HARDWARE SUPPORT FOR MODERN

SOFTWARE CONCEPTS

Charles G. Hoch

August, 1978 ICSCA-CMP~-12



ACKNOWLEDGMENTS

1 am very grateful to Dr. James C. Browne for the immense amount
of guidance and assistance he has provided me while 1 have been a
graduate student. 1 am grateful to the Certifiable Minicomputer
Project for providing financial support for this dissertation, and
for committing itself to the implementation of Gypsy via an
intermediate form based on the model described in this dissertation.
'Discussions of the model with Richard Cohen and Dr. Donald Good
provided valuable insight. The work on the implementation of Gypsy
with Larry Hunter and Larry Smith helped firm up some aspects of the
model which had been vague. Thanks are due to Dr. James Peterson,
who for his assistance in making the final revisions to the

dissertation.

iv



HARDWARE SUPPORT FOR MODERN SOFTWARE CONCEPTS

Publication No.

Charles George Hoch, Ph.D.
The University of Texas at Austin, 1978

Supervising Professor: James C. Browne

The gap between the abstract machines defined by modern
software concepts and the abstract machines realized by most
contemporary hardware is disconcertingly large. This dissertation
describes and defines a realizable machine architecture which
straightfotwardly supports program modularity, typing and abstract
data objects, concurrency, recursion, and program recovery/restart.
The proposed architecture is obtained through a unifying synthesis
and formalization of existing hardware concepts. Isolated examples
of hardware implementations of many of the concepts now exist.
Modern micro-electronics clearly permits the implementation of the
unified conceptual base presented here. The key conceptual elements
of the design are the integration of the concepts of typing,
capabilities, word tagging, and memory virtualization, and the

uniform treatment of hardware instructioms, software functioms, and



device actions.

The resulting architecture attains the goals of direct and
effective support of modern software constructs and concepts while
still retaining a simplicity which will allow implementation of high
performance hardware at reasonable cost. The practicality of the
architecture is demonstrated by using a software realization of it
as an intermediate target language (abstract machine) for the
implementation of Gypsy, a language which includes all of the
concepté of modern software mentioned above. A compiler using this

target language is being implemented.

Many 1f not most of the conceptual. bases for this
architectural design have appeared in the literature (often as
software) in the past. The fundamental contribution of this
dissertation is the integration of these concepts intc a coherent
computing structure and the demonstration of utility for such
powerful abstract machines.

The fundamental conceptual structure used to define the
proposed architecture is the integration of the concepts of
capability based and tagged architectures. Everything represented
in this system 1is an "object". Every object is referenced only
through the use of a typed capability which we will label as a
"descriptor”. Even hardware instructions must obey this constraint.

The architecture is built up by defining efficient forms of the
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descriptor, using the type of the object, and defining functiomns for
manipulating the descriptors, in order to implement the
functionality of the architecture. An instructién call (hardware
implemented routine), a procedure call (software implemented
routine), and a hardware device call (such as a disk drive) are all
represented as a descriptor for that "routine" (actually, a
descriptor for an queue serviced by the routine) and a list of the

descriptors which are to be its inputs and outputs (parameters).
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CHAPTER 1

INTRODUCTION

1.1 Overview Of The Architecture

The gap between the abstract machines defined by modern
software concepts and the abstract machines realized by most
contemporary hardware is disconcertingly large. This dissertatién
describes and defines a realizable machine architecture which
straightforwardly supports program modularity, typing and abstract
data objects, concurrency, recursion, and program recovery/restart.
The proposed architecture is obtained through a unifying synthesis
and formalization of existing hardware concepts. Isolated examples
of hardware implementations of many of the concepts now exist.
Modern micro—-electronics clearly permits the implementation of the
unified conceptual base presented here.

The key conceptual elements of the design are:

1. Integration of the concepts of typing {Hoare 721,
capabilities [Fabry 74], word tagging [Feustal 73], and

memory virtualization.



2. Uniform treatment of hardware instructions, sof tware

functions, and device actions.

The resulting architecture attains the goals of direct and
effective support of modern software constructs and concepts while
still retaining a simplicity which will allow implementation of high
performance hardware at reasonable cost. The success of the
architecture is demonstrated by using a software realization of it
as an intermediate target language (abstract machine) for the
implementation of Gypsy [Ambler 76], a language which includes all
of the concepts of modern software mentioned above. A compiler
using this target language is being implemented.

The well-informed reader will recognize that many if not
most of the conceptual bases for this architectural design have
appeared in the literature (often as software) in the past. The
fundamental contribution of this dissertation is the integration of
these concepts into a coherent computing structure and the
demonstration of utility’for such powerful abstract machines. Among
the sources which have been most significant are HYDRA [Cohen 75],
the Plessey 250 [England 72], the work of Dennis [Dennis 65], and

papers on tagged architecture [Feustal 73].



1.2 Inadequacies Of Current Architectures For Modern Software

Modularization (that is, the decomposition of a program into

units with rigorously defined interfaces) is a key concept of modern
software design technology (see [Parnmas 72]). Modularization
implies the construction of rigorously defined domains of execution.
Contemporary architectures generally provide only limited facilities
to support such rigorous interfaces in executable memory. (There
are exceptions, such as Multics [Saltzer 74]). A unified extension
of protection through the reach of a domain and provisions for
sharing are needed. Additionally, modularization creates a
requirement for frequent and extensive context switching. This is a
very tedious and expensive task on most contemporary architectures.

Data abstractions [Liskov 74] (that is, the hiding of the

details of the representation of a logical data structure) is
closely tied to modularization and the typing of- objects.
Contemporary architectures generally provide no support for type
discriminations and make it very difficult to render mechanisms of
implementation invisible. For example, an arbitrary set of machine
instructions can be applied to the words which make up a data
structure, treating the structure as an unstructured group of words.

Concurrency of task execution, both apparent and real, is a
. keystone of current operating system design and is an increasingly

important element of application program specifications. Management



of concurrency requires both mechanisms for involuntary sharing of
resources (such as the CPU) and for explicit cooperation through
communications channels., Contemporary architectures generally
provide no direct support for either mechanism (see [Ford 77] for
some proposed mechanisms).

The ability to recover from errors and to restart an
algorithm or procedure is another facility which is very difficult
to implement on current ar;hitectures. This facility is needed to
increase the reliability and fault tolerance of computing processes.
See [Randell 75] for a proposed scheme for implementation of
recovery/restart.

The deficiencies of contemporary architectures for
supporting these facilities lead to complex compilers and elaborate
and sometimes inefficient operating system implementations to
support these fundamental concepts. This dissertation lays the
design foundations for efficient implementation and execution of

programs using these concepts.

1.3 Summary Of Proposed Architecture

The fundamental conceptual structure used to defime the
proposed architecture 1is the integration of the concepts of
capability based [Fabry 74] and tagged [Feustal 73] architectures.

Everything represented in this system is an "object". Every object



is referenced only through the use of a typed capability which we
will label as a "descriptor". Even hardware routines must obey this
constraint. The architecture is built up by:
1. Defining efficient forms of the descriptor, using the type
of the object;
2. Defining functions for manipulating the descriptors, in

order to implemement the functionality of the architecture.

The concept that all references must be through a descriptor leads
‘directly to several of the significant elements of the architecture:
1. The unification of hardware and software functionality;
2. The integration of executable and device memories (such as

disks) into an integrated and virtualizable structure.

An instruction call (a hardware implemented routine), a procedure
call (a software implemented routine), and a hardware device call
(such as a command to a disk drive) are all represented as
descriptors for 'routines" (more specifically, a descriptor for a
queue serviced by the routine; see section 4.5.2) and a list of the
descriptors which are to be its inputs and outputs (parameters).

It is straightforward to recognize that these concepts can
be used to provide direct hardware implementation of modularity,
data abstraction, concurrency, reliability, and recursion. It is

not straightforward to formulate an integrated architecture which



efficiently and effectively implements these concepts. The balance
of this dissertation details such an architecture and applies it to

the definition of an intermediate language for the implementation of

Gypsy.



CHAPTER 2

GOALS

There are a number of goals that should be considered in
designing hardware architecture to support modern software concepts.
This section details and discusses the software concepts as goals to
be supported by a computer architecture. The language Gypsy [Ambler
76) will be used in chapter 4 as an example. This chapter discusses
the concepts of modularity, abstract data objects, concurrency, and
reliability. Under each concept, a brief description 1is given of
how contemporary architectures address these problems, and how

architectures could be designed to better support these concepts.

2.1 Modularity

Part of structured programming methodology [Hoare 72] is to
divide a large programming task into smaller parts with limited and
carefully defined interactions. Each of these parts {(or modules)
can be designed, implemented, and verified independently, given only

the external specifications of the modules with which it must



interact, and constrained only in that it must satisfy i1its own
external specifications. The rationale for this partitioning is
that uncontrolled interactions very quickly take a program out of
the reach of human comprehension, leading to confusion and errors,
and permit minor errors to have widespread consequences. The
enforcement of the boundaries between modules is closely related to

the general problem of protection.

2.1.1 Contemporary Architecture =

On most contemporary machines, the user is given an
amorphous block of storage in which to place the program’s code and
data. Some machines support hardware partitioning of the user’s
storage into 'code only"” and 'data only" blocks (e.g., PDPll
[Digital 73], PDP10); a very few support definition of segments for
user and operating system routines (e.g., MULTICS [Saltzer 74],
Plessey 250).

In machines without hardware partitioning of a given user’s
memory space, the compiler is usually responsible for partitioning
the code and data of the various routines, but once the linking
loader has placed the program in memory, the hardware boundary
between routines is lost; unless the compiler 1inserts wvalidation
- code, there is nothing to prevent errors in one routine from causing

a jump into the middle of ancther routine, access of the data of



another routine, or even the execution of data. In fact,
programmers often use assembly language routines for the explicit

purpose of circumventing modularity restrictions imposed by the

compiler.

2.1.2 Better Hardware Support -

Modularity requires the convenient definition of complete
execution domains and an efficlent means for the creation and
invocation of these domains (the '"context switching problem").
Efficient and well defined communication (via shared data areas, for
example) with other modules is essential and should be supported by

the hardware.

2.2 Abstract Data Objects

Abstraction of logical structure from representation is
another important modern software concept [Hoare 72]. Essentially,
this means that all aspects of a computer system, from machine
instructions to elaborate application packages, are viewed as data
objects and routines which operate on those data objects. Essential
to the concept of abstract objects is the hiding of the internal
structure of an instance of an object from all but the routines

explicitly defined to operate on it, but allowing other routines to
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manipulate the instance as a whole (e.g., declare an instance of the
object, or pass it as a paraméter). Since only specified routines
have access to the internal structure of a particular kind of
object, implementation methods and proof of properties about the
object depeﬁd only on those routines granted such access. The
concept of data abstraction is closely related to the concept of
modul;rity.

The properties of an abstract object are defined by its
"type". Instances of the type are usually considered to be
"yariables". The type name is used, for example, to declare
instances of an object, and in formal parameter lists of routines.
It is essential to the concept of modularity that actual parameters
are of the same type as the formal parameters, since properties of
the parameters are determined from their type for use by the
compiler and verifier.

Data abstraction can have a significant effect on a software
system design. The implementation of an object can be changed
without affecting users of the object. The software system simply
provides abstract objects which users may use in building their own
abstract objects. With the implementation-hiding property inherent
in abstract data objects, the need for distinguishing between
applications and operating system routines almost disappears. A
user can be allowed to possess instances of data objects such as 1/0

devices, system schedulers, and system queues because the system
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designers know that the user can only access such system objects via

routines supplied by the designers.

2.2.1 Contemporary Architecture =

Most contemporary machines are based on the Von Neumann
architecture. Among other properties, this implies that memory is a
series of bits whose interpretation varies depending on the context
in which they are used. The same bit string, for example, may be an
instruction when analyzed by the instruction decoder, an integer if
used in an integer operatiom, a floating point number when used in
the floating arithmetic unit, or a character string in an 1/0 unit.
A few machines use tags on memory words to denote which of the
machine supported types is contained in the word, for example, the
Burroughs B6500 [Hauck 68].

The compiler for such a machine is freed from certain type
checking and, since the interpretation is contained in the word, is
permitted to use general operations like "add” without having to
specify "integer add" or "floating point add"™ [Feustal 73].
However, since most machines do not provide this facility, it is the
software’s responsibility to keep track of the type of the object in
each word, generate the appropriate operation codes, and add

'validation code to prevent those erroneous uses of memory words

which it cannot detect at compile time.
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The monitor/user modes are the only 1levels of protection
found on most existing machines. A program runs either in monitor
mode, in which it can access the machine in essentially any way it
wants, or it runs 1in user mode, in which it is restricted to
operations which (hopefully) cannot affect the integrity of the
operating system. The existence of only two levels of protection
forces many operating system routines to wuse monitor mode, even
though they only need slightly more privilege than user routines.
There are thus large bodies of code in which minor errors can
disrupt the entire operating system, making the problem of debugging
an operating system very difficult.

In the Plessey System 250, one may have the right to execute
a routine 1in a capability block, but not have the right to be able
to reéd or otherwise access the capabilities in that block [England
72}. Part of the <routine call mechanism is to give the called
routine the access right which enables it to read (and thus access
the blocks denoted by) the capabilities in that block, which name
the storage blocks which contain the private data of an abstract
object. "Classes" as defined in SIMULA [Dahl 66] are thus directly
definable in the hardware. However, the notion of "type" does not
exist 1in the Plessey system; there is no direct way in which a
routine can validate that a capability it has is indeed the object
it ekpects it to be. Also, the hardware does not support the

definition of a routine which has access to the internal structure
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of two or more abstract objects, even of the same type {such as

concatenation of two strings).

2.2.2 Better Hardware Support -

To support abstract data objects, the hardware should
prdvide mechanisms for defining abstract objects, and the access
| rights which a given routine has for specific typed objects,
including 1its parameters. Efficient mechanisms should be provided
for validating the types of the parameters, since unless the
parameter lists of external routines are known at compile time, and
linkage by the loader to precisely those routines isb guaranteed at
compile time, the compiler cannot enforce correct parameter types on
calls to separately compiled routines.

Support for modularity implies the “concealment”  of
implementation and representation which is essential for supporting
abstraction concepts, in that modules can only see the interface to

other modules, not their representationm.

2.3 Concurrency

Concurrent execution of several processes has been a part of
computer architecture since the first time a central processor took

an interrupt. The I/0 device is a separate physical processor which
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is given the ability to more or less demand the attention of the
central processor at times of the device’s choosing. Interrupt
handling 1is wusually designed so as to be transparent to the user
task.

The concept of several asynchronous, regularly scheduled
applications tasks simultaneously sharing a physical processor has
existed for quite a few years, being implemented in multiprogramming
operating systems (IBM System/360 [Amdahl 64] for example).
However, provisions for several tasks executing (conceptually, at
least) concurrently in an applications program is much newer. PL/I
[IBM 68] contains a mechanism for forking off parallel tasks, wusing
the TASK option on the CALL statement. Concurrent Pascal [Brinch
Hansen 73] has processes. Gypsy [Ambler 76] permits concurrent
execution of procedures.

Furthermore, multiprocessing is becoming a more seriously
considered alternative; that 1s, several tasks of one or more
applications programs simultaneously running on several physical
processors, usually minicomputers. From the applications program’s
point of view, the number of physical processors should not be
relevant; the system should act as 1f each of the program’s
concurrently executing tasks has a dedicated physical processor.

A blurring of the distinctions between application and
operating system results from a functional view of the entire

computer system. The concept of concurrency long present in
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multiprogrammed operating systems is made available to all users of
the computer system, and the formalization of these concepts in high
level languages provides system designers with tools which simplify
the design of multiprogrammed operating systems.

The separate tasks of a program usually need toc communicate
and synchronize themselves with each other. High level languages
which deal with concurrency use several related techniques to
accomplish this. The techniques include P and V operators [Dijkstra
68}, critical regions [Dijkstra 68] [Brinch Hamsen 70], message

buffers [Dijkstra 68], and monitors {Hoare 74}.

2.3.1 Contemporary Architecture =

A basic requirement for several tasks sharing one central
processor is that the machine state when a task regains the
processor is identical to the state when the task last lost the
processor, so that the task 1is not aware that it was suspended.
Often the machine state inéludes the contents of many processor
registers. Notice the similarity between the need for context
switches here and the need to support modularity and abstract data
structures.

When the context change 1is due to an interrupt, it is
usually the responsibility of the interrupt routine to insure this

restoration of state. Since many interrupt routines are trivial
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compared to the cost and time of moving the entire machine state to
memory and back, the routine may only save and restore that part of
the machine state which it must modify in order to accomplish its
operation. Such an operation is moving a word between an I1/0 device
data register and memory. Complications may occur 1f another
interrupt occurs during this context saving/restoring procedure.

The PDP-11 [Digital 73] series alleviates this problem by
including pushing the current program counter and program status
word onto a runtime stack and loading them with values from standard
locations 1in the interrupt handler as an indivisible part of the
jump to the interrupt routine. The return from interrupt
instruction includes restoring the program counter and status word
from the stack as an indivisible operation. The treatment of
interrupts 1is thus almost identical to the subroutine call and
return instructions. The other processor registers, however, must
be explicitly saved and restored by the programmer, as is necessary
for subroutine calls.

Special 1I/0 instructions and 1/0 interrupt  handling
contributes to making 1/0 software very inelegant. The PDP=11
series has attacked this problem by making the device status,
command, and data regisﬁers part of addressable memory, and
eliminating explicit 1/0 imstructions. Each device has 1its own
interrupt address, removing the need for polling the various devices

upon receipt of an I/0 interrupt. However, the values in the data



17

registers of the slower devices must be explicitly transferred to
and from memory. Interrupts at the end of transfers by devices
which transfer blocks of words directly to memory must be dealt
with.

The CDC 6000 series does not have interrupts. Instead, the
system consists of a central processor and several identical
autonomous small computers called Peripheral Processors (PPs). Each
of the PPs can directly access central memory and the hardware
channels which are comnected to controllers for the various 1/0
devices. Each PP also has a private memory. By consulting central
memory locations, a PP receives requests for peripheral service from
central processor programs. The PP can determine whether a channel
is busy or idle, place information on or off the channel as
required, and move the informatiom to and from a user-accessible
queue in central memory via the PP’s private memory.

In the Plessey System 250 [England 72], processes are
treated  as abstract objects (2 Plessey object 1s described in
section 2.2.1). Processes ready for execution are placed on a ready
queue, and whenever a processor is to service another process, a
process manager routine executes on that processor (either as a
consequence of being explicitly invoked by the process, such as a
process synchronization routine requesting that the process be
blocked, or implicitly through a processor trap, such as expiration

of a timer). This routine takes the next process on the ready queue
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and executes an instruction which cause the processor to resume
execution of that process. The processor registers of the process
losing the processor are stored in an area in that process object,
and are loaded from an area in the process object gaining the
processor. The process losing the processor 1s placed on an
appropriate queue by the routine. Only the capability for the
process object need be stored in the process queues.

The Plessey System 250 does not have interrupts. The
trivial I/0 operations (like putting»the next word on the device
data register and set the status word) are handled by peripheral
interface units, which are special hardware devices which field
interrupts from the external devices and put and get data and
control information on hardware queues. These queues are emptied
and filled by regularly scheduled system processes running on one or
more identical main processor units. fhese processes are scheduled
at sufficiently high priority to  prevent the queues from
overflowing. Thus instead of elaborate special purpose controllers,
System 250 lets the general purpose processors handle these tasks.

Very few architectures support the concept of concurrency
beyogd the interrupt handling mentioned above; operating systems
implement multiprogramming and compilers implement multitasking in
user jobs. In the CDC 6000 series, there 1is a very useful
instruction (called an exchange jump) which exchanges all central

processor registers with a specified block in central memory; the
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instruction can be executed either as the result of an explicit
justruction in a central processor program or as the result of a
command givén by a PP. All of the state information about a job 1is
contained (after execution of the exchange jump instruction) in the
user’s memory area plus another block of memory called the control
point area (CPA) which is not accessible to the user program. Thus
it is easy to treat jobs like files for swapping or dumping to
external storage for later execution. Subtasks of user jobs could
be created by establishing "subcontrol points" using the exchange

jump instruction.

The Plessey System 250 provides hiding of abstract object
implementation, so processes can be treated like any other abstract
object, and used by operating system and user alike. Thus process
scheduler routines can move processes to and from various queues
like any other data object. In particular, a '"next-process’ routine
running on a given processor can examine a queue to determine the
nexﬁ process which needs processor service, and execute a ''change
process” instruction using a capability for that process. Thus,
even the scheduler routines need not know how many processors are

active.
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2.3.2 Better Hardware Support =

To support concurrency, the hardware must provide an
efficient, indivisible mechanism for changing the machine state of
the central processor from one task to another. Provisions for
handling multiple processors should be included, as should
facilities for organizing concurrency into logical structures.
Hardware to handle trivial operations of device handling would be
useful because it would eliminate context changes to processes which
execute only a couple of instructions. An efficient context switch
mechanism would also solve this problem. The hardware should
support the definition of procesées as data objects, in order to
facilitate both operating system management of user jobs and user
defined subtasks of jobs.

Interrupts can be considered context switches to tasks
{i.e., interrupt handlers) which are scheduled at high priority upon

occurrence of an external event. Interrupt routines as special

entities disappear.

2.4 Reliability

When a computer system is looked upon as a set of abstract
objects and the routines which work on them, reliability becomes the
ability of a routine, given that 1its entry specification is

satisfied, either to return normally and satisfy its normal exit
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specification, or to return an error state and satisfy an error exit
specification, even {f routines which that routine invokes fail to
exit normally. Error detection thus occurs quickly, at routine call
and return points.

Formal verification is promises to be a powerful technique
to enhance reliability of software. A verificatlion system sees
essentially three types of specifications: (1) those axioms on
which it is built and are assumed true, such as rules of inference
and the semantics of the language; (2) those user defined
specifications which it will prove using the rules of inference and
the semantics; and (3) those user defined specificétions which will
be assumed in the static proof and validated at runtime. The user
defined specifications define the semantics of the wvirtual machine
or machines (that is, the abstract object and their routines) which
the user has created for the problem domain. Runtime validation is
used for those specifications not proven from more primitive
abstractions. The semantics of the programming language define the
virtual machine on which the programming language executes. The
compiler can be used to 'prove" some of the semantics of the
language, such as name declarationm rules, but must insert runtime
checks for other rules, such as value checks for subrange variables.

In turn, kthe compiler makes use of primitive routines
provided by the hardware and the operating system. Some aspects of

the hardware routine can be statically verified, but the physical
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properties of the hardware assumed in its design may change (e.g., a
‘wire will come loose) in unpredictable ways. These anomalies must
either not affect the functionality of the hardware unit, or must
result in an error state, just as in software modules.

In order to detect failures in a software or hardware
routine (other than those reported from called routines), there must
be redundancy; that is, two or more representations among which a
specified relation holds. For example, in a memory with even
parity, "odd (N (x. data_bits)) iff (x. parity_bit = 1)," where N
returns the number of one bits in its argument and x is a word in
memory, must hold in the memory read function. Similarly, in a
software example, a list may be represented as doubly linked, and
the relation "NODE (NODE (x). forward link). backward_link = x,"
where NODE returns the value indicated by its pointer argument, must
hold on any reference to the list.

The user should not be burdened by having to explicitly take
into account the redundancy every time such an object is used, since
the redundancy is irrelevant to his use of the object. The concept
of data abstraction addresses this problem by collecting all
manipulations of the representation of an abstract object into
several specific routines. The specification and manipulation of
the (redundant) representation are localized and unknown outside of
these routines, except for the error states which may be returned if

the redundancy tests indicate inconsistency. The modular nature of
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routines has the important effect of encapsulating errors inside the
domain of the routine, thus limiting the amount of damage an error
can do to how much damage loss of that module can do.

Redundancy may be adequate omnly to detect inconsistencies;
more elaborate redundancy may permit restoration of a valid state
without loss of information. An example of the latter 1is triple
modular redundancy, sometimes used in fault tolerant hardware.
Here, three modules in a unit compute the same function, and a
majority output is taken.

The propagation of error states to calling routines has been
mentioned before in this section. The philosophy concerning error
states is to return the system to a normal (i.e., valid) state as
gsoon as possible, with the minimum possible disruption to the
system. Thié is the recovery phase of error handling. Errors are
dealt with locally if possible; if not, the error is passed back to
the calling routine, which may pass it back to its <caller, and so
on; until a normal state is achieved. Complete restart from
read-only storage is the most drastic way to return the system to a
valid state; that is, initialized.

Recovery involves data and control recovery. The former is
determination of which variables have been corrupted and what values
to give them to return to a valid state; the latter 1s the
determination of where to resume execution. The recursive cache

[Randell 75] is one mechanism to support restoration of a routine’s
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gstate to some previously attained valid state. Program modularity
greatly helps in both the problem of data and control recovery,
especially if modularity is enforced by the hardware. If a runtime
error is detected, the recovery mechanism can be sure that only the
module’s local data and called—byfreference parameters can be
invalid. Also, one can be reasonably sure that the processor was
legitimately executing that module (e.g., it did not jump into the
middle of the module from some other module) and therefore the point
at which execution is to be resumed can be decided using the
knowledge of the identity of the module in which the error occurred.

Assertions placed in the program which are denoted to be
post-execution validated provide a mechanism for determining correct
operation of the program after the fact, and are therefore useful in
post mortems of a system crash. They also provide valuable raw data
for performance analysis (for example, which routines are most

used).

2.4,1 Contemporary Architecture -

The design and use of fault-tolerant hardware has been
actively pursued 1in recent years, especially in military and space
applications. Fault-tolerant hardware is designed to maintain its
functionality in spite of faults which may occur in it. Such

hardware usually includes fault indicator 1lines, some of which
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signal faults which have been compensated for, and are used to
assist repair personnel; other lines cause fault traps in the
central processor. The Plessey System 250 [Repton 72] uses the
latter as part of a telephone cogtrol system which has an
availability requirement of no more than ten minutes down in fifey
years.

The use of parity checked memory is common. The Plessey
System 250 computes parity on both the address transfer to memory
and the data transfer to and from memory [Hamer-Hodges 72]. The
memory unit in the Texas Instruments ASC (Watsom 72}, as in many
large machines, corrects one bit errors and detects two bit errors.

Due to the comparatively error-prone nature of magnetic tape
transfer, most tape drives have for a long time included parity
checking. Disk drives also often have parity checking.

None of the above hardware features aid in the runtime
detection of errors in virtual machines defined in the software,
other than those causing error states in the machine instruction
(like divide by zero) or those caused directly by faults in the

hardware itself.
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2.4.2 Better Hardware Support -

Support of such concepts as modularity and functionality as
discussed previously, help enforce routine calling protocols sﬁch as
use of entry points and parameter passing conventions. The hardware
should include provisions for the support of error returns from both
hardware and software routines, and provide other support for
recovery from runtime errors. Consistency checks for user defined
objects should be supported, such as block checksums. The concept
of overflow checks on arithmetic operations should be extended to
support subrange‘restrictions.

A user invoked trace mechanism should be provided which does
not significantly perturb operation of the system. The significance
of being user invoked rather than a "snapshot" (such as a memory
dump) of the system is that the former reflects events in the higher
level virtual machine; piecing together the hardware events
provided by the latter into what the higher level machine was doing
is difficult. A device onto which routines can write trace

information would be useful toward providing such a trace mechanism.



CHAPTER 3

CAPABILITIES AND TAGS

In this chapter, the utility of capabilities and tags is

discussed, along with existing implementations of them.

3.1 Capabilities

In this  section, the general  advantages of a
capability-based operating system are discussed, along with
capabilities as implemented in the Plessey 250 [England 72} and the

SRI Provably Secure Operating System [Neumann 75].

3.1.1 Advantages Of Hardware Capabilities -

Capabilities support the definition of software modules; if
the capabilities are implemented 1in hardware, then the software
concept of module can exist at runtime and can be enforced by the
hardware at runtime, even against most failures in hardware
instructions and addressing mechanisms. This module concept

strongly supports the Gypsy concept of independent units.
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Capabilities provide protection on the access path to an
object. Possession of a capability is necessary and sufficient to
permit the holder access to an object in a manner specified by the
capability. Thus one routine may have a capability which grants
read-only rights to an object, another routine may have a capability
which grants read-write access to the same object. In order to
validate every access to every object, efficiency dictates the use
of hardware capabilities. This aspect of capabilities is discussed
further in [Fabry 74].

A capability based operating system defined in hardware does
not need a “privileged” mode of operation. Operating system
routines have capabilities for objects 1like hardware 1/0 queues,
physical memory, and user routines; not giving such capabilities to
a user effectively reserves the manipulation of such objects ¢to
operating system routines. Capabilities in this way support the
concept of functiomality; that 1is, abstract objects and routines
which  operate on them. This functionality property i1in the
architecture provides support for the implementation éf data

abstractions in Gypsy.
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3,1.2 Capabilities And The Plessey System 250 -

System 250 [England 72] is a system designed for the British
Post Office to control the telephone network. It is a multiple CPU,
multiple store (memory) module system in which any processor may
execute any task assigned to the system, and all store modules and
1/0 devices are accessible equally to all processors. The system
hardware was designed along with the software with the goals of fast
and reliable fault detection, effective fault diagnosis, recovery at
any cost (using the least disruptive technique that works in the
case at hand), and maintenance and expansion of the system without
disrupting service.

Hardware capabilities are the mechanism by which System 250
detects erroneous accesses to store, whether caused by hardware orvr
software error. A capabllity is an identifier for a unique store
segment (block), and is created only by the store manager. The
capability includes the access rights granted by this capability to
the block, such as read and write, as discussed later. These store
segments contain either daﬁa (which includes code) or capabilities.
Machine instructions are provided which load CPU registers known as
capability registers with capabilities from capability blocks just
as other instructions load data into data registers from data
blocks. The capability registers contain base/limit addresses and
access rights, and all memory references, including instruction

fetches and subroutine calls, are done via a capability register.
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Note that capabilities are freely copiable, though unmodifiable.

The access rights which may be denoted by a capablility are
() read data, (2) write data, (3) execute data, (4) read
capability, (5) write capability, and (6) enter capability. The
data rights (I, 2, and 3) act as expected. Read and write
capability rights load and store capabilities from and to capability
segments, just as read and write data load and store data registers.
If the write data right is present, the capability rights are not
allowed; if this restriction were not enforced, one could write
data into a segment and then load a capability register from that
segment, compromising security. The enter capability right is the
subroutine call mechanism, explained later.

System 250 is based on a hierarchy of abstract machines,
each of which expands on the facilities provided by the abstract
machine below it. The two basic managers are the store manager and
the process manager. The store manager abstracts distinct store
modules and backup store into store blocks. It provides blocks of
store of desired length and access rights, upon demsnd of any
program. It also deallocates the block when explicitly released by
the program.

An execution of a program is a process. The process manager
is concerned with the creation, scheduling, and synchronizing of

processes. It abstracts processors into processes.



31

Other managers are the input/output, .textfile, directory,
job, and command 1interpreter managers. Applications programs use
these managers and those of their own creation to perform their
tasks.

The managers each provide an allocator subroutine which may
be called to generate a new, unique abstract object, and returns to
the caller a capability for that object. If the object is a store
block (from the store manager), the capability allows machine
instructions to operate directly on the object; €.g.s; wWrite data
into the block from a data register. If it is a more complex
object, the returned capability has the ‘enter” right for a
capability block. This block (called the main‘capability block)
contains execute capabilities for the code blocks which may operate
on this abstract object, and capabilities for data and capability
blocks which form the internal structure of the abstract object.

The CALL instruction is the mechanism by which access to the
internal structure of an abstract object is controlled (see figure
1). The possessor of an énter capability for a block cannot read
the capabilities contained in that block. The CALL instruction
includes an enter capability for a main capability block and an
index dinto that block which denotes an execute capability for the
code block of the called routine. The effect of the  CALL
instruction 1is to push the current values of the two capability

registers which hold capabilities for the calling routine’s code
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block and main capability block onto a stack associated with the
process (not accessible to the calling or called routine), and load
the registers with the denoted execute capability for the called
routine’s code block and a 'read capability” capability for the
called routine’s main capability block. Thus the called routine can
access the capabilities which form the internal structure of the
abstract object. The calling and called routine are thus protected
from each other.

The operating system is thus a set of subfoutines and
processes which look like and are used like any user defined
subroutines and processes. Their only distinction is that they were
created by the system staff and have jealously guarded capabilities
for certain areas of store, such as those segments which are really
hardware 1/0 queues.

Capabilities play an important part in limiting the scope of
store corruption caused by faults, and in recovery as discussed in

section 3.3.

3.1.3 Capabilities And The SRI Provably Secure Operating System -

In this system [Neumann 75], a capability is a two=-tuple
[uid, access-vector], where uid is a system wide unique name
(identifier) for the object, and the access vector 1is a boolean

n-tuple, where each position corresponds to an operation on that



34

object. Capabilities may be interspersed with data in an object,
and are distinguished by hardware tags. The type of an abstract
object is determined from the uid by a map in the extended-type
manager, a system-provided module for user-defined abstract objects
and system modules above the segment manager. The capabilities for
the 1internal representation of objects of a given abstract type are
contained in an object of type '"TYPE", which is managed by the
extended type manager. 6perations on a glven type possess the
capability which permits them to obtain the representation
capabilities from the extended type manager. The uid is the value

of a system clock which is not permitted to wrap around.

3.2 Tags

In this section, the advantages of hardware tags are

discussed, along with several examples of tagged architectures.

3.2.1 Advantages Of Tagged Architectures -

Code generation 1s much easier in a tagged architecture
because type information 1is carried in the operands to an
instruction, and thus there need not be different instructions which
- perform the same operation on differenmt types. Certain restricted

type conversions can be done automatically (for example, to permit a
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floating point and integer to be added), and error conditions raised
if a conversion is not appropriate. Errors such as performing a
floating add on an integer value are thus eliminated. Tagging alsc
permits vectors to be introduced as a hardware type, with the vector
being defined by a base-bounds pair and perhaps additional
information. Since Gypsy insists on type compatibility among
unstructured types like characters and integers, the ability to tag

a word would simplify the task of compiling Gypsy.

3.2.2 Examples Of Tagged Architectures -

One of the first uses of hardware tags was as trap bits.
The Rice Computer (R-1) [Rice 68] had two bits per word which could
be used in debugging software. The Burroughs B5000 ({Lonergan 61]
had a single tag bit per word which indicated that special hardware
interpretation was needed; the word was interpreted to refer to
some object in storage.

Tags which identified the arithmetic type of a word were
built into the Telefunken TR-4 [TR440 70], Burroughs B6500/B7500
[Hauck 68], Iliffe’s BLM [Iliffe 69], and the Rice Research Computer
R=2 [Feustal 72].

Protection keys on blocks of storage are found on the IBM
System 360 [Amdahl 64), RCA Spectra 70, and Xerox Sigma family

[Xerox 70]. These keys can be considered to be tags on blocks of
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memory .

This list of existing tagged architectures is taken from

[Feustal 73].

3.3 Assuring The Functionality Of The Hardware

An essential part of a reliable ‘architecture is that the
hardware either function as expected or signal an error status. The
error status can be indicated by appropriately setting a status word
in the currently executing routine as part of the abnormal return
from the hardware routine. The routine resumes execution at an
instruction offset indicated for that error condition, just as for
abnormal exits from software routines.

The scope of damage by hardware faults can be limited by
requiring that the  hardware adhere to the same addressing
conventions that afe imposed on the software, as 1is done in the
Plessey 250. That is, the processor cannot create an absolute
address, but must use a capability when accessing memory. Thus
damage caused by a fault in the processor is limited to the areas
defined by the capability registers. By deliberately invalidating
the capability registers upon detection of a fault in the processor,
all further damage to memory is prevented. The processor can be
granted access ﬁo a restricted area of memory for execution of a

self-check routine.
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1f the hardware routines also use capabllities, as discussed
in the model proposed in the next chapter, invalidating the current
routine register effectively forces the processor to halt, since no
instructions can be executed. Alternatively, the contents of the
capability registers can be replaced with capabilities for a
severely restricted instruction set for self-checking.

Much importance is placed on the integrity of capabilities
and address formation functions in a capability based architecture.
The capabilities should include redundancy beyond simple pgrity
bits; a checksum or other such redundancy check which 1is verified
on every reference to the capability should be part of the memory
access functions. Parallel computation of the checksum with the
nonredundant parts of the functions 1is readily accomplished with
current hardware technology, and therefore the redundancy need not
slow memory references. Computing parity on both the address
transfer to memory and on the data transfer between memory locations
is important.

Transfers between memory and disk need to be validated. One
good way to accomplish this on reads from a disk is to transfer a
word from the disk to a temporary location in the disk controller
and validate 1its parity. If 41t 1is good, transfer the value to
memory, otherwise begin parity error handling in the disk read
function. On disk writes, transfer the memory word to the temporary

location, then write it to the disk. Include on the disk head the
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ability to read the word just written (as is done on many tape
drives), and compare what was written with the contents of the
temporary location. I1f the comparison fails, the disk write

function begins its write error handling.



CHAPTER 4

ARCHITECTURAL MODEL

This chapter defines and discusses architectural designs
which meet the requirements for effectively supporting modern
software concepts. The feasibility of these designs and additional
functional features which result from the designs are alsoc
discussed.

The fundamental concept of the architectural model is the
integration of the concepts of capability based (section 3.1) and
tagged (section 3.2) architectures, and the definition of a
functionality based on this integrated concept which implements
typed data objects (section 4.3), defines the format of code objects
(section 4.4), and describes a mechanism for the unification of
software and hardware roﬁtine calls (section 4.5). The model
supports the concept of stack memory and its application to recovery
and 1/0 (section 4.6), and the problem of confinement in the
proposed model (section 4.7). The scope of applicability of the

model is discussed in section 4.8.
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4.1 Application To Gypsy

The language Gypsy [Ambler 76} 1is a programming language
which incorporates in a coherent manner modern programming language
and software concepts. Analysis of the effectiveness of the
proposed architecture in supporting the implementation of Gypsy
therefore constitutes a reasonable test of the completeness with
which the proposed architecture meets its goals. The next sections
briefly Qefine the format in which Gypsy implements 1its conceptual
base, and discuss the properties of capabilities and tagged
architectures with respect to the Gypsy implementation, and the
means by which the integration of these concepts provides the

framework for meeting the goals of the model architecture.

4.1.1 Modular Programming -

Gypsy defines strongly modular program units which can
interact only through rigidly defined interfaces. In particular,
there are no global variables in Gypsy; a routine has access only
to its parameters and local variables. I/0 is included in this
restriction; files are parameters. Entry and exit specifications
are part of Gypsy routines, and may be marked as runtime validated
rather than prooftime proven. The entry condition states a
predicate on the parameters which must hold on routine entry; the

exit condition is the predicate on the parameters which must hold on
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routine exit. The routine management features, defined in section
4.5, provide rigorous call-return interfaces at which runtime
validatable assertions, such as entry ané exit specifications, can
be tested. Capabilities (section 3.2) provide a simple but complete

means to specify the address space of a routine.

4.1.2 Protection And Sharing -

There is nb nesting of routine definitions in Gypsy. Gypsy
implements protection of both routine and data objects through the
use of access lists associated with the definition of each unit. A
unit may define a constant, type, function, procedure, or program.
One kind of access list explicitly states which units may reference
the unit being defined. For a type, referencing means declaring a
parameter or local variable of that type; for routines, referencing
means calling that routine. Type definitions may have another
access list which explicitly states which units may know the
representation of variables of that type; for example, that a given
type is a record, and contains certain fields. In this manner, data
abstraction can be implemented. Routines granted reference but not
representation access can treat variables of that type only as
indivisible entities: that is, declare variables and parameters of
that type and pass them as parameters. Access 1lists can be

implemented directly with capabilities, by requiring that a routine
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which desires to use a type or routine definition possess a

capability for that definition which contains sufficient access

rights.

4.1.3 Fault Tolerance -

Gypsy has strong type checking. The type mechanism
described in section 4.3 directly implements type checking, not only
for simple types, but also for user-defined types. This will
directly increase runtime efficiency of Gypsy programs and also ease
the task of compilation. The unified call-return mechanism (section
4,5) provides a means for 1isolating and characterizing faults

detected at routine boundaries.

bol.b Concurrency =

Gypsy permits the concurrent execution of procedures via a
cobegin statement. The only call<by-reference parameters which can
be shared among concurrently executing procedures are structured
objects called buffers, which must be passed as parameters from some
common ancestor. Buffers are the sole means of communication among
concurrent procedures. 4 Dbuffer 1is a bounded first-in-first-out
queue of objects of a single but arbitrary type, which is stated in
its declaration. Procedures may send objects to the buffer or

receive objects from it; an attempt to send to a full buffer or
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receive from an empty one results in blocking of the routine until
the buffer state changes to permit the operation to complete.
Explicit provisions for routine management in the hardware
simplifies the management of concurrency. Additionally, the message
concept 1is directly implementable in terms of capabilities.
Therefore, the model architecture directly supports concurrency as

it 18 expressed in Gypsy.

4,2 Overview Of Proposed Model

A storage management design is described which unifies the
concept of capabilities and word tags, and also permits uniform
naming of objects whether they are software entities like integer
vectors, or hardware devices, like disks.

In this design, everything represented in the system is of
some type and is an "object". "Objects" include software routines
and hardware objects such as random access memory and functional
units (such as adders). All objects are referenced solely through
descriptors, which provide a non-forgeable access path to an object.

A storage device is an object in which other objects may be
placed; descriptors and the operations on them are implemented on
storage devices. Virtual memory is one such storage device. Since
storage devices are designed to be partitioned into objects, and

these objects can be further partitioned, objects contain headers
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which describe where their component objects are placed.

A descriptor consists of a type field, access rights fileld,
and an object id field (see figure 2). The type field denotes the
type of the object being described, the access rights field denotes
which operations are allowed on the object (using this descriptor),
and the object id field denotes where the object is. The object id
in a descriptor denotes the object immediately containing the object
being described, and the address in that object of the described
object. The nature of this address varies with the storage device.

It is obviously impractical to include a full descriptor for
each object in the system; for example, using six bytes to describe
each two byte integer in a thousand word vector. A simple mechanism
is proposed to make the descriptor mechanism practical. One of the
basic kinds of objects is the "type” oS}ect. Instead of storing
full type 4identifiers, access rights fields, and so on, in
descriptors, we can store only a minimal amount of information in
the descriptors, and  let this information denote where the full
information is to be found in the appropriate “type” object. The
rationale for storing the information in "type' objects is that
objects of the same type probably use many of the same fields in
their component descriptors.

The primitive operations on descriptors are:
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1. new object (D, T) : Change the type field of descriptor D
to T. The object id field is set to denote an empty object
immediately following the descriptor. T 1is a descriptor
for a type object.

2. modify_rights (D, A) : Set the access rights of descriptor
D to A,

3. copy_descriptor (S, D) : Copy the access rights field of
descriptor S into the corresponding field of descriptor D,
and chénge the object id field of D so that it denotes the
same object as does S. The types of D and S must be the

sSame.

Parameters to routines are contained in objects shared
between the calling and called routine. The normal type checking
mechanism of the copy_descriptor operation enforces the property
that descriptors placed in this object are of the correct type and
have adequate access rights.

One important class of objects is a "routine” object. A
routine object contains objects which define the execution state
{such as program counter and status words), an object which defines
its function (the code block), and the base descriptor object
{consisting of descriptors for objects which are directly
addressable by the code). A code object is a vector of instruction

objects.
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In most contemporary architectures, the mechanisms to call
software routines are distinct from those to call hardware routines
(i.e., machine instructions). This is counter to the information
hiding property inherent in the concepts of modularity and abstract
data structures, in that use of the routine thus depends on 1its
implementation. Using the storage management design described in
the section 4.3, a design for routine management in which hardware
devices are treated identically to the way in which software
routines are treated is described in the following sectioms.

The concepts of software routine, hardware functional unit,
and hardware dévice are unified in this model under the term
"jevice”. All devices have three basic  components: state,
function, and base descriptor. A "controller”" is the interpreter of
the "function" part of a device, in that it analyzes the function
part to determine which other devices are to be called with what
parameters in what order. The function part operates on the 'base
descriptor object” part; that is, the base descriptor object is the
data of the device. The "state” is data of the interpreter.

There are two synchronization primitives in the model:
"attach” and ‘'release”. They are basic to guaranteeing exclusive
access to shared objects. "Attach (S, D) is defined as: Attempt to
gain exclusive access to shared object S; if successful, return a
descriptor for it in D, else do nothing. “Release (8§, D) is

defined as: Release exclusive access to shared object S; on
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return, D no longer names the shared object.

4.3 Unification Of Capabilities And Tags

In this design, everything represented in the system 1is of
some type and 1is an "object.' '"Objects” include software routines
and hardware objects such as random access memory and functional
units (such as adders). All objects are referenced solely through
descriptors, which provide a non-forgeable access path to an object.
The routines which know and can manipulate the internal
representation of objects of a particular type are collectively
called the manager for objects of that type.

Storage device objects (described in the next section) may
be built from other objects. A basic storage device built from
other objects is the "virtual memory object”. The 'virtual memory
object” builder routines make this object appear to be a very large
object in which objects (called virtual memory objects) of other
types can be created, so that what would be called files in a
conventional architecture are in the address space (like MULTICS).

Another primitive kind of object is "type.'" Using the type
managers and storage devices {(like virtual memory), arbitrary types

and cbjects of these types are created and manipulated,
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4.3.1 Storage Devices -

A storage device is an object in which other objects may be
placed; descriptors and the operations on them are implemented on
storage devices. Virtual memory is one such storage device. Since
storage devices are designed to be partitioned into objects, and
these objects can be further partitioned, objects contain headers
which describe where their component objects are placed. The
structure of this header varies with the storage device; in virtual
memory, for exampie, the header denotes the displacement of the
components (see section 4.3.3), whereas in an associative Vdevice,
such as a self managing secondary memory [DeMartinis 76}, the header
may contain the labels of the components.

A distinction is made between a device builder for a storage
device, and the manager of the storage device object. The device
builder implements descriptors and header operations on the concrete
realization of the device, such as random access memory and disk
tracks; the manager of the storage device object treats the storage
device as an object which can be partitioned into objects, using the

descriptor and header operations.



50

4.3.2 Descriptors -

A descriptor comsists of a type field, access rights field,
and an object id field (see figure 2). The type field denotes the
type of the object being described, the acceés rights field denotes
which operations are allowed on the object (using this descriptor),
and the object id field denotes where the object is.

It is obviously impractical to include a full descriptor for
each object in the system; for example, using six bytes to describe
each two byte integer in a thousand word vector. A simple mechanism
is proposed to make the descriptor mechanism practical. Recall that
one of the basic kinds of objects is the "type" object. Instead of
storiﬁg full type identifiers, access rights fields, and so on, in
descriptors, store only a minimal amount of information in the
descriptors, and let this information denote where the full
information is to be found in the appropriate "type" object.

The rationale for storing the information in "type" objects
is that objects of the same type probably use many of the same
fields in their component descriptors. A "type' object is composed
of three objects for each of the three fields of a descriptor and
three objects for each of the fields of a header. The three objects
which describe a given field of a descriptor or header are the two
possible sizes of that field (say, in terms of bits) in a descriptor
or header, and an object which is a vector of objects of that kind

of field. The fields of a descriptor are type, access rights, and
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object 1id. For virtual ‘pepory objects, the header fields are
element size vector, displ;qeéent vector, and correction vector
(described in sectiom 4.3.3.1).

The minimum addressable unit in this model is deliberately
left wunspecified. The unit chosen in a specific implementation of
the model is not important in the definition of the model. The
header of an object describes where each descriptor contained in
that object begins; the intent of the descriptor and header formats
is that in a scan beginning at the start of the deseriptor, the
descriptor interpretation function can determine which how long each
descriptor field is.

The format of a descriptor is as follows:

record case all default : boolean of
true: ({use default type, access rights, object 1d});
false: '
(Type:
case what_type: (Default_type, Type Index,
Explicit_Type) of
Default type:
({use default value in type object});
Type_Index: (ITV: Index into_type vector);
Explicit_Type: (TI: Type_id)
end;
Access_Rights:
case what_rights: (Default_rights,Rights_Index,
Explicit_rights) of
Default rights:
({use default value in type vector});
Rights Index:
(IAR: Index into_access_rights_vector);
Explicit rights: (ARV: Access_rights_vector)
end;
Object_id:
case what_id:(Immediate,Id Index,Explicit_Id) of
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Immediate: {{object is here});

Id_Index: (10IV: Index into_object_id vector);
Explicit Id: (OI: Object_id)

end

)

end;

Specific operations are provided by the storage device builder to
operate on descriptors; even hardware functional units are
constrained to use these operations. The interpretation of a
descriptor proceeds as follows (see figure 3 for a description of
the interpretation of two descriptors for an object of type T2).

The type field is interpreted using the type object (here
called TI) of the object containing the descriptor being
interpreted. If the what type field is Default_type, the default
type 1s found at a standard offset in the vector of type objects in
Tl. 1f the what_type field is Type_index, the "size of type index"
object in Tl 1is wused to determine the length of an index. This
index specifies the desired "type' object in the type object vector
in TI1. I1f what_type is Explicit_type, the "size of type object™
field in Tl is used to determine the length of the type object
(really a descriptor for a type object), which follows immediately
in the descriptor.

Then, using ﬁhe "type' object specified by the Type £field
(here called T2), the access rights and object id are interpreted.
The access rights field is interpreted in the same way as the type

field, except that an index into the vector of access rights objects
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in T2 may be found. The object id field is interpreted somewhat
differently. 1f what id is Immediate, the object directly follows
the descriptor. When used in this way, the descriptor looks like a
tag 1in a tagged architecture. I1f what_id is Explicit_id or
id_index, the location of the object being described by the
descriptor is expressed as either an object id or an index into the
object id vector of T2 (in the same manner as the access rights).

Figure 3 gives an example of descriptor interpretation.

4.3.2.1 Operations On Descriptors -

Since types play such an important role in defining and
using abstract objects, the hardware should make provisions for
indicating and checking the types of software objects. A somewhat
awkward technique for doing this solely with untyped capabilities is
described in Appendix B of [Good 77]. However, the model being
described directly provides this facility. The primitive operations
on descriptors are:

1. new object (D, T)
l. Operation: Change the type field of descriptor D to T.
The object 1id field is set to denote an empty object
{(which takes no space) immediately following the

descriptor. T is a descriptor for a type cbject.
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Comments: The access rights of the object originally
named by D must permit the type and object id fields to

be changed.

2. mwmodify_rights (D, A)

1.

2.

Operation: Set the acéess rights of descriptor D to A.
Comments: This operation allows either an increase or
decrease of access rights for any type. A system
provided (but not primitive) operation can be used to
generate a routine which applies the modify rights
operation only to descriptors of specific type or
types. These routines should only be callable by those
routines which can access the internal representation
of an abstract object (i.e., operations on the type).
Other routines may call something like "reduce_rights",

which in turn calls modify rights.

3. copy_descriptor (S, D)

L.

Operation: Copy the access rights field of descriptor
S into the corresponding field of descriptor D, and
change the object id field of D so that it denotes the

same object as does S.



56

2., Comments: The types of S and D must be the same. S
must contain the access right to be copied, and the old
access rights of D must permit changing the object id

field.

If the object immediately follows the descriptor, the access
rights on the descriptor probébly prohibit overwriting the type and
object id fields. For example, if another descriptor’s object id
refers to a given object, and the descriptor immediately before that
object changes its type field, the two descriptors denote different
types for the same object. This inconsistency would be undesirable.

Td‘create a new object, a routine calls the type manager for
the type of object being created. Parameters to that manager
specify a containing object and the address in that object at which
the descriptor and the object are to be created; that is, this is a
structure modification operation. If the containing object 1is a
storage device object, tﬁen this is effectively a create operation.
The appropriate access rights to the existing object are required,
and various limitations, such as size limitations of the element,
are enforced by the header operations which are used to effect the
object creation. The type manager invokes the storage device object
builder to obtain an object of that type in the specified object.

The type manager may in turn create descriptors (to existing
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objects) amnd/or descriptor-object pairs (to new objects) in the new
object. This nesting of creation calls stops when primitive objects
of the storage device are created, which are dinitialized by the
device builder of the storage device.

Parameters to routines are contained in objects shared
between the calling and called rdutine. The normal type checking
mechanism of the copy_descriptor operation enforces the property

that descriptors placed in this object are of the correct type and

access rights.

4¢3|2‘2 Object Id -

Up to this point, little has been said as to exactly what an
object 1d is. Basically, the object id in a descriptor denctes the
object immediately containing the object being described, and the
address 1in that object of the described object. The nature of this
address varies with the storage device. The address 1is really a
parameterized call to the accessing function for the storage device,
with the name of the function being implied by the kind of storage
device. The address could be anything, such as a disk seek function

and track number, or an associative function and unique name.
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4.3.3 Virtual Memory Objects -

The basic unstructured objeét in virtual memory is a bit
vector, preceded by a header which gives its length. Primitive
operations on bit vectors, such as shift and boolean functions, are
provided by thé virtual memory device builder. The actual format of
the header is not important; what is important is that it provide a
concise fepresentation of where the components of an object start,
which can be interpreted in a reasonable amount of time. A specific
example of such a representation follows.

All nonprimitive objects in virtual memory consist of a
header, and F "fields", each of which is a group of consecutive
elements of size S{i], where i is the field number. Ap element is a
descriptor and possibly an object. The header consists of three
vectors: an index vector I, which gives the index in the object at
which each field starts, a size vector S which gives the size of
each element in a given field, and a correction vector C which
facilitates rapid computation of the location of a particular
element in the object, where (C[i] = (SUM ((I[j+1] = I[jl1) * sS[jl),
j=l,1i=1) = I{[1]*8[i], 1i=2,F). C[{1] = 1I[1] = 0 and need not be
stored. The summation is simply the total size of all fields
preceeding the one desired. Fields are numbered 1 to F, and indices
start at zero. There is an additional entry at the end of I which
has a value one greater than the largest index of the object. See

figure 4 for an example of a header and an object.
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Elements of an object are accessed by an index into the
object. The offset of the desired element from the start of the

object can be found in two steps. The algorithm is:

begin
cobegin
B{i] := Index > I[i], i=1,F+l;
Ali] := Index * S[i], i=1,F;
end;

using 1 in [l..F] such that B{i] and not B[i+l],
offset := C[i] + A[i]

else signal index _error

end.

Notice that an index error condition is detected by the predicate
"B{i] and not B[i+1]" failing for all i in the range l..F.
For a homogeneous array F is 1, and 1[2] is the number of

elements in the array. The access algorithm reduces to:

begin

cobegin
B{1l] := Index > 03
B[2] := Index > I[2];
All] := Index % S[1l];

end;

If B[1] and not B[2]
then offset := A[l]
else signal index error
end

For Gypsy or Pascal records, in which each field is of a different
type, I[{i] =41 -1, i =1, F+l, and C{i] = (SUM S{j], J = I, i-1) =

({ = 1) *# s8{i], 1 = 2, F. The algorithm reduces to:
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If (Index > 0) and not (Index 2> F)

Then offset := C{Index+l] + Index * S[Index+l]
else signal index error

End

Notice that offset = (SUM S{j], j = 1, Index).

4.3.3.1 Virtual Object Headers -

The header of a virtual memory object is represented as:

record case all default : boolean of
true: ({use default size, index, correctionm vectors});

false: (Size, Index, Correction:
case what : (Default, Index, Explicit) of
Default: ({use default index});
Index: (I: Index value);
Explicit: (SIC: size_index or_correction_vector)

) N
end;
The interpretation of the Size, Index, and Correction vectors 1s the
same as for the access rights field of the descriptor used to access
the object (e.g., the Size field is an index into the vector of size
vectors in the type object). One anticipates that the element size
fields would most often be a power of 2, so that the multiplies are
replaced by shifts. Note that the user of an object need not know
the internal layout of the object it is accessing; that is, whether
the elements are stored immediately after the descriptor, or if in
another object completely, where the item is physically located in

that object.
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The primitive operation on virtual object headers is
modify header (D, H), defined as: Modify the header of the object
named by D so that it is described by H. 1If the number of elements
is increased, the new elements are of the null type (whose objects
are all of length zero and contain zero elements). If the number of
elements 1is decreased from j to i, elements i+l to j are destroyed.
References to elements which existed before the call to this
operation, and were not destroyed, are not affected.

The right to perform this operation must be contained in the
access rights of D. If objects are destroyed, they all must have
access rights which permit destruction.

Objects are named by their index In another object ("the nth
element of object 0'"), not their physical displacement in that
object. This operation maintains this 1independence of physical
displacement by relocating elements as necessary when element sizes
are changed, so that the same index will refer to the same object.
If D denotes 'virtual wmemory’”, then this instruction acts like a
create or destroy operation. This operation enforces the property
that an object named by one desériptor overlaps with the object
named by another descriptor only if either the same object is named,
or if one is a component of the other.

Since a descriptor always immediately precékes an object,
consistency checks can be made between any distant descriptor used

to reference the object and the descriptor in front of the object.
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For example, the types can be compared.

To delete an object without changing the header of its
containing object, its type is changed to the null type. The name
of the deleted object still exists {(as an index in its containing
object), but any reference to it will result in an error, due to
type mismatch. Any reference to an object contained in the deleted
object will fail, since objects of the null type have no elements.
The series of indices used to name a virtual memory object can thus
be used as a system-wide, non-reused unique id, at the cost of

monotonically nondecreasing indices.

4.3.3.2 Object 1ds For Virtual Memory Objects -

When an object immediately follows its descriptor, no object
id need be stored, but if another object is to be given a descriptor
to this object, an object id of the form [object id of wvirtual
memory, index 1, ..., index n] is stored either -in the new
descriptor or in the "type' object of the shared object, at the time
that the new descriptor is created, The first term names the
storage device (virtual memory). The index 1 term specifies 4n
index dinto virtual memory, index 2 an index into the object denocted
by index 1, and so on, until the desired object is denoted. This
name is nothing more than a recursive application of the convention

stated in the first paragraph of this section; [object id of
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virtual memory, index 1, ... index n-1] is the containing object,
and "index n" is the index in the containing object of the desired
object. The depth of nesting would in most cases be less than 3 or
4,

All "type" objects are themselves of the same type, and
therefore "type" object ids are all indices into the same master
"type" object. This object is directly contained in virtual memory

and thus the location of "type" objects is known.

4.3.3.3 Internal Storage Management Structure =

How the virtual memory device builder implements virtual
memory 1is unimportant to the conceptual design of this system;
however, a paged structure is described as an example of how the
storage management system can relate to physical virtual memory.
Using conventional terms, the virtual memory object builder
maintains a very large object (called virtual memory). The physical
displacements of objects can be split into page number and offset
fields. The virtual memory device builder maintains a table which
contains descriptors for page frames in physical (not necessarily
random access) memory. The location of the pages may be on disk,
for example. To implement virtual memory, storage devices called
"random access memory” and 'disk"™ are used, along with routines

.which manage these devices. These devices need not be known to
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users of the virtual memory. In order to read (or write) an object
(say, a page) from (or to) a disk, the descriptor for the location
on disk of the desired object is given to {(or obtained from) the
disk I/0 manager, along with a descriptor for where the object is to

(or does) reside in random access memory.

4.4 Routine Objects And Instruction Formats

- One important type of object is "routine”. A routine object
contains objects which define the execution state (such as program
counter and status words), an object which defines its function (the
code block), and the base descriptor object (consisting of
descriptors for objects which are directly addressable by the code).
A code object is basically a vector of instruction objects, each of
which consists of one or more "descriptor path” objects. Each of
these descriptor path objects denotes a descriptor by specifying a
path to the descriptor, using whatever naming convention is
appropriate to the particular object in the path; for virtual
memory objects, for example, these names are indices intc objects.
The first name 1s an index of an object in the routine’s base
descriptor object. The second name denotes an object in the object
named by the first name, and so on. Like all other objects,
descriptor path objects have a header, and this header denotes how

many elements (i.e., names) are in the descriptor path object.
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The first descriptor path object in an instruction denotes
an input queue for the routine to be invoked, and the others are
parameters to be placed on that queue. The header of the
instruction object denotes how many parameters are in the
instruction (i.e., the number of components in the object, as for
all objects). Since descriptors contain the type of the object,
validation that formal and actual parameters are of the same type is
directly provided.

This structure of code blocks eases the burden of the
compiler in that problems concerning variable length instructiomns
are lessened, such as placing the instruction on certain word
boundaries. At runtime, the processor knows where instruction
boundaries are located without interpreting the instructions,
expediting prefetching and other such high speed techniques.

The question may be asked: 'Where do machine instructions
fit into this proposal?” One of the descriptors in the base
descriptor object names an object which contains descriptors for the
queue for machine instruﬁtions routines. This object may really be
in a control store, but this fact is irrelevant to the code. Since
the object containing the machine instruction descriptors can
potentially be changed by routines having appropriate access rights
for it, the way is open for vefy flexible order codes. Thus,
different routines may use different instruction sets, by virtue of

having different descriptors for the machine routines. A manager of
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machine instruction objects can be built to permit users to design
their own microcoded {instructions, with the manager guaraateeing
that the generated instructions are of such form that they cannot

adversely effect system integrity.

4.5 Unification Of Software And Hardware Routines

In most contemporary architectures, the mechanisms to call
software routines are distinct from those to call hardware routines
(i.e., machine instructions). This is counter to the principle of
information hiding inherent in the concepts of modularity and data
abstraction, in that use of the routine thus depends on its
implementation. In a capability system, software routines are
called by specifying an offset to the start of a block of
capabilities. The capability thus denoted names the routine to be
called. The parameter passing mechanism makes capabilities for the
- parameters available to the called routine. On the other hand,
calls to hardware routines consist of parts of or several words
containing an operation code, index register fields, accumulator
register fields, address offsets, and various modifier bits. Using
the storage management design described in the preceding section, a
design for routine management in which hardware devices are treated
identically to the way in which software routines are treated is

described in the following sections.
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The concepts of software routine and hardware functional
unit are unified under the term "device'. All devices have three
basic components: state, function, and base descriptor. A
"eontroller” is the interpreter of the "function™ part of a device,
in that it analyzes the function part to determine which other
devices are to be called with what parameters in what order. The
function part operates on the "base descriptor object” part; that
is, the base descriptor object is the data of the device.

The "state" is data of the interpreter. The controller can
invoke operations on the components of state objects; 1i.e, it is
the manager of objects whose type is "state”. It thus need not know
the internal structure of the components of state objects. The
state may consist of different objects, and have different
operations, for different devices. TFor example, the state of a disk
device includes the current position of the disk and heads, and
whether the disk is performing an operation like seek or read;
electromechanical and electromagnetic  hardware perform the
operations on the disk surfaces and return information in objects
(usually called incore buffers) shared with callers of these
operations.

Software routines are also devices; their state information
includes current instruction location, whether running or waiting,
etc. These software devices can be created dynamically, whereas

hardware devices are static, physical entities; both are treated
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identically. The routine object is described in section 4.4.

Part of the base descriptor object of a device 1is shared
data objects which may be organized as FLFO queues, stacks, etc.
For ease of reference, these objects will be called queues,
regardless of the discipline by which entries are inserted and
removed. Devices may cause themselves to become suspeﬁded (using
appropriate calls to its controlier) while waiting for information,
such as requests for service, to be placed on these éueues. As will
be described later, these gqueues are special objects only in the
sense that some other device polls them and takes some appropriate
action when something is placed into them. Devices are treated like

processes in an infinite loop.

4.,5.1 Synchronization Primitives -

There are two synchronization primitives 1in the model:
"attach” and “release'. They are basic to guaranteeing exclusive
access to shared objects.

"Attach (S, D) is defined as: Attempt to gain exclusive
access to shared object S; 1f successful, return a descriptor for
it in D, else do nothing. If the object 1s not available, the
routine calling attach can ask the routine’s controller to place it
on a walt queue associated with the object, but this scheduling 1is

not part of the attach operation itself.
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"Release (S, D)" is defined as: Release exclusive access to
shared object S; on return, D no longer names the shared object.
'The routine calling release may request that a routine on the wait
queue associated with the object be reactivated, but, again, this
action is not part of the release operation.

Synchronization primitives for processes can be implemented
with the support of the capability system and simple hardware. In
particular, indivisible test-and-branch and increment instructions
can be used to implement attach and release. 1If two devices are to
participate in a synchronized sharing of data, they receive as
parameters the same synchronization object (called a buffer in
Gypsy). This object includes a queue of data objects sent and not
received, a queue for devices which are blocked awaiting data on an
empty data queue, and a queue for devices blocked trying to send
data to a full data queue. More complex synchronization objects,

such as monitors, can also be built from the primitive operations.

4,5.2 Calling A Device =~

A device call proceeds as follows. Some device places data
on an input queue of the called device. The controller for the
called device senses data on the input queue and activates the
device. A descriptor for a queue shared with its controller is

available to the device: it can thus use this descriptor in order
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to communicate with its controller. For software devices, this
controller might be called a scheduler or policy module. For
hardware instructions, the controller 1is usually called the
instruction fetch / decode unit. For 1/0 devices, the controller is
usually called an 1/0 controller. Notice that the call never
actually refers to the called device; it only refers to queues. 1t
is entirely possible that several devices could service tﬁe same
input queue.

Notice that since controllers are themselves devices, they
can receive 1input on queues, and use this information in affecting
the state of devices which they are controlling. For example, a
controller might receive a halt request from either the controlled
device, or some other device which 1s allowed to perform that
operation (that is, possesses appropriate descriptors).

How this call mechanism works 1is described for a common
construct 1in programs: the procedure call. The desired effect is:
* A device wishes to call another device, and suspend itself while the
called device 1s executing; when the called device has performed
the desired action, it is to terminate and cause the calling device
to continue. An implementation of procedure calls is:

1. The called device is normally suspended, waiting £for data

in a gqueue on which parameters are to be placed.
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2. The calling device places the parameters on the queue, and
becomes suspended by requesting its controller to
reactivate it when something appears on a completion queue
shared between the caller and called routine.

3. The controller for the called device senses data on the
queue, and activates the called device.

4. When the called device wishes to return, 1t places a
completion code on a completion queue, and becomes
suspended waiting for data in its parameter queue.

5. The caller’s controller senses input on the completicn
object, and either continues the caller from the place of
the call, or forces a branch (by modifying the state) to an
error condition handler in the calling device, depending om
the value of the completion object. The same treatment of
return condition codes applies whether the condition
denotes arithmetic overflow in an adder, memory parity
fault in a memory access, or table overflow in a compiler

symbol table.

It is often the case that the called device 1is created by its

controller for one invocation, and is destroyed when it returns.
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4.5.3 Software Devices -

A hardware device can service its own queues and perform its
function directly, but software devices are defined in terms of
calls to other devices. Devices called CPU dispatchers are utilized
to help interpret software devices (i.e., as servers). The input
queue to all the CPU dispatchers is named the system ready queue,
and the ready queue manager has sole input access to it. (This
concept of a ready queue is derived from the process ready queue in

the Plessey 250, section 2.3.1.)

The controller for a software device calls the ready queue
manager in order to place a descriptor for a software device on the
ready queue. A CPU dispatcher unit takes the top entry (descriptor)
off the ready queue and analyzes the current instruction in that
device, finding the descriptors for the queue and the parameters.
The parameters are placed on that queue using a FCFS (or other
predetermined and fixed) discipline. A CPU dispatcher is thus much
like the instruction fetch / decode unit of an conventional CPU.

For devices with software controllers, "call a device”
implies that provision must be made to activate the controller for
the device; unlike hardware devices, software controllers cannot
continuously poll a queue in order to sense data on it and activate
the device. Software devices only execute insofar as the CPU
dispatcher processes their instructions. This activating of the

controller can be done either by running the controller at fixed
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time intervals (so that it can poll the appropriate queues), or by
having the controller suspend itself on a queue managed by a
hardware device; the software controller is awakened via a céll
from that hardware device (for example, I/0 interrupts). In order
for instruction execution to proceed at a practical rate, the code
and ready queue must both reside on fast memories directly

accessible by the CPU dispatchers and ready queue manager.

4.5.4 Registers -

There are no user—accessible processor registers. The
availability of high speed but moderately priEed random access
memories is lessening the advantage of having high speed
users-accessible processor registers; the Texas Instruments 990
[Texas 76] system includes the feature of designating an arbitrary
part of memory to be wused like registers. The overhead of
maintaining registers (which amount to another level of memory
hierarchy) can easily exceed any speed advantage. In the model
being described in this dissertation, the only context that must be
switchgd when a processor changes from one routine to another
involves changing the descriptor which names the currently executing
routine object (and nothing at all if interpretation of code is domne
instruction by instruction from the ready queue). Context switches

are therefore very fast.
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Besides speed, registers are also wused in conventional
architectures because they can be named in an instruction using only
a few bits. The base descriptor object provides this feature, since
indices into this object can be in the same range as one might find
for register names. Notice that if a descriptor in this object
states that the object immediately follows the descriptor, such as
an integer, that element in the base descriptor object acts like a
data register; if it denotes a large, complex object located
elsewhere, the element acts like a capability register 1in a

capability based machine.

4,5.5 Various Aspects Of Device Management -

A device called the real time clock driver maintains a data
object called the real time clock. Other devices, especially
controllers, may consult the clock in order to do their scheduling.

The relationship between a controller and a controlled
device is very flexible, being determined by which device currently
holds a descriptor for the state object of another device. It 1is
quite possible that one device may wish to pass the role of
controller to another device. An example of this is found in Hydra
[Levin 751, where a high 1level scheduler (policy wodule)
relinquishes short term scheduling to another scheduler, in the

kernel, which in turn delegates execution of machine instruction
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sequences to the CPU.

An external interrupt is simply a request that a given
routine be given high priority for CPU service. Trivial interrupt
service routines, such as accepting a character from a slow serial
device, are better handled by hardware devices, which place the data
on queues which can be serviced in larger bursts by software
routines (as 1is done in the Plessey System 250, section 2.3.1). A
trap, or interrupt internal to a processor, becomes no more than an
error return from a hardware device. Any device can call any other
device (given the appropriate descriptor), and the fact that the
caller may be hardware and the called device software is irrelevant.

Notice that the scheduler need not be able to access the
local data of the routine being controlled. This is an essential
property for verification. However, for debugging purposes, a user
defined scheduler can be provided which allows a calling routine to
act as a debugging supervisor (install breakpoints, read and modify
iocal data, force control, etc.).

The operating system starts as a single routine which
creates parallel execution streams, each of which can also create
parallel execution streams, to an arbitrary depth. Some of these
streams are called user jobs, running under a system job manager
process. Others are system tasks such as the disk manager. Users
may create and control several parallel execution streams. The

designation given to a particular stream is up to the system
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designer.

4.6 Stack Memory

One technique which has been suggested for recovery 1in a
modular environment 1is use of a recursive cache [Randell 75]. The
basic unit of recovery in this technique is the recovery block, in
which several alternatives are provided for a given computation,
similar to the hardware concept of sparing. Essential to the
execution of the recovery block 1s the ability to restore the
variables in a recovery block to their values on entry to the block,
upon detection of an error in the block. The recursive cache is
used to store the value of a variable when the first change is made
to it 1im a recovery block; restoration of the entry value of a
variable is done using the values stored in the cache. Upon
successful termination of a recovery block, the values stored for
that block are discarded from the cache. Recovery ©blocks may be
nested, thus the ''recursive”  label. Finding an efficient
implementation is one the main problems with this approach to
recovery. The concept of a stack memory as a solution to this
problem will be discussed later in this section.

Input/Output processing software tends to be bulky and
inelegant, full of timing constraints, interrupt handling, different

formatting and command conventions for each device, and other
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problems. The concept of stack memory also deals with this preblem.

The basic concept of stack memory 1is that each memory
address 1s seen by the software as a stack with infinite depth. In
terms of implementation, a conventional memory is treated 1like a
hash table, using addresses as keys. A memory processor provides
functions which make the table appear to be a stack. The
microinstructions of the processor are read top of stack, replace
top of stack, and pop a value off the stack. A pérameter to the
processor determines the actual maximum depth of the stack; excess
values are dumped to secondary storage. The secondary device for a
given address can be defined, and thus this word acts like a device
data register, without the need for an interrupt £for each word
transferred. Other addresses may hold values denoting, for example,
what data is to be read from the device (like a disk address). 1f
the stack is full and a push is done on an address, the routine
executing the instruction is delayed in much the same way as with
virtual memories whgn a page must be brought into memory. In terms
used in the section on processors, a trap to a scheduler 1is forced
in the central processor in order to give the processor to some
other routine.

If a word is used as an 1/0 data register, a system much
like the hardware queues of the Plessey System 250, described in
Section 2.3, 1is obtained by directly using the memory processor’s

instructions. One word used in this way can be designated for the
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event trace (Section 2.4.2).
An implementation of the recufsive cache is also
straightforward. In the following instruction descriptions:

l. '"mod stack" is a word associated with a routine, used for
holding the addresses of the words which have been modified
in the current recovery block.

2. "level® is a word associated with a routine which gives the
current depth of nesting of recovery blocks.

3. "level val" is a macro which expands to "read (level, 0)'".

4. '"marker(i)" returns a distinguished value different for
each value of 1. Its type can be used to distinguish
marker values from user definable values.

5. "push (i, value)" means push value onto stack i.

6. 'replace (i, n, value)” changes the contents at depth n of

stack i to value. Depth 0 is the top of the stack.

The macroinstructions which follow are described in a Gypsy-like
syntax. In particular, "if" statements have the form "if <boolean
expression> then <statement list> else <statement list> end” or "if
<boolean expression> then <statement list> end". The "leave'
operation exits the innermost loop which contains the "leave'.

l. read (i, n): word value; returns the value n levels deep

in stack i.
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2. enter_recovery block = begin replace (level, 0, level_val +
1); push (mod_stack, marker {level_val)) end.

3. store (i, wvalue) = begin 1if read (i, 1) = marker
(level_val) then replace (i, 0, value) else push (i, marker
(level _val)); push (i, value); push (mod_stack, i) end
end.

4. exit_recovery_block (success: boolean) = begin loop i :=
read (mod_stack, 0); 1if i = marker (level val)) then leave
end; if success then replace (i, 2, read (1, 0)) end {if};
pop (1); pop(i); pop (mod_stack) end {loop}; replace

(level, 0, level val - 1); pop (mod_stack) end.

4.7 The Confinement Problem And The Architectural Model

A rigorous test of a given set of mechanisms for protection
and sharing 1is the degree to which the classical problems of
mutually suspicious subsystems [Schroeder 721, confinement,
selective confinement, [Jones 75] and revocation'[Redell 74] can be
solved. This model architecture includes strong mechanisms for
protection and sharing of objects. This section shows how the model

architecture solves these problems.
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In a computing system in which users agree to share software
or data for specific purposes, the problem comes up as to how to
prevent transmission of information contrary to the agreed-upon
purposes., This is known as the confinement problem. In a system
with freely copiable capabilities, there is the particular problem
of a dishonest software package passing capabilities provided by
another user to a spy routine. Since possession of a capability is
considered the right to use it, the spy can now access the stolen
object whenever it wishes. The ideas in this section are directly
derived from Hydra [Cohen 75].

I1f a subroutine needs no permanent data, and uses no data
abstractions (that is, hidden representations), the owner of the
subroutine provides the customer with an EXecute capability for the
code. The owner then knows that the customer cannot examine the
code, and, since the code block executes only with capabilities
provided by the customer and capabilities for new store blocks
obtained from the store manager, the customer knows that the
subroutine cannot pass information to a destination unknown to the
customer.

I1f the item to be provided is an abstract data object, the
descriptor for the object protects the object from examination by
the customer, but preventing the operations on the object from
passing information to destinations unknown to the customer is more

complex than in the preceding case. The ENVironment, NOTPARAMeter,
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and MoDiFY access rights are proposed to help solve this problem.

The ENV right 1is used to control the propagation of
descriptors. Without this right, a descriptor cannot be copied into
an object which is a parameter. For an arbitrary descriptor C,
define the predicates ENV(C) and NOTPARAM{(C) such that:

1. NOTPARAM(C) if and only if all descriptors in the
descriptor sequence used to access C (starting at the base
descriptor object) have the NOTPARAM right.

2. ENV(C) if and only if all descriptors in the descriptor
sequence used to access C (starting at the base descriptor

object) have the ENV right.

The copy_descriptor operation described in section 4.3.2.1 1is
extended to enforce the following restriction on the operation
"copy_descriptor (S, D)": not ENV(38) dimplies (pot ENV(D) and
NOTPARAM(D)).
The modify_rights operation is extended to enforce the
following predicates on the call "modify rights (S, A)":
1. not ENV(S) implies ENV is not in A

2. not NOTPARAM(S) implies NOTPARAM is not in A

To prevent a routine from giving an object passed as a parameter to
a component of an abstract object which is shared with some unknown

routine, the caller turns off the NOTPARAM and ENV rights in the
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descriptors of the objects to be passed as parameters to the
suspected operation. The <called routine thus cannot copy a
descriptor for a parameter, or a component of a parameter, into
another parameter. Also, the routine cannot copy such a descriptor
into a freshly allocated object and then copy a descriptor for that
object into a parameter. However, such descriptors can be copied
inte a new object which is uéed for parameters for further routine
calls.

The MDFY right controls modification of descriptors. 1f
this right is lacking, the "write' rights of this descriptor are
deactivated, and any descriptors accessed via this descriptor lack
this right. 1f this right is turned off in an object passed as a
parameter, the called procedure is prevented from transmitting
information to a spy via that parameter, since to do this it would
have to store something in a block which it shared with a spy, as
part of the object. It cannot store information for a spy in a new
block for later transmission, since it cannot modify the object to
contain the new block.

1f a customer is given a descriptor for an abstract object
generator, the customer can turn off MDFY, NOTPARAM, and ENV rights
when it calls the generator, and be assured that the object returned
is composed of completely new blocks and nobody else has a
descriptor for it. Thus, it is safe to use that object from then on

without restricting MDFY and ENV rights.
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Since 1/0 in the model is done via explicit parameters, for
which there 1is an abstract object generator like there is for any
other object, the caller can restrict the called procedure to use
I1/0 procedures of the callers choosing. The caller can prevent the
called procedure from communicating with a spy via 1/0 interference

and related techniques [Lampson 73].

4.8 Scope Of Applicability Of Model

The model is designed to be very general, both in terms of
its wutility in describing existing machines, and in describing new
architectures. Many different existing forms of capabilities can be
described in terms of the model’s descriptors.

For example, a Plessey 250 capability contains a six-bit
access rights field and an index into the system capability table.
The entries in that table contain, among other information, base and
bounds values for a segment. In terms of the model, the type field
is degenerate (all objects are of the same "type"). The access
rights  field of the Plessey capability maps directly onto the
model’s access rights field. The index into the system capability
table maps to the model’s object id field. The storage manager
routines which are given the capabilities enabling it to treat
capabilities as data, and the hardware capability interpretation

routines, together form the builder for the Plessey 250 version of
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the model’s virtual memory object. The capability structure in the
Plessey 250 does not extend below the segment level, and thus
segments correspond to the primitive unstructured type in the model.
All of the hardware data operations must be treated as taking
segment objects as parameters (although they may modify only a few
words). However, hardware operations are constrained not to access
in any way segments for which they are not given a capability.

The hardware machine operations of the model are not
specified, and thus any realization of the model is not constrained
as to how to implement a given operation. The need on most existing
machines to differentiate between software and hardware routines can
be viewed as a requirement to explicitly write part of the
controller for the software routine, using hardware instructions
such as "jump to subroutine'.

By considering CPU register set to be an object shared
between all tasks running on that CPU, the problems of context
switching, both for routine calls and interrupts, can be expressed

in terms of the model.



CHAPTER 5

IMPLEMENTATION OF THE ARCHITECTURAL MODEL

In this chapter, an implementation of Gypsy onto physical
hardware is described. Gypsy is compiled 1into the Capability
Machine Language (CML), which is the assembly language for the
Capability  Machine. The Capability Machine is based on the
architectural model described in chapter 4. An important difference
in the terminology used in the current section and that used in the
section describing the model is that unless otherwise stated,
"capability" in the current section means the same as "descriptor"
used in the model description. The Capability Machine is in turm
implemented om a PDP-11/03, which has been supplemented by a simple
operating system called the "PROM Operating System'. This step 1is
done by translating the Capability Machine Language into PDP-1l
assembly language, and then using a standard PDP-ll assembly
language assembler. This section first describés CML, and then
details of the Capability Machine. Then the design issues relevant
to the model and how they relate to the features found in the

Capability Machine is discussed. Finally, the implementation of the

86



87

Capability Machine on a PDP-11/03 is described.

5.1 Implementation Of The Capability Machine On The Model

This section describes the Capability Machine and its
assembly language. The assembly language is first described, and
then the machine. The unit definition table and capabilities are
discussed. Object allocation and the structure of code bodies
follow. The interpreter which corresponds to the CPU, 1is then
discussed. Operations on capabilities are defined. The shared
object, which is the sole means of sharing between routine
activations, is discussed. Then follows a discussion of how routine
calls work, both sequential and concurrent. Scheduling of

concurrent routine is described.

5.1<1 The Capability Machine Language (CML) -

Capability Machine Language‘(CML) is the assembly language
for the Capability Machine. Its operations are similar to Gypsy.
In both Gypsy and CML:

1. there are similar control structures (compound statement,

case, loop), and
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the same component access operations are provided

(subscript and dot).

CML is different from Gypsy in the following respects:

1'

The form is one operation per 1line, rather than nested
functions.

All  variables are explicitly allocated, including
temporaries for function evaluation (including operations
such .as arithmetic).

There is no distinction between procedures and functions;
functions have precisely one reference parameter which is
the result value.

Dynamic type conversions are allowed (but all objects are
typed).

Routine scheduling is explicit both with respect to calls
to other routines and with respect to voluntary blocking,
such as in buffer operations.

All Gypsy operations are expressed as CML routines, calls
to which are expressed in the same way as calls to machine

language operations.
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5.1.2 The Capability Machine -

The basic property of thé Capability Machine is that all
references to objects are via a capability. This includes integers,
arrays, routines (including primitive machine operations), and
buffers attached to external devices (called special buffers in
Gypéy). Thus a reference in this section to an 'object” 1is
equivalent to a reference to a 'capability for an object",

regardless of where the object itself is located. The descriptions

of the operations are in CML.

5.1.3 Primitive Data Objects =-

The single primitive data type 1is integer, and several
operations such as copy and arithmetic on integers are provided via
the CML interpreter. The precision of a given integer object can be
specified, thus permitting single bits, eight bit bytes, etc., to be
denoted. The Gypsy scalar (enumerated) type is implemented by the
appropriate integer subset, and characters are implemented as eight

bit integer values.

5.1.4 Predefined Structured Types -

Vectors of arbitrary and perhaps different typed objects are

predefined and operations on them are provided.
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5.1.5 The Unit Definition Table -

The unit definition table is used by the Capability Machine
both to create objects according to a given definition, and to
reference components of those objects. The unit definition table is
a vector of definitions, one definition for each Gypsy unit known to

the machine.

5.1.5.1 Type Definitions -

A type definition contains a code body for the allocation
manager for that type. For software objects, this code creates a
new instaﬁce (that is, a variable) of that type. A type definition
for a software object specifies the number of components in an
object of that type, the indices in the Unit Definition Table of
their ﬁypes, the length of the object in terms of multiples of the
size of the primitive data object, and perhaps the access
restrictions.

1f the type is parameterized, the number and types of the
parameters are also stated. The actual parameters are contained in
a part of objects declared of that type that is accessible only by
the referencing operation (in order to access components) and to the
structure modification operation (used by the allocation routines).
Any or all of the parts of a type object (i.e., number of

components, type of components, length of object) may be
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parameterized, and the parameters may be dynamically modified,
permitting very flexible treatment of compoéed objects.

For Gypsy arrays, all components are of the same type, and
only one type need be specified. Gypsy records are treated as
vectors of objects of differing type, and field designators are
reduced to vector indices. There are entries in the Unit Definition

Table for the primitive and predefined types.

5.1.5.2 Routine Definitiom =~

A routine definition contains the number of parameters, the
type and required access restrictions (e.g., read-only) of each, and
the code body of a Gypsy routine. Capabilities (called '"unit
capabilities”) for all type and routine definitions which can be
referenced by the code are contained in the .routine definition.
These capabilities may, for example, permit declarations of
variables of a given type but not the right to reference components.
A routine definition also includes a separate code body which is
used to create and schedule a concurrent new activation record of

the Gypsy routine.
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5.1.6 Capabilities -

A capability contains the type, access rights, and contents
location field of the object it names.
1. The type field is an index into the Unit Definition Table,
and specifies the type of object named by the capability.
2. The access rights field is a bit vector which specifies the
operations granted by this capability on the named object.
3. The contents location field specifies where the object 1is
located. This field may be as simple as a single bit
stating that the object immediately follows the capability,

or as complicated as an address on some external device.

5.1.7 Object Allocation =

An object of a given type is brought into the referencing
scope of a routine by a call to the allocation routine for that
type. This is done by a cail to the type definition, in which is
included the allocation routine. The effect of such a call is to
place the object on top of the data stack. I1f the object is a
primitive resource, the manager returns the object on top of the
stack. If it is a software object, the managing routine creates a
new instance of the type by allocating a block of storage, on the

top of the data stack (described in the next section) of the current
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activation record, of sufficient size to contain the desired object
and of the desired type. "Allocate” is a nonprimitive operation on
the data stack provided by the Capability Machine. It may be
written in CML, and is distinguished only by possessing the
capabilities needed to modify the storage area from which software
objects are allocated,

Notice that whether an object is primitive or software is
transparent to the routine using the object. If the object may be
shared among several concurrently executing routines, the allocated
object can only be accessed after successfully executing the attach

operation, which grants exclusive access to the object.

5.1.8 Activation Records And Code Bodies =~

Activation records are objects created using a routine
definition in the Unit Definition Table, and may be created like any
other variable. 1In addition to access to unit capabilities from the
routine definition, activation‘records contain a condition register

and two stacks: the control stack and the data stack.

5.1.8.1 The Control Stack -
The control stack is a stack of control objects. A control
object contains a vector of instructions, which are routine calls

and control objects, and a current instruction pointer into that
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vector. The control objects implement compound ("begin .. end"),
selection ("if" and "case"), and loop statements. A routine call is
the name of routine to be executed. Interpretation of the control

stack is described later.

5.1.8.2 The Data Stack -

The data stack is a stack of data objects. The data objects
may contain data objects nested to an arbitrary depth. Routines
called via the control stack operate on the data in the data stack.
Associated with the data stack is a stack bottom pointer, located in
the activation record. All references to the data stack are

relative to this base, which is set in the routine call mechanism.

5.1.9 The Routine Interpreter -

The routine interpreter (roughly corresponding to a CPU)
contains two registers, a Unit Definition Table register, which
contains a capability for the Unit Definition Table, and the Current
Activation Record register, which contains a capability for the
activation record currently being interpreted. When a software
routine activation is called, the code body, which is a compound
control object, is placed on the control stack, and the parameters
are placed on the data stack, and execution of the compound control

object begins. The interpretation algorithm is described below for
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a control object. 1In general, the action of the interpreter is to
execute the instruction pointed to by the pointer in the top control
object on the control stack. If it is a routine call, the specified
routine is executed (a detailed description of the call mechanism is
given later); if it is a control object, that object is placed on
the top of the control stack, its pointer initialized to its first
instruction, and execution continues. When the pointer exceeds the
number of instructions in the control object, the control object 1is
popped from the stack and execution of the control object now at the
top of the comtrol stack continues at whichever imstruction Iis
denoted by -the instruction pointer. in that control object. The
implementation of the three control objects is determined by the
operations which sequence the pointer.

If the control stack becomes empty, the routine is exited.
The function of the exit operation depends on the state of the

control stack, and is described later.

5.1.9.1 Compound Control Object =
The compound control object consists of a vector of
instructions which are to be sequentially executed. The instruction

pointer is incremented by one as each instruction is executed.
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5.1.9.2 Selection Control Object -

The selection control object consists of a sequence of
instructions which evaluate the selection expression, and a vector
of objects for each of the alternatives. The first element of these
objects is a label, and the rest are instructions. The control
object first executes the selection expression, and on the basis of
its wvalue (left in a special object called "casevar"), sets the
instruction pointer to the appropriate value, so that on the next
instructicn‘ cycle, the instruction which follows the matching label
will be executed. The last such vector contains a distinguished
label which matches any value. After execution of the instructioms
in that vector, the pointer is set off the end of the instruction
vector of the control object, so that the control object will be

terminated.

5:1.9.3 Condition Handling -~

The condition regisfer is set by the SIGNAL and return
operations. When the condition register is set, the interpreter
sets the instruction pointer to the last instruction inm the current
control object, rather than to the normal next value for the control
object. The last object of any control object is a WHEN object. A
WHEN object consists of a selection compound statement which selects

on the value of the condition register. The condition register is
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cleared by the operation that copies the value of the condition
register into casevar. The ’ELSE alternative of the selection
structure handles any condition not explicitly matched by any other
alternative. It may perform the "signal caseva;" operation, which
simply propagates the condition into the containing control object.
If the control stack becomes empty and the condition
register 1is still set, the routine exits with that condition. The

details of exit are described later.

5.1.9.4 Loop Control Object -

A loop statement consists of a vector of instructions
followed by a label. The last instruction is a 'repeat’ operation,
which causes the instruction pointer to be reinitialized. The
"leavestruct" operation can take a label as a parameter. Execution
of the leavestruct operation causes the instruction pointer to be
set to the end of the compound object. If the labél matches, or
there is no label in the leavestruct operation, the object is popped
off the control stack and normal execution resumes. If there is not
a match, the control object is popped off the control stack, the
instruction pointer set to the end of that object, and the test
repeated, until a match is found. The action taken if the control

stack becomes empty is described in section S5.1.12.
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Capability Operations -

The following operations on capabilities are provided:
Access. This operation pushes the designated object onto
the data stack. Parameters to this opefation are an index
specifying an object in the stack, and an index into that
object. The latter object is called the "accessed object'.
The accessed object is then logically located both at the
top of the data stack and in the location specified in the
stack. That is, a change to the stack top (for example, as
a var parameter) causes the same change in the accessed
object. In terms of capabilities, the capability at the
tép of the stack and the cabability for the accessed object
have object ids which name the same object. The capability
for the object being indexed must access rights which
permit the referencing operation.

Change type. This operation changes the type of the
designated object. That 1is, the type component of the
capability is changed. 'A capability for this operation 1is
possessed only by routines which allocate instances of
sof tware objects (i.e., variables). They need to build
blocks of storage into objects of a particular type.

Change access rights. This operation changes the access
rights of an object to a new value. The new value must be

a subset of the old value.



39

4. Change structure. This operation changes ﬁhe parameters of
an object; for example, the type and number of the
components. If instances of a type are to have static
structures (like Gypsy records and arrays), capabilities
for instances of such a type do not permit this operation.
On the other hand, dynamic objects, like sequences, may be

implemented with a flexible number of elements.

A routine may make arbitrary requirements concerning the
type and access rights required of its parameters. Notice that the
ability to call a routine can be denied by either of two means: (1)
Do not give the calling routine a capability for the called routine,
or (2) do not permit the calling routine to obtain adequate

capabilities to use as parameters.

5.1.11 Shared Objects =

Two primitive operations provide mutually exclusive access
to a given object shared by two or more concurrently executing
activation records. The single parameter to the attach and release
operations 1is a shared object. If the object is available, attach
changes the access rights to permit access to the objecty
otherwise, the access rights are not changed. An operation which

tests the access rights of a capability can be used to determine if
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the attach succeeded. Release" surrenders access to the shared

object. No scheduling is implied by the attach and release

operations.

5.1.12 The Routine Lnvocation Operations In CML -

The routine invocation operatioms in CML are call, start,

suspend, and return.

5,1.12,1 Call Operatioun -

The form of the call operation is
<routine name> <parameter 1> ... <parameter n>

where <routine namé> is the name of the routine to be called. The
parameters are the indices (perhaps symbolic, 1in the assembly
language) in the current data stack of the objects to be passed to
the called routine. |

The call operation results in the execution of the némed
routine. For primitive routines, the interpreter passes the
parameters to the routine and activates the routine. The caller is
suspended by the interpreter until the primitive operation

completes.
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If <routine name> is a routine definition for a software
routine (perhaps the image of a Gypsy routine), the interpreter
pushes a return instruction onto the control stack, and on top of it
pushes the code body of the called routine. See figure 5 for an
example of a software routine call. The data stack bottom is set to
the current value of the data stack top and the parameters are
pushed onto it. The current stack bottom pointéf is stored into the
return instruction for later restoration. Thus, all references to
the data stack are relative to the new base, and except for the
parameters, the data of the caller is not accessible to the called
routine. Onto the data stack the interpreter pushes the unit
capabilities associated with that code body. Parameters to the
routine are located beneath those capabilities. The interpreter
then begins execution of the code body. The caller is thus
implicitly suspended until the called routine exits.

Notice that the form of a call is identical regardless of
whether the called routine is built into the machine, is a CML

routine, or is the image of a Gypsy routine.

H

5.1.12.2 Start Operation -
The START operation states that execution of the routine
which is its parameter is to begin, and the caller is to continue

execution. It expects two parameters on the data stack: a routine
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name and a completion object. If <routine name> names a routine
definition corresponding to a Gypsy routine unit, what is executed
is a short CML routine which builds a new activation record on the
data stack of the caller and schedules 1t for execution. This
routine allocates a new activation record on the data stack, places
the instruction and code body on the control stack of the new
activation record, places the parameters and unit capabilities of
that routine onto the new data stack, and calls a scheduling routine
to place the activation record on the ready list. See figure 6 for

the effect of a start operation on the caller’s data stack.

5.1.12.3 Suspend Operation -

Shared between the caller and callee is a completion object.
The suspend operation suspends its caller until something appears in
this object. The completion object consists of two components: the
name of the activation regord which is suspended on it, and a count
of how many routines have exited using this completion object. Part
of the return operation is to reactivate the suspended routine.

After perhaps several routines have been started, the caller
can suspend 1itself pending a condition object being placed in the
completion object shared by the started routines; this 1is an

implementation of the Gypsy cobegin statement. The suspend
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operation expects a completion object on the data stack as a
parametér.

Another explicit use of the suspend operation is in blocking
for Gypsy buffer operations. The routine desiring to be blocked
arranges for an entry to be placed in a completion object when the
needed buffer state is achieved (nonfull for send, nonempty for

receive).

5.1.12.4 Return Operation -

When a primitive routine exits, the condition register is
set by the interpreter to the appropriate value. When a called
software routine completes, it executes the return operation {(always
the last instruction of a routine). If the control stack contains
only the return instruction, the return operation places a condition
object into the completion object. The control stack of the
activation record is then empty and the activation record is
deallocated. Setting the completion object includes resumption of
the caller. When the caller is resumed, the condition object in the
completion object is placed into the condition register of the
calling routine, thus in effect signalling that condition in the
caller. 1f the condition register of the exiting activation record
contains a value corresponding to a condition parameter, or

indicates no condition, that condition value 1is placed in the
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condition object of the caller. The condition parameters contain
condition objects known in the calling routine. If it is any other
value, routinerror is placed into the caller’s condition object.

If the return instruction is not the last instruction on the
control stack, the return operation sets the condition register to a
value as computed above, pops the data stack down to the stack
bottom pointef, and then resets the bottom pointer to the value it
had before the call to the returning routine. The return
instruction is executed regardless of the value of the condition
register. The calling routine thus cannot gain  access to
capabilities possessed by the called routine, even if the called
routine returns in an error state. Notice that the parameters are
popped off the data stack by the return operation. There is no

explicit pop operatiom.

5.1.13 Routine Scheduling -

Process scheduling is centered around the CML interpreter
and the ready queue. The CML interpreter is really just a device
which interprets CML software routines. - The ready queue is a
priority ordered queue of activation records. There is a primitive
CML operation called "next_routine” which causes the interpreter to
load its current activation record register with the top entry of

the ready queue, and thus begin interpretation of that routine.
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This operation 1is executed as part of the suspend operation. On
every instruction cycle, the CML interpreter polls a number of
shared objects to see 1if something has been placed in them by an
external device. The interpreter’s reaction to such an event is to
place the contents of the activation record register at the head of
the ready queue and load the activation record register with the
activation record of the routine which handles events on that shared
object. One such shared object is set by the clock; the handler
for this shared object may place the activation record at the head
of the ready queue at the end of the ready queue and execute the
next _routine operation. Notice that this polling is very similar to
the test for interrupt algorithm performed in the microcode or logic
of a comventional CPU.

The ready queue manager 1is responsible for ordering the
ready queue. It takes as inputs requests from routines which start
concurrent execution of activation records. These inputs 1include
both the actual activation record to be executed, and various
parameters concerning how the activation record is to be scheduled
(e-g., a minimum service guarantee).

For external objects to communicate with the iInterpreter,
and for routines to interact with the ready queue manager, they must
both (1) have a capability for the appropriate shared object, and
(2) possess the proper capabilities for objects to be placed into

the shared object.



108

5.2 Design Issues And The Capability Machine Language

In this section, several major issues in the design of the

architectural model are reviewed, along with how the Capability

Machine reflects those considerations.

5.2.1

l.

Storage Management -

Issue: All objects are referenced via capabilities,

including simple objects such as integers.

CM: All operations in CML, including "hardware"” routines,
use the same call mechanism. This mechanism places the
parameters for the called routine onto the data stack; the
parameters refer to objects accessible through the caller’s
data stack.

Issue: Objects may reside in various storage devices,

which may be all or in part implemented in software.

CM: Variables are allocated in "memory’, special buffers
are associated with external devices.

Issue: To permit capabilities to be very concise, type
objects are defined, and capabilities may contain short
references to the more lengthy descriptor fields contained

in a type object,
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CM: The type field of a capability is an index into the
"unit definition table."” The entries in that table contain
type and routine definitions. For static objects, like
Gypsy records, capabilities of components may be computed
entirely from the type definition, and need not be located
in the object.

Issue: The object named by a descriptor may either
directly follow the descriptor (as with tags) or be located
elsewhere (as with conventional capabilities); the

operations which use the object cannot distinguish which 1is

the case.

CM: The object id field of capabilities is thus defined.

Issue: An object may contain other objects; the contained
objects are referenced by a naming convention associated
with the particular storage object (i.e., an index).
Implementation details, such as byte displacements of the
components of an object, are not visible to the user of the
object. Only the routines which possess the access rights
to modify the structure of a given object are concerned

with the actual layout of the components.

CM: All software objects, including the data stack, are

treated like a vector of objects of perhaps differing
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types. The referencing operation uses indices into the
data stack and 1indices into objects on the stack;
displacements are found from the type object or parameter
part of the object (called the "header” in the model

description).

5.2,2 Process Management -

1.

Issue: Software and hardware routines are treated

uniformly.

CM: A routine calls another routine with the "call”
operation. 'The form of the call operation is the sanme
whether a hardware or software routine is called.

Issue: The creation of activations of software routines is

separated from calls on the activations.

CM: The sequential execution operation ("call") creates
the execution envirommeant for ﬁhe called routine. The
concurrent execution operation ('start™) executes an
activation record bullder and scheduler, which is part of

the routine definition.
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Issue: The instructions in code objects are decoded by
"dispatchers,” which generate calls to the devices
specified in the code. The dispatchers take the routines

to be decoded from a ready queue.

CM: The CM interpreter interprets code bodies by

formilating calls to primitive and software routines.

5.2.3 Process Synchronization =

lv

Issue: Device communication is via shared objects, on
which synchronization primitives are provided. This

technique 1is used as as the parameter passing mechanism.

CM: The attach and detach operations are provided in CM.
Sequential calls also pass information via shared objects
{the parameters), but since the caller builds the exeéution
environment of the called routine, the attach and detach
operations are not needed to pass parameters for sequential
calls.

Issue: The gaining of exclusive access to a shared object
is separated from any scheduling which may be associated

with failure to immediately gain the desired access.
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CM: The attach and detach operations have this property.
The suspend operation 1s provided to allow a routine to

pause until an object appears in a given shared object.

5.3 Implementation Of The Capability Machine On Hardware

The Capability Machine 1s dimplemented on a PDP-11/03
(LSI-11) which is supplemented with a simple operating system called
the "PROM Operating System." In this section, the PROM Operating
System 1s briefly described, and then the major implementation
issues. The term "runtime” in the following sections refers to

execution on the PDP-1l, rather than the "runtime"” of the Cabability

Machine.

5.3.1 The PROM Operating System -

The PROM Operating system is a very simple operating system
implemented on a Programmable Read—Only Memory (thus its name). It
provides three sets of virtual registers (and thus three processes,
one for itself, two for the application), low level device drivers
which handle all external interrupts, and an operator TTIY interface.
The operating system permits the application program to interact

with it via the PDP-11 TRAP instruction.
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5.3.2 Issues In The Capability Machine Implementation -

In this section several issues related to the Capability

Machine implementation are discussed.

5.3.2.1 Capabilities -

The LSI~1l does not have memory management hardware, so
runtime capability interpretation would be prohibitively expensive.
The interaction of Gypsy routines with each other and with data
objeéts is, by design, capable of mostly being done at parse time,
by the semantic checker. It is the responsibility of the CML to
PDP-11 object code generator to explicitly include code to check
those things not checked by the parser (such as array bounds checks)
and in general to interpret the capabilities (such as handling

indirection).

5.3.2.2 Code Objects -

The code generator generates reasonable object code of
operations directly supported by the target machine, such as
arithmetic and boolean instructions. For example, operands are not
pushed onto the PDP-11 stack to do an addition operation. Rather, a
single instruction referencing the desired operands is generated.
The Capability Machine primitives needed at runtime are written in

PDP-11 assembly language.
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50.3.2.3 The Control Stack -

The code generator maintains a stack which contains poiﬁters
to control structures which have been entered but not completed, due
to a call in them to a nested control structure. Notice that the
code generator image of the control stack is a very close analogue
of the Capability Machine control stack. No runtime storage need be
reserved for control objects in the runtime control stack; only
routine linkage information is needed. The runtime control stack
entries contain information to properly set the control and data

stack for routine calls.

5.3.2.4 Data Stack =

The data stack in the implementation 1is much 1like the
Capability Machine data stack. When a variable is allocated, space
on the implementation data stack reserved for that wvariable. When
the access operation is called, naming that variable, a pointer to
the variable is pushed onto the data stack. Variables are always
statically allocated, using the size restriction on dynamic objects
to find the maximum amount of stack space needed. Formal parameters

of software routines are pointers back to the actual parameters.
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5.3.2.5 Conditions -

_Conditions are forward jumps. A jump to a compile time
knowﬁ label which denotes the appropriate WHEN object is used to
implement the signal and routine error returns. Code at that label

resets the runtime data stack.

5.3.2.6 Concurrency -

Code objects in the implementation contain the code to
generate and schedule a concurrent activation of that routine, just
as in the Capability Machine. This code is bypassed on a sequential
call to the vroutine. The support routines which manage the ready
queue may, for the current implementation, schedule the ready
routines in a round robin manner. The hardware clock will be used
to activate the ready queue manager when a routine’s quantum

expires.

5.3.2.7 Efficiency =

The CML-to=-PDP1l code generator generates PDP-11
instructions by processing the CML line by line. An effort has been
made to generate as efficient code as possible, but in the current
implementation, no attempt is made to optimize PDP-1ll code which
spans more than one CML instruction, other than some register

management. The implementation methodology has been that the
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generated PDP-1l code be functionally equivalent to the CML; most
of the restrictions and descriptor interpretatiom operations
required in the CM can be performed in the compilation steps and

need not be visible as PDP-11 code.

5.3.2.8 Validation Of Model -

The Capability Machine turns out to be of great assistance
in the implementation of Gypsy. It provides an intermediate step in
the translation of Gypsy which is independent of the existing
machine on which the code is to execute. The Capability Machine
retains the desirable properties of typing, médularity, etc. The
Gypsy compiler is very modular; the different parts of the compiler
implement various parts of the functionality of the Capability

Machine.

5.3.3 Implementation Stage -

As of May, 1978, about 80% of sequential Gypsy (that is,
without cobegin statements and buffers) can be compiled and executed
on an LSI-11. Work is continuing and more features of Gypsy are
regulary made available. By July, 1978, essentially all of Gypsy,
including concurrency, should be implemented. At that time, the

compiler effort will turn primarily to optimization issues.



CHAPTER 6

CONCLUSION

Current hardware technology permits hardware to be designed
which does a much better job of supporting modern software concepts
than is common in contemporary architectures. This dissertation 1is
intended to discuss how contemporary architectures interact with
modern software techniques and to suggest ways of improving hardware
support.

A primary feature of the proposed architectural model is the
unification of the concepts of segment capabilities and word tags.
All addressing, includ£ng simple objects like integers, is dome via
typed descriptors (capabilities). The type information is used to
enable the descriptors of components of objects of that type to be
expressed concisely.

The second primary feature of the model is the wunification
of the concepts of hardware operations, software routines, and
hardware device calls. Mechanisms are provided which permit the use
of a routine without having to take into account the implementation

of the routine (for example, whether it is hardware or software).
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The description of the model is essentially complete. Some
refinement is needed on the basic operations on capabilities and
headers. In particular, the new_object operation 1s rather vague
with respect to what 1is to happen in a situation where two
descriptors for the same object denote different types. The
modify header operation appears somewhat awkward, especially in that
it implies changing the entire header 1in order to do something
simple like creating a new component object.

The concept of controller needs to be clarified, especially
with respect to the definition of the "function" part of a hardware
device. How the controller-device concept works £for realistic
process scheduling problems needs to be further investigated.

The cost of implementing this model has not been computed.
Clearly, one would not consider such an architecture if the primary
concern was an absolute minimization of hardware cost. However, the
advances in hardware technology and the demand for reliable but
reasonably priced software favor implementing in hardware many

features which support modern software concepts.



APPENDIX

THE CML IMAGE OF AN EXAMPLE GYPSY PROGRAM

The CGypsy routines Read CML Line, Get_Name, and
Skip Trailing are transliterations of the Pascal source of the
lexical scanner in the CML-to-PDPll code generator. Read CMI, Line
reads lines of CML code into a structure of type CMLinstr. Generate
writes these structures.

A CML line is of the form:

<CML_line> ::= <label> <routine call>

<label> ::= <label name> <separator>
| <space character>

<routine call> ::= <operation name> <parameter list>
| <empty>

<parameter list> ::= <parameter list> <parameter>
| <empty>

<parameter> ::= <parameter name>
I <number>
| “<number>

<label name>, <parameter name> and <operation name> are strings not

containing blanks, and <separator> 1is a non-blank character.

1i9
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<number> is a numeric string, and is the CML representation of an
integer literal. " <number>" is the CML representation of the
character literal whose ASCII value is <number>. WNotice that labels
must begin in the first column.

Some words are needed about some of the distinctive language
features of Gypsy. The access lists (bracketed by "<>") on
set_blank, Get Name, and Skip_Trailing state that only Read CML Line
can call them. The access list on CMLinstr states that only
Read CML_Line and generate know the definition (representation) of
CMLinstr. This access list follows the unit name; all routines can
declare variables and parameters of type CMLinstr.

The LOOP...END construct in Gypsy is an infinite loop. The
LEAVE statement causes the most enclosing loop to be exited.

Gypsy has provisions for error handling. If Read CML Line
detects a syntactic error in a line of CML, it signals the condition
i1l formed line. All control structures in Gypsy may end with a
WHEN block, which looks like a CASE statement with condition names
as case labels. Signalling an error condition causes a forward
branch to the innermost enclosing WHEN part which contains a label
which matches the signalled condition. If a routine boundary is
found before a match is found, the condition (cond) parameters are
examined. If the signalled condition is found in that 1list, the
routine 1is exited and the condition nawe in the actual parameter

list is signalled in the calling routine, and the search for a match
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continues. If no match is found, the condition ROUTINE ERROR is
signalled at the call site. In the example, Read CML Line signals
i1l formed line if a syntactic error is found in a line of CML. The
condition is not handled in Read CML Line (no condition 1is), so
i1l formed is signalled in Main. The code in the WHEN part in
procedure Main has the label 11l formed; it outputs an error
message. The BEGIN-END structure in Main serves only to provide a
place for a WHEN part; all Gypsy control structures take statement
lists.

Several CML constructs need to be explained. The ACCESS
operation places a descriptor for the accessed component onto the
data stack. When a "*" appears as an operand, the accessed
component at the top of the data stack is taken as the operand, and
the descriptor is popped off the data stack.

All control structures are bracketed by BEGIN~-END pairs.
The LEAVESTRUCT operation says to e;it the current control
structure. LEAVESTRUCT LOOP says to exit the innermost control
structure which has a "LOOP" identifier; that is, starts with
"BEGIN LOOP" and ends with "END LOOP". The REPEAT operation causes
a branch to the first statement of the current control structure.
"CASE CASEVAR" causes a forward branch to a statement labelled with
the value of CASEVAR, which 1s not nested in a deeper control

structure. The ELSE label matches any value of the CASE variable.
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type Bl = buffer (1) of character {input};
type B2 = buffer (1) of character {output};
type Gypsy_symbol = array[(l..20)] of character;

type CMLInstr <Read CML_Line, generate> = record (
labelpart:Gypsy_symbol;
labelconn:character;
operation:Gypsy_symbol;
Noperands: int;
operandpart:array[(l..10)] of Gypsy_symbol
)3
procedure get (var source:character; var ttyin:Bl; var ttyout:B2) =
begin
receive source from ttyin;
send source to ttyout;
end;

procedure <read CML_line> set_blank(var b: Gypsy_symbol) =
begin
var i: int := 1;
loop
if 1 > 20 then leave end;
b[i] := ° ; {° 1is the character literal for space}
1 = 1 + 1;
end
end;

procedure <Read CML_line> Get_Name(var name: Gypsy_symbol;
var Source: character; var ttyin: Bl; var ttyout: B2) =
begin
entry source ge ° ;
exit source ne ° ;
var 1i: int := O3
loop
ir=i+l;
name[i] := source;
get (source, ttyin, ttyout);
if source le * then leave end;
end;
loop
if source ne ° then leave end;
get (source, ttyin, ttyout);
end:;
end:

procedure <Read_CML_Line> Skip_Trailing (var source: character;
var ttyin: Bl; var ttyout: B2) =
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begin
loop
if source < °
then get (source, ttyin, ttyout)
else leave
end
end
end;

procedure Read CML_Line(var Source: character; var ttyin: Bl;
var ttyout: B2; var Instr: CMLinstr; cond ill_formed line) =
begin
entry (source ge * ) ;
exit (source ge ° ) ; ,
{ all characters less than ° (which includes CR and LF) are control
characters }

var blankname: Gypsy_symbol;
set_blank(blankname);
instr.LabelPart:=blankname;
instr.LabelConn:= °
instr.Operation:=blankname;
instr.Noperands:=0;
loop
if (instr.LabelPart ne blankname)
or (instr.operation ne blankname) then leave end;
Get_Name (instr.LabelPart, source, ttyin, ttyout);
if instr.LabelPart ne blankname
then
if source < ° then signal ill_formed_line end;
instr.LabelConn:=source;
loop
get (source, ttyin, ttyout);
if source ne ° then leave end

I

end;
end;
if source > °
then
Get Name(instr.operation, source, ttyin, ttyout);
loop
if source le ° then leave end;
instr.Noperands := instr.Noperands+l;

instr.OperandPart{instr.Noperands]:=blankname;
Get Name(instr.OperandPart{instr.Noperands],
source, ttyin, ttyout);
end;
end;
Skip Trailing(source, ttyin, ttyout);
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end;
end;

procedure <generate> write symbol(s: Gypsy_symbol; var ttyout: B2) =

begin
var i: int:= 1;
loop
gsend s[i] to ttyout;
cm 41
if i > 20 then leave end;
end;
end;

procedure generate (instr: CMLinstr; var ttyout: B2) =
begin
var i: int := 1;
write_symbol (instr.LabelPart, ttyout);
send instr.LabelConn to ttyout;
write _symbol (instr.Operation, ttyout);
loop
if i > instr.Noperands then leave end;
write symbol(instr.OperandPart{i], ttyout);
i 3=41i + 13
end;
end;

procedure Main (var ttyin: Bl; var ttyout: B2) =
begin

var Instr: CMLinstr;

var Source: character;

cond 111 formed;

get (source, ttyin, ttyout);
loop
begin
Read_CML_Line (Source, ttyin, ttyout, Instr, i1l formed);
generate {Instr, ttyout}; :
when
is 111 formed:
send ‘# to ttyout; send ‘i to ttyout; send ‘1 to ttyout;
send ‘1l to ttyout; send "- to ttyout; send ‘f to ttyout;
send ‘o to ttyout; send ‘r to ttyout; send ‘m to ttyout;
send “e to ttyout; send °d to ttyout; send to ttyout;
send ‘1 to ttyout; send ‘i to ttyout; send ‘n to ttyout;
send ‘e to ttyout; seand “# to ttyout;
end {begin}
end {loop}
end; {main}
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BODY : BEGIN
SOURCE : RWPARAM CHARACTER
TTYIN : RWPARAM Bl
TTYQUT : RWPARAM B2
BEGIN LOOP
BEGIN
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LT ?T004X001
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DEALLOCATE
CASE CASEVAR
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GET SOURCE
LEAVESTRUCT
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LEAVESTRUCT LOCP
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ELSE : CMERROR
END
REPEAT
END LOOP
LEAVESTRUCT
END
ENDDESCRIPTOR
READ CML_LINE = BEGINDESCRIPTOR
KIND : PROCEDURE
BODY : BEGIN
SOURCE : RWPARAM CHARACTER
TTYIN : RWPARAM Bl
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BEGIN
?2T007X001 : ALLOCATE BOCLEAN
?2T008X002 ¢ ALLOCATE BOOLEAN
ACCESS INSTIR LABELPART
NE ?2T008X002 * BLANKNAME
?2T009X003 : ALLOCATE BOOLEAN.
ACCESS INSTR QPERATION
NE , ?7T009X003 * BLANKNAME
OR 2T007X001 ?7T008X002 ?7T009X003
DEALLOCATE
DEALLOCATE
ASSIGN CASEVAR ?2T007X001
DEALLOCATE
CASE CASEVAR
TRUE :
LEAVESTRUCT LOOP
LEAVESTRUCT
FALSE H
LEAVESTRUCT
ELSE : CMERROR
END
ACCESS INSTR LABELPART
GET_NAME  * SOURCE TTYIN TTYOUT
BEGIN
2T010X001 : ALLOCATE BOOLEAN
ACCESS INSTR LABELPART
NE ?7T010X001 * BLANKNAME
ASSIGN CASEVAR 2T010X001
DEALLOCATE
CASE CASEVAR
TRUE : '
BEGIN
?2T011X001 : ALLOCATE BOOLEAN
LT 7T011X001 SOURCE 732
ASSIGN CASEVAR ?2T011X001
DEALLOCATE
CASE CASEVAR
TRUE ¢
SIGNAL ILL_FORMED LINE
LEAVESTRUCT
FALSE :
LEAVESTRUCT
ELSE : CMERROR

END
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: PROCEDURE
: BEGIN

¢ READPARAM
¢ RWPARAM

: ALLOCATE

ASSIGN

ACCESS
WRITE SYMBOL

ACCESS
SEND

ACCESS
WRITE_SYMBOL
BEGIN

BEGIN

: ALLOCATE

ACCESS

GT

ASSIGN
DEALLOCATE
CASE

LEAVESTRUCT

I ?7T0046X001
BOOLEAN

?7T005X001 I

CASEVAR 2T005X001
CASEVAR

LOOP

LOOP

CMLINSTR

B2

INT

I 1

INSTR LABELPART
X TTYOUT
INSTR LABELCONN
x TTYOUT
INSTR OPERATION
* TTYOUT
LOOP

BOOLEAN

INSTR NOPERANDS
7T004X001 I

CASEVAR 1T004X001
CASEVAR A
LOOP
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FALSE

ELSE

?T005X001

MAIN
KIND

BODY
TTYIN
TTYOUT
INSTR
SOURCE
ILL_FORMED

ILL_FORMED
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LEAVESTRUCT
LEAVESTRUCT

: CMERROR
END
ACCESS INSTR OPERANDPART
ACCESS * I
WRITE_ SYMBOL * TTYOUT

: ALLOCATE INT
PLUS 7T005X001 1 1
ASSIGN 1 ?T005X001
DEALLOCATE
REPEAT
END LOOP
LEAVESTRUCT '
END
ENDDESCRIPTOR
BEGINDESCRIPTOR

: PROCEDURE

: BEGIN

: RWPARAM Bl

: RWPARAM B2

: ALLOCATE CMLINSTR

: ALLOCATE CHARACTER

: ALLOCATE CONDITION
GET SOURCE TTYIN TTYOUT
BEGIN LOOP
BEGIN
READ CML_LINE SOURCE TTYIN TTYOUT INSTR ILL_FORMED
GENERATE INSTR TTYOUT
LEAVESTRUCT
WHEN V
CONDITION_VALUE CASEVAR CAR
CASE CASEVAR
SEND 35 TTYOUT
SEND ‘73 TTYOUT
SEND ‘76 TTYOUT
SEND ‘76 TTYOUT
SEND “45 TTYOUT
SEND ‘70 TTYOUT
SEND °79 TTYOUT
SEND ‘82 TTYOUT
SEND °77 TTYOUT
SEND ‘69 TTYOUT
SEND 768 TTYOUT



ELSE

SEND
SEND
SEND
SEND
SEND
SEND
LEAVESTRUCT

SIGNAL

END

REPEAT

END
LEAVESTRUCT
END
ENDDESCRIPTOR

“32
‘76
°73
°78
‘69
“35

CASEVAR

LOOP

TTYOUT
TTYOUT
TTYOUT
TTYOUT
TTYOUT
TTYOUT
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