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Abstract

Gene expression profiling is a sophisticated method to discover differences in activation
patterns of genes between different patient collectives. By reasonably defining patient
groups from a medical point of view, subsequent gene expression analysis may reveal
disease-related gene expression patterns that are applicable for tumor markers and phar-
macological target identification. When releasing patient-specific data for medical studies
privacy protection has to be guaranteed for ethical and legal reasons. k-anonymisation may
be used to generate a sufficient number of k data twins in order to ensure that sensitive data
used in analyses is protected from being linked to individuals. We use an adapted concept
of k-anonymity for distributed data sources and include various customisation parameters
in the anonymisation process to guarantee that the transformed data is still applicable for
further processing. We present a real-world medical-relevant use case and show how the
related data is materialised, anonymised, and released in a data mart for testing the related
hypotheses.

1 Introduction

Gene expression profiling is a sophisticated method to discover differences in activation pat-
terns of genes between healthy and diseased cells and tissues. Molecular signatures that corre-
late with diseases may be unveiled and used for prognoses. In cancer research tumour markers
are derived from reliable classification patterns of gene expressions. Further, previously un-
known subtypes of cancers may be detected. To support both gene expression analysis and data
release for clinical studies we developed a virtual data warehouse solution where patient col-
lectives are selectable and gene expression profiles are linked for further analysis. Patient data
(from clinical databases) and gene expression data is integrated and materialised on demand
in a data mart. Subsequent analyses may be used to detect connections (correlations) between
patient related data (personal data, history, lifestyle data, clinical analysis data) and patterns in
gene expression profiles.

When releasing patient-specific data for medical studies privacy protection has to be guaranteed
for ethical and legal reasons. Even when immediately identifying attributes like name, address
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or day of birth are eliminated, other attributes (quasi-identifying) may be used to link the re-
leased data with external data to re-identify individuals. The concept of k-anonymity requires
that each distinct combination of quasi-identifying attributes occurs at least k times in a shared
table. [PS98]. Hence, a sufficient number of k data twins is used to mantle the individuality of
persons. The number of data twins may be increased by transforming attribute values to more
general ones using predefined generalisation hierarchies or by simply suppressing attributes.

Several methods for achieving k-anonymity have been developed. Generally, we can dis-
tinguish between approaches using global recoding [WYC04, LDR05, FWY05] of attribute
values, those using constrained local recoding [LDR06] and those using full local recoding
([XWP+06]). Global recoding of attribute values may be defined as a set of functions that
transform attribute values to generalised or altered values. In a single-dimensional global re-
coding all values of a certain attribute domain are mapped to transformed values, while multi-
dimensional global recoding (also considered as constrained local recoding) recode combina-
tions of attribute domains. Full local recoding is used to recode non-distinctive attribute values,
that is, two tuples with equivalent attribute values may be recoded differently. We are using full-
domain generalisation which is a kind of single-dimensional global recoding. Each attribute is
generalised independently from all the other attributes. Further, full-domain generalisation
guarantees that every attribute value belongs to the same generalised domain [LDR05]. We
prefer full-domain generalisations since the recoded data is useful for the context of our ap-
plication. The transformed records are released to medical studies that investigate correlations
between attributes, classify diseases in subtypes and make survival analyses of different courses
of diseases. All those analyses need data transformed to equal generalisation levels. If the val-
ues for disease free survival are recoded to arbitrary intervals (e.g.: [0-5], [10-20] months) or
not coded at all, a postprocessing of records is required. Additionally, after anonymisation any
record may be easily transformed to a more general value but can not be recoded in a more
specific one. Thus, in comparative analysis, all attribute values would have to be transformed
up to the generalisation level of the most general one.

Following the concept of k-anonymity the anonymity of patients may be preserved by gener-
alising and/or suppressing attribute values in order to generate data twins in the released data.
Our data integration and anonymisation concepts have been developed in the context of the
Austrian Genome Programme GEN-AU [iA] and as preliminary work for the biobank initiative
of the Medical University Graz [BIO]. In this paper we extend our anonymisation algorithm
[SEZ06] in order to guarantee k-anonymity in a shared table that is built from a set of data
sources. We prevent that none of the shared table records may be used to reidentify individuals
by generating data twins for each data source separately. Instead of allowing access to the entire
shared data we release data as the result of data requests. Users are able to select a subset of the
shared table they want to use in further analysis by defining projection and selection criteria.

Generalisation of attribute values is always related with an information loss. Though, the ac-
ceptable information loss may differ as the case arises. Some attributes should be generalised as
little as possible while others may be transformed to more general values. For instance, in some
medical study it’s sufficient to know the age of patients in steps of five (40-45, 46-50,..) but the
size of tumours is to be specified as detailed as possible. Hence, we allow the users to weight
the importance of attributes for a specific data request by defining priorities and generalisation
limits. Those criteria are considered in the anonymisation process and have a strong impact on
the quality of the transformed data.
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Further, we take into account different information losses in generalisation hierarchies. We
therefore attempt to integrate knowledge of medical domain experts by allowing them to assess
the information loss within each attribute hierarchy. Medical experts assign information loss
quantifiers to each level of a generalisatin hierarchy in order to estimate the data quality de-
crease for each transformation step. A more detailed description of different information losses
is given in section 4.2.

The paper is structured as follows: We describe the type of privacy protection we concentrate
on in section 2. Section 3 describes the data sources that are available at the Medical University
Graz and are integrated in a shared table. The process of anonymisation is specified in section
4. Finally, a detailed example use case from the medical research domain is presented in section
5.

2 General threat scenario

The original work of Samarati [PS98] focuses on the reidentifaction risk of linking released
private data with publicly available information (i.e. city’s voter list). However, privacy pro-
tection through k-anonymity is also applicable to shared data that result from data integration
of multiple parties. In the work of [WFD05] two parties share data to benefit from a common
classification analysis. Since the data sources remain separated, until an integrated table is built
and common identifying attributes are used to link the two sources, those attributes could be
used to learn attribute values of the other party. Thus, the set of quasi-identifying attributes is
extended to all shared attributes of both parties. However, in our approach a trusted third party
is responsible for linking records from all data sources and eliminating identifying attributes in
the released data. Each data source has its own set of quasi-identifying attributes which corre-
sponds to the set of attributes that is shared globally.

In our scenario a few parties share their private data in a publicly available table. Each party
performs analyses on the global table but no party is able to deduce additional infomation re-
lated to its stored individuals. In Fig.1 three parties A, B, C are sharing a set of attributes in an
integrated table. Each party has identifying keys for the individuals that are not shared glob-
ally. Any party may access the shared table, execute queries and use the result sets for further
analysis. Though, it should not be possible to infer the identity of individuals by matching the
global result set with the local data source. Further, if any external intruder gains access to the
global table and to any local source he is not able to link all shared attributes to one individual.
Therefore, we impose the k-anonymity constraint on each data source separately. Any globally
shared record has to have k data twins in every data source. If we want to provide k-anonymity
of k=3 in our example each tuple ti = t(i, vi

1, v
i
2, v

i
3, v

i
4, v

i
5, v

i
6, v

i
7) must have two other data

twins for (vi
1, v

i
2) in data source A, (vi

3, v
i
4, v

i
5) in B and (vi

6, v
i
7) in C.

Consider the following example: pathological findings, survival data and clinical data is in-
tegrated in a shared table (table 1). Although no immediately identifying attributes are shared,
distinct attribute value combinations may be used to reidentify individuals in the local sources.
We examine for every data source whether there exist data twins for the shared attributes. In
our case records 1, 2, 5 and 6 have no data twin for attributes PT, PN and PM. Further, records
3 and 6 have unique values for cause of death and all records do not have any data twin for
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Figure 1: Shared table

columns weight and height. By applying recoding and generalisations data twins are created as
shown in table 2. Staging PT is generalised by replacing 3a and 3b values with an aggregated 3
specification. The cause of death column is transformed by categorically recoding textual de-
scriptions in ICD-N codes. Further, attributes weight and height are mapped to BMI (body mass
index) categories. Hence, k-anonymity of 2 has been accomplished for attributes of findings
(PT,PN,PM), survival data and BMI.

RecId PT PN PM Cause of Death Height(cm) Weight(kg)
1 3A 0 1 Atherosclerotic heart disease 185 85
2 3A 0 X Sigmoid colon 173 80
3 3B 0 X Colon, unspecified 175 69
4 3B 0 X Sigmoid colon 172 70
5 3B 0 1 Atherosclerotic heart disease 170 62
6 3B 0 X Caecum 183 80

Table 1: Integrated Table

3 Data sources

The pathology Graz has different databases for pathological findings, gene expression profiles
and survival data. All three data sources contain sensitive information of patients like tumour
diagnoses, gene expression profiles, survival periods and causes of death. Each data source
access is limited to authorised persons. A virtual integration layer links data records from all
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RecId PT PN PM Cause of Death BMI
1 3 0 1 I25 [25.0,..,29.9] Overweight
2 3 0 X C18 [25.0,..,29.9] Overweight
3 3 0 X C18 [18.5,..,24.9] Normal
4 3 0 X C18 [18.5,..,24.9] Normal
5 3 0 1 I25 [18.5,..,24.9] Normal
6 3 0 X C18 [18.5,..,24.9] Normal

Table 2: Anonymised Table

sources, selects subsets of relevant attributes and allows export of records for further medical
investigation. Gene expression profiles are related to tissue or blood samples and are not imme-
diately linked to patients. The relationship from individuals to gene expression profiles must
not be deduced from records of the virtual integration layer. A similar protection is to be guar-
anteed for survival data: survival period and cause of death are essential parameters for survival
analyses, though, that information must not be explicitly linked to patients. In the following,
we present the data sources in more detail.
Table 3 is a set of patient findings storing pathological diagnoses related to different types of
preparations. Tissue samples are taken from biopsies, as preparations during operations or
from autopsies. The majority of samples is tumour-related, thus, tumour-specific data such as
staging, grading, textual diagnosis and tumour localisation is stored as well as the age of the
patient at that moment the preparation was taken. SendDate gives information about the date
the preparation was taken and Sender stores information about the hospital where the prepara-
tion originated. The column PatId links to a separate patient table where identifying attributes
name, surname, day-of-birth are available. Each person having access to the findings table also
has access to the patient table and is able to identify findings of individuals.
Survival data is stored as shown in table 4. Cause of death is specified by two ICD-10 codes

PREPID PATID LOC. AGE PT PN PM G R SENDDATE SENDER

8 19 Colon 67 3 2 1 2 X 23.09.2003 Surgery
11 19 Mamma 69 1C 1BII 0 3 0 15.02.1998 Graz East
14 22 Mamma 51 1A 1A 0 3 0 07.03.2005 Surgery
... ... ... ... ... ... ... ... ... ... ...

Table 3: Findings

(ICD-E and ICD-N). The survival period is calculated by subtracting send-date (findings table)
from the day-of-death column. Pat-Ident is a combination of name, surname and day-of-birth.
Patients that are still alive have empty columns for day-of-death and ICD-E/ICD-N. Finally,
gene expression profiles are stored separately in table 5 and are linked by preparation ids (Prep-
Id). In the use case in section 5 we focus on analyses of the survival period from survival
data and the gene expression profiles from the genes table. Therefore, linking gene expression
profiles and survival data data to individuals may only be accomplished by matching attributes
of the findings table with the shared ones. For that reason we just have to transform attributes
from the findings table to fulfil the k-anonymity constraint.
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PAT-IDENT DAY-OF-DEATH ICD-E ICD-N
Ident1 15.08.2005 S224 V486
Ident2 17.03.2000 S069 V849
Ident3 19.01.2006 I219 U50

... ... ... ...

Table 4: Survival data
PREP-ID GENE EXPRESSION PROFILE
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Table 5: Gene Expression Profiles

4 Anonymisation

Given a set of source tables T1, .., TM that are joined in a shared table. Identifying attributes
are used to link records, but are not shared. Let the set of shared attributes be QI and a single
attribute be denoted as αi ∈ QI . Each source table Tj provides a set of attributes ASj , whereas
QI =

⋃M
j ASj . Considering the threat scenario of section 2, we investigate the number of data

twins for each source table separately. Therefore, we will have to determine for every Tj the set
of its distinct attribute value combinations. Each table Tj stores a set of tuples t(id, ν1, .., νn)
where id is the unique tuple id and n is the number of table attributes. An equivalence class
[classi] may be generated for each attribute value combination (ν1, .., νn) and has an associated
cardinality ci counting the number of its elements. Equivalence classes are needed to check the
k-anonymity constraint for a certain attribute value combination. Further details are given in
section 4.5.
Attribute values are transformed to more general values to increase the number of data twins.
Each attribute has an associated generalisation hierarchy used for recoding. We distinguish
between a dimension hierarchy and a member hierarchy [SEZ06]. While the member hier-
archy is used to transform record values to generalised values, the dimension hierarchy is used
for evaluation of generalisation steps.

4.1 Dimension hierarchy and member hierarchy

A dimensional hierarchy is composed of generalisation levels. Let the lowest generalisation
level be L0, at that level all attribute values remain unchanged. Let Lmax be the maximal gener-
alisation level for a certain αi. At this level, all values of an attribute αi are combined to a single
generalised value. The highest generalisation level corresponds to the suppression of the at-
tribute. Generalsations are always associated with an information loss, since an attribute value
is transformed to a less specific value. While the dimensional hierarchy measures the informa-
tion loss, the member hierarchy models the transformation from specific values to generalised
values for each attribute. Each attribute αi (αi ∈ QI) takes its values from a certain domain,
whereas an attribute domain may be nominal, ordinal or numeric. Attributes with nominal or
ordinal data types are typically generalised using a generalisation hierarchy of parent-child re-
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lations. Attributes of numeric domain type may be generalised along interval-based hierarchies.

4.2 Information loss

By applying a sequence of consecutive generalisation steps, the information loss is accumu-
lated. However, the data quality decrease is not necessarily equal for each generalisation step
along the hierarchy. For instance, consider the generalisation of patient age values 10, 12, 16,
20. If 10 and 12 are generalised to [10-15] and 16 and 20 are generalised to [16-20], less in-
formation is lost than by generalising all four values to [10-20]. Another example from the
medical research domain is the generalisation of the tumour staging PT that specifies the size
of the tumour and its local spread. Stage PT is a numeric value in the range from 1-4 combined
with prefixes for subclassification, such as ’a’, ’b’, ’c’ or ’mic’. The set of transformation rules
given in table 6 represents the member hierarchy for attribute PT.

VALUES AGGREGATED VALUE

1mic, 1a, 1b, 1c 7→ 1
1, 2 7→ [1− 2]
4a, 4b, 4c, 4d 7→ 4
3, 4 7→ [3− 4]
[1− 2], [3− 4] 7→ ∗

Table 6: Member hierarchy

By applying two generalisation steps value classification 1a is transformed into [1− 2]. Stag-
ing PT is determined by the size of the primary tumour. While for instance in breast cancer,
tumours with a greatest dimension of 2 cm are classified as T1, tumours with a greatest di-
mension of minimal 2 and maximal 5 cm are classified as T2. Thus, transformation from
(1mic, 1a, 1b, 1c) 7→ 1 is of different quality than transformation (1, 2) 7→ [1− 2], since the
difference among the subclassifications 1mic, 1a, 1b and 1c is smaller than the one among the
classifications 1 and 2.
We allow to specify customised information loss quantifiers along the generalisation hierar-
chy. The information loss is 0 at L0 and 1 at Lmax. Information loss quantifiers ϕ(j) are assigned
to all intermediate generalisation levels Lj , 0 < j < max. A dimension hierarchy for attribute
αi is denoted as set of edges, whereas an edge models the information loss up to generalisation
level k. edge(αi, Lk+1, Lk, ϕ).

4.3 Priorities and Limits

Priorities are used to specify the relative importance for attributes and their granularity. In some
cases exact values for a specific attribute may be favoured while the generalisation degree of
others is negligible. Attributes with lower priorities are generalised first while attributes with
higher priorities are only generalised when no other solution may be found. In some cases,
attributes should be generalised only up to a certain degree or not transformed at all. Otherwise,
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their values become useless for an application domain. Therefore, it’s crucial to allow definition
of limits for information loss, someone is willing to cope with.

4.4 Request

For a particular analysis, a request is made on the shared table. A request is a query consisting
of a set of selections and a projection, specifying the table attributes which have to be derived
from the shared table to perform the analysis. It may be defined as R(ΠA, σ(αi op cri)∗), where
A ⊆ QI , op is a comparison operator (=, 6=, <, >, ≤, ≥), and cri is a value of the domain
of attribute αi. Selections restrict the range of values and projection allows to dismiss attributes
which are not relevant. Clearly dropping attributes increases the likelihood of data twins. The
result of the request query is then checked for k-anonymity and, if necessary, generalised by the
anonymisation algorithm outlined below. If it is not possible to achieve the specified anonymity,
no data will be released.

4.5 Anonymisation steps

Our algorithm attempts to find an appropriate anonymisation for a specific data request. The
goal is to find a solution that is as close to data quality demands as possible. Thus, a depth-
first search looks for a solution along the top-ranked search path. We want to emphasize that
alternative solutions could be found by backtracking and ranking of alternative paths. For
simplicity, we focus on the search along the top-ranked path in this work. Before starting with
anonymisation the data request is examined. Since k-anonymity is to be accomplished in each
source table Tj separately, anonymisation is composed of subsolutions for every data source.
If a source table has none of the projected attributes, anonymisation is trivially fulfilled. The
following three steps are executed for every involved data source.

1. Preprocessing:
A data source Tj is sharing attribute set ASj . We filter all projection and selection cri-
teria of request R = (ΠA, σ(αi op cri)∗) that are related to attributes of Tj . Hence, we
deduce the following subrequest Rj = (ΠSub, σ(αl op cri)∗), Sub = A ∩ ASj and
∀ αl • αl ∈ A ∩ ASj . We apply the filtered projection and selection criteria im-
mediately on the shared table and retrieve a result set of tuples RS. For each distinct
value combination of RS, an equivalence class [classj] with associated cardinality cj is
created. Finally, we store those equivalence classes in set TAnon.

2. Initialisation of algorithm:
Selection criteria do have to be considered in the anonymisation process. Any selection
criteria limits the generalisation potential of an attribute. Consider the following exam-
ple: A set of patients having colon cancer that is staged up to 1 should be released. The
localisation (colon) has been specified exactly, that is, it cannot be generalised any fur-
ther, since the requesting users knows the exact value. Staging 1 is a generalised value of
(1a, 1b, 1c, 1mic). Hence, staging t is generalisable up to value 1. Selection criteria may
determine the maximal limits of generalisations. If a user-defined limit and a selection
criteria limit is specified for the same attribute the smaller one is taken.
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Algorithm Anonymisation Algorithm
Input: TAnon, priorV [n] , limV [n] , levelV [n] , k
Output: Sequence of generalisation steps → GS
1. GS = [ ]
2. while TAnon not fulfils k-anonymity
3. do minimum = ∞
4. αgen = null
5. for all αi ∈ QI
6. do cl = level [αi]
7. edge(αi, Lpl, Lcl, ϕ)
8. if pl < limV [αi])
9. then cost = ϕ ∗ priorV [αi]
10. if cost < minimum
11. then minimum = cost
12. αgen = αi

13. TAnon = generalise(TAnon, αgen)
14. append(GS, (αgen, pl))
15. level [αgen] = level [αgen] + 1
16. TAnon = merge(TAnon)
17. return GS

A pseudo-code description of the anonymisation algorithm is given below (Anonymisa-
tion Algorithm). The following input parameters are required: TAnon is the set of equiv-
alence classes that violates the k-anonymity constraint. The k-Anonymity parameters is
specifying the number of requested data twins. However, that parameter has to be greater
than the minimal value claimed by a general security policy. A priority vector for all αi

is specified as priorV [n]. The priority values are in the range [0, .., 1], whereas the most
import attribute has the highest priority value and all differences between any two consec-
utive priorities values are equal. The generalisation limits are stored in vector limV [n]
and a level vector (levelV [n]) stores the current generalisation levels for all attributes -
initially, all level values are set to 0.

3. Anonymisation of records:
An anonymisation is accomplished by a sequence of n generalisation steps
(GS1 → GS2 → .. → GSn ). Each generalisation step (GSi, 1 ≤ i ≤ n) transforms all
values of a certain attribute αg to more general values using the member hierarchy struc-
ture described in section 4.1. We are searching in a multidimensional space that is built
from the generalisation hierarchies of all attributes. Let Lmax(i) be the maximal gener-
alisation level of attribute αi, then the number of all possible anonymisation solutions is∏n

i=1 Lmax(i). We prune the search space by including user-defined limits and we eval-
uate search paths by taking information loss quantifiers and user-defined priorities into
account. We calculate a quality measure by multiplying information loss quantifiers that
are specified a priori in relations along the dimension hierarchy (edge(αi, Lpl, Lcl, ϕ))
with priorities that are specified by the user in context of his current data request. At-
tribute αg is chosen by evaluating all possible generalisations of all attributes. αg is the
attribute that has the minimal weighted information loss after being transformed to the
next generalisation level. Function generalise(TAnon, αgen) transforms all records of
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TAnon by replacing all attribute values of αg with generalised values. In the next pro-
cessing step, merge(TAnon), a new equivalence class set is created by grouping distinct
attribute values of TAnon to equivalence classes. If each equivalence class has at least
an associated cardinality of k, a solution has been found and the sequence of necessary
generalisation steps is returned.

4. Release of records:
After the required generalisation steps have been determined for each source table, re-
leasing of records may be initiated. We apply the projection and selection criteria on the
shared table and transform the result set according to the generalisation steps.

5 Use Case

We have tested the following use case on pathological findings of the Institute of Pathology
Graz. We focused on a staged mamma carcinoma data set of 16,417 cases.

5.1 Attribute Hierarchies

Table 7 represents an extract of the generalisation hierarchies for attributes staging PT, staging
PN, staging PM and residual tumour description R. Columns ’Values’ and ’Agg.Value’ (aggre-
gated Value) specify relationships of the member hierarchy. The dimension hierarchy levels are
given in columns Li and Li+1 and the information loss between the levels is stored in ϕ. Infor-
mation loss quantifiers strongly depend on the semantics of attribute values and the context of
use and have to be evaluated by users. The TNM cancer staging scheme may include different
classification values for various tumour types [Fle97]. For simplicity, we focus on classification
of mamma carcinoma in our examples. Consider the classification of tumour size by staging
PT: a staging value of 1 classifies tumours up to the size of 2 cm, while tumours with a size
between 2 and 5 cm are staged with value 2. The subcategories for staging 1 are (1a, 1b, 1c)
used for tumours of sizes (in cm) (> 0.5, [0.5− 1.0] , [1.0− 2.0]). A generalisation from all
subcategories to 1 has a different data quality decrease than a generalisation from values 1 and
2 to the next aggregated value [1− 2]. Hence, the estimated information loss is smaller in the
former case than in the latter. We estimate the information loss for attribute PT between level
L0 and L1 with 30 %. Attributes R and PM are not generalisable hierarchically, but they may
be suppressed.

5.2 Detailed example use case

Although tumours may be staged identically, they may show different behaviour in the follow-
ing course of disease. We want to analyse gene expression profiles of mamma carcinoma of size
1 (staging PT) having a well-differentiated grading (G=1). Additionally, the survival periods
should be exported to allow further grouping. Altogether, the following attributes are needed:
PT, PN, PM, G, R from findings table, survival period in days from survival data and finally the
corresponding gene expression profiles of the selected cases should be linked. We may derive
the following request from the textual description:
R(Findings) = (π(PT,PN,PM,G,R),

{
σ(Localisation=′Mamma′), σ(PT=1), σ(G=1)

}
). We do not have to
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ATTRIBUTE VALUES AGG.VALUE ϕ Li Li+1

PT 1a, 1b, 1c, 1mic 1 0.3 0 1
R X, 0, 1, 2 * 1.0 0 1
PN 1mi, 1a, 1b 1 0.5 0 1
PM X, 0, 1 * 1.0 0 1
... ... ... ... ... ...

Table 7: Attribute hierarchies

anonymise the corresponding records of survival data table and gene expression table as men-
tioned in 3. Now we apply all steps described in section 4.5:

1. Preprocessing:
By examining the values of the selection criteria, we discover that ’PT=1’ is a generalised
value. Hence, our search pattern for PT includes all child values of 1 → [1a,1b,1c,1mic].
We search for entries in the shared table that may be matched with the following pattern
(Localisation=[Mamma], PT=[1a,1b,1c,1mic], N=[*], M=[*], G=[1], R=[*]). After ap-
plying projection and selection criteria, a set of 107 equivalence classes for 313 different
entries is identified, whereas 67 classes have a cardinality of 1.

2. Initialisation of algorithm:
Three attributes (Localisation, PT, G) have been used in selection criteria. Localisation
is not generalisable, since ’Mamma’ is not a generalised value, as well as grading value
1. Staging PT may be generalised up to generalised value ’1’. The attribute priorities are
specified as follows: R → 0.20, PM → 0.40, PN → 0.60, PT → 0.80. Further, a minimal
k-anonymity of 2 is to be achieved.

3. Anonymisation of records:
We calculate the weighted information loss for each generalisable attribute when being
transformed to its next generalisation level. It is 0.20 (= 0.20 * 1.0) for R , 0.24 (= 0.80
* 0.3) for PT, 0.30 (= 0.60 * 0.5) for PN and 0.40 (= 0.40 * 1.0) for PM. Attribute R
is chosen to be generalised (GS1 = (R, 1)). As R values are only generalisable up to
a general all value (*), the attribute is suppressed. The resulting new set of equivalence
classes has 98 members and 48 classes have a cardinality of 1. In the next anonymisation
step attribute PT is selected and all PT values are generalised (GS2 = (T, 1)). We retrieve
a set of 16 equivalence classes, whereas each class has a cardinality greater than 1.

4. Release of records:
Finally we apply the selection and projection criteria on the shared table, execute gener-
alisation steps GS1 and GS2 on the result set, and release the anonymised data together
with the related gene expression profiles and survival periods.

Through these four steps, the data stemming from different sources of our virtual data ware-
house have been integrated, anonymised and are released to the requester in form of a data mart.
The users now can perform analytical queries or data mining procedures on this data mart, or
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use the table as input to statistical tools. Tracking down the the released data to an individual
person is not possible through this method.

5.3 Impact of parameters

The result set produced by the algorithm is strongly influenced by the parameters the user spec-
ified. Thus, different data quality demands of medical studies may be considered. If the input
parameters (priorities and limits) of our use case example are changed a different anonymisa-
tion is created. In table 8 a summary of the input and output parameters of the original use case
settings is given. Attribute R is suppressed, attribute PT is generalised up to generalisation level
1 and the transformed result set contains 16 equivalence classes satisfying the k-anonymity con-
straint of 2. If the priorities and limits are changed as shown in table 9 the same data request
would be anonymised slightly differently: attributes PN and PT are generalised up to level 1,
but no attribute is suppressed and 20 equivalence classes are created.

ATTRIBUTE PRIORITY LIMIT TRANSFORMATION

PT 0.80 1 0 → 1
PN 0.60 No No
PM 0.40 No No
R 0.20 No Suppression
Equivalence classes: 16

Table 8: Setting A

ATTRIBUTE PRIORITY LIMIT TRANSFORMATION

PN 0.80 No 0 → 1
R 0.60 No No
PM 0.40 0 No
PT 0.20 1 0 → 1
Equivalence classes: 20

Table 9: Setting B

6 Conclusion

We presented an approach for flexible anonymisation of shared data stemming from different
sources with the aim of minimizing information loss and maximizing use of data for research
without compromising the privacy of patients. The major contribution of this approach is the
individualzation of the concept of an information loss, when data are generalised. This allows at
least the attempt to provide the data of main interest for a particular analysis in great detail while
achieving the deired anonymity by sacrificing other granularity of the values of other attributes.
We demonstrated the effectiveness of the approach in a use case, applying the algorithm to real
world data. Various ways of improving the technical implementation of our strategy as well as
an exhaustive evaluation of the performance of the algorithm are subject of ongoing work.
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