate router is
byte (maximal) Ethernet frames. the system bottleneck.

The results are shown in Figure 4; thexis shows latency in - The results are shown in Figure 5. Theaxis plots through-
milliseconds (ms), and the-axis presents the number of hopsy i in Mo/s (based on payload), while theaxis plots the pay-

i.e,, network links traversed (0 hops is a machine pinging itsel}); 4 size in bytes. Both SNAP and UDP level off to saturate the
For maximally-sized packets, SNAP's latencies are at most 4if. SNAP’s maximal bandwidth is slightly less than UDP’s be-
slower than those for IP, depending on the hop count, while they,,se of the additional 36 bytes of overhead. In both cases, the
are as much as 10% slower for minimally-sized packets. FQfyes “ramp up” and level off, saturating the link. For UDP,
the 0-hop case, SNAP is actually faster for both packet sizes gy happens with roughly 800 byte packets, while for SNAP

SWe believe that SNAP can also be efficiently supported in high-speed c&eoccu.rs with 900 byte packets. An interesting feature of the
router environments, but this is a topic for future research graph is that between 300 and 500 byte packets, SNAP actually

] —¢— SNAP: hand-coded Project | Flexibility | Safety Efficiency
154 —o— SNAP: compiled from PLAN Space | Speed

1 -=2-- PLAN . .

- x SPkts fair fair good ?
& 1 e ANTS excellent good | excellent fair
E 10- e PAN excellent poor | excellent| excellent
> 1 7 PLAN || excellent | good fair good
o] - | SNAP || excellent | excellent| good [excellent]
© _ _-7
- 05+

TABLE Ill
COMPARISON OF ACTIVE PACKET SYSTEMS

0 1 2 3

Number of Hops

packets, none of them has achieved a completely satisfying de-
gree of safetyandefficiency.

BBN's SmartPackets [21] are used as mobile network man-
agement agents, using an SNMP-like [2] interface to query and
configure nodes. Safety is largely ignored; the authors mention
appears to outperform UDP. However, we believe this is molfegat an authorization-based scheme should be used. No exe-
due to peculiar scheduling in the kernel as opposed to some BHtion data is available, but the program representation is opti-
provement of SNAP over UDP. In particular, we have notice@ized to be very compact.
that both SNAP and UDP are unintuitively able to switch mid- ANTS [25] active packets, calleccapsules contain a
sized packets faster than small-sized ones. We suspect thi$p@inter” to the code needed to handle them; this code is dynam-
due to achieving synchrony with the device when packets acally loaded on demand from previous nodes in a flow, essen-
sent at a certain rate. We intend to investigate this behavior mtigdly eliminating per-packet space overheads. Such a scheme
thoroughly. may benefit SNAP as well. ANTS relies on its implementation
language, Java, to provide safety and on watchdog timers to reg-
ulate resource usage. However, Hawbligighl. [5] have shown

Not only is SNAP competitive with IP, but it significantlythe practice of abruptly terminating subprograms in the same

outperforms comparable active packet systems. To iIIustr:ﬁ%dress space to be generally unsafe without adding significant

this, we compared SNAP to the PLANet [9] implementation querhead. Owing to Java, ANTS exhibits low throughput [24].

PLAN. A follow-on project to ANTS is the PAN mobile-code plat-

For our experiments, we used PLANet compiled to natf@™M [17], which essentially implements the ANTS model in-
code (bytecode is also an option), running on top of UDP, Bgt_arnel, using native code. Not unexpectedly, PAN can achieve
—llike performance, but at the cost of no safety guarantees.

cause PLANet is a user-space implementation, we comparelﬂ .] i :
to SNAP’s user-space implementation, which also runs on topFinally, the PLAN project [7] is SNAP's direct predecessor,
of UDP. PLAN's ping program (see Figure 2) has an overheétﬂ'd. S|m|larly attempts to address safety concerns via Ian.guage
of 178 bytes. We used both the hand-coded version of SNAPSIgn. While all PLAN programs are guaranteed to terminate,
ping (see Figure 1), which has an overhead of 68 bytes, and g Possible to write exponentially long-running programs. Ex-
version compiled into SNAP from the PLAN version (see Fige€rimental results [9] show reasonable performance, but slow

ure 2), which has an overhead of 112 bytes. In all cases we uSéd\N evaluation leads to the conclusion that active processing
4-byte payloads. is unsuitable in the data plane.

The results are shown in Figure 6. Both of the SNAP ver-
sions perform essentially identically: about 1.8 times faster than

PLAN for 1-3 hops, and nearly 3 times faster for 0 hops. In addl-We have presented our second-generation active packet sys-

tion, the space overhead of SNAP is significantly less than tf{g}n SNAP (Safe and Nimble Active Packet hich has three
of PLAN: hand-coded SNAP ping is 62% smaller than PLAV%C;/ ’ (! V S), whi S
I

. . o ntributions. First, SNAP provides provable resource safety—
ping, and compiled ping 1S 37% sma_IIer. We are encouraged ear bounds on bandwidth, CPU, and memory usage—through
the fact't.hat our compiler's code, while more verbose, pgrforrﬂgvel language restrictions. Second, despite these language re-
competitively W'th pode producgd by hand. More EXPENenCedyictions, SNAP still retains the flexibility of first-generation
needed to see if this holds true in general. systems, as demonstrated by our PLAN to SNAP compiler.
Third, an efficient wire format and implementation achieve per-
formance extremely close to that of an IP software router. Taken

In this section, we discuss previous research on active pattgether, these three contributions establish that active packet
ets. We have summarized these systems with respect to flexibylstems can be practical for general use (at least where software
ity, safety, and efficiency in Table Ill. While all of the projectgouters are already practical). We expect to make our implemen-
have demonstrated utility derived from the flexibility of activeation available in the near future.

Fig. 6. Comparing SNAP ping to PLAN ping.

B. Comparing SNAP to PLAN

IX. CONCLUSIONS

VIIl. RELATED WORK

ACKNOWLEDGMENTS

The authors would like to thank Luke Hornof and Jessica
Kornblum for comments on early drafts of this paper. We would
also like to thank the anonymous referees for their helpful com-
ments.

REFERENCES

[1] Network performance testing with TTCPThe Network Monitar3(1),
1997.

[2] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network Man-
agement Protocol (SNMP). RFC 1157, IETF, May 1990.

[3] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specifica-
tion. RFC 2460, IETF, December 1998.

[4] J.Gosling, B. Joy, and G. Steelehe Java Language Specificatiohddi-
son Wesley, 1996.

[5] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and T. von Eicken.
Implementing multiple protection domains in Java. USENIX Annual
Technical Conferen¢dune 1998.

[6] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. Network
programming with PLAN. INEEE Workshop on Internet Programming
LanguagesMay 1998.

[7] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN: A
Packet Language for Active Networks. ACM SIGPLAN ICFRSeptem-
ber 1998.

[8] M. Hicks and A. D. Keromytis. A secure PLAN. International Working
Conference on Active Networks (IWAN)ne 1999.

[9] M. Hicks, J. T. Moore, D. S. Alexander, C. A. Gunter, and S. Nettles.
PLANet: An Active Internetwork. INEEE INFOCOM March 1999.

[10] R.Jain.The Art of Computer Systems Performance Analy&figey, New
York, 1991.

[11] D. Katz. IP router alert option. RFC 2113, IETF, February 1997.

[12] U. Legedza and J. Guttag. Using network-level support to improve cache
routing. InProceedings of the 3rd International WWW Caching Workshop
June 1998.

[13] U. Legedza, D. Wetherall, and J. Guttag. Improving the Performance of
Distributed Applications Using Active Networks. IEEE INFOCOM
March 1998.

[14] L. Lehman, S. Garland, and D. Tennenhouse. Active Reliable Multicast.
In IEEE INFOCOM March 1998.

[15] J. T. Moore. Safe and efficient active packets. Technical Report MS-CIS-
99-24, Department of Computer and Information Science, University of
Pennsylvania, October 1999.

[16] G. Necula. Proof-Carrying Code. IACM SIGPLAN-SIGACT PORL
January 1997.

[17] E. Nygren, S. Garland, and M. F. Kaashoek. PAN: A High-Performance
Active Network Node Supporting Multiple Mobile Code SystemdHERE
OPENARCHMarch 1999.

[18] J. Postel. Internet Control Message Protocol. RFC 792, IETF, September
1981.

[19] J. Postel. Internet Protocol. RFC 791, IETF, September 1981.

[20] D. Raz and Y. Shavitt. An active network approach for efficient network
management. Ihnternational Working Conference on Active Networks
July 1999.

[21] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D. Rockwell,
and C. Partridge. Smart packets: Applying active networks to network
managementACM Transactions on Computer Systerh®(1), February
2000.

[22] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient Software-
Based Fault Isolation. IACM SOSPDecember 1993.

[23] D. Wetherall. Active network vision and reality: lessons from a capsule-
based systemOperating Systems Revig84(5):64—79, December 1999.

[24] D. Wetherall.Service Introduction in an Active NetwoiRhD thesis, MIT,
February 1999.

[25] D.J. Wetherall, J. Guttag, and D. L. Tennenhouse. ANTS: A Toolkit for
Building and Dynamically Deploying Network Protocols. IEEE OPE-
NARCH April 1998.

[26] P. R. Wilson. Uniprocessor Garbage Collection Techniques.Prb:
ceedings of International Workshop on Memory Manageni&eptember
1992.

