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Abstract. The Proteus language is a wide-spectrum parallel program-

ming notation that supports the expression of both high-level architecture-

independent speci�cations and lower-level architecture-speci�c implementa-

tions. A methodology based on successive re�nement and interactive experi-

mentation supports the development of parallel algorithms from speci�cation

to various e�cient architecture-dependent implementations. The Proteus sys-

tem combines the language and tools supporting this methodology. This paper

presents a brief overview of the Proteus system and describes its use in the

exploration and development of several non-trivial algorithms, including the

fast multipole algorithm for N-body computations.

1. Introduction

Practical implementations of parallel algorithms that access the performance

potential of current computers are di�cult to develop, too often fail to deliver the

expected performance, and lack portability to other platforms. This state of a�airs

may be explained by the proliferation of parallel architectures and the simultane-

ous lack of e�ective high-level architecture-independent programming languages.

Parallel applications are currently developed using low-level parallel programming

notations that re
ect speci�c features of the target architecture (e.g., shared vs.

distributed memory, SIMD vs. MIMD, exposed vs. hidden interconnection net-

work). These notations lack portability across architectures and are too low-level

to support the exploration of complex designs. Higher-level notations, on the other

hand, trade reduced access to architecture-speci�c features for improved abstract

models of computation, but this trade is often not the right one: the whole point

of parallelism, for most applications, is performance.

The problem is a fundamental one: abstract models of parallel computation lead

to impractical implementations, whereas machine-speci�c models lead to intractable

analysis of even the simplest programs. The goal of our work is to provide tools

for exploring the design space of a parallel application by a process of prototyping

and successive re�nement.

The Proteus system comprises:
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� a wide-spectrum parallel programming notation that allows high-level ex-

pression of speci�cations,

� a methodology for (semi-automatic) re�nement of architecture-independent

speci�cations to lower-level programs optimized for speci�c architectures,

followed by translation to executable low-level parallel languages,

� an execution system consisting of an interpreter, a Module Interconnection

Facility (MIF) allowing integration of Proteus with other codes, and run-

time analysis tools, and

� a methodology for prototype performance evaluation integrating both

dynamic (experimental) and static (analytical) techniques with models

matched to the level of re�nement.

We believe that, in the absence of both standard models for parallel computing

and adequate compilers, this approach gives the greatest hope of producing useful

applications for today's parallel computers. It allows the programmer to balance

execution speed against portability and ease of development.

This paper gives a brief overview of the Proteus system and experiences with

its use. In the next section, we describe the Proteus programming language in

more detail. Section 3 then discusses the methodology and environment. Section 4

reviews some of our experiments with the system. Finally, we conclude in Section 5.

2. Proteus Programming Notation

Proteus is a small imperative language with �rst-class functions, aggregate data

types, and constructs for data and process-parallelism. The language is described

in detail in [15].

The sequential core of Proteus includes features of proven value in specifying

sequential programs. Experience with speci�cation languages such as Z and VDM

and prototyping languages such as SETL and APL indicates that an expressive

set of prede�ned aggregate types are a key requirement for rapid, model-based

prototyping; Proteus includes two such types, sets and sequences. In addition,

the expression sub-language of Proteus is a strict higher-order functional language,

allowing many algorithms to be written without resorting to imperative constructs.

The sequential portion of the statement sub-language is standard.

This sequential core is extended with a few highly-expressive concurrency con-

structs, carefully chosen to support programming in most paradigms. We distin-

guish between two means of expressing concurrency: functional data-parallelism

and imperative process-parallelism. Data-parallelism refers to the repeated appli-

cation of a �xed operation to every element of a data aggregate, while process-

parallelism denotes the parallel composition of two or more distinct processes.

2.1. Data-Parallelism. To support data parallelism, a language must provide

aggregate values (such as sets or sequences) and the ability to apply functions

independently on every element. This sort of expressive capability is found in the

relative comprehension construct of set theory. For example ff(x) j x 2 Ag denotes

the set of values obtained by evaluating the function f on each element of set A.

The potential for concurrency arises from the fact that these evaluations of f are

independent.

In set theory, arbitrary functions are allowed in comprehensions, including set-

valued functions that may themselves allow data parallelism. Thus if A is the set



SPEC. & DEV. OF PARALLEL ALGS. WITH THE PROTEUS SYSTEM 3

f1; 2; 3g then ff(p; q) j (q 2 A) ^ (p � q)g j fp 2 Agg denotes the set

ff(1; 1)g; f(2; 1); (2; 2)g; f(3; 1); (3; 2); (3; 3)gg:

Parallel execution of such expressions is termed nested parallelism because for each

choice of p, there is a \nested" set of choices for q that may be evaluated in parallel.

Nested parallelism gives rise to a great potential for concurrent evaluation since the

number of independent sub-expressions can be very large.

The Proteus iterator construct captures the essence of comprehensions. For

example, if A and B are sequences of length n, then the iterator expression

[ i in [1..n]: A[i] + B[i] ]

speci�es the sequence

[A[1]+B[1], A[2]+B[2], : : : , A[n]+B[n]].

Note that unlike comprehensions, the bound variable of an iterator is written �rst,

improving the readability of long expressions.

Nested parallelism is widely applicable, as we demonstrate here by writing a data-

parallel quicksort algorithm (adapted from [3]). Recall that given a sequence, quick-

sort works by choosing an arbitrary pivot element and partitioning the sequence

into subsequences (lesser, equal, greater) based on the pivot. The algorithm is

then applied recursively on the lesser and greater subsequences, terminating when

the sequences are singletons or empty. The �nal value is obtained by concatenating

the (sorted) lesser, equal and greater lists. In Proteus, this may be coded as:

function qsort(list)

return if #list <= 1

then list; | if empty or singleton

else let

greater = arb(list);

lesser = [el in list | el < pivot: el];

equal = [el in list | el == pivot: el];

greater = [el in list | el > pivot: el];

sorted = [s in [lesser, greater]: qsort(s)];

in

sorted[1] ++ equal ++ sorted[2];

While there clearly is data-parallelism in the evaluation of the lesser, equal and

greater, if that were all the parallelism that were available, then only the largest

sub-problems would have any substantial parallelism. The key to this algorithm

is that the recursive application of qsort is also expressed using an iterator. As

a consequence, all applications of qsort at a given depth in the recursion can be

evaluated simultaneously.

An important quality of nested sets and sequences (as opposed to arrays) is that

they allow irregular collections of values to be directly expressed. In qsort, for

example, lesser and greater will likely be of di�erent lengths. Note that this

algorithm cannot be expressed conveniently in languages such as High Performance

FORTRAN, in which all aggregates must be rectangular and non-nested.

The utility of nested data-parallelism has long been established in high-level

languages like SETL and APL2. Blelloch [3] showed that nested and irregular

data-parallelism can be vectorized. We have developed a set of transformations
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that translate Proteus data-parallelism to the portable low-level vector model CVL

[24, 2].

2.2. Process-Parallelism. Proteus provides a minimal set of constructs for the

explicit parallel composition of processes which communicate through shared state.

More sophisticated concurrency abstractions, such as bu�ered communication chan-

nels and monitors, may be constructed from these.

2.2.1. Process Creation. Process parallelism may be speci�ed in two ways. The

static parallel composition construct

statement1 || statement2 || : : : || statementn;

speci�es the process-parallel execution of the n statements enumerated. The life-

time of the processes is statically determined; the construct terminates when all

component statements have completed. Static process-parallelismmay also be spec-

i�ed parametrically using the forall construct:

forall variable in aggregate-expression do statement ;

which may be freely intermixed with the enumerated form, as in the following

example.

fforall j in [1..n] do server(j);g || master(n);

Dynamic process parallelism, on the other hand, generates a process whose life-

time is not statically de�ned. The spawn construct:

|> statement

starts asynchronous execution of a child process to compute statement and imme-

diately continues.

2.2.2. Memory Model. In order to control interference from parallel access, we make

the provision that all variables outside the local scope of the parallel processes are

treated as private variables. When a process is created, it conceptually makes a

copy of each of the non-local variables visible in its scope; subsequent operations act

on the now local private variables. Static processes interact by merging their private

variables into the shared state at speci�ed barrier synchronization points [19]. The

merge statement

merge v1 using f1, v2 using f2, : : : ;

speci�es a synchronization point which must be reached by all other processes

created in the same forall or ||-statement. At this barrier, the values of updated

private variables (vi) are combined to update the value in the parent process and

this value is then copied back to all children. The default combining function is

arbitrary selection of changed values, although a user-de�ned function (fi) may be

speci�ed as shown above. A merge implicitly occurs at static process termination.

In implementation, it is not necessary to make a complete copy of the shared state;

e�cient implementations of this memory model are possible [13].
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2.2.3. Shared Objects. Communication and synchronization between dynamic pro-

cesses is more generally provided within the framework of object classes through

three simple techniques.

First, object references are the mechanism for sharing information: a process

may interact with another process if both have a reference to the same (shared)

object. Object values are always references; only method-invocation dereferences

such values. Under this scheme the private memory model and merge mechanism

will apply uniformly to variables, whether they hold object references or private

values.

Second, controlled access to shared state is provided through constraints on the

mutual exclusion of object methods. The class de�nition speci�es how to resolve

concurrent requests for execution of methods of an object instance through the

schedule directive:

schedule method1 # method1, method1 # method2 , : : : ;

which speci�es that, for each object which is an instance of that class, an invocation

of method1 must not execute concurrently with any other invocations of method1
or method2 (in other words they must not overlap). Intuitively, the construct #

denotes con
ict, and is used to control competition for resources. For example, we

may de�ne a class, parameterized by type t, which permits multiple readers and a

mutually exclusive writer as follows:

class shared reader (t) f

var read: void->t;

var write: t->void;

schedule read # write, write # write; | exclusive writes

g;

Third, we provide a number of prede�ned shared object classes. The class sync

provides a simple way for one process wait for another to reach a given point or to

provide a result. Intuitively, a sync object x consists of a datum that in addition to

having a value is also tagged with an \empty/full" bit, initially empty. Any process

attempting to read an empty datum (through the method x.read) is suspended

until the value is �lled, or \de�ned", by another process (through the method

x.write). In addition, a process may inquire whether x is full or empty without

blocking (through the method x.test). Sync variables may be set only once; that

is, they possess a single-assignment property.

The sync class in conjunction with the |> construct can be used to wait for

and obtain the result of an asynchronously spawned function, much like a multilisp

future. The |> construct causes the spawned function to write a value of type sync

when it completes. For example, given a function f :int->int, then

fvar x:sync(int); x |> f(y) ; : : : ; z := x.read; g

spawns f(y) and invokes x.write with the result. If x.read is attempted before f

has completed, the caller is suspended until the value is available.

The class shared(t) provides mutually excluded access to a value of type t.

Other prede�ned synchronization classes are being considered. For example, meth-

ods can be based on so-called linear operators investigated in [16]. Linear operators

(as methods in a linear class) generalize the sync methods to model shared data as

a consumable resource. In a linear object, the read method blocks until the object
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is de�ned, at which point the value is consumed and reset to empty; the write

method waits until the object is unde�ned and then produces, or sets, the value.

Linear operators succinctly model message-passing in a shared-memory framework,

and moreover can be used in user-de�ned classes to build higher-order abstractions

such as bu�ered channels.

Related work on concurrent languages which embody the notion of sync variables

includes Compositional C++ [7] and PCN [6]. We di�er signi�cantly from these

e�orts in our use of explicit operators for synchronization and the casting into an

object framework. Our schedule construct bears resemblance to the \mutex" meth-

ods of COOL [5] (which however exclude only concurrent invocations of a single

method). Our linear operators attempt to achieve the goals of CML [26] in support-

ing the construction of composable high-level concurrency abstractions, but instead

of making closures of guarded commands we combine primitive operators similar

to those found in Id's M-structures [1] with guarded blocking communication.

3. Program Development Methodology and Tools

Starting with an initial high-level speci�cation, Proteus programs are developed

through program transformations which incrementally incorporate architectural de-

tail, yielding a form translatable to e�cient lower-level parallel virtual machines.

We di�erentiate between elaborations, which alter the meaning of a speci�cation,

and re�nements, which preserve the meaning of the speci�cation but narrow the

choices for execution. Elaboration allows development of new speci�cations from

existing ones. We also de�ne translation to be the conversion of a program from

one language to another. The formal basis of our work is described in [10]; of other

work on program transformation, our approach is closest to the \step-by-step" re-

�nement approach of [29]. The relation to software development issues unique to

high-performance computing is described in [18].

Re�nement of Proteus programs includes standard compiler optimizations like

constant-propagation and common sub-expression elimination. It has been the re-

�nement of constructs for expressing concurrency, however, that most interest us.

Such a re�nement restricts a high-level design to use only constructs e�ciently

supported on a speci�c architecture, presumably improving performance. Since the

re�ned program remains in the Proteus notation, the Proteus programming envi-

ronment can be used to assess the functionality and performance of the restricted

program.

Programs that are suitably re�ned in their use of the Proteus notation can be au-

tomatically translated to e�cient parallel programs in low-level architecture-speci�c

notations. These programs can then be run directly on the targeted parallel ma-

chines. Changes in the speci�cation or in the targeted architecture can be accom-

modated by making alterations in the high-level Proteus designs and \replaying"

the relevant re�nement and translation steps.

The Proteus prototyping environment is designed to support this framework.

Many substantial software tools are needed to achieve this end. Of course, pro-

gram modi�cation must be supported with transformation and compilation tools,

targeted to a number of intermediate virtual machines. However, to support ex-

perimentation, rapid feedback is necessary; thus we have implemented a highly

interactive language interpreter with performance measurement tools. To allow
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integration with existing codes we also provide a module interconnection facility.

Finally, a program repository is required for version control. The entire system is

depicted in Figure 1, and the key components are described next.
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Figure 1. The components of the Proteus System

3.1. Modi�cation. The techniques used to compile programs for e�cient parallel

execution are complex and evolving. Currently, elaboration is a manual process;

re�nement is automated with respect to particular goals; and translation is fully au-

tomated. We use the KIDS system and related tools from the Kestrel Institute [28]

to translate subsets of Proteus language constructs.

The automated re�nement strategies are de�ned to yield Proteus code that pre-

serves the meaning of the code, but in a form that is either more e�cient (as a

result of high-level optimizations), has increased capabilities for parallelism (au-

tomatically extended code), or is more suitable for translation (certain subsets of

Proteus notation are more e�ciently translatable than others).

Of all our e�orts, the translation of data-parallel Proteus code to the parallel

virtual machine provided by CVL is the furthest along. The steps of the transla-

tion process are shown in Figure 2. First the Proteus program is parsed using a

translator built using a parser shared with the Proteus interpreter. The presence

and consistency of type declarations is checked and compliance with the subset

restrictions is checked. Then the Proteus program is translated to an intermediate

notation that can easily be manipulated by the Kestrel system. The program is

then vectorized using source-to-source transformations (iterator elimination). Fi-

nally the code is translated into C with nested sequence operations. This process

is described in detail in [24].

The C Vector Library (CVL) [2] implements operations on vectors of scalar val-

ues. CVL provides a consistent interface for vector computation on a variety of

parallel architectures, allowing Proteus code to be run today on workstations, the
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Figure 2. Translation of Proteus programs to parallel (vector) code

Connection Machines CM2 and CM5, the Cray Y-MP and C90 and the MasPar

MP1 and MP2. To simplify our transformations of Proteus code we have imple-

mented an intermediate abstract machine that supports nested sequences and the

operations necessary to manipulate them. This Data Parallel Library (DPL) [23]

is built using operations in CVL and, thus, is also highly portable.

We are investigating transformations for re�ning Proteus to other parallel virtual

machines, implementing asynchronous parallelism with shared or distributed mem-

ory. For multi-processor shared-memory computers, we intend to rely on POSIX

threads, whereas for heterogeneous message passing systems, we intend to rely on

PVM (Parallel Virtual Machine) [9] or MPI (Message Passing Interface) [20].

3.2. Execution. For rapid feedback during development, an interpreter for the

language is provided. The interpreter does not require variable and type decla-

rations, speeding code development time and encouraging experimentation. This

gives the developer some leeway during development, with subsequent re�nement

steps adding declarations as necessary. The interpreter runs sequentially, simulat-

ing parallel execution, including the e�ects of private memory and unpredictable

ordering of execution.

3.3. Performance Analysis. A performance model provides a basis for predict-

ing the performance of a program. It is di�cult to de�ne an accurate model for

high-level code, but as code is re�ned, so is the performance model; increasingly

detailed models become necessary as program re�nement progresses. In addition,

di�erent models are appropriate for code segments following di�erent paradigms,

such as data-parallelism and message-passing.

The Proteus interpreter provides a rudimentary per-process clock that measures

computational steps. This, in conjunction with explicit instrumentation of Proteus

code is used to develop rough resource requirement measures and to predict per-

formance at the higher design levels. However as the program is re�ned we would

like to be able to include more accurate measures of the e�ects of locality and

communication in our experimental and theoretical analyses.

Our methodology for performance prediction is to use, as program re�nement

progresses, increasingly detailed parallel computational models. The accuracy and

con�dence of assessment thus increases as the level of architectural detail incorpo-

rated into the program increases. Moreover, to support the assessment of multi-

paradigm programs we use di�erent models for analysis of code segments following

di�erent paradigms, such as the vram [3] for data-parallelism and LogP [8] for

message-passing, with suitable instrumentation to \attach" the model to the pro-

gram. Support for such multiple re�ned performance-prediction models is under
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development.

3.4. Module Interconnection Facility. A Module Interconnection Facility

(MIF) provides the ability to connect programs written in di�erent languages, pos-

sibly running on di�erent machines (Polylith [25] is one such system). The Proteus

programming system provides a limited MIF capability giving developers the power

to build upon, rather than ignore, previous coding e�orts. It also provides an inter-

face for interpreted Proteus code to interact with the code produced by translation

of some portion of the prototype. The Proteus MIF provides the interpreter with

access to high-performance computers and a mechanism to gradually migrate codes

between execution models.

3.5. Repository. A natural consequence of prototyping and re�nement is that

a derivation tree of programs is made explicit. A history of the transformation

activities that created this tree can be kept, not only for reference purposes, but as

a basis for re-deriving the program with the same transformation strategies when

an ancestral version is changed.

We have such a repository at two levels. First, we keep a version-controlled,

tree structured library of the various versions of the prototype. Second, within the

KIDS system, all transformations and intermediate results are recorded. From a

derivation history window any prior state can be restored by a mouse click, and

a new branch of a derivation started. Also there is a replay capability that can

replay steps on a modi�ed program using some simple heuristics for maintaining

an association between the old program and its modi�cation. This capability has

been useful more as a debugging aid and a system development tool than as a tool

to explore the design space for a target problem. The reason is that the KIDS

re�nements are automatic and hence there are no derivation alternatives in this

phase of re�nement to explore nor any use for replay on an modi�ed program

(which can always be re�ned automatically). Nonetheless this has proved to be a

very useful tool on problems which require manual selection of re�nements.

4. Examples

Several small demonstrations and larger driving problems have been used to

examine, assess and validate of our technical approach, including such aspects as the

prototyping process and methodology, the expressiveness of the Proteus language,

and the e�ectiveness of the Proteus tools. This section describes prototype solutions

for N -body calculations using the fast multipole algorithm and several solutions for

a geo-server, a problem proposed by the Navy to better understand the usefulness

of prototyping.

4.1. N-Body & FMA Calculations. A particularly interesting project is our

work prototyping the fast multipole algorithm (FMA), an O(N) solution to the

N -body problem [17, 22]. This is a problem of extreme practical importance and a

key component of several grand-challenge problems.

The foundation of the FMA prototype is the description of the algorithm by

Greengard [11], where solutions in two-dimensions using uniform and adaptive spa-

tial decomposition strategies are described, followed by a much more complex al-

gorithm for a uniformly decomposed three-dimensional solution. Greengard's 3D

algorithm decomposes space in a hierarchical manner, using an oct-tree of smaller
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and smaller cubic regions to represent the simulation space. It has phases that

sweep sequentially up and then down the oct-tree, with independent work for all

the nodes at a given level.

Many others have developed parallel solutions for the FMA [14, 30, 27], but

none have explored adaptive parallelization for arbitrary non-uniform distributions

in 3D. The reason is extreme complexity of the mathematical, algorithmic, and data

decomposition issues. In our work, we developed several prototypes of the 3D FMA

using Proteus, to explore parallelism issues and spatial decomposition strategies.

4.1.1. Process-parallel FMA Prototypes. An initial process-parallel prototype was

written that re
ected a uniform depth spatial decomposition. This prototype was

then further re�ned to accommodate the adaptive structure outlined by Greengard;

it consists of an adaptive oct-tree where decomposition of each sub-cube continues

until some threshold is reached (fewer than k bodies per cube).

Some de�nitions had to be extended for the adaptive 3D solution. In Green-

gard's description of the 2D solution, square regions in the plane are categorized as

\adjacent" or \well-separated" with respect to one another. However, in 3-space

there are some regions that are neither adjacent nor well-separated, so the de�ni-

tions must be subtly extended. The extensions are not obvious, but Proteus made

it simpler to develop and verify them.

4.1.2. Data-parallel FMA Prototypes. Further prototyping led to a comparison of

work performed by data-parallel versions of the uniform and adaptive algorithms.

These versions not only allowed us to look at the di�erences between explicit and

implicit parallelism, but also allowed us to examine the expressiveness of the data-

parallel subset of Proteus slated for vector execution.

In the data-parallel implementations of the FMA, it was not only possible but

almost a requirement to specify the algorithm with nested sequence expressions. For

instance, each region at a particular level (of which there are 8level) must generate

a new expansion based on neighbor, child or parent expansions (depending on the

phase). In this setting, an expansion is a truncated polynomial (over two indices) of

complex coe�cients. Nested iterators express the calculations on all of the regions

and all of the interacting expansions over all of the coe�cients of the expansions

quite succinctly. The high-order functions in Proteus were of great bene�t, allowing

the de�nition of a function for adding two expansions, and then using that function

as a reduction operation over a sequence of expansions (such as in the operation

where all of the lower-level expansions used to create a higher-level expansion).

The adaptive variant of the algorithm developed using Greengard's description

seemed inadequate for achieving good parallelism and maintaining reasonably sized

data structures. The deeper levels of the spatial decomposition become sparse, and

it is di�cult to have a data structure that supports both dense and sparse data.

In addition, much of the parallelism is gained by performing all of the calculations

for a given depth at once, so sparse levels in the decomposition tree lead to less

concurrency. Proteus has map data types (from any domain-type to range-type)

which were used for the sparse data structures in the prototypes, but re�nement

of maps to data-parallel execution must be performed manually. An alternative

decomposition was sought to alleviate these problems.
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4.1.3. An alternative adaptive decomposition. If, instead of splitting the space in

half (or equal octants), the space is cut such that an equal number of bodies end

up in a region (a median-cut decomposition), then several characteristics change.

First, the depth of the decomposition is the same everywhere. Second, the number

of bodies in each region is the same (�1). Third, the decomposition data structure is

dense, allowing the use of sequences instead of maps. The data-dependent nature

of this variant yields non-cubic varying-sized regions (but still rectangular), and

calculating which regions interact in what manner requires re-examination. Once

again, the changes are subtle, but the high-level nature of Proteus allowed rapid

exploration and discovery to yield a running program in short amount of time. The

result was a a variant of the FMA that performed less work overall and provides

greater parallelism due to the regular depth of the decomposition.

Figure 3. A uniform, variable depth adaptive, and uniform depth

median cut decomposition in 2-space.

A pictorial representation of the di�erent decompositions is shown in Figure 3 in

two dimensions. The uniform decomposition is regular, the simplest to parallelize,

and the least applicable to non-uniform distributions. The variable-depth adaptive

decomposition is generated such that there is a limited population in each region

(square in the �gure, cubic in 3-space). It performs better with non-uniform dis-

tributions, but has unbalanced depth, making it di�cult to parallelize (since there

is an order imposed by level). The third decomposition is called median-cut, since

it cuts the space in half (in each dimension) such that there are equal populations

on each side of the cut. The population of each region is the same, and so is the

depth of the decomposition. The sizes of the regions are not predictable, nor are

the interaction lists (distinguishing near regions from far regions). The lists must

therefore be calculated (rather than looked up from precalculation), but this is not

a major part of the 3D simulation.

4.1.4. Execution of FMA Prototype. All variants of the FMA were developed using

the interpreter running sequentially. The interpreter simulates process parallelism

with its own notion of threads, and data-parallel operations are executed sequen-

tially. The data-parallel variants were re�ned to use the subset of Proteus that

is automatically vectorized. The size of the data-parallel prototype (which imple-

ments all 3 decompositions) is 477 executable lines of Proteus. The most compact

C implementation with which we are familiar consists of just under 2000 executable

statements, and this only implements the uniform spatial decomposition [12].

Developing the mathematical code for the 3D variants is extremely complex.

Fortunately, at the intermediate steps in the development, it was simple to make

comparisons with the direct (O(N2)) force calculations. By using a high-level

language in an interpretive environment, it is possible, for instance, to select a
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set of multipole expansions, evaluate them, and sum their results to compare with

the direct calculation without having to write another program. Each time a new

variant was explored, this type of comparison took place many times to avoid coding

errors.

The number of calculations for any instance of the FMA is enormous, one step

of a 1000 body simulation using the Proteus interpreter takes 108 minutes on a Sun

workstation. Fortunately, there are several well-de�ned functions within the FMA

calculations that could be developed as external code in a more e�cient language.

By developing C code using the Proteus code as a guideline, 7 external functions

were developed. With these and the Proteus MIF, the high-level decomposition

strategy that controls the execution and manages the data stays in Proteus, while

the computationally intense code is written in C for much higher e�ciency. By

exploiting this capability, one step of a 1000 body simulation can be run in under a

minute, giving quite acceptable performance for interactive algorithm exploration.

4.1.5. Conclusions from prototyping the FMA. The most important conclusion to

be drawn from prototyping the FMA is that many variants could be explored at

a high-level where decomposition strategies could be easily manipulated. The ex-

pressiveness and compactness is a major bene�t; for example, the code to calculate

the region interaction lists is 45 lines in Proteus compared with 160 lines of C.

A previously undescribed variant of the adaptive 3D FMA was developed that

performs less work overall with more parallel execution. This was validated by

running all variants of the FMA and recording signi�cant operations performed

by each. It is the high-level notation of Proteus that enables such exploration;

low-level speci�cations of the same algorithms would be far too complex to quickly

modify. The FMA development demonstrates algorithm exploration, migration

from prototype to e�cient implementation (using re�nement and the MIF), and

translation to parallel code. The e�ort is documented in [22].

4.2. Geo-server Prototype. Our e�ort in developing the Proteus system is one

of several projects in the ARPA/ONR ProtoTech program. As a member of the

community, our group participated with others in a demonstration e�ort to show

the capabilities of prototyping in a realistic environment|that of code development

for Navy ships to be deployed in 2003. An initial experiment was coordinated by

the Naval Surface Warfare Center (NSWC) in Dahlgren, VA. Each group agreed

that no more than 40 man-hours would be spent over a 2 week period, and each

group would submit their results at the end of that period. The NSWC challenge

problem, the geo-server, was quite naturally expressed in Proteus and developed

using the interpreter, and is documented in [21].

4.2.1. The geo-server problem. A high-level description of this problem can be

stated as follows: Given a list of regions and a changing (over time) list of radar re-

turns, compute and report the intersections of regions and radar returns. Not all of

the regions are �xed on the surface of the Earth, some are based upon the location

of a radar datum (the region around an aircraft carrier or airplane, for instance).

Each radar datum is a tuple consisting of an identi�er, a location, a velocity vector

and altitude. The regions, or doctrines, have an identi�er, a location, and a shape

(composed of a wide choice of shapes, such as arcs, circles, polygons). A pictorial

example is shown in Figure 4.
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Comm Airliner
Tight Zone

Hostile

Figure 4. An example of regions and radar data for the geo-

server prototype

The imagined environment for the geo-server is that it calculates the intersection

information, making it available to a strategic planning system (no judgment is

made about the importance of each intersection). This, of course, simpli�es the

task, making it one component of a larger system.

There is a possibility that the amount of data for this problem may be large, on

the order of hundreds of regions and thousands of radar returns, thus the solution

should be applicable in such regimes. An algorithm that examines all pairs of

regions and radar returns may require too much time to execute in the short period

available.

4.2.2. Proteus solutions. Within the time limit of the exercise we were able to

explore three solutions:

� A straightforward sequential solution. It loops repeatedly, gathering in-

formation, performing intersection calculations, and posting results. This

allowed us to develop support routines for use in further prototypes without

regard to concurrency.

� A process-parallel version representing a pipelined calculation. The �rst

process gathers the data from the sensing devices, the second process re-

ceives that data and calculates the intersections, and the last process is a

display process, showing the results of the calculations.

� A data-parallel rewrite of the intersection calculation using a spatial decom-

position. Examining all pairs of radar data and regions is not a scalable

activity. Instead, we developed a spatial decomposition, assigning radar

data and regions appropriately, and then performing the intersection cal-

culation on the smaller problems. This solution is scalable, the execution

time goes up linearly with the total number of regions and radar data.

In the process-parallel implementations, the processes are running asyn-

chronously, reading and writing data to shared data structures, simulating a dis-

tributed database environment. Each process runs at a di�erent speed, so a `clock'

process was introduced that distributes a `time' value, allowing new data to be

posted at appropriate times. It simply scaled down the rate of the per-process
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clock; the amount of scaling was determined experimentally. We wanted to make

sure that each process had enough time to perform its calculation prior to the next

set of data becoming available. If the clock ran too fast, the data-gathering process

outran the intersection process, causing some data to be missed. The clock process

had to be adjusted downward as more functionality was added to the intersection

routine to ensure all necessary computations occurred. The reason for not making

the clock process run very slowly is that there is a small window between missing

some data and seeing it twice. If calculations must only be performed once, then

periodic scheduling will have to be done.

Our three related solutions showed rapid development of a parallel application.

We used both process- and data-parallelism for di�erent parts of the problem,

�nding success with both. The developed code was substantially smaller than

NSWC's e�ort (in Ada), primarily due to the high-level nature of the language

and was well-accepted. One advantage we had, and made use of, is that Proteus

data values (sets, sequences, tuples) can be read directly, eliminating any need

to structure the data as it is read or written. The entire geo-server activity was

small and short, but many of the bene�ts found during this activity will save time,

coding e�ort, and bug elimination in larger projects due to the comparative ease

with which Proteus code can be developed.

4.3. Other e�orts. Most of our experiments have been performed by Proteus

developers well acquainted with the language and the programming environment;

however, others are also using the system to develop parallel applications and to

predict their performance on various platforms. One such e�ort, by the medical

image processing group at UNC, is to develop sophisticated new parallel algorithms

for 3D image segmentation. In this case, the prototypes developed are operational

and have been invaluable in locating problems in the mathematics and the paral-

lelization of these algorithms. The Raytheon corporation also intends to use Pro-

teus in this fashion to explore the implementation of multiple hypothesis tracking

algorithms.

4.4. Conclusions from Experiments. Our results with the FMA clearly illus-

trate the utility of the prototyping methodology that we have de�ned. The parallel

algorithms with the best theoretical asymptotic performance may not be most

e�cient for obtaining solutions on realistic problem sizes, due to costs and param-

eter limits not made explicit in the model supporting the preliminary design of

these algorithms. The FMA is particularly sensitive to this e�ect since it is an

asymptotically-optimal but highly complex algorithm. It has many variants which

generate a design space which to date is not well understood. The goal of our

experiments with Proteus is to explore this space. Our experiments have identi�ed

new adaptive problem decompositions that yield good performance even in complex

settings where bodies are not uniformly distributed.

5. Conclusions

In the Proteus system, we stress the use of high-level speci�cations, the de-

velopment of implementations by successive re�nement and translation, and early

feedback on designs through the use of executable prototypes.
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The ability to compactly specify a wide variety of parallel algorithms in an

architecture-independent fashion forms a convenient and comprehensible starting

point for the development activity that eventually leads to implementations for

di�erent architectures. Our experience with the Proteus language has been that it

is well-suited for the construction of executable speci�cations and their successive

re�nements.

Generally speaking, it is best to to avoid new languages whenever the equivalent

capabilities may be achieved by the introduction and implementation of appropriate

abstractions in widely used conventional languages such as C with libraries or C++

with classes. There are many hurdles to overcome for a new language: obtaining

a clean design, tool support, and most of all, wide-spread adoption. We believe

that the constructs and concepts needed in a wide-spectrum parallel programming

language of the sort we advocate here can not easily be expressed in current lan-

guages. Thus we have developed the Proteus notation, adding a few key concepts

to a standard base.

Automated support for re�nement and translation of Proteus programs is less

far along, and thus it is premature to evaluate its strengths. In the development of

the FMA and other trial projects, we have relied on manual re�nement to bridge

the gap from speci�cation to subsets that can be automatically translated. The

individual re�nement steps in these e�orts had well-de�ned objectives and were

quite manageable. After each step, there was great value in executing the new

version to compare it with the previous version.

With respect to automated translation, our main e�ort thus far has been the

development of a translation that vectorizes arbitrary data-parallel expressions.

This is a non-trivial translation; only Nesl [4] and Proteus provide this capabil-

ity to date. We were able to use transformation tools from the Kestrel Institute

to rapidly implement this translation; these tools are capable of generating good

code and performing signi�cant analysis. We are encouraged by this success, and

believe that the re�nement and translation approach will allow us to incorporate

sophisticated compilation strategies relatively easily as they are developed in the

optimizing compiler community.

Prototyping is essential in the development of complex parallel applications. We

have started from the premise that information obtained through disciplined exper-

imentation with prototypes reduces risks and improves productivity. In the domain

of parallel computation, where design principles are not well understood, the knowl-

edge acquired from prototyping can be particularly valuable. However, without the

ability to migrate the prototype into an e�cient implementation, the investment

required to produce a working prototype cannot often be justi�ed. Therefore, we

emphasize the use of re�nement as a means of evolving prototypes into production

code.
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