
An Overview of the Saturn Project

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Suhabe Bugrara
Stanford University

suhabe@cs.stanford.edu

Isil Dillig
Stanford University
isil@cs.stanford.edu

Thomas Dillig
Stanford University

tdillig@cs.stanford.edu

Brian Hackett
Stanford University

bhackett@cs.stanford.edu

Peter Hawkins
Stanford University

hawkinsp@cs.stanford.edu

Abstract
We present an overview of the Saturn program analysis system,
including a rationale for three major design decisions: the use of
function-at-a-time, or summary-based, analysis, the use of con-
straints, and the use of a logic programming language to express
program analysis algorithms. We argue that the combination of
summaries and constraints allows Saturn to achieve both great scal-
ability and great precision, while the use of a logic programming
language with constraints allows for succinct, high-level expression
of program analyses.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages

General Terms Design, Experimentation, Languages

Keywords program analysis, verification, boolean satisfiability

1. Introduction
Saturn [1] is a system for the static analysis of programs. Saturn
aims to be both highly scalable and precise, with the goal of even-
tually being able to verify the absence of certain kinds of bugs in
real systems. Saturn is based on three main ideas:

• Saturn is summary-based: each function f is analyzed sepa-
rately, producing a summary of f ’s behavior. At call sites for
f , only f ’s summary is used. Summary information may also
be attached to types, global variables and loops.

• Saturn is also constraint-based: an analysis is expressed as a
system of constraints describing how the state at one program
point is related to the state at adjacent program points. The pri-
mary constraint language used in Saturn is boolean satisfiabil-
ity, with each bit accessed by a procedure or loop represented
by a distinct boolean variable.

• Program analyses in Saturn are expressed in a logic program-
ming language with support for manipulating constraints and
accessing summaries.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PASTE’07 June 13–14, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-595-3/07/0006. . . $5.00.

In combination, these ideas give Saturn the ability to succinctly
express precise analyses while also providing the ability to scale
to very large programs. The use of constraints and logic programs
allows succinct analyses, which are easier to understand and verify
correct than analyses written at a lower level of abstraction. Bit-
level path-sensitive analysis gives precision, while analyzing a sin-
gle function at a time and summarization give scalability—Saturn
is routinely used to run analyses on the entire Linux kernel (with
more than 6MLOC) and other large open source projects.

Currently, the Saturn project is pursuing two related goals. The
first goal is to understand how programmers structure large systems
in practice; that is, to study and describe software as it actually ex-
ists in the wild. Distilling and describing useful structure in large
systems requires automatic assistance (i.e., program analysis) to di-
gest and systematize the huge amount of raw data (i.e., programs).
The second goal is to build tools that can prove useful properties
of programs, either finding bugs or proving the absence of bugs.
The Saturn analyses that have been developed to date have found
thousands of previously unknown bugs in widely used open source
systems [21, 20, 8, 6]. We have also found that discovering the pat-
terns that programmers use to structure code for their own under-
standing is often a crucial step in designing practical bug-finding or
verification tools.

Figure 1 gives a block diagram of the Saturn toolchain. The C
frontend (currently CIL [15]) encodes the abstract syntax trees of
the program as relations, storing them all in a few syntax databases.
A program analysis, written in Saturn’s Calypso programming lan-
guage,1 is then run on each function in the syntax database by
the Calypso interpreter, constructing constraints and querying con-
straint solvers, constructing summary information and producing
error reports. These reports can then be viewed either as plaintext
or via an XML-based UI, depending on the analysis.

This paper gives a brief tour of the major components of Saturn:
the use of summaries (Section 2), constraints (Section 3), the logic
programming language (Section 4), and how they fit together.

2. Summary-Based Analysis
One of the defining characteristics of Saturn is that it is summary-
based: the unit of analysis is the individual function, and the only
way for function f to refer to the results of analysis of function g
is through g’s summary. While summary-based analysis has been
known for a long time (dating back at least to early work on type
inference [14]), it is at odds with many recent efforts in fully au-
tomatic program analysis, including other projects involving mem-

1 Calypso is a moon of Saturn.



CLP analyses

CLP interpreter

C program

C frontend

C syntax databases

Summary databases

Constraint solvers

Summary/error reports

User interface

Figure 1. Saturn toolchain structure

bers of our own group. It is worthwhile, then, to examine the argu-
ments for and against a summary-based approach.

On a purely semantic level, there are two appealing aspects of
summary-based analysis. First, it naturally supports context sensi-
tivity, since any polymorphism in the summary is easily exploited
when the summary is instantiated at different call sites. Second, it is
also natural in Saturn to write compositional summary-based anal-
yses that are applicable to open as well as closed programs. (An
open program is one with some free identifiers, such as a library in
isolation; a closed program is complete and can be executed.) By
compositional, we mean that the analysis of a function makes no as-
sumptions about the possible environments in which that function
is called, and thus the callers need not be present to compute useful
information about the function, which is just the case of analyzing
a library in isolation. The alternative is whole-program analysis,
where a representation of the entire program is constructed and an-
alyzed at once. Some whole-program analyses (e.g., monomorphic
forms of receiver class analysis for object-oriented languages [16])
cannot be understood in a compositional way because the analysis
presumes knowledge of the specific contexts in which each func-
tion is used in the larger program. It is worth noting, however, that
many other whole-program analysis systems (most notably those
based on solving systems of constraints [10]) could in principle
be adapted fairly easily to a compositional style of analysis, but
this has not yet been done. The fact is that compositional analyses
are more work to write than whole-program analyses. At a mini-
mum, one must design and then construct polymorphic summaries
for each function, and often the analysis goes to extra effort to con-
struct a representation of all possible environments in which the
function may be used. While compositional analyses are arguably
the most natural to write in Saturn, the system is capable of express-
ing whole-program analyses as well (including demand-driven in-

terprocedural analyses), and in practice, at least so far, many com-
plete Saturn analyses are made up of components of both styles.

The real benefit of summary-based analysis, in our opinion, lies
in its systems engineering advantages. The limiting factor for most
analysis systems is not time, but space: for large programs it is diffi-
cult to construct a representation that fits entirely in main memory.
Rather than expend effort finding ways to compress program rep-
resentations for space efficiency, a natural alternative is to do what
databases and large scientific applications do when faced with very
large datasets: use out-of-core algorithms that stage the computa-
tion in small pieces between disk and main memory. Summary-
based analysis fits this paradigm well, with the individual function
being the unit of work. At each point in time, only one function f is
represented in main memory, together with the information about
its current summary and the summaries of any functions, globals,
and types f refers to. The rest of the functions and their summaries
are stored on disk. As the portion of the program being manipulated
is always small, memory pressure is low and constant (at least in
well-designed analyses) and it is possible to write analyses that can,
in principle, scale to arbitrarily large programs. Because the cost of
analyzing a function is proportional to the size of the function and
the size of the summaries it depends on (e.g., the summaries for any
callees of the function), two assumptions underly this design:

• The size of function summaries is bounded by a constant—
summaries do not grow with program size. It is the analysis
designer’s responsibility to ensure this property holds or to
accept limited scalability. We discuss this requirement further
in Section 3.

• The size of a function is bounded by a constant. Clearly the
analysis designer has no control over function size, but nor-
mal programming practice ensures that this assumption is well
matched to real programs. For example, a recent version of the
Linux kernel has over six million lines of code when all device
drivers are included. So far as we know, there has been no suc-
cessful in-memory analysis of the entire kernel, though subsets
of millions of lines have been analyzed [11]. From the point of
view of a summary-based analysis the situation is not so dif-
ficult. The average function in the kernel has only 29 lines of
code, and the median function length is just 16 lines. There are
some very large functions, but they are rare: the largest function
has 2,249 lines, there are six functions with 1,000 lines or more,
and only 91 functions (less than 0.1% of all functions) have at
least 500 lines of code.

A conscious trade-off in Saturn is that we have designed for
scalability rather than speed. The analysis of a single function in-
curs expensive operations (e.g., reading and writing disk), and the
function being analyzed is usually small, suggesting that the ratio
of useful work to system overhead may be a problem. However,
another advantage of analyzing functions separately is that the pro-
cess is easily parallelized, with parallelism limited only by analysis
dependencies between different functions. We use compute clus-
ters of 40-100 cores to run Saturn analyses in parallel and nor-
mally achieve 80-90% efficiency. As a result, Saturn’s raw perfor-
mance, at least on a sufficiently large cluster, appears competitive
with other systems of which we are aware; most Saturn analyses
complete in a few hours on programs the size of Linux.

3. Constraints
A standard methodology in program analysis is to treat analysis as
a constraint satisfaction problem: a pass (or passes) over the pro-
gram generate constraints that capture the conditions under which
the property of interest holds, and a separate constraint solver or de-
cision procedure reports whether those constraints have a solution.



There are many constraint theories that have application in program
analysis, but as the name suggests, the one used most in Saturn is
boolean satisfiability (SAT).

Saturn attaches summaries not only to functions but also to
loops; conceptually, each loop is treated as a tail recursive func-
tion. This decision establishes a useful invariant, namely that every
function/loop body is iteration free—every program point in the
function/loop body is executed at most once per call. Since each
program statement accesses a fixed, known number of memory lo-
cations, this implies that every memory location accessed by a func-
tion body can be statically named.

We illustrate Saturn’s use of constraints and the interaction with
function summaries using Saturn’s alias analysis [8]. We represent
aliasing indirectly using guarded points-to graphs. In a points-to
graph nodes are labels (names of memory locations, which we do
not further define here) and edges (l1, l2) mean that pointers at lo-
cations in l1 may point to locations in l2. Aliasing information is
recovered easily from points-to graphs; for example, edges (x, l)
and (y, l) show that x and y may be aliased, as they both may point
to locations in label l. Guarded points-to graphs generalize points-
to graphs by associating each edge with a guard, a constraint stat-
ing under what condition the points-to relationship holds. Guards
contribute to the precision of the points-to analysis; for example, if
x and y may both point to l, but with guards that cannot simulta-
neously hold, they are not aliased. We use formulas over boolean
variables b for guards:

g ∈ Guard ::= true | false | b | g0 ∧ g1 | g0 ∨ g1 | ¬g

ρ ∈ PTGraph = (Label× Label) → Guard⊥

The Saturn alias analysis is intraprocedurally path-sensitive. A
relatively simple way to achieve path-sensitivity is to use fresh
boolean variables to separate points-to information along branches.
Even without branch condition information (i.e., ignoring the ac-
tual predicate of the conditional), path information can track corre-
lations between side effects. For example, path information is suf-
ficient to statically determine that the following C fragment that
performs a conditional swap cannot introduce aliasing between a
and b:

a = x; b = y; // *x != *y
if (...) { t = a; a = b; b = t; }
f(a,b);

It is easy to see that a and b are never aliased at the call f(a,b). As
an example, we give a simplified version of the rule for analyzing
conditionals.

[[if ? c0 c1]] ρ (l, l′) =
let ρ0 = [[c0]]ρ in
let ρ1 = [[c1]]ρ in
let b be a fresh boolean variable in

(b ∧ ρ0(l, l
′)) ∨ (¬b ∧ ρ1(l, l

′))

This rule illustrates how control information is incorporated into
guards: the guards for the two branches are disjoined but still
distinguished by b in the final points-to graph for the statement.
If the behavior of the two branches is the same with respect to l,
then ρ0(l, l

′) ≡ ρ1(l, l
′) and we can simplify the resulting guard

by removing the reference to b with no loss of information.
While this rule computes only path information, most Saturn

analyses use a more sophisticated analysis that gives a bit-level
model of the branch condition itself [21], which is crucial for
correlating different branches within a procedure. For example, in
the following code skeleton, which is idiomatic in many low-level
programs, the correlation, if any, between the branches can only
be understood by examining the effect of the operators on each
individual bit:

Figure 2. Branches vs. number of paths in Linux.

Figure 3. Functions/loops with a given number of paths in Linux.

if (x & MASK1) . . .
. . .
if (x & MASK2) . . .

Returning to the discussion of the overall architecture of Sat-
urn, there are important interactions between the summary-based
approach and Saturn’s use of constraints. Bit-level path sensitivity
is difficult to scale to large programs; bounded model checking sys-
tems that use a similar approach have been limited to programs with
hundreds of lines of code [3, 4]. As discussed above, the require-
ment for summaries at every loop and function boundary makes
it reasonable to assume that each function/loop body is a small,
loop-free piece of code, and that is why Saturn can make use of
something as expensive and precise as full path-sensitive model-
ing of every bit manipulated in the function body. Figures 2 and 3
quantify the difficulty of path-sensitive intraprocedural analysis in
the Linux operating system. Figure 2 plots the number paths in a
procedure (or loop body) as a function of the number of branches.
Note that the y-axis is on a log scale. This figure only displays
the dense part of the data; there are a few procedures not shown,



one with about 300 branches and 1045 paths, and one with about
1500 branches and fewer than 100,000 paths. Nevertheless, the data
shown in Figure 2 is discouraging enough: not only do some pro-
cedures have a lot of branches, but those branches are arranged in
a way that clearly often realizes the worst-case exponential growth
in the number of paths. What Figure 2 does not show, however, is
that almost all of the points in the plot are concentrated near the
origin. Figure 3 plots the number of functions/loops that have be-
tween 10x and 10x+1 paths for each value of x; note that both axes
are on a log scale. As can be seen, the overwhelming majority of
functions have very few paths. Indeed, the median number of paths
in a function or loop body in Linux is 3, and 95% of functions/loops
have fewer than 100 paths. Also not depicted in the graphs is that
more often than not it is possible to do the lossless merging of in-
formation where paths join as outlined above. Thus, only about the
.1% of largest functions/loops (those with 1010 or more paths) are
difficult to build a complete model for in less than a minute.

Full path-sensitivity is a level of precision undoubtedly un-
needed for some applications, but it has proven very convenient
in all of the applications we have explored. The boundary between
the precise intraprocedural modeling and the scalable interproce-
dural analysis is the function summary. It is the task of the analysis
designer to choose an abstraction at function/loop boundaries that
captures the important features of the application while being suf-
ficiently compact to ensure scalability. In Saturn, analysis design is
summary design.

Returning to the points-to example, the final result of the in-
traprocedural analysis is a pair of guarded points-to graphs: the as-
sumed guarded points-to graph on input to the function, and the
final guarded points-to graph that results on exit from the function.
In considering an appropriate summary for this information, it is
important that whatever the summary is, it be bounded in size to
ensure termination. The guards, then, present a problem, because if
guards appear in summaries then guards can propagate from callees
to callers at function call sites, and no bound on the size of the
guards can be guaranteed. Our current solution is to test all guards
in the initial and final points-to graphs for satisfiability and to pro-
mote all satisfiable guards to true, converting the guarded points-
to graphs to unguarded points-to graphs in summaries. This approx-
imation is sound, as it can only overestimate the conditions under
which one location points to another. Thus, path-sensitive points-to
information is only intraprocedural in our current implementation
of the alias analysis. Observing that the number of locations ac-
cessed directly by a loop-free function is fixed by the program and
that the number of nodes in a function’s summary points-to graphs
is bounded by the number of locations, it is clear that discarding
path-sensitive guards in function summaries guarantees that sum-
maries are bounded in size.

It turns out, however, that this approach to summarization is not
enough for scalability and that alias analysis of many programs,
especially large ones, consumes a great deal of memory, which
has also been the common experience with previous flow-sensitive,
context-sensitive points-to analyses. We have found that the ex-
pense is almost entirely due to recomputing alias relationships
among user-defined data types and global variables, which, once
introduced by any program statement, tend to propagate through-
out the program. The solution we have adopted in the points-to
analysis and in other applications is to also have type and global
summaries, which are flow-insensitive facts associated with user-
defined types and global variables. Recording points-to relation-
ships that are solely within user-defined types just once with that
type (e.g., one cell points to another cell of the same type) dramati-
cally reduces the amount of information included in function sum-
maries. Previous work in path-sensitive, context-sensitive points-to
analysis scaled to the low tens of thousands of lines of code [13].

Using these different levels of precision (flow- and path-sensitive
within functions, flow-sensitive interprocedurally, flow-insensitive
for facts about data structures and global variables), enables us to
scale our context-, flow-, and partially path-sensitive analysis to the
entire Linux kernel. The false aliasing rate for Saturn’s points-to
analysis is 26% (about one in four points-to relationships does not
correspond to potential aliasing at run-time) [8]; so far as we know,
it is currently both the most precise and most scalable points-to
analysis in existence.

4. The Analysis Language
All program analysis frameworks provide a language in which
users can express analyses. In Saturn we wished to avoid decisions
that would commit us to a particular formalism or preclude exper-
imentation with different approaches for different analysis prob-
lems, so expressiveness was more important than algorithmic ef-
ficiency. For this reason we opted to use a logic programming
language as the medium in which analyses are written. Saturn’s
language, Calypso, is a general-purpose logic programming lan-
guage with extensions to support both constraints and function
summaries.

Using logic programming to express dataflow analyses dates to
Ullman [19] and subsequently Reps explored using logic programs
to express demand-driven analysis algorithms [17]. At Microsoft
Research in the late 1990’s, a logic programming language for
querying abstract syntax trees was used to find thousands of bugs
in production code by searching for largely syntactic (but poten-
tially complex) erroneous coding practices [5]. Two recent projects
have used logic programming as the notation for large scale pro-
gram analysis [12, 9], and we have borrowed heavily from their
experience.

The motivation for logic programming in program analysis is
best given by example. Consider the problem of evaluating derefer-
ence expressions under a flow-sensitive points-to analysis; particu-
lar dereferences may have many different targets depending on the
point at which they are evaluated. In a published paper one might
find inference rules such as:

pointsto(P, X, Y) eval(P, E, X)

eval(P, ∗E, Y)

where pointsto(P,X,Y) indicates that at program point P, X may
point to Y, and eval(P,E,X) indicates that at program point P,
expression E may evaluate to X. The inference rule notation (or
small variations of it) is standard for presenting program analysis
systems.

In Saturn we would write the rule in the following way. We need
one more predicate exp deref(ED,E), which indicates that ED is
the dereference of E; this simply gives a name to the expression ∗E
in the notation above. We can then write the dereference operation
in a Prolog-like syntax as:

eval(P,ED,Y) :- exp deref(ED,E), eval(P,E,X),
pointsto(P,X,Y)

Logic programming is the natural implementation of inference
rules; with a logic programming language, the gap between the for-
mal description of a program analysis algorithm and its implemen-
tation is nearly erased.

Calypso’s implementation is based on a bottom-up interpreter
for pure, first-order logic programs with a unique combination
of features. Most analyses perform a mixture of bottom-up and
demand driven computation, so in order to allow demand-driven
behavior with a bottom-up interpreter we use a variant of the magic-
sets transformation [2]. To help analysis-writers locate bugs in
their code quickly, Saturn performs strong static type and mode



checking, and optional dynamic determinism checking, features
which are closely related to those in Mercury [18].

Calypso differs from previous efforts primarily in its support
for constraints and for summary-based analysis. Several constraint
solvers can be plugged into Saturn, and used by individual analy-
ses. Each constraint solver has its own Calypso interface, a set of
primitive predicates for creating, manipulating, and querying con-
straints. For example, the predicate #and(G0,G1,G) can be used
by an analysis to construct a boolean formula G by taking the con-
junction of formulas G0 and G1. Querying the predicate #sat(G)
invokes a SAT solver and tests whether G is satisfiable. Extend-
ing our example from above, if we change the eval predicate to
eval(P,E,X,G), where G indicates the guard under which E eval-
uates to X at P, we can test whether two expressions E0 and E1 at
point P could alias — that is, there is some X such that E0 and E1
may simultaneously evaluate to X — with the following Calypso
code:

may alias(P,E0,E1) :-
eval(P,E0,X,G0), eval(P,E1,X,G1),
#and(G0,G1,G), #sat(G).

Again, this code closely matches an inference rule that might be
used to formally specify the analysis. Note that Calypso itself is
implemented using a conventional interpreter, and the constraint
solver is only involved when querying predicates such as #and and
#sat. The main reason for keeping the constraints well-separated
from the core language is to allow experimentation with different
constraint systems and to build applications that use multiple and
mixed [7] constraint systems. While SAT is used most often, we
have also used integer constraint solvers for some analyses and are
experimenting with yet additional solvers. A contrasting design can
be seen in [12], where a single constraint formalism is built into the
logic programming language.

In addition to using constraint solvers, Calypso analyses must
be able to generate and query summary information for performing
interprocedural analysis. Summary-based analysis is given first-
class status in Calypso through the use of sessions. A session is a
persistent set of relations representing facts about a program object,
such as the abstract-syntax tree for a function or a summary for a
function or a type. An analysis consists of a logic program that
is executed separately in the context of each session in a database
(typically a database of function and loop bodies), and can freely
query facts from any session, and compute new facts and add them
to any session. Typically, an analysis is executed for every function
or loop body in the program, generating a summary session for that
function or loop and querying the summary sessions of any of that
function or loop’s callees. An interprocedural scheduler keeps track
of dependencies between sessions, and so if an analysis updates a
session, then all analyses that had previously queried that session
are rerun until a fixpoint is reached.

By keeping track of these dependencies and allowing reanal-
ysis of functions, we free the scheduler from having to analyze
functions in a fixed order (though analyses can choose to prior-
itize bottom-up or top-down traversal of the call graph, to mini-
mize reanalysis). This allows parallel computation using a central
scheduler/server, and any Calypso analysis can be converted from a
single core analysis to a distributed analysis with a few extra com-
mand line arguments (and some extra machines!), saving the anal-
ysis writer considerable effort in the low-level engineering details
of writing a distributed analysis.

More generally, sessions and the Calypso language hide the un-
derlying management of when information is allocated or deallo-
cated or pushed to disk, how to index information for fast retrieval,
how to order and memoize the results of the various analysis com-
putations, and so forth. While the analysis writer loses some control

in doing so, this turns attention to the actual analysis design rather
than low level implementation details, and in our experience has
made both writing analyses and, in particular, maintaining analyses
easier than in a lower level programming language.

5. Conclusion
We have given an overview of the Saturn program analysis system,
focusing on the implications of the combination of separate anal-
ysis of functions and the very precise, constraint-based, intrapro-
cedural analysis of function bodies. We have found that analyz-
ing functions separately and summarizing the results have the dual
benefit of allowing us to use much more computationally inten-
sive techniques for analyzing individual functions, while simulta-
neously making it relatively easy to scale Saturn analyses to the
largest programs available to us.

References
[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and P. Hawkins.

The Saturn program analysis system. http://saturn.stanford.
edu, 2006.

[2] F. Bancilhon, D. Maier, Y. Sagiv, and J.D. Ullman. Magic sets
and other strange ways to implement logic programs (extended
abstract). In PODS ’86: Proceedings of the fifth ACM SIGACT-
SIGMOD symposium on Principles of database systems, pages 1–15,
New York, NY, USA, 1986. ACM Press.

[3] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking
using satisfiability solving. In Formal Methods in System Design,
July 2001.

[4] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 2988 of Lecture Notes in Computer
Science, pages 168–176. Springer, 2004.

[5] R. Crew. ASTLOG: A language for examining abstract syntax
trees. In Proceedings of the USENIX Conference on Domain-Specific
Languages, October 1997.

[6] I. Dillig, T. Dillig, and A. Aiken. Static error detection using
semantic inconsistency inference. In Proceedings of the Conference
on Programming Language Design and Implementation, page to
appear, June 2007.

[7] M. Fähndrich and A. Aiken. Program analysis using mixed term and
set constraints. In Proceedings of the 4th International Symposium
on Static Analysis, pages 114–126. Springer-Verlag, 1997.

[8] B. Hackett and A. Aiken. How is aliasing used in systems software?
In Proceedings of the International Symposium on Foundations of
Software Engineering, pages 69–80, September 2006.

[9] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checking for
buffer overflows in the large. In Proceeding of the 28th International
Conference on Software Engineering, pages 232–241, 2006.

[10] J. Kodumal and A. Aiken. The set constraint/CFL reachability
connection in practice. In Proc. of the Conf. on Programming
Language Design and Implementation, pages 207–218, 2004.

[11] J. Kodumal and A. Aiken. Banshee: A scalable constraint-based
analysis toolkit. In Proceedings of the 12th International Static
Analysis Symposium, pages 218–234. London, United Kingdom,
September 2005.

[12] M. Lam, J. Whaley, B. Livshits, M. Martin, D. Avots, M. Carbin, and
C. Unkel. Context-sensitive program analysis as database queries. In
Proceedings of the Conference on Principles of Database Systems,
pages 1–12, 2005.

[13] V.B. Livshits and M.S. Lam. Tracking pointers with path and context
sensitivity for bug detection in C programs. In Proceedings of the
European Software Engineering Conference, pages 317–326, 2003.

[14] R. Milner. A theory of type polymorphism in programming
languages. Journal of Computer and System Sciences, 1998.

http://saturn.stanford.edu
http://saturn.stanford.edu


[15] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transformation
of C programs. In Proceedings of the 11th International Conference
on Compiler Construction, March 2002.

[16] J. Palsberg and M.I. Schwartzbach. Object-oriented type inference.
In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 146–161, 1991.

[17] T. Reps. Demand interprocedural program analysis using logic
databases. In Applications of Logic Databases, pages 163–196, 1994.

[18] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm
of Mercury, an efficient purely declarative logic programming
language. JLP, 29(1–3):17–64, 1996.

[19] J.D. Ullman. Principles of Database and Knowledge-Base Systems.
Computer Science Press, 1989.

[20] Y. Xie and A. Aiken. Context- and path-sensitive memory leak
detection. In Proceedings of the International Symposium on
Foundations of Software Engineering, pages 115–125, September
2005.

[21] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. In Proceedings of the Symposium on Principles of
Programming Languages, pages 351–363, January 2005.


	Introduction
	Summary-Based Analysis
	Constraints
	The Analysis Language
	Conclusion

