
Practical Programmable Packets
Jonathan T. Moore∗ Michael Hicks∗ Scott Nettles†

∗Computer and Information Science†Electrical and Computer Engineering
University of Pennsylvania The University of Texas at Austin

Abstract— We present SNAP (Safe and Nimble Active Packets), a new
scheme for programmable (oractive) packets centered around a new low-
level packet language. Unlike previous active packet approaches, SNAP is
practical: namely, adding significantflexibility over IP without compromis-
ing safety and securityor efficiency. In this paper we show how to compile
from the well-known active packet language PLAN [7] to SNAP, showing
that SNAP retains PLAN’s flexibility; give proof sketches of its novel ap-
proach to resource control; and present experimental data showing SNAP
attains performance very close to that of a software IP router.

Keywords—Active networks, active packets, capsules, resource control.

I. I NTRODUCTION

The explosive growth of the Internet has placed new and in-
creased demands on the network infrastructure. Applications
now have varied service requirements such as high bandwidth,
low delay, low jitter, etc. The one-size-fits-all, single-service
model of IP [19], which has certainly contributed to its success,
often no longer fits user or application needs.

To meet these new demands, the network infrastructure must
evolve to encompass new service models and protocols. Un-
fortunately, IP is difficult to change, due to its centralized,
committee-controlled nature (cf. IPv6 [3]). Active networks
seek to avoid the committee bottleneck by making the network
programmable and thus easier to change on the fly. Perhaps the
most radical way to make the network programmable is to make
packets carry (or be) programs. In suchactive packets(a.k.a.
capsules[25]), the traditional packet header is replaced with a
program that is executed to determine its handling and effect.

Previous research efforts on active packets, such as PLAN [7]
and ANTS [25] have demonstrated that the flexibility provided
by active packets can be used to improve application perfor-
mance and functionality. Examples of active packet applications
include application-specific routing [9], transparent redirection
of web requests to nearby caches [12], distributed on-line auc-
tions [13], reliable multicast [14], mobile code firewalls [8],
and reduced network management traffic [21]. Unfortunately,
most of the active packet platforms have either restricted them-
selves to the control plane [21], had unacceptably low perfor-
mance [25], [9], or have achieved reasonable performance only
by sacrificing safety and security [17]. None has done an ef-
fective job of providing safe resource control. This has led to
a widespread belief that active network processing in the data
plane is fundamentally impractical.

In this paper we show that, to the contrary, active packets can
be of general use. To support this claim, we drew from our own
extensive experience with PLAN [7], and from the successes and
failures of first-generation active packet languages in general, to
design SNAP (Safe and Nimble Active Packets). The design of

This work was supported by DARPA under Contract #N66001-06-C-852 and
by the NSF under Contracts ANI 00-82386 and ANI 98-13875.

SNAP focuses on three dimensions of the active packet design
space:safety and security, where existing systems have made
good progress on preserving node integrity and providing pro-
tection but fail to cope adequately with resource allocation;flex-
ibility , where existing systems excel; andperformance, where
existing systems have key limitations, especially for data trans-
port. By demonstrating that SNAP adds significant flexibility
over IP without sacrificing either safety or efficiency, we estab-
lish SNAP as the firstpracticalactive packet system.

II. OUR APPROACH

Before proceeding with the body of the paper, which consists
of SNAP’s design, implementation, and performance character-
istics, we examine more closely the design-space axes ofsafety
and security, flexibility, andefficiency, and explain how SNAP’s
approach improves on prior approaches.

A. Safety and Security

Most active packet systems [7], [21], [25] have provided good
protection against packets damaging nodes or other packets. The
general strategy is to use type-checking and/or dynamic moni-
toring. With minor variations discussed in Section VI, SNAP
uses the same techniques with the same benefits.

Where existing systems generally fail is in controlling the re-
source utilization of active packets. Several systems use time-to-
live (TTL) counters to limit packet proliferation [7], [17], [25]
and watchdog timers and allocation limits to terminate packets
using too many local resources [21], [25]. These approaches
sacrifice safety because forced termination can be unsafe [5].
PLAN [7] limits packet execution by restricting its expressibil-
ity so that all programs must terminate. However, bounding this
termination time is problematic as packets may run into time
exponential to their length. In general, we would prefer that
packet resource usage be predictable, so that the network can
decide how to process packets most effectively.

SNAP takes a rather dramatic approach to these problems.
The language is designed with limited expressibility so that a
SNAP program uses bandwidth, CPU, and memory resources in
linear proportion to the packet’s length. Furthermore, the con-
stant of proportionality is known and small. This means that a
node can trivially predict a strict upper bound on the resources
that will be used by a packet. Furthermore SNAP also uses
a TTL-like mechanism drawn from PLAN called theresource
bound. Taken together, these two mechanisms place a bound on
resource utilization that can be computed when the packet first
enters the network. This strict resource control is SNAP’s most
novel advance.

How is linear resource use achieved? Bandwidth use is inher-

ently linear in packet length, but linear CPU and memory use
is achieved by restricting the bytecodes of the SNAP language.
Only forward branches are allowed, so that each bytecode is
executed at most once. Also, bytecodes (with a few key excep-
tions, see Section III) must execute in constant time. These two
restrictions imply that execution time is linear in the number of
bytecodes. Bounding memory works similarly: each instruction
can push at most one item on the stack and add at most one
element to the heap. Since a linear number of bytecodes are
executed, only a linear amount of additional space may be used.

B. Flexibility

The principal feature active networks add to existing networks
is flexibility. Existing active packet systems are perhaps the best
example of this, allowing custom protocols, flows, and packets.
These systems clearly meet the initial flexibility goals of active
networking, especially when coupled with extensible routers, as
in PLANet [9]. However, even these systems somewhat com-
promise flexibility by limiting expressibility to aid in achieving
safety; for example, with PLAN we designed the language to en-
sure that all packet programs terminate. Experience has shown
this to be a good compromise.

With SNAP, we take this compromise further, restricting flex-
ibility so as to achieve even greater safety: namely, linear per-
packet bounds on resource usage. The question is “Have we
gone too far?” We argue in Section V that the answer is “No” by
presenting a compiler that translates PLAN to SNAP. Although
it cannot (and should not, for safety reasons) effectively trans-
late all PLAN programs to SNAP, it does translate a large useful
subset. Therefore, since PLAN is one of the more flexible exist-
ing systems, SNAP also achieves high flexibility.

C. Efficiency

With one exception, existing systems achieve only mediocre
performance, being unable to saturate a 100 Mb/s Ethernet us-
ing relatively fast CPUs. The exception, PAN [17], achieves its
performance in two key ways: first, it is implemented in-kernel,
thus avoiding the overheads imposed by user-space implemen-
tations; second, its packet language is unrestricted x86 machine
code—thus abandoning any guarantees of node safety. We do
not believe that high performance without security is an accept-
able design alternative.

SNAP is designed for good performance; it provides basic op-
erators and control flow, thus enabling a lightweight interpreter.
SNAP’s linear safety properties make it possible to compute a
maximum size for a packet buffer, thus avoiding high memory
management costs during execution. Furthermore, a compact
wire representation improves throughput by leaving more room
for payload data. This wire representation makes possible “in-
place” execution of packet programs, in many cases avoiding
expensive marshalling and unmarshalling. Finally, our in-kernel
implementation avoids unnecessary domain crossings.

In this paper, we compare SNAP’s performance relative to IP
implemented in a similar environment. Our experiments show
that active processing imposes negligible overhead above nor-
mal IP processing. In other words, with SNAP a user only has
to pay for the amount of “activeness” used. We feel that such
a result is important because active packets will only be viewed

as practical if they impose only a small penalty or no penalty
at all for IP-like service. In addition, we show that SNAP is
considerably faster than its predecessor system, PLAN.

In the remainder of the paper, we expand on the themes intro-
duced in this section by presenting the details of the SNAP lan-
guage and its implementation. We begin with an overview of the
SNAP bytecode language, and in the following four sections we
demonstrate its practicality: in Section IV, we sketch network
safetyproofs which are made possible by SNAP’s design; in
Section V, we show that SNAP achieves theflexibility of previ-
ous active packet systems by describing a PLAN-to-SNAP com-
piler; and in Sections VI and VII, we show that SNAP can have
an efficient implementation compared to a software IP router.
Before concluding, we discuss previous active packet systems
in Section VIII.

III. SNAP

We now present an overview of SNAP, introducing the fea-
tures that will be important through the rest of the paper. SNAP
was designed as the successor to our first packet language,
PLAN, and shares much of PLAN’s design philosophy; we
make comparisons between the two throughout the paper. As
with PLAN, SNAP has been specifically designed to permit for-
mal proofs, particularly about the safety of its programs. Read-
ers seeking a detailed formal description of the language are di-
rected to [15].

SNAP executes on a stack-based bytecode virtual machine,
much like other such VMs except that it supports SNAP’s com-
munication primitives and safety approach. A SNAP program
consists of a sequence of bytecode instructions, a stack, and a
heap. Stack values are “small” data, like integers or addresses,
while heap values are “large” data, such as byte arrays or tu-
ples1, which can be pointed to from small values. Each SNAP
instruction consists of an opcode and an optional immediate ar-
gument.

SNAP’s network semantics are that a packet program is ex-
ecuted by every SNAP-enabled node and simply forwarded by
legacy IP routers. We describe in Section VI how this is accom-
plished. In addition, each SNAP packet has aresource bound
field similar to the IPv4 time-to-live (TTL) field: this field is
decremented at each hop, and a packet must donate some of its
resource bound to any child packets that are sent.

SNAP instructions fall into seven classes, listed in Table I. In
general, SNAP instructions:
1. execute in constant time, and
2. allocate a constant amount of stack and heap space.
These points are crucial to our safety claims, as discussed in
Section IV. As discussed below, a few exceptions to these points
exist.

A. Example: Ping

We illustrate SNAP’s basic features concretely by using a ver-
sion ofpingcoded in SNAP, shown in Figure 1. We usepingbe-
cause it allows for a simple example (only 7 SNAP instructions)

1A tuplecan be thought of as an array of small values.

Instruction class Examples

network control forw , forwto , send, demux
flow control bne, beq, ji , paj
stack manipulation push, pop, pull
environment query getsrc, getrb, here, ishere
simple computation add, addi, xor, eq
tuple manipulation mktup , nth
service access calls

TABLE I

SNAP INSTRUCTION CLASSES

forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

Fig. 1. SNAP code for ping.

with which the reader should be familiar. Furthermore, this is
the program we use for our benchmarks in Section VII.

Let us assume that we have two neighboring nodes,A and
B, and that we want to pingB from A. In this case, we cre-
ate a packet containing the ping code and an initial stack of
[0 :: port :: payload]. The0 on top of the stack indicates the
packet is moving from source to destination,port is a port num-
ber corresponding to the ping application on the sending node,
andpayload is a byte array carried along with the packet.

The packet is injected into the network atA and executes
there first. The first bytecode executed isforw (“forward”),
which compares the packet’s destination header field to the cur-
rent host’s address. If they do not match, a copy of the packet
is forwarded towards the destination, and the currently running
packet terminates; this is what happens onA initially. When the
packet reaches its destination,forw simply drops through to the
next instruction; this is what happens when the packet reaches
B.

Forw is a special-case of a more general “network control”
instruction,send, used to spawn new packets.Send(s, n, r, d)
creates a new packet with: a copy of the current code; a stack
consisting of the sender’s tops stack values; an entry pointn,
the index of the first instruction to execute;r resource bound;
and a destination field ofd. Executingsendresults inr resource
bound being given to the child packet and thus deducted from
the packet that executes the send.Forw is just shorthand for a
sendkeeping the same destination and entry point as the current
packet while taking the whole current stack and all of the current
packet’s resource bound. Network control operations are excep-
tional in that they operate in time linearly related to the packet’s
length.

OnB, the next bytecode executed isbne(“branch if not equal
to zero”). Bne consumes the top stack value as an argument,
and if it is nonzero takes the branch by adding the immediate

argument to the program counter. In our example, the0 on top
of the stack is popped, and since the test fails, the branch falls
through to the next instruction.

In addition to bne, we provide a variety of branch types,
including conditional branches (beq, bne), unconditional
branches (ji , “jump immediate”), and branches whose targets
are carried on the stack (paj, “pop and jump”). All branches
must “go forward” (offsets must be positive), implying that stan-
dard loops and function calls cannot be straightforwardly en-
coded. Despite this seemingly draconian restriction, we will see
in Section V that special compilation techniques still allow use-
ful programs.

The next bytecode executed ispush, which pushes a1 onto
the stack, signifying that the packet is now on the return trip.
(Now the stack is[1 :: port :: payload].) SNAP supports the
usual “stack manipulation” operations:push, pop, pull (copy a
value from within the stack), etc.

Next, getsrc pushes a copy of the source address onto the
stack. In general, SNAP provides several “environment query”
instructions, which allow a packet to read the contents of its
header fields (e.g., getrb for the remaining resource bound,
getepfor the current entry point) or to query the node itself for
information (e.g., here, which pushes the current node’s address
on the stack).

Next, forwto causes the packet to be sent back towardsA.
Forwto is like forw , but it reads a destination argument from
the stack (in our case, the addressA pushed bygetsrc). Thus the
return packet is effectively sent with its source and destination
fields swapped, carrying a stack of[1 :: port :: payload].

When the packet arrives atA, execution again begins at the
forw , which falls through, since the return packet’s destination
address isA. Thebneconsumes the1 on top of the stack, takes
the branch and jumps5 instructions to thedemux instruction.
Demux takes two arguments from the stack: a port number and
a value to deliver to the port. By design, this is exactly what
remains on the stack:[port :: payload].

The sixth instruction,pop, is only executed when the destina-
tion and source are the same host. In that case, when the packet
is “at the destination,” theforwto will fall through, so before
demuxing we must pop the 1 we just pushed.

B. Other Instructions

The instruction classes from Table I not appearing in the ping
program are “simple computation,” “heap manipulation,” and
“service access.” The “simple computation” instructions pop
one or more arguments from the stack, perform a computation
(optionally with an immediate argument) and push the result.
We provide standard integer and floating point arithmetic oper-
ators, relational operators, as well as some special-purpose in-
structions on addresses (e.g., subnet masks).

The “tuple manipulation” instructions allow the program to
allocate lengthn tuples on the heap (bymktup n) as well as to
select theith field from existing tuples (nth i). We require that
eachmktup n instruction be followed byn− 1 non-mktup in-
structions (usingno-opsas needed). This allows us to amortize
then allocated small values overn instructions.

Finally, the instructioncallss allows a packet to invoke aser-
vicenamed by the strings. Services are node-resident, general-

purpose routines that augment the limited functionality of the
packets. For example, we might have a service that allows pack-
ets to store soft-state on the routers they traverse. Services dif-
fer from normal instruction implementations, in that the service
namespace is extensible, meaning that we can upload new ser-
vice routines at runtime to add new functionality. This is essen-
tially the same model of services supported in PLAN [7].

IV. SAFETY

Safety and security are important issues in a shared internet-
working infrastructure—it should not be possible for users, ei-
ther maliciously or accidentally, to crash the network or oth-
erwise make it unusable to others. In particular, the following
properties should hold ofanypacket scheme, let alone an active
one:
• Node integrity: It should be impossible for the processing of
a packet to result in a node crash or subversion.
• Packet isolation: It should be impossible for an active packet
to affect other packets without permission.
• Resource safety: It should be possible to predict and strictly
bound the amount of local or network resources consumed by
an active packet.

At a high-level, SNAP follows the basic design philosophy
of PLAN: namely, that with a limited-expressibility domain-
specific language, we can know that a program is safe to exe-
cutewithout even examining it. We accomplish this by language
design, safe interpretation techniques, and formal proof.

To ensure node integrity and packet isolation, our first line-
of-defense is that SNAP simply does not contain any primitives
to exert control over the local node or other packets; SNAP pro-
grams may query the node for information but may otherwise
only affect themselves. We complete our guarantee by employ-
ing a form of dynamically-enforced software fault isolation [22].
This essentially prevents an attacker from using an ill-formed
packet (e.g.by exploiting buffer overruns) to gain control of the
node itself or to tamper with another user’s packets. For exam-
ple, pointer dereferences are verified to be within the packet’s
heap. This approach is much like that of other active packet
systems.

A. Resource safety

SNAP’s novel contribution is how it achieves resource safety.
The limited expressibility of SNAP makes it possible to compute
a priori bounds on the running time and memory usage of a
program, giving significant leverage over controlling resources.

Consider the following resource safety requirements:
1. CPU safety: on any one node, processing a packetp should
takeO(|p|) time, where|p| is the length ofp.
2. Memory safety: on any one node, processing a packetp
should requireO(|p|) memory.
3. Bandwidth safety: the overall network bandwidth con-
sumed by a packetp should beO(n|p|) wheren is some re-
source bound associated withp at its creation.
These requirements were derived from properties of unicast
IPv4 packets: examining the header (including any options) and
forwarding the packet takeO(|p|) time and space. Similarly,
the amount of network bandwidth consumed by the packet is

bounded by the product of the size of the packet and the TTL
contained in its header2.

SNAP has these properties and it is possible to prove so for-
mally. Here, we outline the basic ideas of such proofs; the reader
interested in the formal details is referred to the technical re-
port [15].

A.1 CPU safety

Because all branches in SNAP go forward, each instruction
in the program is executed at most once. Furthermore, with the
exception of the network control instructions, all SNAP instruc-
tions execute in constant time. Thus, aside from the network
control instructions, a SNAP program runs in time linear in its
length (and therefore in the length of the containing packet).

However, sending a packet takesO(|p|) time, as does deliver-
ing data withdemux. In the pathological case of a program
consisting only ofsend instructions, the total time would be
|p| × O(|p|) = O(|p2|). To gain the desired linear bound, we
restrict the number of network operations allowed per packet to
some constantn, resulting inn × O(|p|) = O(|p|). The most
conservative case would be to setn = 1, allowing only a sin-
gle send or delivery per packet, matching unicast semantics but
prohibiting multicast-style programs, and even reasonable im-
plementations of traceroute [6], [20]. A more flexible bound,
used in our current implementation, is the leastn such that mul-
ticast may be programmed:n varies per node to be the number
of network interfaces on that node. Fordemux, we permit only
one delivery per packet, and force the packet to exit following
the delivery. As we gain more experience with SNAP, we expect
to develop more insight into reasonable policies.

Note that if we know the most expensive constant-time in-
struction, the maximum number of sends, and the maximum
packet size, we can precisely compute an upper bound on a pro-
gram’s runtime.

A.2 Memory safety

To prove memory safety, we show that for each instruction
(using amortized analysis) at most one small value may be allo-
cated, on each of the heap and the stack. For all of the SNAP in-
structions except themktup instruction, zero or more arguments
are consumed from the stack, and at most one result value is
added, while the heap is not affected. Furthermore, the require-
ment thatmktup nmust be followed by at leastn−1 instructions
that are notmktup means that each instruction allocates at most
one amortized small value on the heap.

Given that each instruction of a SNAP program executes at
most once, we see that the maximum number of small val-
ues allocated by a program is twice its length. As a result,
the SNAP VM need only allocate a buffer of constant size for
each packet; in our current implementation this is4 × MTU
due to additional per-heap-object overheads. This buffer can
be immediately recycled upon program termination, thus avoid-
ing memory-management overheads, such as garbage collection
costs, which have plagued previous systems [9], [23], [17].

2Multicast IPv4 packets do not comply with this standard, but as multicast
resource usage is an open problem, our “bandwidth safety” property is a conser-
vative goal.

A.3 Bandwidth safety

Finally, we can prove bandwidth safety by observing that a
SNAP packet’s resource bound is decremented upon reception,
and that any child packets must be given some of their parent’s
resource bound (i.e., conservation of resource bound). Thus a
packetp with initial resource bound ofn can cause at mostn
transmissions of|p|, whether directly or through its offspring.

B. Services and safety

The above safety guarantees do not necessarily apply if a
SNAP program invokes a node-resident service viacalls. Ser-
vices have general-purpose functionality, so we cannot make the
samea priori guarantees about their resource usage. Nonethe-
less, as services are node-resident, the same review processes
currently used for protocol deployment may be used. The proof
sketches above do, however, provide a guideline for “SNAP-
safe” services: they must execute in constant time and space.
Naturally, more complex services are feasible (and probably de-
sirable), but they are not covered by our existing safety frame-
work.

V. FLEXIBILITY

We have seen how restrictions to SNAP’s flexibility imply
several important safety properties. To demonstrate that SNAP
still retains enough expressibility to be useful, we developed a
compiler that translates PLAN into SNAP. PLAN’s flexibility
is well-documented in the literature [6], [7], [8], [9]; our com-
piler thus ensures that SNAP remains useful. Indeed, of the six
active applications mentioned in the introduction, two are cur-
rently implemented in PLAN, while at least three others could
be.3 Perhaps PLAN’s most important application is its internet-
work, PLANet [9]. In PLANet,all internetworking functional-
ity is implemented using PLAN packets and router services, in-
cluding address resolution, dynamic routing, encapsulation and
fragmentation, error reporting,etc. Thus, our compiler demon-
strates that we could likewise perform all of these internetwork-
ing functions with SNAP.

Since SNAP provides stronger safety guarantees through lan-
guage restrictions, it is not feasible to translateall PLAN pro-
grams into SNAP. However, the PLAN programs that are ruled
out are the ones with problematic resource usage, so we do not
see this as an obstacle in practice. Indeed, all of the sample pro-
grams shipped with the current release of PLANet [9] may be
encoded in SNAP.

In this section, we present the compilation techniques which
make it possible to use SNAP as a compilation target. We also
provide an example of the compiler’s output for a PLANping
program, for comparison against the hand-coded SNAP shown
in Figure 1 in Section III.

A. Compiling PLAN to SNAP

PLAN is a purely functional programming language aug-
mented with primitives for remote evaluation. It supports stan-
dard features, such as functions and arithmetic, and features

3These applications are implemented in ANTS, which could easily be imple-
mented as a set of PLAN services, and vice versa.

common to functional programming, like lists and the list it-
eratorfold4. A notable restriction is that functions may not be
recursive; this is part of a guarantee that all PLAN programs ter-
minate. Like SNAP, PLAN programs are packet-resident, and
may call general-purposeservice routinesthat are node-resident.

SNAP would be a fairly straightforward target language for
PLAN if not for its lack of backward branches. Backward
branches are typically used by compilers in three ways:

1. in returning to the caller after completing a function call
2. in calling a (mutually) recursive function
3. in returning to the head of a loop body

To deal with the first two points, we eliminate function calls
to PLAN functions through inlining; this is straightforward be-
cause PLAN prohibits recursive functions (service function calls
are translated directly to use thecalls opcode). In PLAN, the
only looping construct is the list iteratorfold . In this case, we
unroll thefold , and inline each call to the iterator function. Be-
cause the number of times the iterator is called depends on the
length of the list, we cannot, generally speaking, know how
many times to unroll thefold . Therefore, the user provides a
conservative upper bound to the compiler. We do not expect this
to be a problem in practice, as most uses offold are on short
lists of addresses,e.g., for the multicast program in [6] or the
flow-based routing program in [9].

PLAN differs slightly from SNAP in its execution model.
PLAN programs do not evaluate on every active router they tra-
verse, as SNAP programs do, but on the destination only. On
the intervening PLAN nodes, a packet-specified “routing func-
tion” is evaluated instead, which determines the next hop and
forwards the packet there. This routing function is specified as
an argument to the PLAN packet transmission functionOnRe-
mote . To translate this model to SNAP, we add a piece of SNAP
code to be evaluated on every hop: it checks if the packet has
reached its destination, and if not looks up the next hop using
the specified function and forwards the packet. If the packet
has arrived at its destination, the code jumps to the entry point,
stored on the top of the stack. For the specialdefaultRoute
routing function, this bit of code is simply theforw instruction,
followed by apaj (“pop and jump”).

B. Compilation example: ping

To illustrate PLAN compilation, we present a simple exam-
ple. The top of Figure 2 shows a PLAN version of ping. This
program is sent into the network, and first evaluates thep func-
tion on the destination it wishes to ping. This function calls
OnRemote to send a packet that will evaluate the functionr
back on the sender. This packet will use thedefaultRoute
routing function to get it back to the source (the routing function
used to get top is specified at send-time). Whenr is executed, it
delivers some data (in the variablew) to the application listening
on port numberedn.

The translation of this program by our compiler is shown in
the lower portion of Figure 2. ThedefaultRoute routing
function appears first, followed by code sequences forr andp.

4Intuitively, fold executes a given functionf for each element of a given list,
accumulating a result as it goes.

fun r(w:blob,n:int) =
deliverUDP(w,n)

fun p(w:blob,n:int) =
OnRemote(|r|(w,n),getSrc(),

getRB(),defaultRoute)

defaultRoute :
forw ; forward to dest
paj -1 ; jump totop stack

; value- 1
r : pull 0 ; get port num

pull 2 ; get data
demux ; deliver data & exit

p: pull 0 ; pkt stack: port
pull 2 ; pkt stack: data
push r ; pkt stack: paj offset
push defaultRoute ; entry point
push 3 ; how much stack
getrb ; how much rb
getsrc ; return to src
send ; send return packet
pop ; pop send return val
popi 3 ; pop extra stack
exit ; done

Fig. 2. Ping in PLAN and as compiled into SNAP

r simply copies the top two stack values usingpull5 and calls
demux (which exits immediately after delivering its data).p
constructs a packet to evaluater on the source. It first con-
structs the stack for the call tor consisting of argumentsw and
n. Then it pushes the offsetr , used bypaj in the default-
Route function. The remaining opcodes push the arguments
to send: defaultRoute is the entry point, 3 specifies the
amount of stack to take,getrb pushes all of the current packet’s
resource bound, andgetsrc pushes the current packet’s source
address. Following thesend, we pop the three arguments used
in the sent packet’s stack (popi 3), as well as the return value of
send.

In general, our compiler does a decent job of translating
PLAN to SNAP, and as shown in Section VII, the compiled code
performs well. In fact, the program in Figure 2, while longer
than the hand-coded 7 instruction version presented in Figure 1
in Section III, achieves about the same performance, as we show
experimentally in Section VII. The compiled code is not fully
optimized, especially for space; for example, all of the instruc-
tions following thesendabove could be eliminated. For the near
term, we expect to use the compiler to achieve initial translations
which we can then tune by hand as necessary.

VI. I MPLEMENTATION

We have implemented a SNAP VM in C, with both kernel-
space and user-space versions. For the user-space implementa-
tion we have a daemon,snapd, that communicates with other
daemons and user applications via UDP. The kernel version has
been implemented for Linux kernel version 2.2.12 as part of
RedHat Linux 6.1, and is accessible to user applications by a
special socket type. SNAP is currently positioned as a transport
layer protocol, although we ultimately intend for it to reside as

5This is not strictly necessary since the stack is already properly arranged for
the call todemux; however our compiler does not yet do this optimization.

code

32 bits

IPv4 destination address

IPv4 source address

portresource bound

entry point (# instrs) code size (octets)

stack size (octets)heap size (octets)

heap

stack

endian flag

Fig. 3. SNAP packet format

a shim layer between layers three and four, using the IP Router
Alert option [11] to flag the packets as active ones.

We followed three implementation principles:
1. make execution as fast as possible
2. minimize the size of SNAP program representations
3. trade large initial fixed costs for incremental ones
In total, our intention was to reduce the overhead of SNAP, es-
pecially for common case programs like data delivery and di-
agnostics. In the remainder of this section, we discuss how we
achieved these goals, covering the SNAP packet format, SNAP
program representations, the structure of the interpreter, and the
implementation of key operations, such as sending packets and
checking well-formedness.

A. Packet Format

Our packet format is shown in Figure 3. The first portion of
the header contains some standard header fields such as source,
destination, and port, as well as the resource bound field that is
used for bandwidth safety as described earlier.

The second portion of the header describes the SNAP pro-
gram. Preceding the resource bound field is a flag to indicate
the endianness of values in the packet program (all header fields
are in network byte order), so that they may be converted if need
be. The next header field is the “entry point”, which indicates
at which instruction execution is to begin. We then have fields
that delineate the three main portions of the program: the code,
heap, and stack. The program is laid out in this order to permit
executionin place, without additional copying, as we describe
below. As a result, packet execution can begin almost immedi-
ately upon arrival, following a few structural checks (e.g., that
the entry point is within the code, that the various lengths do not
exceed the buffer size, etc.). This is in contrast to systems like
PLAN [9] and ANTS [23] that require extensive unmarshalling
before execution.

B. Program Representation

The SNAP program is generally represented as follows. The
code section consists of an array of uniformly-sized instructions.
Stack values are also uniformly-sized, consisting of a tag and a
data field. The tag indicates the type, and the data contains the
actual value. For values that are too large to fit on the stack

(like tuples or byte arrays), the data resides in the heap and is
pointed to by the stack value. This pointer is implemented as
an offset relative to the base of the heap, allowing the packet
to be arbitrarily relocated in memory (but at a cost of an extra
calculation during interpretation). This feature eliminates the
large fixed cost of adjusting pointers in the code and stack before
execution. Heap objects each contain a header with length and
type information.

We implemented this scheme to require as little space as pos-
sible. All instructions and stack values are one word, and heap
objects have a one word header. Stack values are divided into an
n-bit tag, and a(32 − n)-bit data part. Integer precision is re-
duced as a result, and addresses and floating point values have to
be allocated in the heap. We believe this is a minor limitation, as
floats and addresses are used infrequently, and integers almost
never require high precision in the context of simple packet pro-
grams. Instructions are similarly ann-bit opcode and a32− n-
bit immediate corresponding to the data part of a stack value.
We have 100 distinct instructions in our final encoding; there-
fore we setn to be 7 bits for tags and opcodes, meaning that our
integer precision is 25 bits.

C. SNAP interpreter

The interpretation of most of the instructions is extremely
straightforward, with the exception ofsendand the other net-
work operations, as explained below. The interpreter is con-
structed as a loop around a largeswitch statement, with one
case for each opcode. Most instructions extract arguments from
the stack or heap, perform some computation, and then push the
result.

If the initial packet buffer is sufficiently large, packet execu-
tion may occur “in place.” That is, with the packet at the front
of the buffer, the stack is allowed to grow towards the end of
the buffer during execution. Heap allocation takes place within
a second heap, situated at the end of the buffer, growing towards
the stack. In our user-space implementation, we allocate a single
buffer of size4 × MTU , the maximum possible size required
(as per Section IV), and receive all incoming packets into that
buffer. In our kernel implementation, the buffer we receive from
the kernel is not much bigger than the packet itself. Rather than
immediately copy the packet into a maximally sized buffer, we
do so only if needed. Execution proceeds in the given buffer
until either a heap allocation takes place, or the current stack is
about to overrun, at which point the copy is done. This permits
simple executions to avoid the copy;e.g., when the ping pro-
gram in Figure 1 is forwarded, no copy is needed, but when it
executes at the destination, thegetsrc instruction causes an ad-
dress to be allocated on the heap, resulting in a copy when the
return packet is sent.

D. Implementingsend

Sendcreates a new packet containing subsets of its parent’s
code, stack, and heap, and some of the parent’s resource bound.
Creating this new packet presents two difficulties. First, if any
allocation has taken place, then the parent packet has two heaps
that must be consolidated into a single heap in the child packet.
Second, we would prefer to include only the portions of the par-
ent packet that will be needed by the child packet. We address

both issues by employing a scheme similar to copying garbage
collection [26]. This process ensures only the portions of the
two parent heaps that arereachablefrom the child’s stack will
be copied into the child heap, and it adjusts any heap offsets
(whether in the code, stack, or heap) to point to the correct loca-
tions in the child heap. We currently copy all of the code into the
new packet; we could similarly employ a control-flow analysis
to prunethe code, as occurs in PLANet [9].

While this approach is general, it is both computationally and
memory intensive. Fortunately, we can take more optimal ap-
proaches in certain common cases. First, if we have not per-
formed any heap allocation, we can copy the parent heap and
stack subset directly to the new packet, without requiring heap
offset fix-ups, since the position of heap objects will not have
changed. The result is faster packet creation times but poten-
tially larger packets, since any objects that are unreachable will
not have been removed.

Even better, if the stack required by the new packet consists
of the entire stack of the current packet, we mayreusethe cur-
rent packet buffer, requiring only modifications to its header,
but only if transmission will occur before further modifications
take place. Since a program terminates after executingforw or
forwto , simple routing of active packets may occur without any
significant marshalling or unmarshalling costs.

E. Well-formedness checking

Before a program may be executed, the interpreter must ver-
ify it is well-formed. Many systems that dynamically load code,
notably Java [4] and proof-carrying code [16], verify that the
entire code body is well-formed before allowing it to be exe-
cuted. Depending on the size and complexity of the program,
this may result in a large up-front cost, which we prefer to avoid.
Instead, we intermix dynamic checks with interpretation, result-
ing in a performance improvement when the packet only exe-
cutes a fraction of its instructions. This is often the case: most
packets require frequent routing (implemented by theforw in-
struction), but only occasional computation; the programs in
Figures 1 and 2 exhibit this property.

To reduce the number of dynamic checks, we are willing to
verify as little as possible while still ensuring node integrity. As
a result, we can avoid many of the checks that would normally
be associated withtype-safety. For instance, most interpreters
would check that the argument tonot is an integer and would
signal a type error otherwise. However, we can omit this check,
andassumethat it is. This may result in “incorrect” program
behavior but it will not compromise any of the safety properties.

VII. E FFICIENCY

Having seen that the SNAP implementation is tailored for ef-
ficient execution, we now present experimental evidence that
SNAP is efficient enough to be practical in many settings. To do
so, we examine SNAP’s performance in two areas. First, using
our in-kernel SNAP implementation, we compare SNAP to IP in
a software router setting, both for bandwidth and latency. Sec-
ond, using the user-space implementation of SNAP and PLAN,
we compare the latency of SNAP to that of PLAN, as well as
examine the cost of using the SNAP to PLAN compiler.

0
�

1 2 3
�

Number of Hops

0.0

0.5

1.0

1.5

L
at

en
cy

 (
m

s)

�

 SNAP, 1412 B
 SNAP, 12 B
 ICMP, 1472 B
 ICMP, 72 B

Fig. 4. Ping latencies

SNAP is competitive with IP and shows greatly reduced eval-
uation overheads compared to PLAN. SNAP latencies are no
more 10% slower than IP’s, depending on payload size and
hop count. SNAP can saturate a 100 Mb/s Ethernet link us-
ing roughly 900 byte or greater sized packets, and can switch as
many as 16,800 packets per second. These measurements com-
pare favorably with IP on the same platform, which can switch
as many as 17,300 packets per second, and saturate with roughly
800 byte packets. SNAPping is between 2 and 3 times faster and
60% smaller than the comparable PLAN program. Thus, SNAP
can be considered practical in domains where software routers
are already practical6.

All experiments were run on dual-CPU 300-MHz Pentium II
systems with 256 MB of RAM. These machines have 16 KB
split first-level caches and unified 512 KB second level caches
and rate 11.7 on SPECint95. The machines run Linux kernel
2.2.12 and are connected by 100 Mb/s Ethernet links. Due to
slightly skewed distributions, we report the medians of 21 trials,
as per Jain [10]. The times are measured on a clock with a 4µs
granularity.

A. Comparing SNAP to IP

To compare SNAP latency to that of IP, we measured the
round-trip times of SNAP ping, as shown in Figure 1, with
the standard IP-based ICMP ECHO-REPLY [18]. The program
overhead—namely, the size of the packet minus the IP header
and payload—for using the SNAP-based ping was 68 bytes,
while for ICMP it is 8 bytes. We adjusted the payloads for each
program so that we had 100 byte (essentially minimal) and 1500
byte (maximal) Ethernet frames.

The results are shown in Figure 4; they-axis shows latency in
milliseconds (ms), and thex-axis presents the number of hops,
i.e., network links traversed (0 hops is a machine pinging itself).
For maximally-sized packets, SNAP’s latencies are at most 2%
slower than those for IP, depending on the hop count, while they
are as much as 10% slower for minimally-sized packets. For
the 0-hop case, SNAP is actually faster for both packet sizes by

6We believe that SNAP can also be efficiently supported in high-speed core
router environments, but this is a topic for future research

IP SNAP
Per-packet (µs) 71 95

Per-byte (µs) 0.134 0.135

TABLE II

PER-NODE SWITCHING COSTS

500
�

1000
�

1500

Payload size (bytes)

0

20

40

60

80

100

B
an

dw
id

th
 (

M
b/

s)

�

ttcp-UDP
SNAP

Fig. 5. Throughput measurements.

more than 40%, implying that the cost of SNAP execution for
the ping program is cheaper than the kernel’s ICMP code.

To make a more detailed comparison, we calculated per-byte
and per-packet switching costs for traversing a router for both IP
and SNAP. We calculated these costs by first using linear regres-
sion to find the per-hop cost for each given packet size and then
doing a further regression with packet size as the independent
variable to find the per-byte and per-packet costs. The results
are shown in Table II. We see that the fixed cost per packet are
about 24µs (27%) higher for SNAP, while the per-byte costs
are only 0.001µs (< 1%) higher. We believe the higher per-
packet costs include the fact that IP must demultiplex the packet
to SNAP, as well as the overheads of actual SNAP evaluation.
We intend to instrument our kernel to measure these costs more
carefully.

For bandwidth, we compared SNAP’s equivalent of UDP
(forw followed bydemux) to thettcp [1] load generator send-
ing UDP packets. SNAP UDP has an overhead of 44 bytes as
compared to 8 bytes for UDP. We performed a series of measure-
ments on a three-machine configuration, varying the payload to
result in Ethernet frame sizes of 100 byte increments, calculat-
ing the throughput for 5000 packets. The intermediate router is
the system bottleneck.

The results are shown in Figure 5. They-axis plots through-
put in Mb/s (based on payload), while thex-axis plots the pay-
load size in bytes. Both SNAP and UDP level off to saturate the
link; SNAP’s maximal bandwidth is slightly less than UDP’s be-
cause of the additional 36 bytes of overhead. In both cases, the
curves “ramp up” and level off, saturating the link. For UDP,
this happens with roughly 800 byte packets, while for SNAP
it occurs with 900 byte packets. An interesting feature of the
graph is that between 300 and 500 byte packets, SNAP actually

0
�

1 2 3
�

Number of Hops

0.0

0.5

1.0

1.5

L
at

en
cy

 (
m

s)

�

 SNAP: hand-coded
 SNAP: compiled from PLAN
 PLAN

Fig. 6. Comparing SNAP ping to PLAN ping.

appears to outperform UDP. However, we believe this is more
due to peculiar scheduling in the kernel as opposed to some im-
provement of SNAP over UDP. In particular, we have noticed
that both SNAP and UDP are unintuitively able to switch mid-
sized packets faster than small-sized ones. We suspect this is
due to achieving synchrony with the device when packets are
sent at a certain rate. We intend to investigate this behavior more
thoroughly.

B. Comparing SNAP to PLAN

Not only is SNAP competitive with IP, but it significantly
outperforms comparable active packet systems. To illustrate
this, we compared SNAP to the PLANet [9] implementation of
PLAN.

For our experiments, we used PLANet compiled to native
code (bytecode is also an option), running on top of UDP. Be-
cause PLANet is a user-space implementation, we compared it
to SNAP’s user-space implementation, which also runs on top
of UDP. PLAN’s ping program (see Figure 2) has an overhead
of 178 bytes. We used both the hand-coded version of SNAP
ping (see Figure 1), which has an overhead of 68 bytes, and the
version compiled into SNAP from the PLAN version (see Fig-
ure 2), which has an overhead of 112 bytes. In all cases we used
4-byte payloads.

The results are shown in Figure 6. Both of the SNAP ver-
sions perform essentially identically: about 1.8 times faster than
PLAN for 1-3 hops, and nearly 3 times faster for 0 hops. In addi-
tion, the space overhead of SNAP is significantly less than that
of PLAN: hand-coded SNAP ping is 62% smaller than PLAN
ping, and compiled ping is 37% smaller. We are encouraged by
the fact that our compiler’s code, while more verbose, performs
competitively with code produced by hand. More experience is
needed to see if this holds true in general.

VIII. R ELATED WORK

In this section, we discuss previous research on active pack-
ets. We have summarized these systems with respect to flexibil-
ity, safety, and efficiency in Table III. While all of the projects
have demonstrated utility derived from the flexibility of active

Project Flexibility Safety Efficiency
Space Speed

SPkts fair fair good ?
ANTS excellent good excellent fair
PAN excellent poor excellent excellent
PLAN excellent good fair good

SNAP excellent excellent good excellent

TABLE III

COMPARISON OF ACTIVE PACKET SYSTEMS.

packets, none of them has achieved a completely satisfying de-
gree of safetyandefficiency.

BBN’s SmartPackets [21] are used as mobile network man-
agement agents, using an SNMP-like [2] interface to query and
configure nodes. Safety is largely ignored; the authors mention
that an authorization-based scheme should be used. No exe-
cution data is available, but the program representation is opti-
mized to be very compact.

ANTS [25] active packets, calledcapsules, contain a
“pointer” to the code needed to handle them; this code is dynam-
ically loaded on demand from previous nodes in a flow, essen-
tially eliminating per-packet space overheads. Such a scheme
may benefit SNAP as well. ANTS relies on its implementation
language, Java, to provide safety and on watchdog timers to reg-
ulate resource usage. However, Hawblitzelet al.[5] have shown
the practice of abruptly terminating subprograms in the same
address space to be generally unsafe without adding significant
overhead. Owing to Java, ANTS exhibits low throughput [24].

A follow-on project to ANTS is the PAN mobile-code plat-
form [17], which essentially implements the ANTS model in-
kernel, using native code. Not unexpectedly, PAN can achieve
IP-like performance, but at the cost of no safety guarantees.

Finally, the PLAN project [7] is SNAP’s direct predecessor,
and similarly attempts to address safety concerns via language
design. While all PLAN programs are guaranteed to terminate,
it is possible to write exponentially long-running programs. Ex-
perimental results [9] show reasonable performance, but slow
PLAN evaluation leads to the conclusion that active processing
is unsuitable in the data plane.

IX. CONCLUSIONS

We have presented our second-generation active packet sys-
tem, SNAP (Safe and Nimble Active Packets), which has three
contributions. First, SNAP provides provable resource safety—
linear bounds on bandwidth, CPU, and memory usage—through
novel language restrictions. Second, despite these language re-
strictions, SNAP still retains the flexibility of first-generation
systems, as demonstrated by our PLAN to SNAP compiler.
Third, an efficient wire format and implementation achieve per-
formance extremely close to that of an IP software router. Taken
together, these three contributions establish that active packet
systems can be practical for general use (at least where software
routers are already practical). We expect to make our implemen-
tation available in the near future.

ACKNOWLEDGMENTS

The authors would like to thank Luke Hornof and Jessica
Kornblum for comments on early drafts of this paper. We would
also like to thank the anonymous referees for their helpful com-
ments.

REFERENCES

[1] Network performance testing with TTCP.The Network Monitor, 3(1),
1997.

[2] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network Man-
agement Protocol (SNMP). RFC 1157, IETF, May 1990.

[3] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specifica-
tion. RFC 2460, IETF, December 1998.

[4] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addi-
son Wesley, 1996.

[5] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and T. von Eicken.
Implementing multiple protection domains in Java. InUSENIX Annual
Technical Conference, June 1998.

[6] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. Network
programming with PLAN. InIEEE Workshop on Internet Programming
Languages, May 1998.

[7] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN: A
Packet Language for Active Networks. InACM SIGPLAN ICFP, Septem-
ber 1998.

[8] M. Hicks and A. D. Keromytis. A secure PLAN. InInternational Working
Conference on Active Networks (IWAN), June 1999.

[9] M. Hicks, J. T. Moore, D. S. Alexander, C. A. Gunter, and S. Nettles.
PLANet: An Active Internetwork. InIEEE INFOCOM, March 1999.

[10] R. Jain.The Art of Computer Systems Performance Analysis. Wiley, New
York, 1991.

[11] D. Katz. IP router alert option. RFC 2113, IETF, February 1997.
[12] U. Legedza and J. Guttag. Using network-level support to improve cache

routing. InProceedings of the 3rd International WWW Caching Workshop,
June 1998.

[13] U. Legedza, D. Wetherall, and J. Guttag. Improving the Performance of
Distributed Applications Using Active Networks. InIEEE INFOCOM,
March 1998.

[14] L. Lehman, S. Garland, and D. Tennenhouse. Active Reliable Multicast.
In IEEE INFOCOM, March 1998.

[15] J. T. Moore. Safe and efficient active packets. Technical Report MS-CIS-
99-24, Department of Computer and Information Science, University of
Pennsylvania, October 1999.

[16] G. Necula. Proof-Carrying Code. InACM SIGPLAN-SIGACT POPL,
January 1997.

[17] E. Nygren, S. Garland, and M. F. Kaashoek. PAN: A High-Performance
Active Network Node Supporting Multiple Mobile Code Systems. InIEEE
OPENARCH, March 1999.

[18] J. Postel. Internet Control Message Protocol. RFC 792, IETF, September
1981.

[19] J. Postel. Internet Protocol. RFC 791, IETF, September 1981.
[20] D. Raz and Y. Shavitt. An active network approach for efficient network

management. InInternational Working Conference on Active Networks,
July 1999.

[21] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D. Rockwell,
and C. Partridge. Smart packets: Applying active networks to network
management.ACM Transactions on Computer Systems, 18(1), February
2000.

[22] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient Software-
Based Fault Isolation. InACM SOSP, December 1993.

[23] D. Wetherall. Active network vision and reality: lessons from a capsule-
based system.Operating Systems Review, 34(5):64–79, December 1999.

[24] D. Wetherall.Service Introduction in an Active Network. PhD thesis, MIT,
February 1999.

[25] D. J. Wetherall, J. Guttag, and D. L. Tennenhouse. ANTS: A Toolkit for
Building and Dynamically Deploying Network Protocols. InIEEE OPE-
NARCH, April 1998.

[26] P. R. Wilson. Uniprocessor Garbage Collection Techniques. InPro-
ceedings of International Workshop on Memory Management, September
1992.

