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Abstract: A quartz tuning fork interacting with a laser-generated pressure wave can be ac-
curately modeled via a system of coupled partial differential equations. The model predicts the
optimal placement of the laser as validated by experiment.
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1. Introduction The current development of mid infrared sensor systems involves combining a quantum
cascade laser with a quartz enhanced photoacoustic spectroscopy (QEPAS) technique [1], [2]. These systems
will enable trace gas quantification for various applications including urban air quality monitoring, industrial
process control, and non-invasive medical diagnostics using breath biomarkers. QEPAS sensors provide high
sensitivity, immunity to environmental acoustic noise, and portability with potentially low cost.

In this paper, we describe an analytic model of the QEPAS sensor currently being developed by Kosterev
et al. at Rice University [1]. This sensor is based on a novel approach to photoacoustic detection that uses
a quartz tuning fork as a resonant acoustic transducer. To detect the presence of a trace gas, a wavelength
modulated laser beam is passed between the tines of a tuning fork. When optical radiation is absorbed
by the trace gas, the medium undergoes periodic thermal expansion which gives rise to a weak acoustic
pressure wave. The pressure wave causes the tines of the tuning fork to vibrate thereby generating an
electrical signal via the piezoelectric effect. Prior work modeling tuning fork sensors includes an outline for
a qualitative model of the piezoelectric signal generated in a QEPAS sensor [2], and a model based on a
vibrating cantilever [3]. In this paper, we present the first quantitative mathematical model of a QEPAS
sensor without a microresonator. We use the model to validate the experimentally detected optimal position
of the laser beam relative to the tuning fork.

2. Mathematical model The acoustic pressure wave in free space is modeled by the inhomogenous wave
equation

∂2P

∂t2
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where t is time, P is pressure, and c is the sound speed. We model the source S as the product of a constant-

width radial Gaussian function and a simple harmonic in time, i.e. S = We−
r2

2σ2 eiωt, where r is radial
distance from the axis of the beam, ω is the wavelength modulation frequency, σ is the width of the laser
beam, and W is determined the laser power and the concentration of the trace gas. Because of the cylindrical
symmetry of the beam, the solution depends only on r and t. We derive a pressure wave solution which,
when r is large relative to σ, is well approximated by a combination of Bessel functions:
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To model the vibration of the tuning fork in response to this acoustic pressure wave, we regard each tine
of the tuning fork as a vibrating one-dimensional cantilever. The equation that governs the damped motion
of a vibrating beam is the Euler-Bernoulli equation [4]:
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= f(y, t).



Here y is distance along the axis of a tine of the tuning fork from its base as shown in Fig. 1 (left), and u(y, t)
is the displacement at time t of a point at position y. The force density f(y, t) is given by the difference
between the pressure at the inner and outer surfaces of the tine multiplied by the thickness of the tine. The
parameters of the tine are Young’s modulus, E, the moment of inertia, I, the damping coefficient, 2γ, the
density of quartz, ρ, and the cross-sectional area, A. The appropriate boundary conditions for a tine of length
L are u(0, t) = 0, ∂u

∂y (0, t) = 0, ∂2u
∂y2 (L, t) = 0 and ∂3u

∂y3 (L, t) = 0 [4]. The derivation of the analytic solution
of this problem involves using separation of variables to reduce the problem to an eigenproblem. Since the
system is forced at the fundamental resonance frequency ω0 of the tuning fork (i.e. we choose ω = ω0), we
may assume that the signal is determined by the amplitude, B, of the steady state solution corresponding
to the fundamental eigenfunction Φ0, namely
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Following [3], we assume that the piezoelectric current is proportional to the displacement of the end of the
tine of the tuning fork.

3. Results To validate the model we compare it to experimental results obtained using a 32.8 kHz tuning
fork with each tine of length L = 3.8 mm; other dimensions are given in [1]. The tuning fork parameters are
E = 7.87 × 1010 Pa, I = 6.12 × 10−15 m4, ρ = 2.6 × 10−3 kg/m3, and A = 2.04 × 10−7 m2. The damping
coefficient is given by γ = 2πf0

2Q where the measured quality factor is Q = 14, 000, and the computed value
of the fundamental frequency is f0 = 36.9 kHz. The trace gas to be detected was methane. A laser beam of
width σ ≈ 0.05 mm was focused between the tines of the tuning fork at a vertical position y0 on the axis of
the fork as shown in Fig. 1 (left).

We compare the theoretical and experimental results by plotting the normalized signal strength as a
function of the beam position y0. In Fig. 1 (right) we compare the measured data (dots) with the solution
from our model (solid curve). The theory confirms that the signal is the strongest when the laser beam is
focused at y0 = 3.2 mm. In conclusion, our model demonstrates that a 2 mm change in the location of the
laser beam along the tuning fork axis can result in a decrease in the signal strength by a factor of 10.
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Fig. 1. Left: Diagram of tuning fork. Right: Normalized signal strength versus position y0 of the laser beam.
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