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Abstract— Environments with varying reward contingencies
constitute a challenge to many living creatures. In such con-
ditions, animals capable of adaptation and learning derive
an advantage. Recent studies suggest that neuromodulatory
dynamics are a key factor in regulating learning and adaptivity
when reward conditions are subject to variability. In biological
neural networks, specific circuits generate modulatory signals,
particularly in situations that involve learning cues such as a
reward or novel stimuli. Modulatory signals are then broadcast
and applied onto target synapses to activate or regulate synaptic
plasticity.

Artificial neural models that include modulatory dynamics
could prove their potential in uncertain environments when
online learning is required. However, a topology that synthesises
and delivers modulatory signals to target synapses must be
devised. So far, only handcrafted architectures of such kind have
been attempted. Here we show that modulatory topologies can
be designed autonomously by artificial evolution and achieve
superior learning capabilities than traditional fixed-weight or
Hebbian networks. In our experiments, we show that simulated
bees autonomously evolved a modulatory network to maximise
the reward in a reinforcement learning-like environment.

I. INTRODUCTION

Neuromodulation in biological neural networks has been

recognised to be a key factor in network dynamics. Exper-

imental evidence shows that neuromodulation plays an im-

portant role in several neural substrates, from the invertebrate

Aplysia to the human brain [1], [2].

Neuromodulation exerts a regulatory action on synaptic

plasticity, suggesting a close relation with important func-

tions such as memory, learning and adaptivity. The central

role of these functions in neuroscience has brought consid-

erable focus to the study of neuromodulation in biological

systems [3] and to the formulation of computational models

[4].

Studies on synaptic plasticity show that the well known

homosynaptic Hebbian rule is not the only mechanism that

leads to synaptic growth. Another relevant factor is the

concentration of neuromodulators at the synapse level that

seems determinant in the growth and stability of synaptic

connections. In this case, plasticity is named heterosynaptic

because it involves the activity of a third modulatory neuron.

Figure 1 describes graphically the difference between homo-

and heterosynaptic plasticity.
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Several studies reviewed in [2] indicate that the pairing

of pre- and postsynaptic activity with a modulatory signal

leads to the activation of transcription factors at the synapse

level, which in turn cause a permanent growth of the synaptic

contact. This growth is referred as L-LTP (Late phase -

Long Term Potentiation) because of the long decay time of

the synaptic strength. L-LTP induced by neuromodulation

is a cause of synaptic stability and, therefore, a potential

candidate to explain memory functions involving neural

wiring. Hence, modulatory systems seem to assume the

function of learning switches that project connections to

target synapses, instructing distinct neural areas to acquire

input/output correlation at given times.

Although the micro-level synaptic effects of neuromod-

ulation are topic of many studies, other important findings

relate neuromodulation with behavioural phenomena in an-

imals and humans. The implication of dopamine and other

neuromodulators in learning, decision making and memory

functions in the brain is currently an active research field [5],

[6]. A significant experiment described in [7] shows relations

in the acquisition of new tasks with dopamine release in

monkeys’ brains. Following studies relate dopamine with

prediction errors in reinforcement learning-like environments

[8], [9], [10]. This suggests a role of neuromodulation in

temporal difference models of animal learning [11] and their

similarities with Temporal Difference (TD) in reinforcement

learning theory [12].

Computational models of modulatory dynamics in neural

systems have been proposed with the aim of understanding

the neural substrate underlying reinforcement learning-like

behaviour [4], [13], [14], [15], [16], [17], [18], [19]. A

substantial issue when devising a model is the design of

sources and pathways of neuromodulation, i.e. how the

modulatory signals are generated and which neural areas are

targeted. As discussed in [17], reinforcement learning, actor-

critic and reward-based neural models are loosely imple-

mented after biological neural architectures. Although recent

progress in neuroscience and neuroethology has made pos-

sible to identify modulatory centres and pathways in neural

systems, a precise mapping and understanding is far from

being achieved. Therefore, most of computational models

of neuromodulation start from given assumptions regarding

possible sources and pathways of modulatory signals. In

[13] and [15], a simple neural architecture was devised to

implement heterosynaptic plasticity for the neurocontroller

of a simulated foraging bee in an uncertain environment.

Although the genetic algorithm used in [15] was capable of

enabling or disabling connections between inputs and the



output neuron, the neural architecture was constrained to the

input neurons and one output neuron. Generally speaking,

neuromodulatory architectures that have been designed so

far are handcrafted and tentative, and do not guarantee to

exploit the full potential of modulatory dynamics in neural

networks.

In this paper, we propose a method to design autonomously

neural network topologies with neuromodulation, and explore

their capabilities without the constraint of a predetermined

architecture. Our hypothesis is that, if neuromodulation in-

creases the computational power, neurocontrollers with such

characteristic would emerge autonomously in uncertain en-

vironments where learning and adaptivity give an advantage.

To test this hypothesis, it is essential to provide artificial

evolution with an algorithm capable of feature selection and

evolving neural topologies. Analog Genetic Encoding (AGE)

[20], [21] is a method to encode neural topologies that

provides such functionality. AGE has been proved efficient

when combined with a genetic algorithm for the evolution

of different kind of networks, namely neural networks [22],

electronic circuits [20], [21] and Gene Regulatory Networks

[23]. Here, AGE is applied to the evolutionary search of

network topologies with neuromodulation.

The chosen problem is a foraging task described in [13],

[15]. The changing reward conditions necessitate a contin-

uous update of the strategy to maximise the food intake.

Therefore, optimal strategies in this reinforcement learning-

like variable environment require online learning capabilities.

The neuromodulatory architecture devised in [13], [15] has

proved to be beneficial to the task, allowing artificial bees

to associate a flower-colour to the current high rewarding

flower. In this paper, instead of assuming a predetermined

architecture, we carry out an evolutionary search of neuro-

topologies, modulatory and input features, and learning rules.

The results are qualitatively compared to those in [15]: the

performance of controllers considerably outperform that of

the previous handcrafted architecture. Moreover, one single

neurocontroller can cope with a more complex, extended

scenario than the one in [15]. An additional comparison is

also made with evolutionary runs where neuromodulation

was not allowed.

The analysis of the networks shows the effective modu-

latory dynamics that emerged from evolution and enabled

to solve the foraging problem. Thus, the method proved

its validity in the search of neural network topologies with

neuromodulation.

The rest of the paper is organised as follows. Section II

describes the problem of evolving topologies with neuromod-

ulation and the proposed method using AGE and artificial

evolution. Section III describes in detail the simulated bee

and the artificial environment. Implementation details are

listed in section IV. The results are illustrated in section V

with emphasis on the evolved behaviour and an insight on

the neuromodulatory dynamics. The paper ends with final

remarks in the conclusions.

(a)

(b)

Fig. 1. (a) Homosynaptic mechanism: the connection strength is updated
as function of pre- and postsynaptic activity only. (b) Heterosynaptic
mechanisms: the connection growth is mediated by neuromodulation, i.e. the
amount of modulatory signal determines the response to Hebbian plasticity.
The dots surrounding the synapse represent the concentration of neuro-
modulatory chemicals released by the modulatory neuron. Neuromodulators
such as acetylcholine (ACh), norepinephrine (NE), serotonin (5-HT) and
dopamine (DA) have been identified.

II. ARTIFICIAL EVOLUTION OF NEUROMODULATION

In the introduction we have underlined the research

problem regarding the design of topology when devising

neuromodulatory network models. We proposed to employ

an evolutionary approach to evolve such topologies. To

investigate the autonomous emergence of topologies with

neuromodulation, an algorithm should be capable of 1) en-

coding two types of neurons, traditional excitatory/inhibitory

neurons and modulatory neurons; 2) encoding weights and

network topology among an arbitrary number of standard

and modulatory neurons. In addition, because modulation is

applied to regulate some form of synaptic plasticity, fixed

or evolved plasticity rules need to be available to the neural

network.

The design and the evolutionary search of network topolo-

gies have been the focus of research for many years [24]. Re-

cently, different aspects on the evolution of neural networks

have been taken into consideration to formulate advanced

algorithms for the search of both topology and weights.

At least two algorithms, NeuroEvolution of Augmenting

Topologies (NEAT) [25] and neuroevolution with Analog Ge-

netic Encoding (AGE) [20], have been established as efficient

methods for evolving network topologies and weights, and

their performance has been assessed with benchmarks and

applications.

AGE was chosen for the topology search in this experi-

ment. Following, an overview of the algorithm is given.

A. Analog Genetic Encoding (AGE)

Because AGE is an established method and it is used here

exclusively as a tool, we will provide a concise description

for the general understanding and the necessary information

for reproducing the algorithm. For a further insight of AGE,

we recommend the cited literature [20], [21], [22], [23].



Fig. 2. Process of genotype-phenotype mapping in AGE for a neural
network. The part of the genome shown here encodes two neurons signalled
by the token NE. The genome is scanned sequentially and device tokens
(NE) are decoded into network nodes, more specifically neurons in this
example. The process is marked by dotted arrows. Terminal sequences
(arbitrary sequences of characters that precede the terminal token TE) of
each node are aligned (two at a time) to derive a measure of similarity
between two sequences. This measure of similarity, also called alignment
score, is mapped into the connection weight between the nodes to which
the sequences belong. For example, when the input sequence of a device
is aligned with the output sequence of the same device (at the right of the
figure), the resulting weight represents the recurrent self connection. In this
particular example, the first terminal sequence after the device token NE is
the input, the second terminal sequence is the output. In general, according
the user specifications, a device can have more inputs or outputs.

AGE represents an analog network by means of an artifi-

cial genome where nucleotides are expressed by the charac-

ters of an alphabet Ω, for instance the letters A-Z. Nodes in

the network, also called devices, are encoded by particular

sequences of characters, the tokens. Each token signals the

presence of a device that is decoded into a network node

in the phenotype; different types of devices – representing

different kind of network nodes – can be present in the

genome. Figure 2 shows the genotype-phenotype mapping

process.

Each device has a certain number of inputs and outputs

that, in the case of neurons, represent dendrites and axon

projections. Inputs and outputs of devices are encoded with

terminal sequences, i.e. arbitrary sequences of characters that

follow device tokens (NE in the figure) and are limited

by a terminal token (TE). Once all the network nodes are

extracted, the connections among them is derived applying

the following procedure: the output terminal sequence of a

device is aligned with the input terminal sequences of all

other devices; each alignment produces an alignment score

– an index of similarity between the two terminals – that is

consequently mapped into a connection weight. The mapping

from alignment scores to network weights is done through a

quantisation process where alignment scores in a given range

are converted into a range of real-valued weights. Alignment

scores under a certain threshold result in no connection

between two nodes. Therefore, terminal sequences encode

implicitly the neural topology.

Different kinds of networks can be represented according

to the device specification given by the final user.

Fig. 3. Example of AGE phenotype when modulatory neurons (token
MO) are added to the network alongside standard neurons (token NE). The
projection from a modulatory neuron to a standard neuron is indicated by a
dashed circle around the postsynaptic neuron. For all synapses connecting
to the postsynaptic neuron, plasticity is regulated by the modulatory signal.

B. AGE and Settings for Neuromodulatory Topologies

For our purpose, two different devices were specified to

encode standard and modulatory neurons.

Figure 3 shows an example of a part of a phenotype

where two standard neurons and one modulatory neuron are

decoded from the genome, assuming NE and MO as device

tokens.

For the experiment in this paper, neurons have a discrete

time dynamic. The output Ol(t) of neuron l is equal to

2/[1+ exp (A(t − 1))] − 1 for standard neurons and 1/[1+
exp (A(t − 1) − 1)] for modulatory neurons, with Al(t) =
3 ·

∑
(wjl · Oj(t)), where wjl is the connection weight

from the standard neuron j to the neuron l. According to

these definitions, standard neurons have a sigmoid output in

the interval [-1,1], whereas modulatory neurons produce an

output in the interval [0,1] and have an implicit bias of -1.

It is important to note that this setting has the purpose of

having modulatory neurons that exert very low modulation

unless excited by positive signals.

Modulatory neurons that project on standard neurons do

not contribute to neuronal activity. The modulatory signal has

a regulatory function on the synaptic plasticity of the receiv-

ing neuron. The plasticity rule used by a neurocontroller is

evolved alongside the network. Given two standard neurons j

and l, an existing connection from j to l is updated according

to the following equation

∆wjl(t) = mo(t) · η ·

·[A · V (t)P (t) + B · V (t) + C · P (t) + D]

(1)

where mo(t) is the modulatory signal, η is a scaling

parameter, and the term between square brackets is the set

of plasticity rules. V (t) is the presynaptic value (output of

neuron j), P (t) the postsynaptic value (output of neuron

l), A, B, C, D are evolvable parameters that express the

coefficients of the plasticity rules. The modulatory signal

mo(t) perceived by the postsynaptic neuron (l) is the sum

of all modulatory signals delivered to that particular neuron.



III. THE REINFORCEMENT LEARNING-LIKE PROBLEM

As outlined in the introduction, neuromodulation is con-

sidered a key feature for neural systems dealing with un-

certain environments, where associations between actions

and reward change over time. For this reason, an artificial

environment aimed to the study of neuromodulation should

include such characteristics.

Foraging tasks of bees and bumblebees are well known

problems that require learning and adaptivity. The flight

to flower fields for nectar collection is a risky activity:

predators determine a high mortality rate during foraging

missions. Therefore, bees need to maximise the nectar intake

by visiting preferably flowers that yield high quantities of

nectar. However, different flowers provide variable quantities

of nectar depending on the time of the day, season, weather

conditions and other variable environmental factors.

These conditions determine a reinforcement learning-like

environment where the nectar intake upon landing represents

a measure of reward. The type of flower, often discernible by

the colour, is a conditioned stimulus that becomes a predictor

of an expected reward. Hence, reward expectations determine

a strategy aimed to maximise the total reward over a certain

number of trials. Upon changes of reward contingencies,

high rewarding flowers turn into low rewarding, thus, reward

expectations are not fulfilled resulting in prediction errors.

To support this view, an identified interneuron in honey-

bees appears to deliver gustatory stimuli representing reward

values upon nectar collection [26]. This finding and following

studies [27], [28], [29] contribute to the explanation of

associative learning in the neural substrate of the honeybee.

A computational model that tries to reproduce the biological

evidence of reinforcement learning and neuromodulation is

described in [13]. Later, the same experimental setting was

used in [15] to optimise a neuromodulatory network by

means of a genetic algorithm. Here, we adopt the same

simulated bee and artificial uncertain environment.

A. The Simulated Bee

A bee flies in a simulated 3D space with a flower field

of 60 by 60 meters drawn on the ground. Two types of

flowers are represented on the field by blue and yellow 1-

meter square patches. The outside of the field and the sky

are represented by grey colour.

During its lifetime, the bee performs a number of flights

starting from a random height between 8 and 9 meters. The

bee flies downwards in a random direction at a speed of

0.5m/s. A single cyclopean eye (10-degree cone view centred

on the flying direction) captures the image seen by the bee.

The image is processed to obtain the percentages of blue,

yellow and grey colours that are fed into the neural controller.

For each time step (1 sec sampling time) the bee decides

whether to continue the flight in the current direction or to

change it to a new random heading. The activation value A(t)
of an output neuron determines the probability of changing

direction given by P(t) = [1 + exp(m · A(t) + b)]−1, where

m and b are evolvable parameters. Figure 4 shows a portion

of the 3D space where the flight is simulated.

Fig. 4. View on the flying 3D space and the simulated bee. Blue and yellow
flowers are represented by dark and light squares. The bee flies downwards
in any random direction and approaches the field under its view cone. The
dashed line shows a possible landing trajectory.

TABLE I

REWARDING POLICIES. P INDICATES THE PROBABILITY OF THE

REWARD.

Scenario
Nectar of the high reward-
ing flower

Nectar of the low reward-
ing flower

1 0.8µl 0.3µl

2 0.7µl
1.0µl with P=0.2
0.0µl with P=0.8

3
1.6µl with P=0.75
0.0µl with P=0.25

0.8µl with P=0.75
0.0µl with P=0.25

4
0.8µl with P=0.75
0.0µl with P=0.25

0.8µl with P=0.25
0.0µl with P=0.75

B. Scenarios

The two flowers, characterised by blue and yellow colours,

yield a certain amount of nectar that is provided to the bee

upon landing in the form of a reward input. Rewards can be

given on a deterministic or probabilistic basis.

Here we introduce four possible scenarios according to

four possible reward policies as in [15]. Scenario 1 provides

two deterministically rewarding flowers; scenario 2 has one

deterministically and one probabilistically rewarding flower;

scenario 3 and 4 have both probabilistically rewarding flow-

ers. Regardless of the reward policies, each scenario has a

high rewarding and a low rewarding flower, meaning that one

flower yields in average more nectar than the other. Table I

provides the numerical values of rewards in each of the four

scenarios.

An optimal strategy is required to associate a flower-

colour with the currently high rewarding flower. Note that

a deterministically rewarding flower provides a mean reward

that corresponds to the value received on the single trial,

whereas probabilistically rewarding flowers require more tri-

als to obtain an estimated average reward. As a consequence,

scenario 1 and 2 constitute an easier problem to solve than

scenario 3 and 4. The evolved bees in [15] solved only

scenarios 1 and 2 although the evolutionary search was



attempted on probabilistically based scenarios as well.

Initially, the blue and yellow colours are assigned to the

high and low rewarding flowers respectively, or vice versa on

a random basis. During the scenario, the colours are inverted,

thus changing the association between colour and high/low

reward. The random initial assignment and the following

switch of colours introduce uncertainty in the environment.

Note that the numerical values for quantities of nectar

shown in Table I have been chosen carefully to exclude trivial

strategies based on the preference for a given value or interval

of values.

The lifetime of a bee is simulated by presenting scenarios

1, 2 and 3 sequentially. Scenario 4 is used for testing only.

Three hundred flights are performed with scenario switching

points at flights 101±15 and 201±15. The colours of flowers

are inverted about half way through each scenario at flights

51 ± 15, 151 ± 15 and 251 ± 15. Colours are also inverted

at scenario switching-points with probability 0.5: this is to

avoid a predictable pattern of the high rewarding flower.

IV. IMPLEMENTATION

Three input neurons provide the percentage of grey, blue

and yellow colours seen at each time step. An input neuron

for the reward provides a measure of the nectar collected

upon landing. The reward input is 0 during the flight, and

assumes the value of the nectar content at the landing step

only. Additionally, a landing signal that assumes value 1

upon landing and remains 0 during the flight is provided.

The landing signal is particularly important to indicate when

the expected reward is due and therefore allow the neural

network to detect a prediction error. In [15], differential

colour inputs were provided to the neurocontroller. We also

made differential inputs available to evolution to assess

their utility. An output neuron controls the actions of the

bee. A constant input set to 1 served as bias. Connection

weights are in the range [0.3, 30] obtained with logarithmic

quantisation from alignment scores in the interval [16,36].

Alignment scores are computed according to the scoring

matrix described in [20, page 89].

Seven parameters are evolved with the neurocontroller:

parameters m and b for the probability of direction change;

parameters A, B, C, D and η from equation 1. Parameters

are represented as real values in the following range: [5,45]

for m, [0,5] for b, [-1,1] for A, B, C, D and [0.05,50] for η.

The search on the AGE genome is performed by a

standard, fairly configurable evolutionary algorithm [30].

For this experiment we set a population size of 100. The

fitness is the amount of nectar collected by each individual

during the evaluation. The truncation selection mechanism is

applied to select the 50 best individuals from the population.

The best individual is kept unchanged in the population.

Recombination probability is 0.1. Mutation on the AGE

genome is performed by nucleotide substitution and insertion

that operate on a single nucleotide, fragment duplication and

transportation that operate on sequences of more nucleotides

(fragments) with probability 4.0 · 10−4. A slightly higher

probability of 4.5 · 10−4 was applied to nucleotide and
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Fig. 6. Best and average fitness in one run.

fragment deletion. Genomes of generation zero are initialised

with two neurons for each type and random terminal se-

quences of length 25, i.e. random connection weights.

V. RESULTS

Fifty independent runs were executed. The runs terminated

after 4000 generations. Forty-five out of the 50 runs discov-

ered an online learning strategy. Figure 6 shows a typical

example of fitness graph. The discovery of a strategy is

indicated by a jump in the fitness values. Jumps in different

runs occur at various times during evolution, some at an

early stage, some later. However, once a strategy is found,

the fitness values increase relatively quickly.

The average reward in the field (190µl per lifetime) is the

threshold that indicates when an association between reward

and flower-colour is discovered. The maximum fitness is

not well defined given the stochastic nature of rewards in

scenario 3. A reference value, however, is given by 270µl that

is the sum of average rewards provided by optimal choices

during a lifetime.

Two additional sets of experiments without neuromod-

ulation were executed for comparison. Twenty runs were

performed with neuromodulation switched off, therefore

evolving topologies of fixed-weight networks. Other twenty

runs were executed with a constant neuromodulatory value of

1 for all neurons, therefore evolving topologies with plasticity

fully enabled. Only two runs out of forty (all from the fixed-

weight case) displayed a learning strategy, allowing to cross

the 190µl threshold. However, even in these successful runs,

performance was low as controllers displayed learning in

scenario 1 or 2 only, while failing on the more difficult

probabilistically rewarding scenario 3.

A. Adaptivity of Networks to Scenarios

At the end of the evolutionary search, the controllers

were tested on the 3-scenario life used for evolution. Figure

5(a) shows the behaviour of one bee. At contingencies and

scenario switching-points1, the bee requires a certain number

of flights to change its preference. However, the correct

1The variability of switching-points during evolution was removed during
testing to have equally long scenarios.
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Fig. 5. Behaviour of a bee during a 300-flight lifetime. (a) The choice of flower for each of the 300 flight is reported on the horizontal time-scale. The
top bar indicates the colour of the high-rewarding flower, i.e. the optimal choice. The second bar shows the choice made by the evolved bee. (b) Zoom in
of scenario 3 (last hundred flights): an additional horizontal bar at the bottom shows the flight in which the bee collected a null reward.

Fig. 7. Network topology of a well-performing bee. The square boxes
on top represent the input neurons where G, B and Y are the percentages
of grey, blue and yellow colours seen by the bee; dG, dB, dY represent
differential colour values at each step. R and L are the reward and landing
signals. The square labelled ”1” is a constant input of 1 that provides
a bias to the neurons. Continuous lines with black triangles indicate
positive connections, dashed lines with white triangles negative connections.
Dashed circles around a neuron indicate that the neuron is reached by a
neuromodulatory connection and the synapses that connect to that neuron
undergo synaptic plasticity according to equation 1. The initial weights are:
G-Out: -0.37; G-Mod: -0.37; B-Out: 0.175; Y-Out: 0.30; B-Mod: 0.60;
Y-Mod: 0.60; R-Mod: -0.3; R-Out: -14.66; L-Mod: 1.95; L-Out: 9.56.
Evolvable parameters are: A: -0.79; B: 0.0; C: 0.0; D: -0.038; η : 0.79;
m: 42.47; b: 4.75.

association between colour and high rewarding flower is

always achieved.

It is interesting to note that the bee seems to take longer

to switch preference when the scenario changes (at flights

101 and 201), whereas it changes preferences more rapidly

when the colour is inverted (at flights 51, 151, and 251). This

is because strategies vary considerably between scenarios,

for example requiring to avoid a zero-rewarding flower in

scenario 2, but not so in scenario 32. Figure 5 suggests that

the bee has remarkable learning capabilities that do not just

allow the association of colour stimulus and reward, but also

the determination of a better rewarding flower on the basis of

long term historical information from sampling. To support

further this conclusion, we plotted the flights that ended

with a zero-reward in Figure 5(b). The zoom on scenario

3 show that when a flower has been chosen, the bee insists

visiting the same flower in spite of zero-rewards that are

occasionally collected. However, the deceiving experience of

more zero-rewards in a row makes the bee switch flower at

flight 262, after sequentially collecting a null reward from

the good flower three times. Yet, the preference is switched

back immediately to the correct one.

Scenario 1,2 and 3 constituted the simulated lifetime of

the bee during evolution. A more challenging test was carried

out on the unseen scenario 4: the two flowers yield the same

reward but have different probabilities of returning a zero-

reward (see Table I). Surprisingly, Figure 8 shows that the

bee is able to learn which flower returns a high mean in the

long run. The test was tried twice with considerably different

numerical values of reward.

B. Network Analysis

To understand the neural principles and the main character-

istics of the evolved solutions, we examined the components

and connections of the best 5 networks of each successful

run, in total 225 networks. Because each independent run was

free to evolve any topology, plasticity rules and modulatory

structure, a comparison of different solutions is difficult.

However, we noticed that successful controllers presented

some common features. Figure 7 shows an example of an

evolved network.

Differential inputs are used at 10% only, suggesting that

these inputs proposed in [15] are not necessary. The reward

2While a null reward in scenario 2 is given only by the low rewarding
flower, in scenario 3 the high rewarding flower gives occasionally a null
reward, see Table I
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Fig. 8. The bee is tested twice on the unseen probabilistically rewarding scenario 4 with rewards 0.8µl and 0.3µl.

signal (R) is used in 100% of controllers. This is due to the

fact that only by listening to the reward signal the network

can discover the high rewarding flower and detect changing

contingencies. The landing signal (L) is present in 220 net-

works, indicating that evolution found this signal beneficial.

At a further analysis, we found that in approximately 75%

of solutions, the landing signal projects excitatory connec-

tions to modulatory and standard neurons, while the reward

input sends inhibitory signals. Thus, the modulatory signal

is activated by landing, and enables the network to learn

new input/output correlations. Simultaneously, the reward

signal corrects the synapse update according to a measure

of good/bad surprise.

All the networks have at least one modulatory neurons and

one standard neuron for the output. In average, each network

has 1.11 modulatory neurons and 1.13 standard neurons.

This means that the complex foraging task can be solved

by a simple neural architecture when neuromodulation is

provided.

Figure 9 gives an important insight on the neural dynam-

ics. The modulatory signal saturates at landing, instructing

the network to update synaptic weights. A low level of

modulation is present during the flight as well, allowing for

a slow decay of synaptic weights, and reflecting a decay of

expectation in absence of reward. Most interesting is also the

fact that neuromodulation drops to zero at times: this happens

when the bee sees grey colour outside the field. Because the

outside of the field provides null reward in all scenarios, and

it is not subject to contingency change, synaptic plasticity

- and thus learning - is switched off. In other words, the

evolved network with neuromodulation enables learning only

when the environmental contingencies require adaptation.

VI. CONCLUSIONS

Starting from the biological evidence on neuromodula-

tory dynamics, we suggest that Artificial Neural Networks

(ANNs) learning capabilities can be enhanced with the

inclusion of such models for synapse plasticity.

Here, we introduce a neural model of heterosynaptic

plasticity and search the topology space with an evolution-

ary algorithm and Analog Genetic Encoding (AGE). The

results show that the neurocontrollers autonomously discover

neuromodulation during evolution and maximise the total

reward in an uncertain foraging environment. Our solutions

proved to acquire a general learning strategy capable of

coping with more scenarios. These results outperform the

neural controllers with fixed architecture described in [15]

that solved only a subset of the proposed scenarios. It is

remarkable that one controller do not only solve equally well

all scenarios used during evolutions, but also cope success-

fully with a qualitatively different unseen scenario, regardless

of numerical reward values. Additional experiments run for

comparison without neuromodulation performed extremely

poorly both in the case of fixed-weight networks and tradi-

tional Hebbian learning networks.

We showed that the key feature of neuromodulation

consists in activating plasticity only at critical time steps,

for example at landing when the reward stimulus is due,

modulating synaptic update during flight and deactivating

learning when it is not required.

Although the behaviour of the evolved bees displays a

complex reinforcement learning dynamic, the neural con-

trollers designed by evolution are compact and utilise few

neurons. This suggests that neuromodulation provides an ef-

ficient tool to implement subsymbolic reinforcement learning

mechanisms.

Our study showed that the evolution of neuromodulatory

structures is possible and provides solutions with remarkable

computational power. This opens the possibility of investi-

gating the use of such networks for increasingly complex

learning problems. Moreover, our evolutionary search of

topologies was motivated by the evidence that such structures

play an important role in biological neural substrates. Thus,

the modulatory network topologies discovered by artificial

evolution represent valid computational models for neuro-

science and ethology.
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